DATA AND COMPUTER COMMUNICATIONS
For my brave, extraordinary
and fascinating wife ATS
CONTENTS

Preface xv
Acknowledgments xxi
About the Author xxiii
Animations Directory xxv

Chapter 0 Reader's and Instructor's Guide 1
 0.1 Outline of the Book 2
 0.2 A Roadmap for Readers and Instructors 3
 0.3 Internet and Web Resources 5
 0.4 Standards 6

PART ONE OVERVIEW 8

Chapter 1 Data Communications, Data Networks, and the Internet 8
 1.1 Data Communications and Networking for Today's Enterprise 9
 1.2 A Communications Model 16
 1.3 Data Communications 19
 1.4 Networks 22
 1.5 The Internet 25
 1.6 An Example Configuration 30

Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based Applications 32
 2.1 The Need for a Protocol Architecture 33
 2.2 A Simple Protocol Architecture 34
 2.3 The TCP/IP Protocol Architecture 38
 2.4 Standardization within a Protocol Architecture 46
 2.5 Traditional Internet-Based Applications 49
 2.6 Multimedia 50
 2.7 Recommended Reading and Web Sites 53
 2.8 Key Terms, Review Questions, and Problems 54
 Appendix 2A The Trivial File Transfer Protocol 57

PART TWO DATA COMMUNICATIONS 62

Chapter 3 Data Transmission 62
 3.1 Concepts and Terminology 64
 3.2 Analog and Digital Data Transmission 75
 3.3 Transmission Impairments 83
 3.4 Channel Capacity 89
 3.5 Recommended Reading and Web Site 93
 3.6 Key Terms, Review Questions, and Problems 94
 Appendix 3A Decibels and Signal Strength 97

Chapter 4 Transmission Media 100
 4.1 Guided Transmission Media 102
 4.2 Wireless Transmission 116
CONTENTS

4.3 Wireless Propagation 124
4.4 Line-of-Sight Transmission 129
4.5 Recommended Reading and Web Sites 133
4.6 Key Terms, Review Questions, and Problems 134

Chapter 5 Signal Encoding Techniques 138
5.1 Digital Data, Digital Signals 141
5.2 Digital Data, Analog Signals 151
5.3 Analog Data, Digital Signals 162
5.4 Analog Data, Analog Signals 168
5.5 Recommended Reading 175
5.6 Key Terms, Review Questions, and Problems 175

Chapter 6 Digital Data Communication Techniques 180
6.1 Asynchronous and Synchronous Transmission 182
6.2 Types of Errors 186
6.3 Error Detection 186
6.4 Error Correction 196
6.5 Line Configurations 202
6.6 Recommended Reading 203
6.7 Key Terms, Review Questions, and Problems 204

Chapter 7 Data Link Control Protocols 208
7.1 Flow Control 210
7.2 Error Control 217
7.3 High-Level Data Link Control (HDLC) 223
7.4 Recommended Reading 230
7.5 Key Terms, Review Questions, and Problems 230
Appendix 7A Performance Issues 233

Chapter 8 Multiplexing 240
8.1 Frequency Division Multiplexing 243
8.2 Synchronous Time Division Multiplexing 249
8.3 Statistical Time Division Multiplexing 259
8.4 Asymmetric Digital Subscriber Line 266
8.5 xDSL 270
8.6 Recommended Reading and Web Sites 272
8.7 Key Terms, Review Questions, and Problems 273

Chapter 9 Spread Spectrum 276
9.1 The Concept of Spread Spectrum 278
9.2 Frequency-Hopping Spread Spectrum 279
9.3 Direct Sequence Spread Spectrum 284
9.4 Code Division Multiple Access 290
9.5 Recommended Reading and Web Site 294
9.6 Key Terms, Review Questions, and Problems 294
PART THREE WIDE AREA NETWORKS 298

Chapter 10 Circuit Switching and Packet Switching 298
 10.1 Switched Communications Networks 300
 10.2 Circuit-Switching Networks 302
 10.3 Circuit-Switching Concepts 305
 10.4 Softswitch Architecture 309
 10.5 Packet-Switching Principles 310
 10.6 Recommended Reading 320
 10.7 Key Terms, Review Questions, and Problems 320

Chapter 11 Asynchronous Transfer Mode 323
 11.1 The Role of ATM 325
 11.2 Protocol Architecture 326
 11.3 ATM Logical Connections 328
 11.4 ATM Cells 333
 11.5 Transmission of ATM Cells 339
 11.6 ATM Service Categories 343
 11.7 Recommended Reading and Web Sites 346
 11.8 Key Terms, Review Questions, and Problems 347

Chapter 12 Routing in Switched Data Networks 350
 12.1 Routing in Packet-Switching Networks 351
 12.2 Examples: Routing in ARPANET 361
 12.3 Least-Cost Algorithms 367
 12.4 Recommended Reading 372
 12.5 Key Terms, Review Questions, and Problems 373

Chapter 13 Congestion Control in Data Networks 377
 13.1 Effects of Congestion 379
 13.2 Congestion Control 384
 13.3 Traffic Management 386
 13.4 Congestion Control in Packet-Switching Networks 388
 13.5 ATM Traffic Management 388
 13.6 ATM–GFR Traffic Management 400
 13.7 Recommended Reading 403
 13.8 Key Terms, Review Questions, and Problems 404

Chapter 14 Cellular Wireless Networks 407
 14.1 Principles of Cellular Networks 408
 14.2 First-Generation Analog 422
 14.3 Second-Generation CDMA 423
 14.4 Third-Generation Systems 429
 14.4 Fourth-Generation Systems 433
 14.5 Recommended Reading and Web Sites 438
 14.6 Key Terms, Review Questions, and Problems 439
PART FOUR LOCAL AREA NETWORKS 442

Chapter 15 Local Area Network Overview 442
 15.1 Topologies and Transmission Media 443
 15.2 LAN Protocol Architecture 449
 15.3 Bridges 457
 15.4 Hubs and Switches 465
 15.5 Virtual LANs 469
 15.6 Recommended Reading and Web Sites 474
 15.7 Key Terms, Review Questions, and Problems 474

Chapter 16 Ethernet 477
 16.1 Traditional Ethernet 479
 16.2 High-Speed Ethernet 487
 16.3 IEEE 802.1Q VLAN Standard 498
 16.4 Recommended Reading and Web Sites 500
 16.5 Key Terms, Review Questions, and Problems 500
 Appendix 16A Digital Signal Encoding for LANs 503
 Appendix 16B Scrambling 510

Chapter 17 Wireless LANs 513
 17.1 Overview 514
 17.2 Wireless LAN Technology 519
 17.3 IEEE 802.11 Architecture and Services 521
 17.4 IEEE 802.11 Medium Access Control 526
 17.5 IEEE 802.11 Physical Layer 533
 17.6 IEEE 802.11 Security Considerations 541
 17.7 Recommended Reading and Web Sites 542
 17.8 Key Terms, Review Questions, and Problems 543

PART FIVE INTERNET AND TRANSPORT PROTOCOLS 545

Chapter 18 Internet Protocols 545
 18.1 Principles of Internetworking 546
 18.2 Internet Protocol Operation 551
 18.3 Internet Protocol 558
 18.4 IPv6 568
 18.5 Virtual Private Networks and IP Security 577
 18.6 Recommended Reading and Web Sites 580
 18.7 Key Terms, Review Questions, and Problems 581

Chapter 19 Internetwork Operation 585
 19.1 Multicasting 586
 19.2 Routing Protocols 596
 19.3 Mobile IP 607
 19.4 Recommended Reading and Web Sites 619
 19.5 Key Terms, Review Questions, and Problems 620
CONTENTS

Chapter 20 Internetwork Quality of Service 623
1. Integrated Services Architecture 625
2. Resource Reservation Protocol 634
3. Differentiated Services 644
4. Service Level Agreements 652
5. IP Performance Metrics 654
6. Recommended Reading and Web Sites 657
7. Key Terms, Review Questions, and Problems 659

Chapter 21 Multiprotocol Label Switching 661
1. The Role of MPLS 663
2. Backgrounds 665
3. MPLS Operation 667
4. Labels 672
5. FECs, LSPs, and Labels 676
6. Label Distribution 678
7. Traffic Engineering 682
8. Virtual Private Networks 687
9. Recommended Reading and Web Sites 689
10. Key Terms, Review Questions, and Problems 690

Chapter 22 Transport Protocols 692
1. Connection-Oriented Transport Protocol Mechanisms 694
2. TCP 712
3. TCP Congestion Control 720
4. UDP 731
5. Recommended Reading and Web Sites 732
6. Key Terms, Review Questions, and Problems 733

PART SIX NETWORK SECURITY 737

Chapter 23 Computer and Network Security Threats 737
1. Computer Security Concepts 738
2. Threats, Attacks, and Assets 740
3. Intruders 746
4. Malicious Software Overview 750
5. Viruses, Worms, and Bots 754
6. Recommended Reading and Web Sites 764
7. Key Terms, Review Questions, and Problems 765

Chapter 24 Computer and Network Security Techniques 768
1. Virtual Private Networks and IPsec 769
2. SSL and TLS 772
3. Wi-Fi Protected Access 776
4. Intrusion Detection 779
5. Firewalls 782
6. Malware Defense 790
7. Recommended Reading and Web Sites 796
8. Key Terms, Review Questions, and Problems 796
APPENDICES 799

Appendix A Fourier Analysis 799
A.1 Fourier Series Representation of Periodic Signals 800
A.2 Fourier Transform Representation of Aperiodic Signals 801
A.3 Recommended Reading 804

Appendix B Projects and Other Student Exercises for Teaching Data and Computer Communications 805
B.1 Animations and Animation Projects 806
B.2 Practical Exercises 807
B.3 Sockets Projects 807
B.4 Wireshark Projects 808
B.5 Simulation and Modeling Projects 808
B.6 Performance Modeling 809
B.7 Research Projects 809
B.8 Reading/Report Assignments 810
B.9 Writing Assignments 810
B.10 Discussion Topics 810

References 811

Index 825

ONLINE CHAPTERS
PART SEVEN INTERNET APPLICATIONS 25-1
Chapter 25 Electronic Mail, DNS, and HTTP 25-1
25.1 Electronic Mail: SMTP and MIME 25-2
25.2 Internet Directory Service: DNS 25-17
25.3 Web Access and HTTP 25-28
25.4 Recommended Reading and Web Sites 25-40
25.5 Key Terms, Review Questions, and Problems 25-41

Chapter 26 Internet Multimedia Support 26-1
26.1 Real-Time Traffic 26-2
26.2 Voice Over IP and Multimedia Support—SIP 26-5
26.3 Real-Time Transport Protocol 26-15
26.4 Recommended Reading and Web Sites 26-25
26.5 Key Terms, Review Questions, and Problems 26-26

ONLINE APPENDICES
Appendix C Standards Organizations
C.1 The Importance of Standards
C.2 Standards-Setting Organizations

Appendix D The OSI Model
D.1 The Model
D.2 The OSI Layers
Appendix E The International Reference Alphabet
Appendix F Proof of the Sampling Theorem
Appendix G Physical-Layer Interfacing
 G.1 V.24/EIA-232-F
 G.2 ISDN Physical Interface
Appendix H Queuing Effects
 H.1 Queuing Models
 H.2 Queuing Results
Appendix I ATM Adaptation Layer
 I.1 AAL Services
 I.2 AAL Protocols
Appendix J Leaky Bucket Algorithms
 J.1 Peak Cell Rate Algorithm
 J.2 Sustainable Cell Rate Algorithm
Appendix K The Spanning Tree Algorithm
Appendix L LAN Performance Issues
 L.1 The Effect of Propagation Delay and Transmission Rate
 L.2 Simple Performance Model for CSMA/CD
Appendix M Fibre Channel
 M.1 Fibre Channel Elements
 M.2 Fibre Channel Protocol Architecture
 M.3 Fibre Channel Physical Media and Topologies
Appendix N Orthogonality, Correlation, and Autocorrelation
 N.1 Correlation and Autocorrelation
 N.2 Orthogonal Codes
Appendix O TCP/IP Example
Appendix P The TCP/IP Checksum
 P.1 Ones Complement Addition
 P.2 Use in TCP and IP
Appendix Q Cryptographic Algorithms
 Q.1 Symmetric Encryption
 Q.2 Public-Key Cryptography
 Q.3 Secure Hash Functions
Appendix R Uniform Resource Locators (URLs) and Uniform Resource Identifiers (URIs)
 R.1 Uniform Resource Locator
 R.2 Uniform Resource Identifier
 R.3 To Learn More
CONTENTS

Appendix S Augmented Backus-Naur Form

Appendix T Sockets: A Programmer’s Introduction
 T.1 Sockets, Socket Descriptors, Ports, and Connections
 T.2 The Client/Server Model of Communication
 T.3 Sockets Elements
 T.4 Stream and Datagram Sockets
 T.5 Run-Time Program Control
 T.6 Remote Execution of a Windows Console Application

Appendix U Frame Relay
 U.1 X.25
 U.2 Frame Relay
 U.3 Frame Relay Congestion Control
 U.4 Problems

Appendix V Derivations of Equations and Examples

Glossary
PREFACE

Begin at the beginning and go on till you come to the end; then stop
—Alice in Wonderland, Lewis Carroll

OBJECTIVES

This book attempts to provide a unified overview of the broad field of data and computer communications. The organization of the book reflects an attempt to break this massive subject into comprehensible parts and to build, piece by piece, a survey of the state of the art. The book emphasizes basic principles and topics of fundamental importance concerning the technology and architecture of this field and provides a detailed discussion of leading-edge topics.

The following basic themes serve to unify the discussion:

- **Principles:** Although the scope of this book is broad, there are a number of basic principles that appear repeatedly as themes and that unify this field. Examples are multiplexing, flow control, and error control. The book highlights these principles and contrasts their application in specific areas of technology.
- **Design approaches:** The book examines alternative approaches to meeting specific communication requirements.
- **Standards:** Standards have come to assume an increasingly important, indeed dominant, role in this field. An understanding of the current status and future direction of technology requires a comprehensive discussion of the related standards.

INTENDED AUDIENCE

The book is intended for both an academic and a professional audience. For the professional interested in this field, the book serves as a basic reference volume and is suitable for self-study. As a textbook, it can be used for a one-semester or two-semester course. It covers the material in Networking (NET), a core area in the Information Technology body of knowledge, which is part of the Draft ACM/IEEE/AIS Computing Curricula 2005. The book also covers the material in Computer Networks (CE-NWK), a core area in Computer Engineering 2004 Curriculum Guidelines from the ACM/IEEE Joint Task Force on Computing Curricula.

PLAN OF THE TEXT

The book is divided into seven parts, which are described in Chapter 0:

- Overview
- Data Communications
- Wide Area Networks
xvi PREFACE

- Local Area Networks
- Internet and Transport Protocols
- Network Security
- Internet Applications

The book includes a number of pedagogic features, including the use of animations and numerous figures and tables to clarify the discussions. Each chapter includes a list of key words, review questions, homework problems, suggestions for further reading, and recommended Web sites. The book also includes an extensive online glossary, a list of frequently used acronyms, and a reference list. In addition, a test bank is available to instructors.

The chapters and parts of the book are sufficiently modular to provide a great deal of flexibility in the design of courses. See Chapter 0 for a number of detailed suggestions for both top–down and bottom–up course strategies.

WHAT’S NEW IN THIS EDITION

This ninth edition is seeing the light of day less than four years after the publication of the eighth edition. During that time, the pace of change in this field continues unabated. In this new edition, I try to capture these changes while maintaining a broad and comprehensive coverage of the entire field. To begin the process of revision, the eighth edition of this book was extensively reviewed by a number of professors who teach the subject. The result is that, in many places, the narrative has been clarified and tightened, and illustrations have been improved.

Beyond these refinements to improve pedagogy and user-friendliness, there have been major substantive changes throughout the book. Highlights include:

- **Animations:** Animation provides a powerful tool for understanding the complex mechanisms of network protocols. The ninth edition incorporates a number of separate animations covering such protocols as Hypertext Transfer Protocol (HTTP), Simple Mail Transfer Protocol (SMTP), and Transmission Control Protocol (TCP). A directory of the animations is provided after the Preface.

- **Examples:** The number of examples incorporated in the book has been significantly expanded.

- **Twisted-pair transmission standards:** This new edition covers the 2009 ANSI/TIA 568-C standards and the recent ISO/IEC 11801 twisted-pair transmissions, which are important for gigabit-range Ethernet and other high-speed twisted-pair applications.

- **Expanded coverage of broadband Internet access:** The sections on cable modem and DSL broadband access have been expanded.

- **New coverage of fourth-generation (4G) mobile wireless networks:** Includes the key 4G technology of orthogonal frequency division multiple access (OFDMA).
• **New coverage of virtual LANs**: VLAN technology is covered, as well as the IEEE 802.1Q standard.

• **Updated coverage of high-speed Ethernet**: The new 100-Gbps standard is covered, including the multilane distribution (MLD) transmission technique, plus expanded coverage of 64B/66B encoding.

• **Updated coverage of Wi-Fi/IEEE 802.11 wireless LANs**: IEEE 802.11 and the related Wi-Fi specifications have continued to evolve. New coverage includes 802.11n.

• **Mobile IP**: New to this edition is coverage of Mobile IP, which standardizes techniques for IP addressing and routing for mobile end systems.

• **MPLS**: New to this edition is an entire chapter devoted to Multiprotocol Label Switching, which is becoming increasingly important on the Internet and other IP-based networks, as well as in telecommunications networks.

• **Expanded coverage of security**: The coverage of security, in Part Six, has been completely rewritten and expanded to two chapters. It is more detailed, covering a number of new topics.

In addition, throughout the book, virtually every topic has been updated to reflect the developments in standards and technology that have occurred since the publication of the eighth edition.

ONLINE DOCUMENTS FOR STUDENTS

For this new edition, a tremendous amount of original supporting material has been made available online, in the following categories:

• **Online chapters**: To limit the size and cost of the book, two chapters of the book are provided in PDF format. The chapters are listed in this book’s table of contents.

• **Online appendices**: There are numerous interesting topics that support material found in the text but whose inclusion is not warranted in the printed text. A total of 23 appendices cover these topics for the interested student. The appendices are listed in this book’s table of contents.

• **Homework problems and solutions**: To aid the student in understanding the material, a separate set of homework problems with solutions are available. These enable the students to test their understanding of the text.

• **Key papers**: Several dozen papers from the professional literature, many hard to find, are provided for further reading.

• **Supporting documents**: A variety of other useful documents are referenced in the text and provided online.

Purchasing this textbook new grants the reader six months of access to this online material. See the access card in the front of this book for details.
INSTRUCTIONAL SUPPORT MATERIALS

To support instructors, the following materials are provided:

- **Solutions Manual**: Solutions to all end-of-chapter Review Questions and Problems.
- **Projects Manual**: Suggested project assignments for all of the project categories listed below.
- **PowerPoint Slides**: A set of slides covering all chapters, suitable for use in lecturing.
- **PDF files**: Reproductions of all figures and tables from the book.
- **Test Bank**: A chapter-by-chapter set of questions.

All of these support materials are available at the Instructor Resource Center (IRC) for this textbook, which can be reached through the Publisher’s Web site www.pearsonhighered.com/stallings or by clicking on the button labeled “Book Info and More Instructor Resources” at this book’s Web site WilliamStallings.com/DCC/DCC9e.html. To gain access to the IRC, please contact your local Prentice Hall sales representative via pearsonhighered.com/educator/relocator/requestSalesRep.page or call Prentice Hall Faculty Services at 1-800-526-0485.

In addition, the book’s Web site supports instructors with:

- Links to Web sites for other courses being taught using this book
- Sign-up information for an Internet mailing list for instructors

INTERNET SERVICES FOR INSTRUCTORS AND STUDENTS

There is a Web site for this book that provides support for students and instructors. The site includes links to other relevant sites, transparency masters of figures in the book, and sign-up information for the book’s Internet mailing list. The Web page is at WilliamStallings.com/DCC/DCC9e.html. For more information, see Chapter 0. The Publisher’s Web site www.pearsonhighered.com/stallings provides instructors and students with direct links to the Companion Web site, Instructor Resources, Premium Content, and Web chapters.

New to this edition is a set of homework problems with solutions. Students can enhance their understanding of the material by working out the solutions to these problems and then checking their answers.

An Internet mailing list has been set up so that instructors using this book can exchange information, suggestions, and questions with each other and with the author. As soon as typos or other errors are discovered, an errata list for this book will be available at WilliamStallings.com. In addition, the Computer Science Student Resource site at WilliamStallings.com/StudentSupport.html provides documents, information, and useful links for computer science students and professionals.

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of a data communications or networking course is a project or set of projects by which the student gets hands-on experience to reinforce concepts from the text. This book provides an unparalleled degree of support for including a projects
component in the course. The IRC not only includes guidance on how to assign and structure the projects but also includes a set of User’s Manuals for various project types plus specific assignments, all written especially for this book. Instructors can assign work in the following areas:

- **Animation assignments:** Described in the following section.
- **Practical exercises:** Using network commands, the student gains experience in network connectivity.
- **Sockets programming projects:** The book is supported by a detailed description of Sockets (Appendix T). The IRC includes a set of programming projects. Sockets programming is an “easy” topic and one that can result in very satisfying hands-on projects for students.
- **Wireshark projects:** Wireshark is a protocol analyzer that enables students to study the behavior of protocols. A video tutorial is provided to get students started.
- **Simulation projects:** The student can use the simulation package cnet to analyze network behavior.
- **Performance modeling projects:** Two performance modeling techniques are provided: the tools package and OPNET.
- **Research projects:** The IRC includes a list of suggested research projects that would involve Web and literature searches.
- **Reading/report assignments:** The IRC includes a list of papers that can be assigned for reading and writing a report, plus suggested assignment wording.
- **Writing assignments:** The IRC includes a list of writing assignments to facilitate learning the material.
- **Discussion topics:** These topics can be used in a classroom, chat room, or message board environment to explore certain areas in greater depth and to foster student collaboration.

This diverse set of projects and other student exercises enables the instructor to use the book as one component in a rich and varied learning experience and to tailor a course plan to meet the specific needs of the instructor and students. See Appendix B for details.

ANIMATIONS

New to this edition is the incorporation of animations. Animations provide a powerful tool for understanding the complex mechanisms of network protocols. A number of Web-based animations are used to illustrate protocol behavior. Each animation allows the user to step through the operation of the protocol by selecting the next step at each point in the protocol exchange. The entire protocol exchange is illustrated by an animated diagram as the exchange proceeds. The animations can be used in two ways. In a **passive mode**, the student can click more or less randomly on the next step at each point in the animation and watch as the given concept or principle is illustrated. In an **active mode**, the user can be given a specific set of steps to invoke and watch the animation, or be given a specific end point and devise a sequence of steps that achieve the desired result. Thus, the animations can serve as the basis for student assignments. The IRC includes a set of assignments for each of the animations, plus suggested solutions so that instructors can assess the student’s work.
ACKNOWLEDGMENTS

This new edition has benefited from review by a number of people, who gave generously of their time and expertise. The following people reviewed all or a large part of the manuscript: Mike Kain (Drexel University), Linda Xie (University of North Carolina), Jean-Claude Franchitti (New York University), Xiaobo Zhou (University of Colorado), James Jerkins (University of Northern Alabama), Ahmed Kamal (Iowa State), Mohammed Chouchane (Columbus State), Dr. Eslam Al Maghayreh (Yarmouk University), S. Jay Yang (Rochester Institute of Technology), John Doyle (Indiana University), Maria Villapol (University of Central Florida), Murat Yukse (University of Nevada), Anura Jayasumana (Colorado State University), and Szhi-Li Zhang (University of Minnesota).

Thanks also to the many people who provided detailed technical reviews of a single chapter: Robert H Greenfield, Abhilash V R (VVDN Technologies), Glen Herrmannsfeldt, Fernando Lichtschein, John South (University of Dallas), Edmond Pitt, John Traenkenschuh (CISSP-ISSAP, CCSA/CCSE, Microsoft MVP), and Rick Jones (Hewlett-Packard Company). Loa Andersson and Elisa Bellagamba, both of Ericsson, provided reviews of the MPLS chapter. And Valerie Maguire of The Seimon Company reviewed the material on ANSI/TIA-568.

In addition, Larry Owens of California State University and Katia Obraczka of the University of Southern California provided some homework problems. Nikhil Bhargava (IIT Delhi) contributed to the set of online homework problems and solutions.

Thanks also to the following contributors. Zornitza Prodanoff of the University of North Florida prepared the appendix on Sockets programming. Larry Tan of the University of Stirling in Scotland developed the animation assignments. Michael Harris of Indiana University initially developed the Wireshark exercises and user’s guide. Dave Bremer, a principal lecturer at Otago Polytechnic in New Zealand, updated the material for the most recent Wireshark release; he also developed an online video tutorial for using Wireshark. Kim McLaughlin produced the PowerPoint lecture slides.

Finally, I would like to thank the many people responsible for the publication of the book, all of whom did their usual excellent job. This includes the staff at Prentice Hall, particularly my editor Tracy Dunkelberger, her assistants Melinda Haggerty and Allison Michael. Also, Jake Warde of Warde Publishers managed the reviews.

With all this assistance, little remains for which I can take full credit. However, I am proud to say that, with no help whatsoever, I selected all of the quotations.
ABOUT THE AUTHOR

William Stallings has made a unique contribution to understanding the broad sweep of technical developments in computer security, computer networking, and computer architecture. He has authored 17 titles, and counting revised editions, a total of 42 books on various aspects of these subjects. His writings have appeared in numerous ACM and IEEE publications, including the *Proceedings of the IEEE* and *ACM Computing Review*.

He has 11 times received the award for best Computer Science textbook of the year from the Text and Academic Authors Association.

In over 30 years in the field, he has been a technical contributor, technical manager, and an executive with several high-technology firms. He has designed and implemented both TCP/IP-based and OSI-based protocol suites on a variety of computers and operating systems, ranging from microcomputers to mainframes. As a consultant, he has advised government agencies, computer and software vendors, and major users on the design, selection, and use of networking software and products.

He created and maintains the **Computer Science Student Resource Site** at WilliamStallings.com/StudentSupport.html. The site provides documents and links on a variety of subjects of general interest to computer science students and professionals. He is a member of the editorial board of *Cryptologia*, a scholarly journal devoted to all aspects of cryptology.

Dr. Stallings holds a Ph.D. from Massachusetts Institute of Technology in Computer Science and a B.S. from Notre Dame in Electrical Engineering.
ANIMATIONS DIRECTORY

This table lists the animations that are available online at www.pearsonhighered.com/stallings.

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Protocol Architecture, TCP/IP, and Internet-Based Applications</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trivial File Transfer Protocol Simulator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol Stack</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Data Link Control Protocols</th>
<th>208</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alternating Bit Protocol Simulator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sliding Window Protocol (3-Column) Simulator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sliding Window Protocol (5-Column) Simulator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abracadabra Protocol Simulator</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Multiplexing</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Synchronous TDM Channel</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 16</th>
<th>Ethernet</th>
<th>477</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CSMA/CD</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 18</th>
<th>Internet Protocols</th>
<th>545</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internetwork Protocol Simulator</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 19</th>
<th>Internetwork Operation</th>
<th>585</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Multicasting</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 22</th>
<th>Transport Protocols</th>
<th>692</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TCP Client/Server Simulator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCP Peer-to-Peer Simulator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UDP Simulator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCP Congestion Control Simulator</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 25</th>
<th>Electronic Mail, DNS, and HTTP</th>
<th>25-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boot Protocol Simulator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMTP Simulator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HTTP Simulator</td>
<td></td>
</tr>
</tbody>
</table>