Dedication

To my father, Seyed Hassan, and mother Azardokht
CONTENTS

Preface xvii
Acknowledgements xix

Chapter 1 Why Electrical Engineering? 1
1.1 Introduction 1
1.2 Electrical Engineering and a Successful Career 2
1.3 What Do You Need to Know about EE? 2
1.4 Real Career Success Stories 3
1.5 Typical Situations Encountered on the Job 4
1.5.1 On-the-Job Situation 1: Active Structural Control 4
1.5.2 On-the-Job Situation 2: Chemical Process Control 6
1.5.3 On-the-Job Situation 3: Performance of an Off-Road Vehicle Prototype 8
Further Reading 12

Chapter 2 Fundamentals of Electric Circuits 13
2.1 Introduction 13
2.2 Charge and Current 15
2.3 Voltage 17
2.4 Respective Direction of Voltage and Current 18
2.5 Kirchhoff’s Current Law 18
2.6 Kirchhoff’s Voltage Law 22
2.7 Ohm’s Law and Resistors 27
2.7.1 Resistivity of a Resistor 29
2.7.2 Nonlinear Resistors 32
2.7.3 Time-Varying Resistors 32
2.8 Power and Energy 32
2.8.1 Resistor-Consumed Power 36
2.9 Independent and Dependent Sources 38
2.10 Analysis of Circuits Using PSpice 42
Biast Point Analysis 45
Time Domain (Transient) Analysis 46
Copy the Simulation Plot to the Clipboard to Submit Electronically 47
2.11 What Did You Learn? 53
Problems 54

Chapter 3 Resistive Circuits 61
3.1 Introduction 61
3.2 Resistors in Parallel and Series and Equivalent Resistance 62
3.3 Voltage and Current Division/Divider Rules 71
3.3.1 Voltage Division 71
3.3.2 Current Division 74

9.3 Transmission Lines 412
 9.3.1 Introduction 412
 9.3.2 Resistance (R) 414
 9.3.3 Different Types of Conductors 415
 9.3.4 Inductance (L) 416
 9.3.5 Capacitance 421
 9.3.6 Transmission Line Equivalent Circuits 424
9.4 Using PSpice to Study Three-Phase Systems 432
9.5 What Did You Learn? 435
 Further Reading 435
 Problems 436

Chapter 10 Fundamentals of Logic Circuits 440
 10.1 Introduction 440
 10.2 Number Systems 442
 10.2.1 Binary Numbers 442
 10.2.2 Hexadecimal Numbers 449
 10.2.3 Octal Numbers 450
 10.3 Boolean Algebra 451
 10.3.1 Boolean Inversion 451
 10.3.2 Boolean AND Operation 451
 10.3.3 Boolean OR Operation 452
 10.3.4 Boolean NAND Operation 452
 10.3.5 Boolean NOR Operation 452
 10.3.6 Boolean XOR Operation 452
 10.3.7 Summary of Boolean Operations 452
 10.3.8 Rules Used in Boolean Algebra 452
 10.3.9 De Morgan’s Theorems 453
 10.3.10 Commutativity Rule 454
 10.3.11 Associativity Rule 454
 10.3.12 Distributivity Rule 454
 10.4 Basic Logic Gates 459
 10.4.1 The NOT Gate 459
 10.4.2 The AND Gate 459
 10.4.3 The OR Gate 460
 10.4.4 The NAND Gate 460
 10.4.5 The NOR Gate 460
 10.4.6 The XOR Gate 463
 10.4.7 The XNOR Gate 463
 10.5 Sequential Logic Circuits 466
 10.5.1 Flip-Flops 466
 10.5.2 Counter 470
10.6 Using PSpice to Analyze Digital Logic Circuits 474
10.7 What Did You Learn? 481
Reference 482
Problems 483

Chapter 11 Computer-Based Instrumentation Systems 488
11.1 Introduction 488
11.2 Sensors 489
 11.2.1 Pressure Sensors 490
 11.2.2 Temperature Sensors 491
 11.2.3 Accelerometers 497
 11.2.4 Strain-Gauges/Load Cells 498
 11.2.5 Acoustic Sensors 500
 11.2.6 Linear Variable Differential Transformers (LVDT) 503
11.3 Signal Conditioning 505
 11.3.1 Amplifiers 505
 11.3.2 Active Filters 505
11.4 Data Acquisition 511
 11.4.1 Analog Multiplexer 511
 11.4.2 Analog-to-Digital Conversion 511
11.5 Grounding Issues 514
 11.5.1 Ground Loops 514
11.6 Using PSpice to Demonstrate a Computer-Based Instrument 516
11.7 What Did You Learn? 519
Further Reading 519
Problems 519

Chapter 12 Principles of Electromechanics 524
12.1 Introduction 524
12.2 Magnetic Fields 525
 12.2.1 Magnetic Flux and Flux Intensity 526
 12.2.2 Magnetic Field Intensity 527
 12.2.3 The Right-Hand Rule 527
 12.2.4 Forces on Charges by Magnetic Fields 528
 12.2.5 Forces on Current-Carrying Wires 528
 12.2.6 Flux Linkages 530
 12.2.7 Faraday’s Law and Lenz’s Law 530
12.3 Magnetic Circuits 530
 12.3.1 Magnetomotive Force 531
 12.3.2 Reluctance 532
12.4 Mutual Inductance and Transformers 538
 12.4.1 Mutual Inductance 539
 12.4.2 Transformers 542
12.5 Different Types of Transformers 547
12.6 Using PSpice to Simulate Mutual Inductance and Transformers 547
12.7 What Did You Learn? 552
Problems 552

Chapter 13 Electric Machines 557
13.1 Introduction 557
 13.1.1 Features of Electric Machines 558
 13.1.2 Classification of Motors 558
13.2 DC Motors 559
 13.2.1 Principle of Operation 559
 13.2.2 Assembly of a Typical DC Motor 559
 13.2.3 Operation of a DC Motor 560
 13.2.4 Losses in DC Machines 561
13.3 Different Types of DC Motors 563
 13.3.1 Analysis of a DC Motor 563
 13.3.2 Shunt-Connected DC Motor 566
 13.3.3 Separately Excited DC Motors 567
 13.3.4 Permanent Magnet (PM) DC Motor 568
 13.3.5 Series-Connected DC Motor 571
 13.3.6 Summary of DC Motors 573
13.4 Speed Control Methods 573
 13.4.1 Speed Control by Varying the Field Current 573
 13.4.2 Speed Control by Varying the Armature Current 575
13.5 DC Generators 576
 13.5.1 The Architecture and Principle of Operation of a DC Generator 576
 13.5.2 emf Equation 577
13.6 Different Types of DC Generators 578
 13.6.1 Load Regulation Characteristics of DC Generators 578
 13.6.2 Separately Excited DC Generator 579
 13.6.3 Shunt-Connected DC Generator 580
13.7 AC Motors 580
 13.7.1 Three-Phase Synchronous Motors 581
 13.7.2 Three-Phase Induction Motor 584
 13.7.3 Losses in AC Machines 591
 13.7.4 Power Flow Diagram for an AC Motor 591
13.8 AC Generators 592
 13.8.1 Construction and Working 593
 13.8.2 Winding Terminologies for the Alternator 593
 13.8.3 The emf Equation of an Alternator 595
13.9 Special Types of Motors 597
 13.9.1 Single-Phase Induction Motors 597
 13.9.2 Stepper Motors 597
Contents

13.9.3 Brushless DC Motors 599
13.9.4 Universal Motors 600
13.10 How is the Most Suitable Motor Selected? 602
13.11 Setup of a Simple DC Motor Circuit Using PSpice 603
13.12 What Did You Learn? 610
Further Reading 611
Problems 611

Chapter 14 Electrical Measurement Instruments 615

14.1 Introduction 615
14.2 Measurement Errors 616
14.3 Basic Measurement Instruments 619
14.3.1 An Ammeter Built Using a Galvanometer 619
14.3.2 A Voltmeter Built Using a Galvanometer 620
14.3.3 An Ohmmeter Built Using a Galvanometer 621
14.3.4 Multi-Meters 621
14.4 Time Domain and Frequency Domain 625
14.4.1 The Time Domain 625
14.4.2 The Frequency Domain 626
14.4.3 Time Domain Versus Frequency Domain 627
14.5 The Oscilloscope 628
14.6 The Spectrum Analyzer 633
14.6.1 Adjusting the Spectrum Analyzer's Display Window 633
14.7 The Function Generator 639
14.8 What Did You Learn? 640
Problems 641

Chapter 15 Electrical Safety 646

15.1 Introduction 646
15.2 Electric Shock 646
15.2.1 Shock Effects 647
15.2.2 Shock Prevention 649
15.3 Electromagnetic Hazards 649
15.3.1 High-Frequency Hazards 649
15.3.2 Low-Frequency Hazards 651
15.3.3 Avoiding Radio Frequency Hazards 655
15.4 Arcs and Explosions 655
15.4.1 Arcs 655
15.4.2 Blasts 657
15.4.3 Explosion Prevention 657
15.5 The National Electric Code 658
15.5.1 Shock Prevention 658
15.5.2 Fire Prevention 663

A multi-disciplinary effort was initiated at Michigan Technological University, with a support from the U.S. National Science Foundation’s Engineering Education division. The goal was to create a curriculum that (1) encourages students to pursue the life-long learning necessary to keep pace with the rapidly-evolving engineering industry and emerging interdisciplinary technologies, (2) maintains sufficient connection between the students’ chosen engineering fields and class content; and (3) motivates and excite the students about the importance of EE concepts to their discipline and career.

Seven faculty members across different departments contributed to this process. Participating departments included: electrical engineering, chemical engineering, civil and environmental engineering, mechanical engineering, biomedical engineering, and the education division of the cognitive and learning science department. The group’s curriculum reform efforts were informed by a nationwide survey of engineering schools. The survey outcomes were analyzed to fine tune different curriculum options for this course for different engineering disciplines. Then, those options were integrated to create the final draft of the curriculum. The final draft of the curriculum was used as a layout to create a new textbook for this course.

Although no single text can perfectly meet the needs of every institution, diverse topics have been included to address the mixed survey response and allow this book to address the needs of lecturers in different institutions worldwide. The resulting textbook creates a prototype curriculum available to electrical engineering departments that are charged with providing an introduction to electrical engineering for non-EE majors. The goals of this new curriculum are to be attractive, motivational, and relevant to students by creating many application-based problems; and provide the optimal level of both range and depth of coverage of EE topics in a curriculum package.

The book features:

a. **Application-based examples:** A large number of application-based examples were selected from different engineering fields and are included in each chapter. They aim to bridge EE and diverse non-EE areas. These examples help to address the question: “why I should take this course?” Non-EE students will better understand: (1) why they should learn how to solve circuits; and; (2) what are the applications of solving circuits in mechanical, chemical, and civil engineering areas.

b. **PSpice lectures, examples, and problems:** The text offers a distributed approach for learning PSpice. A PSpice component is integrated in many chapters. Chapter 2 provides an initial tutorial, and new skills are added in Chapters 3–11. This part includes lectures that teach students how to use PSpice and can be considered as an embedded PC-based lab for the course. In addition, many PSpice-specific examples have been developed, which help students better understand the process of building a circuit and getting the desired results. There are also many end-of-chapter PSpice problems.

c. **Innovative chapters:** Based on our nationwide survey, the topics in these chapters have been highlighted by many professionals as important topics for this course. It should be noted that each instructor has the liberty to include or exclude some of these topics from his/her curriculum. Some topics include:

• **Chapter 1—Case Study:** This chapter presents the applications of electrical engineering components in mechanical engineering, chemical engineering, and civil engineering through real life scenarios. A bridge across these case studies and the topics that will be covered later in the book is maintained. The goal is to better motivate students by placing the concepts of electrical engineering in the context of their chosen fields of study. Each section of this chapter was been prepared by a different member of the faculty at Michigan Tech who contributed to the NSF project.
• **Chapter 7—Frequency Response with MATLAB and PSpice**: This chapter discusses the frequency response of circuits and introduces different types of filters and uses MATLAB and PSpice examples and end-of-chapter problems. This chapter creates an opportunity for students to learn some features of MATLAB software. In other words, this chapter promotes an integrated study using both PSpice and MATLAB.

• **Power Coverage: Chapters 9, 12, 13**—Based on our nationwide survey, and motivated by concerns about global warming and the need for clean energy, industry respondents requested a more thorough treatment of power. Thus, power coverage is supported by three chapters. Chapter 9 introduces the concept of three-phase systems, transmission lines, their equivalent circuits, and power transfer. Chapter 12 studies another important topic of energy transfer—transformers. Finally Chapter 13 studies the topic of motors and generators. This chapter offers the concept of motors and generators in a clear and concise approach. The chapter introduces applications of motors and generators and introduces many applications of both.

• **Chapter 15—Electrical Safety**: This unique chapter discusses interesting electric safety topics useful in the daily life of consumers or engineers working in the field.

d. **Examples and sorted end-of-chapter problems**: The book comes with more than 1100 examples and end-of-chapter problems (solutions included). End-of-chapter problems are sorted to help instructors select basic, average, and difficult problems.

e. **A complete solution manual**: A complete solutions manual for all problems will be available via download for all adopting professors.
ACKNOWLEDGMENTS

Professor William Bulleit (Civil and Environmental Engineering Department, Michigan Tech), Professor Tony Rogers (Chemical Engineering Department, Michigan Tech) and Professor Harold Evensen (Mechanical Engineering, Engineering Mechanics Department, Michigan Tech) are the authors of chapter one. The research on this National Science Foundation project was conducted with the support of many faculty members. Here, in addition to Professor Bulleit, Professor Rogers and Professor Evensen, I should acknowledge the efforts of Professor Kedmon Hungwe (Education Department, Michigan Tech), Mr. Glen Archer (Electrical and Computer Engineering Department, Michigan Tech), Professor Corina Sandu (Mechanical Engineering Department, Virginia Tech), Professor David Nelson (Mechanical Engineering Department, University of South Alabama), Professor Sheryl Sorby (Mechanical Engineering, Engineering Mechanics Department, Michigan Tech), and Professor Valorie Troesch (Institute for Interdisciplinary Studies, Michigan Tech). The preparation of the book was not possible without the support of many graduate students that include Luke Mounsey, Xiukui Li, Taha Abdelhakim, Shu G. Ting, Wenjie Xu, Zhonghai Wang, Babak Bastaami, Manaas Majumdar, Abdelhaseeb Ahmed, Daw Don Cheam, Jafar Pourrostam and Greg Price. I would like to thank all of them. Moreover, I should thank the support of the book’s grand reviewer Mr. Peter A. Larsen (Sponsored Programs, Michigan Tech) which improved the quality of its presentation. In addition, I should acknowledge many colleagues whose names are listed below, who reviewed the book and provided me with invaluable comments and feedback.

Paul Crilly—University of Tennessee
Timothy Peck—University of Illinois
George Shoane—Rutgers University
Ziqian Liu—SUNY Maritime College
Ralph Tanner—Western Michigan University
Douglas P. Looze—University of Massachusetts, Amherst
Jaime Ramos-Salas—University of Texas, Pan American
Dale Dolan—California Polytechnic State University, San Luis Obispo
Munther Hassouneh—University of Maryland
Jacob Klapper—New Jersey Institute of Technology
Thomas M. Sullivan—Carnegie Mellon University
Vijayakumar Bhagavatula—Carnegie Mellon University
S. Hossein Mousavinezhad—Idaho State University
Alan J. Michaels—Harris Corporation
Sandra Soto-Caban—Muskingum University
Wei Pan—Idaho State University

Finally, I should acknowledge the support of late Professor Derek Lile, the former department head of Electrical and Computer Engineering of Colorado State University, while I was creating the ideas of this project while I was a Ph.D. candidate at Colorado State University, Ft. Collins, CO.

S. A. Reza Zekavat
Michigan Technological University