Elementary Surveying
An Introduction to Geomatics

Thirteenth Edition

CHARLES D. GHILANI
The Pennsylvania State University

PAUL R. WOLF
Professor Emeritus, Civil and Environmental Engineering
University of Wisconsin–Madison

Prentice Hall

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Table of Contents

PREFACE

- What’s New in This Edition? xviii
- Acknowledgments xviii

1 • INTRODUCTION

- 1.1 Definition of Surveying 1
- 1.2 Geomatics 3
- 1.3 History of Surveying 4
- 1.4 Geodetic and Plane Surveys 9
- 1.5 Importance of Surveying 10
- 1.6 Specialized Types of Surveys 11
- 1.7 Surveying Safety 13
- 1.8 Land and Geographic Information Systems 14
- 1.9 Federal Surveying and Mapping Agencies 15
- 1.10 The Surveying Profession 16
- 1.11 Professional Surveying Organizations 17
- 1.12 Surveying on the Internet 18
- 1.13 Future Challenges in Surveying 19

Problems 20
Bibliography 21
6 • DISTANCE MEASUREMENT 131

PART I METHODS FOR MEASURING DISTANCES 131

6.1 Introduction 131
6.2 Summary of Methods for Making Linear Measurements 131
6.3 Pacing 132
6.4 Odometer Readings 132
6.5 Optical Rangefinders 133
6.6 Tacheometry 133
6.7 Subtense Bar 133

PART II DISTANCE MEASUREMENTS BY TAPPING 133

6.8 Introduction to Taping 133
6.9 Taping Equipment and Accessories 134
6.10 Care of Taping Equipment 135
6.11 Taping on Level Ground 136
6.12 Horizontal Measurements on Sloping Ground 138
6.13 Slope Measurements 140
6.14 Sources of Error in Taping 141
6.15 Tape Problems 145
6.16 Combined Corrections in a Taping Problem 147

PART III ELECTRONIC DISTANCE MEASUREMENT 148

6.17 Introduction 148
6.18 Propagation of Electromagnetic Energy 149
6.19 Principles of Electronic Distance Measurement 152
6.20 Electro-Optical Instruments 153
6.21 Total Station Instruments 156
6.22 EDM Instruments Without Reflectors 157
6.23 Computing Horizontal Lengths from Slope Distances 158
6.24 Errors in Electronic Distance Measurement 160
6.25 Using Software 165
Problems 165
Bibliography 168

7 • ANGLES, AZIMUTHS, AND BEARINGS 169

7.1 Introduction 169
7.2 Units of Angle Measurement 169
7.3 Kinds of Horizontal Angles 170
7.4 Direction of a Line 171
7.5 Azimuths 172
7.6 Bearings 173
7.7 Comparison of Azimuths and Bearings 174
7.8 Computing Azimuths 175
7.9 Computing Bearings 177
TABLE OF CONTENTS

9.4 Selection of Traverse Stations 235
9.5 Referencing Traverse Stations 235
9.6 Traverse Field Notes 237
9.7 Angle Misclosure 238
9.8 Traversing with Total Station Instruments 239
9.9 Radial Traversing 240
9.10 Sources of Error in Traversing 241
9.11 Mistakes in Traversing 242
Problems 242

10 • TRAVERSE COMPUTATIONS 245

10.1 Introduction 245
10.2 Balancing Angles 246
10.3 Computation of Preliminary Azimuths or Bearings 248
10.4 Departures and Latitudes 249
10.5 Departure and Latitude Closure Conditions 251
10.6 Traverse Linear Misclosure and Relative Precision 251
10.7 Traverse Adjustment 252
10.8 Rectangular Coordinates 255
10.9 Alternative Methods for Making Traverse Computations 256
10.10 Inversing 260
10.11 Computing Final Adjusted Traverse Lengths and Directions 261
10.12 Coordinate Computations in Boundary Surveys 263
10.13 Use of Open Traverses 265
10.14 State Plane Coordinate Systems 268
10.15 Traverse Computations Using Computers 269
10.16 Locating Blunders in Traverse Observations 269
10.17 Mistakes in Traverse Computations 272
Problems 272
Bibliography 275

11 • COORDINATE GEOMETRY IN SURVEYING CALCULATIONS 277

11.1 Introduction 277
11.2 Coordinate Forms of Equations for Lines and Circles 278
11.3 Perpendicular Distance from a Point to a Line 280
11.4 Intersection of Two Lines, Both Having Known Directions 282
11.5 Intersection of a Line with a Circle 284
11.6 Intersection of Two Circles 287
11.7 Three-Point Resection 289
11.8 Two-Dimensional Conformal Coordinate Transformation 292
11.9 Inaccessible Point Problem 297
11.10 Three-Dimensional Two-Point Resection 299
11.11 Software 302
Problems 303
Bibliography 307

TABLE OF CONTENTS

15 • GLOBAL NAVIGATION SATELLITE SYSTEMS—KINEMATIC SURVEYS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Introduction</td>
<td>399</td>
</tr>
<tr>
<td>15.2 Planning of Kinematic Surveys</td>
<td>400</td>
</tr>
<tr>
<td>15.3 Initialization</td>
<td>402</td>
</tr>
<tr>
<td>15.4 Equipment Used in Kinematic Surveys</td>
<td>403</td>
</tr>
<tr>
<td>15.5 Methods Used in Kinematic Surveys</td>
<td>405</td>
</tr>
<tr>
<td>15.6 Performing Post-Processed Kinematic Surveys</td>
<td>408</td>
</tr>
<tr>
<td>15.7 Communication in Real-Time Kinematic Surveys</td>
<td>411</td>
</tr>
<tr>
<td>15.8 Real-Time Networks</td>
<td>412</td>
</tr>
<tr>
<td>15.9 Performing Real-Time Kinematic Surveys</td>
<td>413</td>
</tr>
<tr>
<td>15.10 Machine Control</td>
<td>414</td>
</tr>
<tr>
<td>15.11 Errors in Kinematic Surveys</td>
<td>418</td>
</tr>
<tr>
<td>15.12 Mistakes in Kinematic Surveys</td>
<td>418</td>
</tr>
<tr>
<td>Problems</td>
<td>418</td>
</tr>
<tr>
<td>Bibliography</td>
<td>419</td>
</tr>
</tbody>
</table>

16 • ADJUSTMENTS BY LEAST SQUARES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Introduction</td>
<td>421</td>
</tr>
<tr>
<td>16.2 Fundamental Condition of Least Squares</td>
<td>423</td>
</tr>
<tr>
<td>16.3 Least-Squares Adjustment by the Observation Equation Method</td>
<td>424</td>
</tr>
<tr>
<td>16.4 Matrix Methods in Least-Squares Adjustment</td>
<td>428</td>
</tr>
<tr>
<td>16.5 Matrix Equations for Precisions of Adjusted Quantities</td>
<td>430</td>
</tr>
<tr>
<td>16.6 Least-Squares Adjustment of Leveling Circuits</td>
<td>432</td>
</tr>
<tr>
<td>16.7 Propagation of Errors</td>
<td>436</td>
</tr>
<tr>
<td>16.8 Least-Squares Adjustment of GNSS Baseline Vectors</td>
<td>437</td>
</tr>
<tr>
<td>16.9 Least-Squares Adjustment of Conventional Horizontal Plane Surveys</td>
<td>443</td>
</tr>
<tr>
<td>16.10 The Error Ellipse</td>
<td>452</td>
</tr>
<tr>
<td>16.11 Adjustment Procedures</td>
<td>457</td>
</tr>
<tr>
<td>16.12 Other Measures of Precision for Horizontal Stations</td>
<td>458</td>
</tr>
<tr>
<td>16.13 Software</td>
<td>460</td>
</tr>
<tr>
<td>16.14 Conclusions</td>
<td>460</td>
</tr>
<tr>
<td>Problems</td>
<td>461</td>
</tr>
<tr>
<td>Bibliography</td>
<td>466</td>
</tr>
</tbody>
</table>

17 • MAPPING SURVEYS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1 Introduction</td>
<td>467</td>
</tr>
<tr>
<td>17.2 Basic Methods for Performing Mapping Surveys</td>
<td>468</td>
</tr>
<tr>
<td>17.3 Map Scale</td>
<td>468</td>
</tr>
<tr>
<td>17.4 Control for Mapping Surveys</td>
<td>470</td>
</tr>
<tr>
<td>17.5 Contours</td>
<td>471</td>
</tr>
<tr>
<td>17.6 Characteristics of Contours</td>
<td>474</td>
</tr>
<tr>
<td>17.7 Direct and Indirect Methods of Locating Contours</td>
<td>474</td>
</tr>
<tr>
<td>17.8 Digital Elevation Models and Automated Contouring Systems</td>
<td>477</td>
</tr>
<tr>
<td>17.9 Basic Field Methods for Locating Topographic Details</td>
<td>479</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.10</td>
<td>Three-Dimensional Conformal Coordinate Transformation</td>
<td>488</td>
</tr>
<tr>
<td>17.11</td>
<td>Selection of Field Method</td>
<td>489</td>
</tr>
<tr>
<td>17.12</td>
<td>Working with Data Collectors and Field-to-Finish Software</td>
<td>490</td>
</tr>
<tr>
<td>17.13</td>
<td>Hydrographic Surveys</td>
<td>493</td>
</tr>
<tr>
<td>17.14</td>
<td>Sources of Error in Mapping Surveys</td>
<td>497</td>
</tr>
<tr>
<td>17.15</td>
<td>Mistakes in Mapping Surveys</td>
<td>498</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>498</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>500</td>
</tr>
</tbody>
</table>

18 • MAPPING 503

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>503</td>
</tr>
<tr>
<td>18.2</td>
<td>Availability of Maps and Related Information</td>
<td>504</td>
</tr>
<tr>
<td>18.3</td>
<td>National Mapping Program</td>
<td>505</td>
</tr>
<tr>
<td>18.4</td>
<td>Accuracy Standards for Mapping</td>
<td>505</td>
</tr>
<tr>
<td>18.5</td>
<td>Manual and Computer-Aided Drafting Procedures</td>
<td>507</td>
</tr>
<tr>
<td>18.6</td>
<td>Map Design</td>
<td>508</td>
</tr>
<tr>
<td>18.7</td>
<td>Map Layout</td>
<td>510</td>
</tr>
<tr>
<td>18.8</td>
<td>Basic Map Plotting Procedures</td>
<td>512</td>
</tr>
<tr>
<td>18.9</td>
<td>Contour Interval</td>
<td>514</td>
</tr>
<tr>
<td>18.10</td>
<td>Plotting Contours</td>
<td>514</td>
</tr>
<tr>
<td>18.11</td>
<td>Lettering</td>
<td>515</td>
</tr>
<tr>
<td>18.12</td>
<td>Cartographic Map Elements</td>
<td>516</td>
</tr>
<tr>
<td>18.13</td>
<td>Drafting Materials</td>
<td>519</td>
</tr>
<tr>
<td>18.14</td>
<td>Automated Mapping and Computer-Aided Drafting Systems</td>
<td>519</td>
</tr>
<tr>
<td>18.15</td>
<td>Impacts of Modern Land and Geographic Information Systems on Mapping</td>
<td>525</td>
</tr>
<tr>
<td>18.16</td>
<td>Sources of Error in Mapping</td>
<td>526</td>
</tr>
<tr>
<td>18.17</td>
<td>Mistakes in Mapping</td>
<td>526</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>526</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>528</td>
</tr>
</tbody>
</table>

19 • CONTROL SURVEYS AND GEODETIC REDUCTIONS 529

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>529</td>
</tr>
<tr>
<td>19.2</td>
<td>The Ellipsoid and Geoid</td>
<td>530</td>
</tr>
<tr>
<td>19.3</td>
<td>The Conventional Terrestrial Pole</td>
<td>532</td>
</tr>
<tr>
<td>19.4</td>
<td>Geodetic Position and Ellipsoidal Radii of Curvature</td>
<td>534</td>
</tr>
<tr>
<td>19.5</td>
<td>Geoid Undulation and Deflection of the Vertical</td>
<td>536</td>
</tr>
<tr>
<td>19.6</td>
<td>U.S. Reference Frames</td>
<td>538</td>
</tr>
<tr>
<td>19.7</td>
<td>Accuracy Standards and Specifications for Control Surveys</td>
<td>547</td>
</tr>
<tr>
<td>19.8</td>
<td>The National Spatial Reference System</td>
<td>550</td>
</tr>
<tr>
<td>19.9</td>
<td>Hierarchy of the National Horizontal Control Network</td>
<td>550</td>
</tr>
<tr>
<td>19.10</td>
<td>Hierarchy of the National Vertical Control Network</td>
<td>551</td>
</tr>
<tr>
<td>19.11</td>
<td>Control Point Descriptions</td>
<td>551</td>
</tr>
<tr>
<td>19.12</td>
<td>Field Procedures for Traditional Horizontal Control Surveys</td>
<td>554</td>
</tr>
<tr>
<td>19.13</td>
<td>Field Procedures for Vertical Control Surveys</td>
<td>559</td>
</tr>
<tr>
<td>19.14</td>
<td>Reduction of Field Observations to Their Geodetic Values</td>
<td>564</td>
</tr>
</tbody>
</table>

20 • STATE PLANE COORDINATES
AND OTHER MAP PROJECTIONS 589

21 • BOUNDARY SURVEYS 633
xiv TABLE OF CONTENTS

24 • HORIZONTAL CURVES 715

24.1 Introduction 715
24.2 Degree of Circular Curve 716
24.3 Definitions and Derivation of Circular Curve Formulas 718
24.4 Circular Curve Stationing 720
24.5 General Procedure of Circular Curve Layout by Deflection Angles 721
24.6 Computing Deflection Angles and Chords 723
24.7 Notes for Circular Curve Layout by Deflection Angles and Incremental Chords 725
24.8 Detailed Procedures for Circular Curve Layout by Deflection Angles and Incremental Chords 726
24.9 Setups on Curve 727
24.10 Metric Circular Curves by Deflection Angles and Incremental Chords 728
24.11 Circular Curve Layout by Deflection Angles and Total Chords 730
24.12 Computation of Coordinates on a Circular Curve 731
24.13 Circular Curve Layout by Coordinates 733
24.14 Curve Stakeout Using GNSS Receivers and Robotic Total Stations 738
24.15 Circular Curve Layout by Offsets 739
24.16 Special Circular Curve Problems 742
24.17 Compound and Reverse Curves 743
24.18 Sight Distance on Horizontal Curves 743
24.19 Spirals 744
24.20 Computation of “As-Built” Circular Alignments 749
24.21 Sources of Error in Laying Out Circular Curves 752
24.22 Mistakes 752
Problems 753
Bibliography 755

25 • VERTICAL CURVES 757

25.1 Introduction 757
25.2 General Equation of a Vertical Parabolic Curve 758
25.3 Equation of an Equal Tangent Vertical Parabolic Curve 759
25.4 High or Low Point on a Vertical Curve 761
25.5 Vertical Curve Computations Using the Tangent Offset Equation 761
25.6 Equal Tangent Property of a Parabola 765
25.7 Curve Computations by Proportion 766
25.8 Staking a Vertical Parabolic Curve 766
25.9 Machine Control in Grading Operations 767
25.10 Computations for an Unequal Tangent Vertical Curve 767
25.11 Designing a Curve to Pass Through a Fixed Point 770
25.12 Sight Distance 771
25.13 Sources of Error in Laying Out Vertical Curves 773
25.14 Mistakes 774
Problems 774
Bibliography 776

26 • VOLUMES

26.1 Introduction 777
26.2 Methods of Volume Measurement 777
26.3 The Cross-Section Method 778
26.4 Types of Cross Sections 779
26.5 Average-End-Area Formula 780
26.6 Determining End Areas 781
26.7 Computing Slope Intercepts 784
26.8 Prismatic Formula 786
26.9 Volume Computations 788
26.10 Unit-Area, or Borrow-Pit, Method 790
26.11 Contour-Area Method 791
26.12 Measuring Volumes of Water Discharge 793
26.13 Software 794
26.14 Sources of Error in Determining Volumes 795
26.15 Mistakes 795
Problems 795
Bibliography 798

27 • PHOTOGRAMMETRY

27.1 Introduction 799
27.2 Uses of Photogrammetry 800
27.3 Aerial Cameras 801
27.4 Types of Aerial Photographs 803
27.5 Vertical Aerial Photographs 804
27.6 Scale of a Vertical Photograph 806
27.7 Ground Coordinates from a Single Vertical Photograph 810
27.8 Relief Displacement on a Vertical Photograph 811
27.9 Flying Height of a Vertical Photograph 813
27.10 Stereoscopic Parallax 814
27.11 Stereoscopic Viewing 817
27.12 Stereoscopic Measurement of Parallax 819
27.13 Analytical Photogrammetry 820
27.14 Stereoscopic Plotting Instruments 821
27.15 Orthophotos 826
27.16 Ground Control for Photogrammetry 827
27.17 Flight Planning 828
27.18 Airborne Laser-Mapping Systems 830
27.19 Remote Sensing 831
27.20 Software 837
27.21 Sources of Error in Photogrammetry 838
27.22 Mistakes 838
Problems 839
Bibliography 842
This 13th Edition of *Elementary Surveying: An Introduction to Geomatics* is a readable text that presents basic concepts and practical material in each of the areas fundamental to modern surveying (geomatics) practice. It is written primarily for students beginning their study of surveying (geomatics) at the college level. Although the book is elementary, its depth and breadth also make it ideal for self-study and preparation for licensing examinations. This edition includes more than 400 figures and illustrations to help clarify discussions, and numerous example problems are worked to illustrate computational procedures.

In keeping with the goal of providing an up-to-date presentation of surveying equipment and procedures, total stations are stressed as the instruments for making angle and distance observations. Additionally, mobile mapping has been introduced in this edition. Transits and theodolites, which are not used in practice, are just briefly introduced in the main body of the text. Similarly, automatic levels are now the dominant instruments for elevation determination, and accordingly their use is stressed. Dumpy levels, which are seldom used nowadays, are only briefly mentioned in the main text. For those who still use these instruments, they are covered in more detail in Appendix A of this book. However, this will be the last edition that contains this appendix.

As with past editions, this book continues to emphasize the theory of errors in surveying work. At the end of each chapter, common errors and mistakes related to the topic covered are listed so that students will be reminded to exercise caution in all of their work. Practical suggestions resulting from the authors’ many years of experience are interjected throughout the text. Many of the 1000 after-chapter problems have been rewritten so that instructors can create new assignments for their students. An Instructor’s Manual is available on the companion website at http://www.pearsonhighered.com/ghilani for this book to instructors who adopt the book by contacting their Prentice Hall sales
representative. Also available on this website are short videos presenting the solution of selected problems in this book. These video solutions are indicated by the icon shown here in the margin. There is also a complete Pearson eText available for students.

In addition, updated versions of STATS, WOLFPACK, and MATRIX are available on the companion website for this book at http://www.pearsonhighered.com/ghilani. These programs contain options for statistical computations, traverse computations for polygon, link, and radial traverses; area calculations; astronomical azimuth reduction; two-dimensional coordinate transformations; horizontal and vertical curve computations; and least-squares adjustments. Mathcad® worksheets and Excel® spreadsheets are included on the companion website for this book. These programmed computational sheets demonstrate the solution to many of the example problems discussed herein. For those desiring additional knowledge in map projections, the Mercator, Albers Equal Area, Oblique Stereographic, and Oblique Mercator map projections have been included with these files. Also included are hypertext markup language (html) files of the Mathcad® worksheets for use by those who do not own the software.

WHAT'S NEW IN THIS EDITION?

- Discussion on the impact of the new L2C and L5 signals in GPS
- Discussion on the effects of solar activity in GNSS surveys
- Additional method of computing slope intercepts
- Introduction to mobile mapping systems
- 90% of problems revised
- Video Examples

ACKNOWLEDGMENTS

Past editions of this book, and this current one, have benefited from the suggestions, reviews, and other input from numerous students, educators, and practitioners. For their help, the authors are extremely grateful. In this edition, those professors and graduate students who reviewed material or otherwise assisted include Robert Schultz, Oregon State University; Steven Frank, New Mexico State University; Jeremy Deal, University of Texas-Arlington; Guoqing Zhou, Old Dominion University; Eric Fuller, St. Cloud State University; Loren J. Gibson, Florida Atlantic University; John J. Rose, Phoenix College; Robert Moynihan, University of New Hampshire; Marlee Walton, Iowa State University; Douglas E. Smith, Montana State University; Jean M. Rüeger, The University of New South Wales, Sydney, Australia; Thomas Seybert, The Pennsylvania State University; and Bon Dewitt, University of Florida. The authors would also like to thank the following professionals who have reviewed material and otherwise assisted in the development of this book: Paul Dukas, Professional Surveyor and Mapper, Geomatics Consultant (Chapter 21); Ron Oberlander, Topcon Positioning Systems; Charles Harpster, Pennsylvania Department of Transportation; Preston Hartzell, Eastern States Engineering; Eduardo Fernandez-Falcon, Topcon Positioning Systems; and Joseph Gabor and Brian Naberezny.
In addition, the authors wish to acknowledge the contributions of charts, maps, or other information from the National Geodetic Survey, the U.S. Geological Survey, and the U.S. Bureau of Land Management. Also appreciation is expressed to the many instrument manufacturers who provided pictures and other descriptive information on their equipment for use herein. To all of those named above and to any others who may have been inadvertently omitted, the authors are extremely thankful.