STATICS
THIRTEENTH EDITION
R. C. HIBBELER
To the Student

With the hope that this work will stimulate an interest in Engineering Mechanics and provide an acceptable guide to its understanding.
The main purpose of this book is to provide the student with a clear and thorough presentation of the theory and application of engineering mechanics. To achieve this objective, this work has been shaped by the comments and suggestions of hundreds of reviewers in the teaching profession, as well as many of the author’s students.

New to this Edition

New Problems. There are approximately 35% or about 410 new problems in this edition. These new problems relate to applications in many different fields of engineering. Also, a significant increase in algebraic type problems has been added, so that a generalized solution can be obtained.

Additional Fundamental Problems. These problem sets serve as extended example problems since their solutions are given in the back of the book. Additional problems have been added, especially in the areas of frames and machines, and in friction.

Expanded Solutions. Some of the fundamental problems now have more detailed solutions, including some artwork, for better clarification. Also, some of the more difficult problems have additional hints along with its answer when given in the back of the book.

Updated Photos. The relevance of knowing the subject matter is reflected by the realistic applications depicted by the many photos placed throughout the book. In this edition 20 new or updated photos are included. These, along with all the others, are generally used to explain how the relevant principles of mechanics apply to real-world situations. In some sections they are incorporated into the example problems, or to show how to model then draw the free-body diagram of an actual object.

New & Revised Example Problems. Throughout the book examples have been altered or enhanced in an attempt to help clarify concepts for students. Where appropriate new examples have been added in order to emphasize important concepts that were needed.

New Conceptual Problems. The conceptual problems given at the end of many of the problem sets are intended to engage the students in thinking through a real-life situation as depicted in a photo. They can be assigned either as individual or team projects after the students have developed some expertise in the subject matter.
Hallmark Features

Besides the new features mentioned above, other outstanding features that define the contents of the text include the following.

Organization and Approach. Each chapter is organized into well-defined sections that contain an explanation of specific topics, illustrative example problems, and a set of homework problems. The topics within each section are placed into subgroups defined by boldface titles. The purpose of this is to present a structured method for introducing each new definition or concept and to make the book convenient for later reference and review.

Chapter Contents. Each chapter begins with an illustration demonstrating a broad-range application of the material within the chapter. A bulleted list of the chapter contents is provided to give a general overview of the material that will be covered.

Emphasis on Free-Body Diagrams. Drawing a free-body diagram is particularly important when solving problems, and for this reason this step is strongly emphasized throughout the book. In particular, special sections and examples are devoted to show how to draw free-body diagrams. Specific homework problems have also been added to develop this practice.

Procedures for Analysis. A general procedure for analyzing any mechanical problem is presented at the end of the first chapter. Then this procedure is customized to relate to specific types of problems that are covered throughout the book. This unique feature provides the student with a logical and orderly method to follow when applying the theory. The example problems are solved using this outlined method in order to clarify its numerical application. Realize, however, that once the relevant principles have been mastered and enough confidence and judgment have been obtained, the student can then develop his or her own procedures for solving problems.

Important Points. This feature provides a review or summary of the most important concepts in a section and highlights the most significant points that should be realized when applying the theory to solve problems.

Fundamental Problems. These problem sets are selectively located just after most of the example problems. They provide students with simple applications of the concepts, and therefore, the chance to develop their problem-solving skills before attempting to solve any of the standard problems that follow. In addition, they can be used for preparing for exams, and they can be used at a later time when preparing for the Fundamentals in Engineering Exam.

Conceptual Understanding. Through the use of photographs placed throughout the book, theory is applied in a simplified way in order to illustrate some of its more important conceptual features and instill the physical meaning of many
of the terms used in the equations. These simplified applications increase interest in the subject matter and better prepare the student to understand the examples and solve problems.

Homework Problems. Apart from the Fundamental and Conceptual type problems mentioned previously, other types of problems contained in the book include the following:

- **Free-Body Diagram Problems.** Some sections of the book contain introductory problems that only require drawing the free-body diagram for the specific problems within a problem set. These assignments will impress upon the student the importance of mastering this skill as a requirement for a complete solution of any equilibrium problem.

- **General Analysis and Design Problems.** The majority of problems in the book depict realistic situations encountered in engineering practice. Some of these problems come from actual products used in industry. It is hoped that this realism will both stimulate the student’s interest in engineering mechanics and provide a means for developing the skill to reduce any such problem from its physical description to a model or symbolic representation to which the principles of mechanics may be applied.

Throughout the book, there is an approximate balance of problems using either SI or FPS units. Furthermore, in any set, an attempt has been made to arrange the problems in order of increasing difficulty except for the end of chapter review problems, which are presented in random order.

- **Computer Problems.** An effort has been made to include some problems that may be solved using a numerical procedure executed on either a desktop computer or a programmable pocket calculator. The intent here is to broaden the student’s capacity for using other forms of mathematical analysis without sacrificing the time needed to focus on the application of the principles of mechanics. Problems of this type, which either can or must be solved using numerical procedures, are identified by a “square” symbol (□) preceding the problem number.

The many homework problems in this edition, have been placed into two different categories. Problems that are simply indicated by a problem number have an answer and in some cases an additional numerical result given in the back of the book. An asterisk (*) before every fourth problem number indicates a problem without an answer.

Accuracy. As with the previous editions, apart from the author, the accuracy of the text and problem solutions has been thoroughly checked by four other parties: Scott Hendricks, Virginia Polytechnic Institute and State University; Karim Nohra, University of South Florida; Kurt Norlin, Laurel Tech Integrated Publishing Services; and finally Kai Beng, a practicing engineer, who in addition to accuracy review provided suggestions for problem development.
Contents

The book is divided into 11 chapters, in which the principles are first applied to simple, then to more complicated situations. In a general sense, each principle is applied first to a particle, then a rigid body subjected to a coplanar system of forces, and finally to three-dimensional force systems acting on a rigid body.

Chapter 1 begins with an introduction to mechanics and a discussion of units. The vector properties of a concurrent force system are introduced in Chapter 2. This theory is then applied to the equilibrium of a particle in Chapter 3. Chapter 4 contains a general discussion of both concentrated and distributed force systems and the methods used to simplify them. The principles of rigid-body equilibrium are developed in Chapter 5 and then applied to specific problems involving the equilibrium of trusses, frames, and machines in Chapter 6, and to the analysis of internal forces in beams and cables in Chapter 7. Applications to problems involving frictional forces are discussed in Chapter 8, and topics related to the center of gravity and centroid are treated in Chapter 9. If time permits, sections involving more advanced topics, indicated by stars (★), may be covered. Most of these topics are included in Chapter 10 (area and mass moments of inertia) and Chapter 11 (virtual work and potential energy). Note that this material also provides a suitable reference for basic principles when it is discussed in more advanced courses. Finally, Appendix A provides a review and list of mathematical formulas needed to solve the problems in the book.

Alternative Coverage. At the discretion of the instructor, some of the material may be presented in a different sequence with no loss of continuity. For example, it is possible to introduce the concept of a force and all the necessary methods of vector analysis by first covering Chapter 2 and Section 4.2 (the cross product). Then after covering the rest of Chapter 4 (force and moment systems), the equilibrium methods of Chapters 3 and 5 can be discussed.

Acknowledgments

The author has endeavored to write this book so that it will appeal to both the student and instructor. Through the years, many people have helped in its development, and I will always be grateful for their valued suggestions and comments. Specifically, I wish to thank all the individuals who have contributed their comments relative to preparing the thirteenth edition of this work, and in particular, O. Barton, Jr. of the U.S. Naval Academy, and K. Cook-Chennault at Rutgers, the State University of New Jersey.

There are a few other people that I also feel deserve particular recognition. These include comments sent to me by H. Kuhlman and G. Benson. A long-time friend and associate, Kai Beng Yap, was of great help to me in preparing and checking problem solutions. A special note of thanks also goes to Kurt Norlin of Laurel Tech Integrated Publishing Services in this regard. During the production process I am thankful for the assistance of Rose Kernan, my production editor for many years, and to my wife,
Conny, and daughter, Mary Ann, who have helped with the proofreading and typing needed to prepare the manuscript for publication.

Lastly, many thanks are extended to all my students and to members of the teaching profession who have freely taken the time to e-mail me their suggestions and comments. Since this list is too long to mention, it is hoped that those who have given help in this manner will accept this anonymous recognition.

I would greatly appreciate hearing from you if at any time you have any comments, suggestions, or problems related to any matters regarding this edition.

Russell Charles Hibbeler
hibbeler@bellsouth.net
PART A

Given: \(F_1 = 55 \text{ lb}, \ F_2 = 170 \text{ lb}, \ M_A = 160 \text{ lb-ft} \)

\[\sum N_A = 0 \Rightarrow (F_1 + F_2) \times d_1 - N_A = 0 \]
\[(F_1 + F_2) \times d_1 = M_A \]

\[d_1 = \frac{M_A}{F_1 + F_2} \]
\[= \frac{160 \text{ lb-ft}}{55 \text{ lb} + 170 \text{ lb}} \]

\[d_1 = 0.711 \text{ ft} \]
your answer specific feedback

Try Again; 5 attempts remaining

Feedback
Both forces do not contribute to the moment about point A. The magnitude of the moment about A is equal to the force multiplied by the perpendicular distance between point A and the line of action of the force. What is the perpendicular distance between each force's line of action and point A?
Resources for Instructors

- **MasteringEngineering.** This online Tutorial Homework program allows you to integrate dynamic homework with automatic grading and adaptive tutoring. MasteringEngineering allows you to easily track the performance of your entire class on an assignment-by-assignment basis, or the detailed work of an individual student.

- **Instructor’s Solutions Manual.** This supplement provides complete solutions supported by problem statements and problem figures. The thirteenth edition manual was revised to improve readability and was triple accuracy checked. The Instructor’s Solutions Manual is available on Pearson Higher Education website: www.pearsonhighered.com.

- **Instructor’s Resource.** Visual resources to accompany the text are located on the Pearson Higher Education website: www.pearsonhighered.com. If you are in need of a login and password for this site, please contact your local Pearson representative. Visual resources include all art from the text, available in PowerPoint slide and JPEG format.

- **Video Solutions.** Developed by Professor Edward Berger, University of Virginia, video solutions are located on the Companion Website for the text and offer step-by-step solution walkthroughs of representative homework problems from each section of the text. Make efficient use of class time and office hours by showing students the complete and concise problem-solving approaches that they can access any time and view at their own pace. The videos are designed to be a flexible resource to be used however each instructor and student prefers. A valuable tutorial resource, the videos are also helpful for student self-evaluation as students can pause the videos to check their understanding and work alongside the video. Access the videos at www.pearsonhighered.com/hibbeler/ and follow the links for the *Engineering Mechanics: Statics*, Thirteenth Edition text.

Resources for Students

- **MasteringEngineering.** Tutorial homework problems emulate the instructor’s office-hour environment, guiding students through engineering concepts with self-paced individualized coaching. These in-depth tutorial homework problems are designed to coach students with feedback specific to their errors and optional hints that break problems down into simpler steps.

- **Statics Study Pack.** This supplement contains chapter-by-chapter study materials, a Free-Body Diagram Workbook and access to the Companion Website where additional tutorial resources are located.

- **Companion Website.** The Companion Website, located at www.pearsonhighered.com/hibbeler/, includes opportunities for practice and review including:
 - **Video Solutions**—Complete, step-by-step solution walkthroughs of representative homework problems from each section. Videos offer fully worked solutions that show every step of representative homework problems—this helps students make vital connections between concepts.
 - **Statics Practice Problems Workbook.** This workbook contains additional worked problems. The problems are partially solved and are designed to help guide students through difficult topics.

Ordering Options

The *Statics Study Pack* and MasteringEngineering resources are available as stand-alone items for student purchase and are also available packaged with the texts. The ISBN for each valuepack is as follows:

Custom Solutions

Please contact your local Pearson Sales Representative for more details about custom options or visit

CONTENTS

1 General Principles 3

Chapter Objectives 3
1.1 Mechanics 3
1.2 Fundamental Concepts 4
1.3 Units of Measurement 7
1.4 The International System of Units 9
1.5 Numerical Calculations 10
1.6 General Procedure for Analysis 12

2 Force Vectors 17

Chapter Objectives 17
2.1 Scalars and Vectors 17
2.2 Vector Operations 18
2.3 Vector Addition of Forces 20
2.4 Addition of a System of Coplanar Forces 32
2.5 Cartesian Vectors 43
2.6 Addition of Cartesian Vectors 46
2.7 Position Vectors 56
2.8 Force Vector Directed Along a Line 59
2.9 Dot Product 69

3 Equilibrium of a Particle 85

Chapter Objectives 85
3.1 Condition for the Equilibrium of a Particle 85
3.2 The Free-Body Diagram 86
3.3 Coplanar Force Systems 89
3.4 Three-Dimensional Force Systems 103

4 Force System Resultants 117

Chapter Objectives 117
4.1 Moment of a Force—Scalar Formulation 117
4.2 Cross Product 121
4.3 Moment of a Force—Vector Formulation 124
4.4 Principle of Moments 128
4.5 Moment of a Force about a Specified Axis 139
4.6 Moment of a Couple 148
4.7 Simplification of a Force and Couple System 160
4.8 Further Simplification of a Force and Couple System 170
4.9 Reduction of a Simple Distributed Loading 183
5 Equilibrium of a Rigid Body 199

Chapter Objectives 199
5.1 Conditions for Rigid-Body Equilibrium 199
5.2 Free-Body Diagrams 201
5.3 Equations of Equilibrium 214
5.4 Two- and Three-Force Members 224
5.5 Free-Body Diagrams 237
5.6 Equations of Equilibrium 242
5.7 Constraints and Statical Determinacy 243

6 Structural Analysis 263

Chapter Objectives 263
6.1 Simple Trusses 263
6.2 The Method of Joints 266
6.3 Zero-Force Members 272
6.4 The Method of Sections 280
6.5 Space Trusses 290
6.6 Frames and Machines 294

7 Internal Forces 331

Chapter Objectives 331
7.1 Internal Loadings Developed in Structural Members 331
7.2 Shear and Moment Equations and Diagrams 347
7.3 Relations between Distributed Load, Shear, and Moment 356
7.4 Cables 367

8 Friction 389

Chapter Objectives 389
8.1 Characteristics of Dry Friction 389
8.2 Problems Involving Dry Friction 394
8.3 Wedges 416
8.4 Frictional Forces on Screws 418
8.5 Frictional Forces on Flat Belts 425
8.6 Frictional Forces on Collar Bearings, Pivot Bearings, and Disks 433
8.7 Frictional Forces on Journal Bearings 436
8.8 Rolling Resistance 438
9 Center of Gravity and Centroid 451

Chapter Objectives 451

9.1 Center of Gravity, Center of Mass, and the Centroid of a Body 451
9.2 Composite Bodies 474
9.3 Theorems of Pappus and Guldinus 488
9.4 Resultant of a General Distributed Loading 497
9.5 Fluid Pressure 498

10 Moments of Inertia 515

Chapter Objectives 515

10.1 Definition of Moments of Inertia for Areas 515
10.2 Parallel-Axis Theorem for an Area 516
10.3 Radius of Gyration of an Area 517
10.4 Moments of Inertia for Composite Areas 526
10.5 Product of Inertia for an Area 534
10.6 Moments of Inertia for an Area about Inclined Axes 538
10.7 Mohr’s Circle for Moments of Inertia 541
10.8 Mass Moment of Inertia 549

11 Virtual Work 567

Chapter Objectives 567

11.1 Definition of Work 567
11.2 Principle of Virtual Work 569
11.3 Principle of Virtual Work for a System of Connected Rigid Bodies 571
11.4 Conservative Forces 583
11.5 Potential Energy 584
11.6 Potential-Energy Criterion for Equilibrium 586
11.7 Stability of Equilibrium Configuration 587

Appendix

A. Mathematical Review and Expressions 602

Fundamental Problems
Partial Solutions and Answers 606

Answers to Selected Problems 624

Index 642