NEW! Chapter-opening Why This Matters videos describe how the material applies to your future career. Scan the QR codes to see brief videos of real health care professionals discussing how they use the chapter content every day in the field.
NEW! Key concept organization presents the material in manageable chunks and helps you easily navigate the chapter. Each section header states the key concept of that section.

Overview of Key Concepts

<table>
<thead>
<tr>
<th>Key Concept</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The skin consists of two layers: the epidermis and dermis</td>
<td>5.1</td>
<td>134</td>
</tr>
<tr>
<td>The epidermis is a keratinized stratified squamous epithelium</td>
<td>5.2</td>
<td>135</td>
</tr>
<tr>
<td>The dermis consists of papillary and reticular layers</td>
<td>5.3</td>
<td>138</td>
</tr>
<tr>
<td>Melanin, carotene, and hemoglobin determine skin color</td>
<td>5.4</td>
<td>140</td>
</tr>
<tr>
<td>Hair consists of dead, keratinized cells</td>
<td>5.7</td>
<td>141</td>
</tr>
<tr>
<td>Nails are scale-like modifications of the epidermis</td>
<td>5.8</td>
<td>144</td>
</tr>
<tr>
<td>Sweat glands help control body temperature, and sebaceous glands secrete sebum</td>
<td>5.9</td>
<td>144</td>
</tr>
<tr>
<td>First and foremost, the skin is a barrier</td>
<td>5.10</td>
<td>146</td>
</tr>
<tr>
<td>Skin cancer and burns are major challenges to the body</td>
<td>5.11</td>
<td>148</td>
</tr>
</tbody>
</table>

5.1 The skin consists of two layers: the epidermis and dermis

Learning Objective

List the two layers of skin and briefly describe subcutaneous tissue.

The skin receives little respect from its inhabitants, but architecturally it is a marvel. It covers the entire body, has a surface area of 1.2 to 2.2 square meters, weighs 4 to 5 kilograms (4-5 kg = 9-11 lb), and accounts for about 7% of total body weight in the average adult. Also called the integument (“covering”), the skin multitasks. Its functions go well beyond serving as a bag for body contents. Pliable yet tough, it takes constant punishment from external agents. Without our skin, we would quickly fall prey to bacteria and perish from water and heat loss.

Varying in thickness from 1.5 to 4.0 millimeters (mm) or more in different parts of the body, the skin is composed of two distinct layers (Figure 5.1):

- The **epidermis** (ep’i-der’mis), composed of epithelial cells, is the outermost protective shield of the body (epi = upon).
- The underlying **dermis**, making up the bulk of the skin, is a tough, leathery layer composed mostly of dense connective tissue.

Only the dermis is vascularized. Nutrients reach the epidermis by diffusing through the tissue fluid from blood vessels in the dermis.

The variation in skin tone shown here is primarily due to varying concentrations of the pigment melanin.
Check Your Understanding questions end each section and allow you to assess your understanding of the concept before moving on.

Figure 5.1 Skin structure. Three-dimensional view of the skin and underlying subcutaneous tissue. The epidermal and dermal layers have been pulled apart at the upper right corner to reveal the dermal papillae.

and accounts for about 7% of total body weight in the average adult. Also called the integument ("covering"), the skin multitasks. Its functions go well beyond serving as a bag for body contents. Pliable yet tough, it takes constant punishment from external agents. Without our skin, we would quickly fall prey to bacteria and perish from water and heat loss.

Varying in thickness from 1.5 to 4.0 millimeters (mm) or more in different parts of the body, the skin is composed of two distinct layers (Figure 5.1):

- The epidermis (ep’-i-der’-mis), composed of epithelial cells, is the outermost protective shield of the body (ep - upon).
- The underlying dermis, making up the bulk of the skin, is a tough, leathery layer composed mostly of dense connective tissue.

Only the dermis is vascularized. Nutrients reach the epidermis by diffusing through the tissue fluid from blood vessels in the dermis.

The subcutaneous tissue just deep to the skin is known as the hypodermis (Figure 5.1). Strictly speaking, the hypodermis is not part of the skin, but it shares some of the skin’s protective functions. The hypodermis, also called superficial fascia because it is superficial to the tough connective tissue wrapping (fascia) of the skeletal muscles, consists mostly of adipose tissue.

Besides storing fat, the hypodermis anchors the skin to the underlying structures (mostly to muscles), but loosely enough that the skin can slide relatively freely over those structures. Sliding skin protects us by ensuring that many blows just glance off our bodies. Because of its fatty composition, the hypodermis also acts as a shock absorber and an insulator that reduces heat loss.

Check Your Understanding

1. Which layer of the skin—dermis or epidermis—is better nourished?

For answers, see Answers Appendix.
NEW! Find study tools online with references to MasteringA&P® in the book. Visit MasteringA&P for self-study modules, interactive animations, virtual lab tools, and more!

NEW! Easily find clinical examples to help you see how A&P concepts apply to your future career. The clinical content—including the Homeostatic Imbalance sections, clinical content modules, and the chapter-ending At the Clinic Case Study—has a unified new look and feel.

12.9 Brain injuries and disorders have devastating consequences

Clinical

Learning Objectives

- Describe the cause (if known) and major signs and symptoms of cerebrovascular accidents, Alzheimer's disease, Parkinson's disease, and Huntington's disease.
- List and explain several techniques used to diagnose brain disorders.

Brain dysfunctions are unbelievably varied and extensive. We have mentioned some of them already, but here we will focus on traumatic brain injuries, cerebrovascular accidents, and degenerative brain disorders.

Homeostatic Imbalance 22.3

Mumps, a common children's disease, is an inflammation of the parotid glands caused by the mumps virus (*myxovirus*), which spreads from person to person in saliva. If you check the location of the parotid glands in Figure 22.10a, you can understand why people with mumps complain that it hurts to open their mouth or chew. Other signs and symptoms include moderate fever and pain when swallowing acidic foods (pickles, grapefruit juice, etc.). Mumps in adult males carries a 25% risk of infecting the testes too, leading to sterility.
Stunning 3-D art with vibrant colors appears on every page to help you better visualize and understand key anatomical structures and their functions.

NEW! Making Connections questions in each chapter ask you to apply what you’ve learned across different body systems and chapters so that you build a cohesive understanding of the body.

Check Your Understanding

21. What chemicals produced in the skin help provide barriers to bacteria? List at least three and explain how the chemicals are protective.

22. Which epidermal cells play a role in body immunity?

23. How is sunlight important to bone health?

24. **Making Connections** When blood vessels in the dermis constrict or dilate to help maintain body temperature, which type of muscle tissue that you learned about (in Chapter 4) acts as the effector that causes blood vessel dilation or constriction?

For answers, see Answers Appendix.
NEW! **Concept Maps** are fun and challenging activities that help you solidify your understanding of a key course concept. These fully mobile activities allow you to combine key terms with linking phrases into a free-form map for topics such as protein synthesis, events in an action potential, and excitation-contraction coupling.

NEW! **Interactive Physiology® 1.0 and 2.0** help you understand the hardest part of A&P: physiology. Fun, interactive tutorials, games, and quizzes give you additional explanations to help you grasp difficult concepts. IP 2.0 includes topics that have been updated for today’s technology, such as Resting Membrane Potential, Cardiac Output, Electrical Activity of the Heart, Factors Affecting Blood Pressure, and Cardiac Cycle.
A&P Flix™ are 3-D movie-quality animations with self-paced tutorials and gradable quizzes that help you master the toughest topics in A&P.

Practice Anatomy Lab™ (PAL™) 3.0 is a virtual anatomy study and practice tool that gives you 24/7 access to the most widely used lab specimens, including the human cadaver, anatomical models, histology, cat, and fetal pig. PAL 3.0 is easy to use and includes built-in audio pronunciations, rotatable bones, and simulated fill-in-the-blank lab practical exams.
NEW! Dynamic Study Modules offer a mobile-friendly, personalized reading experience of the chapter content. As you answer questions to master the chapter content, you receive detailed feedback with text and art from the book itself. The Dynamic Study Modules help you acquire, retain, and recall information faster and more efficiently than ever before.

The PAL 3.0 App lets you access PAL 3.0 on your iPad or Android tablet. Enlarge images, watch animations, and study for your lab practicals with multiple-choice and fill-in-the-blank quizzes—all while on the go!

Learning Catalytics is a “bring your own device” (laptop, smartphone, or tablet) engagement, assessment, and classroom intelligence system. Use your device to respond to open-ended questions, and then discuss your answers in groups based on responses.
Cover Illustration: The plasma membrane, Imagineering STA Media Services/Precision Graphics

Copyright © 2017, 2014, 2011 Pearson Education, Inc. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third party content appear on pages C-1 and C-2, which constitutes an extension of this copyright page.

PEARSON, ALWAYS LEARNING, MasteringA&P®, A&P Flix™, and PAL™ are exclusive trademarks in the U.S. and/or other countries owned by Pearson Education, Inc. or its affiliates.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson’s products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data

Marieb, Elaine Nicpon / Hoehn, Katja.
Anatomy & physiology / Elaine N. Marieb, R.N., Ph.D. Holyoke Community College, Katja Hoehn, M.D., Ph.D., Mount Royal University.
Anatomy and physiology.
Includes index.
LCCN 2015035194 / ISBN 9780134156415
LCSH: Human physiology / Human anatomy.
LCC QP34.5 .M454 2017 / DDC 612—dc23
LC record available at http://lccn.loc.gov/ 2015035194
About the Authors

We dedicate this work to our students both present and past, who always inspire us to “push the envelope.”

Elaine N. Marieb

For Elaine N. Marieb, taking the student’s perspective into account has always been an integral part of her teaching style. Dr. Marieb began her teaching career at Springfield College, where she taught anatomy and physiology to physical education majors. She then joined the faculty of the Biological Science Division of Holyoke Community College in 1969 after receiving her Ph.D. in zoology from the University of Massachusetts at Amherst. While teaching at Holyoke Community College, where many of her students were pursuing nursing degrees, she developed a desire to better understand the relationship between the scientific study of the human body and the clinical aspects of the nursing practice. To that end, while continuing to teach full time, Dr. Marieb pursued her nursing education, which culminated in a Master of Science degree with a clinical specialization in gerontology from the University of Massachusetts. It is this experience that has informed the development of the unique perspective and accessibility for which her publications are known.

Dr. Marieb has partnered with Benjamin Cummings for over 30 years. Her first work was Human Anatomy & Physiology Laboratory Manual (Cat Version), which came out in 1981. In the years since, several other lab manual versions and study guides, as well as the softcover Essentials of Human Anatomy & Physiology textbook, have hit the campus bookstores. This textbook, now in its 10th edition, made its appearance in 1989 and is the latest expression of her commitment to the needs of students studying human anatomy and physiology.

Dr. Marieb has given generously to colleges both near and far to provide opportunities for students to further their education. She contributes to the New Directions, New Careers Program at Holyoke Community College by funding a staffed drop-in center and by providing several full-tuition scholarships each year for women who are returning to college after a hiatus or attending college for the first time and who would be unable to continue their studies without financial support. She funds the E. N. Marieb Science Research Awards at Mount Holyoke College, which promotes research by undergraduate science majors, and has underwritten renovation and updating of one of the biology labs in Clapp Laboratory at that college. Dr. Marieb also contributes to the University of Massachusetts at Amherst where she generously provided funding for reconstruction and instrumentation of a cutting-edge cytology research laboratory. Recognizing the severe national shortage of nursing faculty, she underwrites the Nursing Scholars of the Future Grant Program at the university.

In 1994, Dr. Marieb received the Benefactor Award from the National Council for Resource Development, American Association of Community Colleges, which recognizes her ongoing sponsorship of student scholarships, faculty teaching awards, and other academic contributions to Holyoke Community College. In May 2000, the science building at Holyoke Community College was named in her honor.

Dr. Marieb is an active member of the Human Anatomy and Physiology Society (HAPS) and the American Association for the Advancement of Science (AAAS). Additionally, while actively engaged as an author, Dr. Marieb serves as a consultant for the Benjamin Cummings Interactive Physiology® CD-ROM series.

When not involved in academic pursuits, Dr. Marieb is a world traveler and has vowed to visit every country on this planet. Shorter term, she serves on the scholarship committee of the Women’s Resources Center and on the board of directors of several charitable institutions in Sarasota County. She is an enthusiastic supporter of the local arts and enjoys a competitive match of doubles tennis.
Katja Hoehn

Dr. Katja Hoehn is a professor in the Department of Biology at Mount Royal University in Calgary, Canada. Dr. Hoehn’s first love is teaching. Her teaching excellence has been recognized by several awards during her 21 years at Mount Royal University. These include a PanCanadian Educational Technology Faculty Award (1999), a Teaching Excellence Award from the Students’ Association of Mount Royal (2001), and the Mount Royal Distinguished Faculty Teaching Award (2004).

Dr. Hoehn received her M.D. (with Distinction) from the University of Saskatchewan, and her Ph.D. in Pharmacology from Dalhousie University. In 1991, the Dalhousie Medical Research Foundation presented her with the Max Forman (Jr.) Prize for excellence in medical research. During her Ph.D. and postdoctoral studies, she also pursued her passion for teaching by presenting guest lectures to first- and second-year medical students at Dalhousie University and at the University of Calgary.

Dr. Hoehn has been a contributor to several books and has written numerous research papers in Neuroscience and Pharmacology. She oversaw a recent revision of the Benjamin Cummings Interactive Physiology® CD-ROM series modules, and coauthored the newest module, *The Immune System*.

Following Dr. Marieb’s example, Dr. Hoehn provides financial support for students in the form of a scholarship that she established in 2006 for nursing students at Mount Royal University.

Dr. Hoehn is also actively involved in the Human Anatomy and Physiology Society (HAPS) and is a member of the American Association of Anatomists. When not teaching, she likes to spend time outdoors with her husband and two sons, compete in triathlons, and play Irish flute.
As educators we continually make judgments about the enormous amount of information that besets us daily, so we can choose which morsels to pass on to our students. Yet even this refined information avalanche challenges the learning student’s mind. What can we do to help students apply the concepts they are faced with in our classrooms? We believe that this new edition of our textbook addresses that question by building on the strengths of previous editions while using new, innovative ways to help students visualize connections between various concepts.

Unifying Themes

Three unifying themes that have helped to organize and set the tone of this textbook continue to be valid and are retained in this edition. These themes are:

Interrelationships of body organ systems. This theme emphasizes the fact that nearly all regulatory mechanisms have interactions with several organ systems. The respiratory system, for example, cannot carry out its role of gas exchange in the body if there are problems with the cardiovascular system that prevent the normal delivery of blood throughout the body.

Homeostasis. Homeostasis is the normal and most desirable condition of the body. Its loss is always associated with past or present pathology. This theme is not included to emphasize pathological conditions but rather to illustrate what happens in the body when homeostasis is lost.

Complementarity of structure and function. This theme encourages students to understand the structure of some bodily part (cell, bone, lung, etc.) in order to understand the function of that structure. For example, muscle cells can produce movement because they are contractile cells.

Changes Past and Present

Many of the changes made to the 5th edition have been retained and are reinforced in this 6th edition.

- There are more step-by-step blue texts accompanying certain pieces of art (blue text refers to the instructor’s voice).
- The many clinical features of the book have been clearly identified to help students understand why this material is important.
- The “Check Your Understanding” questions at the end of each module reinforce understanding throughout the chapter.
- We have improved a number of our Focus Figures. (Focus Figures are illustrations that use a “big picture” layout and dramatic art to walk the student through difficult processes in a step-by-step way.)
- MasteringA&P continues to provide text-integrated media of many types to aid learning. These include Interactive Physiology (IP) tutorials that help students to grasp difficult concepts, A&P Flix animations that help students visualize tough A&P topics, and the PAL (Practice Anatomy Lab) collection of virtual anatomy study and practice tools focusing on the most widely used lab specimens. These are by no means all of the helpful tools to which students have access. It’s just a smattering.
New to the Sixth Edition

So, besides these tools, what is really new to this textbook this time around? Each chapter’s first page has a “Why This Matters” icon and QR code that links to a video of a health-care professional telling us why the chapter’s content is important for his or her work.

Other new features include (1) declarative headers at the beginning of each chapter module so that the student can quickly grasp the “big idea” for that module, (2) more modularization (chunking) of the text so that students can tackle manageable pieces of information as they read through the material, (3) increased readability of the text as a result of more bulleted lists and shorter paragraphs, (4) more summary tables to help students connect information, (5) improvements to many of the figures so that they teach even more effectively, and (6) “Making Connections” questions in each chapter that ask students to incorporate related information from earlier chapters or earlier modules in the same chapter, helping students to see the forest, not just the trees, as they study.

Chapter-by-Chapter Changes

Chapter 1 The Human Body: An Orientation
• Updated Figure 1.8 for better teaching effectiveness.

Chapter 2 Chemistry Comes Alive
• Updated Figure 2.18 for better teaching effectiveness.

Chapter 3 Cells: The Living Units
• Updated statistics on Tay-Sachs disease.
• Updated information about riboswitches and added information about small interfering RNAs (siRNAs).
• Added summary text to Figure 3.3 for better pedagogy.
• Updated Focus Figure 3.4.

Chapter 4 Tissue: The Living Fabric
• New photos of simple columnar epithelium, pseudostratified ciliated columnar epithelium, cardiac muscle tissue, and smooth muscle tissue (Figures 4.3c, d and 4.9b, c).

Chapter 5 The Integumentary System
• Added information about the role of tight junctions in skin.
• New photo of stretch marks (Figure 5.5).
• New photo of cradle cap (seborrhea) in a newborn (Figure 5.9).
• New photo of malignant melanoma (Figure 5.10).

Chapter 6 Bones and Skeletal Tissues
• Revised Figure 6.9 for improved teaching effectiveness.
• New X rays showing Paget's disease and normal bone (Figure 6.16).

Chapter 7 The Skeleton
• Illustrated the skull bone table to facilitate student learning (Table 7.1).
• Added three new Check Your Understanding figure questions asking students to make anatomical identifications.
• New photos of humerus, radius, and ulna (Figures 7.28 and 7.29).

Chapter 8 Joints
• Updated statistics for osteoarthritis.
• Updated figure showing movements allowed by synovial joints (Figure 8.5).
• New photos of special body movements (Figure 8.6).

Chapter 9 Muscles and Muscle Tissue
• Updated Table 9.2 information on sizes of skeletal muscle fiber types in humans.

Chapter 10 The Muscular System
• New photos showing surface anatomy of muscles used in seven facial expressions (Figure 10.7).

Chapter 11 Fundamentals of the Nervous System and Nervous Tissue
• Added overview figure of nervous system (Figure 11.2).
• Improved Focus Figure 11.2 (Action Potential) for better student understanding.
• New image of a motor neuron based on a computerized 3-D reconstruction of serial sections.
• Converted Figure 11.17 to tabular head style to teach better.

Chapter 12 The Central Nervous System
• Updated mechanisms of Alzheimer’s disease to include propagation of misfolded proteins.
• Updated information about gender differences in the brain.
• Streamlined discussion of sleep, memory, and stroke.
• New figure to show distribution of gray and white matter (Figure 12.3).
• Functional neuroimaging of the cerebral cortex (Figure 12.6).
• Improved reticular formation figure with “author’s voice” blue text (Figure 12.18).
• New figure showing decreased brain activity in Alzheimer’s (Figure 12.26).

Chapter 13 The Peripheral Nervous System and Reflex Activity
• Updated description of cytostructure of human cochlear hair cells (they have no kinocilia).
• New data on the number of different odors that humans can detect.
• Reorganized discussion of sound transmission to the inner ear. New numbered text improves text-art correlation.
• New figure teaches the function of the basilar membrane (Figure 13.26).
• New figure on how the hairs on the cochlear hair cells transduce sound (Figure 13.27).
• New figure shows the structure and function of the macula (Figure 13.28).
• Updated and expanded description of axon regeneration (in Figure 13.31).

Chapter 14 The Autonomic Nervous System
• Improved teaching effectiveness of Figure 14.3 (differences in the parasympathetic and sympathetic nervous systems).
• New summary table for autonomic ganglia (Table 14.2).

Chapter 15 The Endocrine System
• New information on actions of vitamin D and location of its receptors.
• New summary table showing differences between water-soluble and lipid-soluble hormones (Table 15.1).
• New summary flowchart shows the signs and symptoms of diabetes mellitus (Figure 15.19).

Chapter 16 Blood
• Improved teaching effectiveness of Figure 16.14 (intrinsic and extrinsic clotting factors).

Chapter 17 The Cardiovascular System: The Heart
• Rearranged topics in this chapter for better flow.
• New section and summary table (Table 17.1) teach key differences between skeletal muscle and cardiac muscle.
• New Making Connections figure question (students compare three action potentials).
• Rearranged material so that all electrical events are presented in one module.
• Added tabular headers, a photo, and bullets to more effectively teach ECG abnormalities (Figure 17.18).
• Streamlined figure showing effects of norepinephrine on heart contractility (Figure 17.22).

Chapter 18 The Cardiovascular System: Blood Vessels
• New information about pericytes (now known to be stem cells and generators of scar tissue in the CNS).
• New information that the fenestrations in fenestrated capillaries are dynamic structures.
• Rearranged topics in the physiology section of this chapter for better flow.
• New micrograph of artery and vein (Figure 18.2).
• Revised Figure 18.3 (the structure of different types of capillaries), putting all of the information in one place.
• New figure summarizes the major factors determining mean arterial pressure to give a “big picture” view (Figure 18.9).
• New figure illustrating active hyperemia (Figure 18.15).
• Updated Focus Figure 18.1 (Bulk Flow across Capillary Walls).
• New Homeostatic Imbalance feature on edema relates it directly to the preceding Focus Figure 18.1 and incorporates information previously found in Chapter 25.
• New photos of pitting edema (Figure 18.18).

Chapter 19 The Lymphatic System and Lymphoid Organs and Tissues
• Updated statistics on survival of non-Hodgkin’s lymphoma patients.
• Updated figure to improve teaching of primary and secondary lymphoid organs (Figure 19.4).

Chapter 20 The Immune System: Innate and Adaptive Body Defenses
• Updated information on aging and the immune system, particularly with respect to chronic inflammation.
• Added a new term, pattern recognition receptors, to help describe how our innate defenses recognize pathogens.
• Provided new research results updating the number of genes in the human genome to about 20,000.

Chapter 21 The Respiratory System
• New Check Your Understanding question with graphs reinforces concepts learned in Focus Figure 21.1 (The Oxygen-Hemoglobin Dissociation Curve).
• New figure illustrating pneumothorax (Figure 21.14).

Chapter 22 The Digestive System
• Updated information about the treatment of peptic ulcers.
• Updated information about the types and locations of epithelial cells of the small intestine.
• New information about roles of our intestinal flora.
• Updated hepatitis C treatment to include the new FDA-approved drug sofosbuvir.
• Added discussion of non-alcoholic fatty liver disease.
• New information about fecal transplants to treat antibiotic-associated diarrhea.
• Updated figure that compares and contrasts peristalsis and segmentation (Figure 22.3) for improved teaching effectiveness.
• Updated Figure 22.4 explaining the relationship between the peritoneum and the abdominal organs to improve teaching effectiveness.
• Enteric nervous system section rewritten and rearranged with new figure (Figure 22.6).
• Improved teaching effectiveness of Figure 22.14 (the steps of deglutition).
• Streamlined Figure 22.19 to enhance teaching of regulation of gastric secretion.
• Updated Figure 22.20 (the mechanism of HCl secretion by parietal cells) for improved teaching effectiveness.
• Improved the text flow by moving discussion of the liver, gallbladder, and pancreas before the small intestine.
• Improved teaching effectiveness of Figure 22.28 (mechanism promoting secretion and release of bile and pancreatic juice).
• Updated and revised sections about motility of the small and large intestines.
• Rearranged text to discuss digestion and absorption together for each nutrient. The figures for digestion and absorption of carbohydrates (Figure 22.35) and proteins (Figure 22.36) now parallel each other and appear together for easy comparison.
• Rearranged and rewrote lipid digestion and absorption text and updated Figure 22.37.

Chapter 23 Nutrition, Metabolism, and Energy Balance
• Chapter title changed from Nutrition, Metabolism, and Body Temperature Regulation in order to emphasize the concept of energy balance.
• Updated shape and mechanism of action of ATP synthase to reflect new research findings.
• Updated hypothalamic control of food intake per new research findings.
• Revised Figure 23.4 to enhance the ability of students to compare and contrast the mechanisms of phosphorylation that convert ADP to ATP.
• Revised figure describing ATP synthase structure and function (Figure 23.10).
• Revised Figure 23.13 to help students compare and contrast glycogenesis and glycogenolysis (Figure 23.12).
• Three new figures help students grasp the terms for key pathways in carbohydrate, protein, and fat metabolism (Figures 23.12, 23.14, and 23.18).
Chapter 24 The Urinary System
• New cadaver photo of urinary tract organs (Figure 24.2).
• New Check Your Understanding question for nephron labeling.
• Improved Focus Figure 24.1 (Medullary Osmotic Gradient) for better teaching effectiveness.
• Added new illustrations to improve teaching effectiveness of Figure 24.19 (the effects of ADH on the nephron).

Chapter 25 Fluid, Electrolyte, and Acid-Base Balance
• New Check Your Understanding figure question requires students to integrate information.

Chapter 26 The Reproductive System
• Updated screening recommendations for prostate cancer, as well as updated information on detection and treatment.
• Updated screening guidelines for cervical cancer.
• Updated breast cancer statistics.
• New Check Your Understanding figure labeling question.
• New figure teaches independent assortment (Figure 26.8).
• New photo of female pelvic organs (Figure 26.15c).
• New photos of mammograms showing normal and cancerous breast tissues (Figure 26.19).
• Revised Figure 26.23 to reflect recent research about follicular development in humans.
• Revised section describing the stages of follicle development to facilitate student learning and to incorporate recent research.

Appendices
• Added a table of the genetic code (Appendix B).
Each time we put this textbook to bed, we promise ourselves that the next time will be easier and will require less of our time. Now hear this! This is its 6th edition (and 30 years more or less) and fulfillment of this promise has yet to materialize. How could there be so much going on in physiology research and so many new medical findings? Winnowing through these findings to decide on the updates to include in this edition has demanded much of our attention. Many people at Pearson have labored with us to produce another fine text. Let’s see if we can properly thank them.

As Katja and I worked on the first draft of the manuscript, Tanya Martin (our text Development Editor) worked tirelessly to improve the readability of the text, all the while trying to determine which topics could be shortened or even deleted in the 6th edition. After we had perused and acted on some of Tanya’s suggestions, we forwarded the manuscript to Michele Mangelli who oversees everything having to do with getting a clean manuscript to production. Michele reviewed the entire revised manuscript. Nothing escaped her attention as she worked to catch every problem.

At the same time the text was in revision, the art program was going through a similar process. Laura Southworth, our superb Art Development Editor (aided briefly by Elisheva Marcus), worked tirelessly to make our Focus Figures and other art even better. Needing a handshake and a heartfelt “thank you” in the process are Kristin Piljay (Photo Researcher) and Jean Lake, who handled the administrative aspects of the art program. This team ensured that the artists at Imagineering had all the information they needed to produce beautiful final art products.

As the manuscript made the transition from Editorial to Production, Michele Mangelli, the Production and Design Manager, made her appearance known. The head honcho and skilled handler of all aspects of production, everyone answered to her from this point on. In all previous editions, the manuscript would simply go directly into production once the writing and editing phases were over, but our new modular design required extra steps to make the art-text correlation a reality—the electronic page layout. Working closely with Katja and her husband Larry Haynes, Michele’s small but powerful team “yanked” the new design to attention, fashioning two-page spreads, each covering one or more topics with its supporting art or table. This was our Holy Grail for this edition and the ideal student coaching device. They made it look easy (which it was not). Thank you Katja, Larry, and Michele—you are the ideal electronic page layout team. This was one time I felt fortunate to be the elder author.

The remaining people who helped with Production include David Novak (our conscientious Production Supervisor), Martha Ghent (Proofreader), Betsy Dietrich (Art Proofreader), Sallie Steele (Indexer), Cynthia Muthedary (Project Manager at Imagineering), and Tim Frelick (Composer). Copyeditor Anita Hueftle (formerly Anita Wagner) is the unofficial third author of our book. We are absolutely convinced that she memorizes the entire text. She verified the spelling of new terms, checked the generic and popular names of drugs, confirmed our grammar, and is the person most responsible for the book’s consistency and lack of typographical errors. We are grateful to Izak Paul for meticulously reading each chapter to find any remaining errors, and to Yvo Riezebos for his stunning design work on the cover, chapter opening pages, and the text.

Finally—what can we say about Brooke Suchomel, our Acquisitions Editor? She loved playing with the modular design and the chapter road maps and advising on Focus Figures, but most of her time was spent out in the field talking to professors, demonstrating the book’s changes and benefits. She spent weeks on the road, smiling all the time—no easy task. Finally, we are fortunate to have the ongoing support and friendship of Serina Beauparlant, our Editor-in-Chief.

Other members of our team with whom we have less contact but who are nonetheless vital are: Barbara Yien (Director of Development), Michael Early (Program Manager Team Lead), Nancy Tabor (Project Manager Team Lead), Stacey Weinberger (our Senior Manufacturing Buyer), Allison Rona (our top-notch Executive Marketing Manager), and Derek Perrigo (Senior Anatomy & Physiology Specialist). We appreciate the hard work of our media production team headed by Laura Tomassi, Aimee Pavy, and Lauren Hill and also wish to thank Eric Leaver.

Kudos to our entire team. We feel we have once again prepared a superb textbook. We hope you agree.
There are many people who reviewed parts of this text—both professors and students, either individually or in focus groups, and we would like to thank them. Input from the following reviewers has contributed to the continued excellence and accuracy of this text:

Matthew Abbott, Des Moines Area Community College
Lynne Anderson, Meridian Community College
Martin W. Asobayire, Essex Community College
Yvonne Baptiste-Szymanski, Niagara County Community College
Claudia Barreto, University of New Mexico–Valencia
Diana Bourke, Community College of Allegheny County
Sherry Bowen, Indian River State College
Beth Braun, Truman College
C. Steven Cahill, West Kentucky Community and Technical College
Brandi Childress, Georgia Perimeter College
William Michael Clark, Lone Star College–Kingwood
Teresa Cowan, Baker College of Auburn Hills
Donna Crapanzano, Stony Brook University
Maurice M. Culver, Florida State College at Jacksonville
Smruti A. Desai, Lone Star College–CyFair
Karen Dunbar Kareiva, Ivy Tech Community College
Elyce Ervin, University of Toledo
Martha Eshleman, Pulaski Technical College
Juanita A. Forrester, Chattahoochee Technical College
Reza Forough, Bellevue College
Dean Furbish, Wake Technical Community College
Emily Getty, Ivy Tech Community College
Amy Gieseke, Chattahoochee Technical College
Abigail Goosie, Walters State Community College
Mary Beth Hanlin, Des Moines Area Community College
Heidi Hawkins, College of Southern Idaho
Martie Heath-Sinclair, Hawkeye Community College
Nora Hebert, Red Rocks Community College
Nadia Hedhli, Hudson County Community College
D.J. Hennager, Kirkwood Community College
Shannon K. Hill, Temple College
Mark Hollier, Georgia Perimeter College
H. Rodney Holmes, Waubonsee Community College
Mark J. Hubley, Prince George’s Community College
Jason Hunt, Brigham Young University–Idaho
William Karkow, University of Dubuque
Suzanne Keller, Indian Hills Community College
Marta Klesath, North Carolina State University
Nelson H. Kraus, University of Indianapolis
Steven Lewis, Metropolitan Community College–Penn Valley
Jerri K. Lindsey, Tarrant County College–Northeast
Chelsea Loafman, Central Texas College
Paul Luyster, Tarrant County College–South
Abdallah M. Matari, Hudson County Community College
Bhavya Mathur, Chattahoochee Technical College
Tiffany Beth McFalls-Smith, Elizabethtown Community and Technical College
Todd Miller, Hunter College of CUNY
Regina Munro, Chandler-Gilbert Community College
Necia Nicholas, Calhoun Community College
Ellen Ott-Reeves, Blinn College–Bryan
Jessica Petersen, Pensacola State College
Sarah A. Pugh, Shelton State Community College
Rolando J. Ramirez, The University of Akron
Terrence J. Ravine, University of South Alabama
Laura H. Ritt, Burlington County College
Susan Rohde, Triton College
Brian Sailor, Central New Mexico Community College
Mark Schmidt, Clark State Community College
Amy Skibiel, Auburn University
Lori Smith, American River College
Ashley Spring-Beerensson, Eastern Florida State College
Justin R. St. Juliana, Ivy Tech Community College
Laura Steele, Ivy Tech Community College
Shirley A. Whitescarver, Bluegrass Community and Technical College
Patricia Wilhelm, Johnson and Wales University
Luann Wilkinson, Marion Technical College
Peggie Williamson, Central Texas College
MaryJo A. Witz, Monroe Community College
James Robert Yount, Brevard Community College
Interactive Physiology 2.0 Reviewers
Lynne Anderson, Meridian Community College
J. Gordon Betts, Tyler Junior College
Mike Brady, Columbia Basin College
Betsy Brantley, Valencia College
Tammya Carmona, Cosumnes River College
Alexander G. Cheroske, Mesa Community College at Red Mountain
Sondra Dubowsky, McLennan Community College
Paul Emerick, Monroe Community College
Brian D. Feige, Mott Community College
John E. Fishback, Ozarks Technical Community College
Aaron Fried, Mohawk Valley Community College
Jane E. Gavin, University of South Dakota
Gary Glaser, Genesee Community College
Mary E. Hanlin, Des Moines Area Community College
Mark Hubley, Prince George’s Community College
William Karkow, University of Dubuque
Michael Kielb, Eastern Michigan University
Paul Luyster, Tarrant County College–South
Acknowledgments

Louise Millis, North Hennepin Community College
Justin Moore, American River College
Maria Oehler, Florida State College at Jacksonville
Fernando Prince, Laredo Community College
Terrence J. Ravine, University of South Alabama
Mark Schmidt, Clark State Community College
Cindy Stanfield, University of South Alabama
Laura Steele, Ivy Tech Community College
George A. Steer, Jefferson College of Health Sciences
Shirley A. Whitescarver, Bluegrass Community and Technical College

Harvey Howell, my beloved husband and helpmate, died in August of 2013. He is sorely missed.

Katja would also like to acknowledge the support of her colleagues at Mount Royal University (Trevor Day, Sarah Hewitt, Tracy O’Connor, Izak Paul, Michael Pollock, Lorraine Royal, Karen Sheedy, Kartika Tjandra, and Margot Williams) and of Ruth Pickett-Seltner (Chair), Tom MacAlister (Associate Dean), and Jeffrey Goldberg (Dean). Thanks also to Katja’s husband, Dr. Lawrence Haynes, who as a fellow physiologist has provided invaluable assistance to her during the course of the revision. She also thanks her sons, Eric and Stefan Haynes, who are an inspiration and a joy.

We would really appreciate hearing from you concerning your opinion—suggestions and constructive criticisms—of this text. It is this type of feedback that will help us in the next revision, and underlies the continued improvement of this text.

Elaine N. Marieb
Katja Hoehn

Elaine N. Marieb and Katja Hoehn
Anatomy and Physiology
Pearson Education
1301 Sansome Street
San Francisco, CA 94111
3.10 The cell cycle consists of interphase and a mitotic phase 90
3.11 Messenger RNA carries instructions from DNA for building proteins 92

FOCUS FIGURE 3.3 Mitosis 94

FOCUS FIGURE 3.4 Translation 100

3.12 Apoptosis disposes of unneeded cells; autophagy and proteasomes dispose of unneeded organelles and proteins 103

4 Tissue: The Living Fabric 105

4.1 Tissue samples are fixed, sliced, and stained for microscopy 105
4.2 Epithelial tissue covers body surfaces, lines cavities, and forms glands 106
4.3 Connective tissue is the most abundant and widely distributed tissue in the body 115
4.4 Muscle tissue is responsible for body movement 126
4.5 Nervous tissue is a specialized tissue of the nervous system 128
4.6 The cutaneous membrane is dry; mucous and serous membranes are wet 128
4.7 Tissue repair involves inflammation, organization, and regeneration 131

UNIT 2 Covering, Support, and Movement of the Body

5 The Integumentary System 134

5.1 The skin consists of two layers: the epidermis and dermis 134
5.2 The epidermis is a keratinized stratified squamous epithelium 135
5.3 The dermis consists of papillary and reticular layers 138
5.4 Melanin, carotene, and hemoglobin determine skin color 140
5.5 Hair consists of dead, keratinized cells 141
5.6 Nails are scale-like modifications of the epidermis 144
5.7 Sweat glands help control body temperature, and sebaceous glands secrete sebum 144
5.8 First and foremost, the skin is a barrier 146
5.9 Skin cancer and burns are major challenges to the body 148

6 Bones and Skeletal Tissues 152

6.1 Hyaline, elastic, and fibrocartilage help form the skeleton 152
6.2 Bones perform several important functions 154
6.3 Bones are classified by their location and shape 154
6.4 The gross structure of all bones consists of compact bone sandwiching spongy bone 155
6.5 Bones develop either by intramembranous or endochondral ossification 162
6.6 Bone remodeling involves bone deposit and removal 165
6.7 Bone repair involves hematoma and callus formation, and remodeling 168
6.8 Bone disorders result from abnormal bone deposition and resorption 170

7 The Skeleton 174

PART 1 THE AXIAL SKELETON 174
7.1 The skull consists of 8 cranial bones and 14 facial bones 174
7.2 The vertebral column is a flexible, curved support structure 190
7.3 The thoracic cage is the bony structure of the chest 197

PART 2 THE APPENDICULAR SKELETON 201
7.4 Each pectoral girdle consists of a clavicle and a scapula 201
7.5 The upper limb consists of the arm, forearm, and hand 204
7.6 The hip bones attach to the sacrum, forming the pelvic girdle 207
7.7 The lower limb consists of the thigh, leg, and foot 213

8 Joints 220

8.1 Joints are classified into three structural and three functional categories 220
8.2 In fibrous joints, the bones are connected by fibrous tissue 220
8.3 In cartilaginous joints, the bones are connected by cartilage 222
8.4 Synovial joints have a fluid-filled joint cavity 223
8.5 Five examples illustrate the diversity of synovial joints 229

FOCUS FIGURE 8.1 Synovial Joints 230
8.6 Joints are easily damaged by injury, inflammation, and degeneration 240

9 **Muscles and Muscle Tissue** 244

9.1 There are three types of muscle tissue 244
9.2 A skeletal muscle is made up of muscle fibers, nerves, blood vessels, and connective tissues 245
9.3 Skeletal muscle fibers contain calcium-regulated molecular motors 248
9.4 Motor neurons stimulate skeletal muscle fibers to contract 253

FOCUS FIGURE 9.1 Events at the Neuromuscular Junction 254

FOCUS FIGURE 9.2 Excitation-Contraction Coupling 258

FOCUS FIGURE 9.3 Cross Bridge Cycle 260

9.5 Wave summation and motor unit recruitment allow smooth, graded skeletal muscle contractions 261
9.6 ATP for muscle contraction is produced aerobically or anaerobically 266
9.7 The force, velocity, and duration of skeletal muscle contractions are determined by a variety of factors 269
9.8 How does skeletal muscle respond to exercise? 272
9.9 Smooth muscle is nonstriated involuntary muscle 273

10 **The Muscular System** 281

10.1 For any movement, muscles can act in one of three ways 281
10.2 How are skeletal muscles named? 282
10.3 Fascicle arrangements help determine muscle shape and force 282

FOCUS FIGURE 10.1 Muscle Action 283
10.4 Muscles acting with bones form lever systems 284
10.5 A muscle’s origin and insertion determine its action 287

Table 10.1 Muscles of the Head, Part I: Facial Expression 290
Table 10.2 Muscles of the Head, Part II: Mastication and Tongue Movement 293
Table 10.3 Muscles of the Anterior Neck and Throat: Swallowing 295

10.6 Muscles of the Abdominal Wall: Trunk Movements and Compression of Abdominal Viscera 303

Table 10.4 Muscles of the Neck and Vertebral Column: Head Movements and Trunk Extension 297
Table 10.5 Deep Muscles of the Thorax: Breathing 301
Table 10.6 Muscles of the Abdominal Wall: Trunk Movements and Compression of Abdominal Viscera 303
Table 10.7 Muscles of the Pelvic Floor and Perineum: Support of Abdominopelvic Organs 305
Table 10.8 Superficial Muscles of the Anterior and Posterior Thorax: Movements of the Scapula and Arm 307
Table 10.9 Muscles Crossing the Shoulder Joint: Movements of the Arm (Humerus) 311
Table 10.10 Muscles Crossing the Elbow Joint: Flexion and Extension of the Forearm 314
Table 10.11 Muscles of the Forearm: Movements of the Wrist, Hand, and Fingers 315
Table 10.12 Summary: Actions of Muscles Acting on the Arm, Forearm, and Hand 319
Table 10.13 Intrinsic Muscles of the Hand: Fine Movements of the Fingers 321
Table 10.14 Muscles Crossing the Hip and Knee Joints: Movements of the Thigh and Leg 324
Table 10.15 Muscles of the Leg: Movements of the Ankle and Toes 331
Table 10.16 Intrinsic Muscles of the Foot: Toe Movement and Arch Support 337
Table 10.17 Summary: Actions of Muscles Acting on the Thigh, Leg, and Foot 341

11 **Fundamentals of the Nervous System and Nervous Tissue** 345

11.1 The nervous system receives, integrates, and responds to information 345
11.2 Neuroglia support and maintain neurons 347
11.3 Neurons are the structural units of the nervous system 349
11.4 The resting membrane potential depends on differences in ion concentration and permeability 354

FOCUS FIGURE 11.1 Resting Membrane Potential 356
11.5 Graded potentials are brief, short-distance signals within a neuron 358
11.6 Action potentials are brief, long-distance signals within a neuron 359
12 The Central Nervous System 382

12.1 Folding during development determines the complex structure of the adult brain 382
12.2 The cerebral hemispheres consist of cortex, white matter, and the basal nuclei 384
12.3 The diencephalon includes the thalamus, hypothalamus, and epithalamus 395
12.4 The brain stem consists of the midbrain, pons, and medulla oblongata 398
12.5 The cerebellum adjusts motor output, ensuring coordination and balance 402
12.6 Functional brain systems span multiple brain structures 404
12.7 The interconnected structures of the brain allow higher mental functions 406
12.8 The brain is protected by bone, meninges, cerebrospinal fluid, and the blood brain barrier 412
12.9 Brain injuries and disorders have devastating consequences 415
12.10 The spinal cord is a reflex center and conduction pathway 418
12.11 Neuronal pathways carry sensory and motor information to and from the brain 423

13 The Peripheral Nervous System and Reflex Activity 431

PART 1 SENSORY RECEPTORS AND SENSATION 432
13.1 Receptors, ascending pathways, and cerebral cortex process sensory information 432
13.2 Sensory receptors are activated by changes in the internal or external environment 434
13.3 The eye converts light energy into electrical signals that are relayed to the brain, allowing us to see 437
13.4 Receptors in the olfactory epithelium and taste buds detect chemicals, allowing us to smell and taste 455
13.5 Inner ear mechanoreceptors enable hearing and balance 459

PART 2 TRANSMISSION LINES: NERVES AND THEIR STRUCTURE AND REPAIR 472
13.6 Nerves are cordlike bundles of axons that conduct sensory and motor impulses 472
13.7 There are 12 pairs of cranial nerves 475
13.8 31 pairs of spinal nerves innervate the body 483

PART 3 MOTOR ENDINGS AND MOTOR ACTIVITY 493
13.9 Peripheral motor endings connect nerves to their effectors 493
13.10 There are three levels of motor control 493

PART 4 REFLEX ACTIVITY 494
13.11 The reflex arc enables rapid and predictable responses 494
13.12 Spinal reflexes are somatic reflexes mediated by the spinal cord 495

FOCUS FIGURE 13.1 Stretch Reflex 498

14 The Autonomic Nervous System 504

14.1 The ANS differs from the somatic nervous system in that it can stimulate or inhibit its effectors 504
14.2 The ANS consists of the parasympathetic and sympathetic divisions 506
14.3 Long preganglionic parasympathetic fibers originate in the craniosacral CNS 508
14.4 Short preganglionic sympathetic fibers originate in the thoracolumbar CNS 510
14.5 Visceral reflex arcs have the same five components as somatic reflex arcs 514
14.6 Acetylcholine and norepinephrine are the major ANS neurotransmitters 514
14.7 The parasympathetic and sympathetic divisions usually produce opposite effects 516
14.8 The hypothalamus oversees ANS activity 518
14.9 Most ANS disorders involve abnormalities in smooth muscle control 519
15 The Endocrine System
15.1 The endocrine system is one of the body’s two major control systems
15.2 The chemical structure of a hormone determines how it acts
15.3 Hormones act through second messengers or by activating specific genes
15.4 Three types of stimuli cause hormone release
15.5 Cells respond to a hormone if they have a receptor for that hormone
15.6 The hypothalamus controls release of hormones from the pituitary gland in two different ways
FOCUS FIGURE 15.1 Hypothalamus and Pituitary Interactions
15.7 The thyroid gland controls metabolism
15.8 The parathyroid glands are primary regulators of blood calcium levels
15.9 The adrenal glands produce hormones involved in electrolyte balance and the stress response
15.10 The pineal gland secretes melatonin
15.11 The pancreas, gonads, and most other organs secrete hormones

UNIT 4 Maintenance of the Body

16 Blood
16.1 The functions of blood are transport, regulation, and protection
16.2 Blood consists of plasma and formed elements
16.3 Erythrocytes play a crucial role in oxygen and carbon dioxide transport
16.4 Leukocytes defend the body
16.5 Platelets are cell fragments that help stop bleeding
16.6 Hemostasis prevents blood loss
16.7 Transfusion can replace lost blood
16.8 Blood tests give insights into a patient’s health

17 The Cardiovascular System: The Heart
17.1 The heart has four chambers and pumps blood through the pulmonary and systemic circuits
17.2 Heart valves make blood flow in one direction
17.3 Blood flows from atrium to ventricle, and then to either the lungs or the rest of the body
FOCUS FIGURE 17.1 Blood Flow through the Heart
17.4 Intercalated discs connect cardiac muscle fibers into a functional syncytium
17.5 Pacemaker cells trigger action potentials throughout the heart
17.6 The cardiac cycle describes the mechanical events associated with blood flow through the heart
17.7 Stroke volume and heart rate are regulated to alter cardiac output

18 The Cardiovascular System: Blood Vessels
PART 1 BLOOD VESSEL STRUCTURE AND FUNCTION
18.1 Most blood vessel walls have three layers
18.2 Arteries are pressure reservoirs, distributing vessels, or resistance vessels
18.3 Capillaries are exchange vessels
18.4 Veins are blood reservoirs that return blood toward the heart
18.5 Anastomoses are special interconnections between blood vessels
PART 2 PHYSIOLOGY OF CIRCULATION
18.6 Blood flows from high to low pressure against resistance
18.7 Blood pressure decreases as blood flows from arteries through capillaries and into veins
18.8 Blood pressure is regulated by short- and long-term controls
18.9 Intrinsic and extrinsic controls determine blood flow through tissues
18.10 Slow blood flow through capillaries promotes diffusion of nutrients and gases, and bulk flow of fluids
FOCUS FIGURE 18.1 Bulk Flow across Capillary Walls
PART 3 CIRCULATORY PATHWAYS: BLOOD VESSELS OF THE BODY
18.11 The vessels of the systemic circulation transport blood to all body tissues
Table 18.3 Pulmonary and Systemic Circulations
Table 18.4 The Aorta and Major Arteries of the Systemic Circulation 638
Table 18.5 Arteries of the Head and Neck 640
Table 18.6 Arteries of the Upper Limbs and Thorax 642
Table 18.7 Arteries of the Abdomen 644
Table 18.8 Arteries of the Pelvis and Lower Limbs 646
Table 18.9 The Venae Cavae and the Major Veins of the Systemic Circulation 650
Table 18.10 Veins of the Head and Neck 653
Table 18.11 Veins of the Upper Limbs and Thorax 655
Table 18.12 Veins of the Abdomen 656
Table 18.13 Veins of the Pelvis and Lower Limbs 658

19 The Lymphatic System and Lymphoid Organs and Tissues 661

19.1 The lymphatic system includes lymphatic vessels, lymph, and lymph nodes 661
19.2 Lymphoid cells and tissues are found in lymphoid organs and in connective tissue of other organs 664
19.3 Lymph nodes filter lymph and house lymphocytes 666
19.4 The spleen removes bloodborne pathogens and aged red blood cells 667
19.5 MALT guards the body’s entryways against pathogens 668
19.6 T lymphocytes mature in the thymus 669

20 The Immune System: Innate and Adaptive Body Defenses 672

PART 1 INNATE DEFENSES 673
20.1 Surface barriers act as the first line of defense to keep invaders out of the body 673
20.2 Innate internal defenses are cells and chemicals that act as the second line of defense 673

PART 2 ADAPTIVE DEFENSES 680
20.3 Antigens are substances that trigger the body’s adaptive defenses 681
20.4 B and T lymphocytes and antigen-presenting cells are cells of the adaptive immune response 682
20.5 In humoral immunity, antibodies are produced that target extracellular antigens 685
20.6 Cellular immunity consists of T lymphocytes that direct adaptive immunity or attack cellular targets 692
20.7 Insufficient or overactive immune responses create problems 700

21 The Respiratory System 705

PART 1 FUNCTIONAL ANATOMY 705
21.1 The upper respiratory system warms, humidifies, and filters air 707
21.2 The lower respiratory system consists of conducting and respiratory zone structures 710
21.3 Each multilobed lung occupies its own pleural cavity 717

PART 2 RESPIRATORY PHYSIOLOGY 719
21.4 Volume changes cause pressure changes, which cause air to move 719
21.5 Measuring respiratory volumes, capacities, and flow rates helps us assess ventilation 725
21.6 Gases exchange by diffusion between the blood, lungs, and tissues 727
21.7 Oxygen is transported by hemoglobin, and carbon dioxide is transported in three different ways 731

FOCUS FIGURE 21.1 The Oxygen-Hemoglobin Dissociation Curve 732
21.8 Respiratory centers in the brain stem control breathing with input from chemoreceptors and higher brain centers 737
21.9 Exercise and high altitude bring about respiratory adjustments 741
21.10 Lung diseases are major causes of disability and death 742

22 The Digestive System 746

PART 1 OVERVIEW OF THE DIGESTIVE SYSTEM 746
22.1 What major processes occur during digestive system activity? 746
22.2 The GI tract has four layers and is usually surrounded by peritoneum 748
22.3 The GI tract has its own nervous system called the enteric nervous system 750

PART 2 FUNCTIONAL ANATOMY OF THE DIGESTIVE SYSTEM 752
22.4 Ingestion occurs only at the mouth 753
24 The Urinary System 834

24.1 The kidneys have three distinct regions and a rich blood supply 834
24.2 Nephrons are the functional units of the kidney 837
24.3 Overview: Filtration, absorption, and secretion are the key processes of urine formation 843
24.4 Urine formation, step 1: The glomeruli make filtrate 844
24.5 Urine formation, step 2: Most of the filtrate is reabsorbed into the blood 848
24.6 Urine formation, step 3: Certain substances are secreted into the filtrate 853
24.7 The kidneys create and use an osmotic gradient to regulate urine concentration and volume 853

FOCUS FIGURE 24.1 Medullary Osmotic Gradient 854

24.8 Renal function is evaluated by analyzing blood and urine 857
24.9 The ureters, bladder, and urethra transport, store, and eliminate urine 860

25 Fluid, Electrolyte, and Acid-Base Balance 866

25.1 Body fluids consist of water and solutes in three main compartments 866
25.2 Both intake and output of water are regulated 869
25.3 Sodium, potassium, calcium, and phosphate levels are tightly regulated 872
25.4 Chemical buffers and respiratory regulation rapidly minimize pH changes 879
25.5 Renal regulation is a long-term mechanism for controlling acid-base balance 881
25.6 Abnormalities of acid-base balance are classified as metabolic or respiratory 884

UNIT 5 Continuity

26 The Reproductive System 888

PART 1 ANATOMY OF THE MALE REPRODUCTIVE SYSTEM 889
26.1 The testes are enclosed and protected by the scrotum 889
26.2 The penis is the copulatory organ of the male 891
26.3 Sperm travel from the testes to the body exterior through a system of ducts 893
26.4 The male accessory glands produce the bulk of semen 894

PART 4 PHYSIOLOGY OF THE FEMALE REPRODUCTIVE SYSTEM 913
26.12 Oogenesis is the sequence of events that leads to the formation of ova 913
26.13 The ovarian cycle consists of the follicular phase and the luteal phase 915
26.14 Female reproductive function is regulated by hypothalamic, anterior pituitary, and ovarian hormones 917
26.15 The female sexual response is more diverse and complex than that of males 921

PART 5 SEXUALLY TRANSMITTED INFECTIONS 923
26.16 Sexually transmitted infections cause reproductive and other disorders 923

Appendices

Answers Appendix A-1
A Two Important Metabolic Pathways A-17
B The Genetic Code A-20

Glossary G-1
Photo and Illustration Credits C-1
Index I-1
Brief Contents

UNIT 1 Organization of the Body

1	The Human Body: An Orientation	1
2	Chemistry Comes Alive	19
3	Cells: The Living Units	54
4	Tissue: The Living Fabric	105

UNIT 2 Covering, Support, and Movement of the Body

5	The Integumentary System	134
6	Bones and Skeletal Tissues	152
7	The Skeleton	174
8	Joints	220
9	Muscles and Muscle Tissue	244
10	The Muscular System	281

UNIT 3 Regulation and Integration of the Body

11	Fundamentals of the Nervous System and Nervous Tissue	345
12	The Central Nervous System	382
13	The Peripheral Nervous System and Reflex Activity	431
14	The Autonomic Nervous System	504
15	The Endocrine System	521

UNIT 4 Maintenance of the Body

16	Blood	554
17	The Cardiovascular System: The Heart	579
18	The Cardiovascular System: Blood Vessels	608
19	The Lymphatic System and Lymphoid Organs and Tissues	661
20	The Immune System: Innate and Adaptive Body Defenses	672
21	The Respiratory System	705
22	The Digestive System	746
23	Nutrition, Metabolism, and Energy Balance	795
24	The Urinary System	834
25	Fluid, Electrolyte, and Acid-Base Balance	866

UNIT 5 Continuity

| 26 | The Reproductive System | 888 |
ELAINE MARIEB is the most trusted name in all of A&P. More than 3 million health care professionals started their careers with one of Elaine Marieb’s Anatomy & Physiology texts.

Now, it’s your turn.
NEW! eText 2.0 brings your textbook to any web-enabled device.
• Now available on smartphones and tablets.
• Seamlessly integrated videos and other rich media.
• Accessible (screen-reader ready).
• Configurable reading settings, including resizable type and night reading mode.
• Instructor and student note-taking, highlighting, bookmarking, and search.