To my mom, Judy—for your unending love and support, I am forever grateful. You are precious to my heart. I love you.

Love,
—Melissa

I would like to dedicate this book to my family and to all of the students that have taken our classes and thus helped us make this book the best it can be!

—Robin

To Bready, Audrey, and Luke—you are my whole world. Get your cups off of my table!

Love,
—Lisa (Mom)
About the Authors

Melissa L. Greene, NORTHWEST MISSISSIPPI COMMUNITY COLLEGE

Melissa L. Greene is the Biology Department Chair at Northwest Mississippi Community College in Senatobia, MS. She earned her B.S. degree in biology from Christian Brothers University in Memphis, TN, and her M.S. in life science from the University of Maryland. Her primary research focus was neuroanatomy, which she conducted at the University of Tennessee Health Science Center. With 16 years of college teaching experience, Melissa has extensive experience teaching anatomy and physiology lecture and labs, introductory biology for nonmajors, and biology for majors both in the classroom and via an online forum. In addition, she advises students interested in pursuing careers in biology and the health professions. She is a member of the Human Anatomy and Physiology Society (HAPS) and the Mississippi Academy of Sciences. Melissa is on the board of the Northwest Faculty Association, where she serves as vice president. When not writing or teaching, she enjoys spending time with her family and traveling. Melissa actively supports the Memphis Oral School for the Deaf, where her niece was a student for four years.

Robin H. Robison, NORTHWEST MISSISSIPPI COMMUNITY COLLEGE

Robin H. Robison is in his twenty-ninth year of teaching anatomy and physiology at Northwest Mississippi Community College. He is finishing his fifth as the Director of Science Instruction for NWCC. Robin was the recipient of the 1997 Lamplighter Award for Excellence in Teaching at NWCC. He also received the Tate County Educator of the Year award in 1998. Robin is currently developing and teaching biology courses for NWCC’s eLearning department. Robin’s teaching style is very engaging and never boring. He inserts practical stories into his lectures that help the students relate to and understand the material. Robin is a product of the community college system, receiving his A.A. degree in biology from Northeast Mississippi Community College. He received his B.A. and M.S. degrees in biology from the University of Mississippi. Robin is a member of the Human Anatomy and Physiology Society.

Lisa C. Strong, NORTHWEST MISSISSIPPI COMMUNITY COLLEGE

Lisa C. Strong is the Biology Laboratory Coordinator and a full-time instructor at Northwest Mississippi Community College. She also began her own college career at Northwest before transferring to Delta State University, where she received her B.S. in biology education. She earned her master’s degree from the University of Mississippi in the spring of 2003. She has taught courses in human anatomy and physiology, microbiology, and general biology for 15 years. She has always had a passion for teaching and tries to instill a love for the sciences in her students. She is constantly seeking ways to engage her students through the use of innovative technology in the classroom. She is member of the Human Anatomy and Physiology Society.
Preface

After trying different A&P lab manuals over the years with varying success, we decided to write our own lab manual because it was clear the needs of our students were changing. As digital natives who represented a wide diversity of learning styles, our students needed a variety of learning modes and technology to help them prepare for lab and get the most out of their lab time.

Key Features

We developed several special features in our lab manual that provide students with different ways of preparing for lab and maximizing their learning during lab time:

- **A rich variety of pre-lab assignments** including multiple-choice and short-answer questions, coloring, drawing, labeling, and watching pre-lab videos provide students with different learning modes to help them better prepare for lab. The pre-lab assignments are not in-depth topic studies but rather a superficial overview that can be completed in a relatively short time. We know that not all instructors will cover every activity within a lab exercise, so we have broken down the pre-lab assignments by activities. This will allow the instructors the freedom to decide which activities they want their students to complete. Pre-lab assignments are also available as auto-gradable **pre-lab assignments in Mastering A&P**. Having students who are prepared for lab will make better use of instructional time.

- **Over 100 specially commissioned photos of anatomical models** from Altay, Denoyer-Geppert, 3B Scientific, and Ward’s Science help students identify and locate key anatomical structures and landmarks. In addition, some exercises include side-by-side photos of cadavers and anatomical models for easy visual comparison.

- **Over 50 lab videos**, Practice Anatomy Lab 3.1 (PAL) and animations featured in selected pre-lab assignments and lab activities maximize student learning by reviewing key A&P concepts and lab procedures. Each lab video and media have been specially called out in the lab manual via a screenshot for easy reference.

The lab videos, PAL and animations can be assigned in Mastering and are also available in the Study Area of Mastering A&P.

- Please see the **Quick Reference** on the inside cover of this lab manual for a list of the lab videos and animations for each activity.

- **Updated PhysioEx 10.0 Laboratory Simulations in Physiology** provides newly formatted exercises in HTML for increased stability, web browser flexibility, and improved accessibility. The 12 Exercises contain more than 60 easy-to-use laboratory simulation activities that complement or replace wet labs, including those that are expensive or time-consuming to perform in class. Each activity includes objectives, an introduction, a pre-lab quiz, the experiment, a post-lab quiz, review sheet questions, and a lab report that students can save as a PDF and print and/or e-mail to their instructor. The online format with easy step-by-step instructions includes everything students need in one convenient place.
Each PhysioEx exercise and activity is referenced in the lab manual; students are then directed to access them in the Study Area of Mastering A&P. Pre-lab and post-lab quizzes and review sheets for PhysioEx are assignable in Mastering A&P.

PhysioEx 10.0 includes the following features:

- Input data variability allows students to change variables and test various hypotheses for the experiments.
- Step-by-step instructions put everything students need to do to complete the lab in one convenient place. Students gather data, analyze results, and check their understanding, all on screen.
- Stop & Think Questions and Predict Questions help students think about the connection between the activities and the physiological concepts they demonstrate.
- Greater data variability in the results reflects more realistically the results that students would encounter in a wet lab experiment.
- Pre-lab and post-lab quizzes and short-answer review sheets are offered to help students prepare for and review each activity.
- Students can save their lab report as a PDF, which they can print and/or e-mail to their instructor.
- A Test Bank of assignable pre-lab and post-lab quizzes for use with TestGen or a course management system is provided for instructors, in the Instructor Resources in Mastering.

PhysioEx 10.0 topics include the following:

- **Exercise 1: Cell Transport Mechanisms and Permeability.** Explores how substances cross the cell membranes. Topics include simple and facilitated diffusion, osmosis, filtration, and active transport.
- **Exercise 2: Skeletal Muscle Physiology.** Provides insights into the complex physiology of skeletal muscle. Topics include electrical stimulation, isometric contractions, and isotonic contractions.
- **Exercise 3: Neurophysiology of Nerve Impulses.** Investigates stimuli that elicit action potentials, stimuli that inhibit action potentials, and factors affecting the conduction velocity of an action potential.
- **Exercise 4: Endocrine System Physiology.** Investigates the relationship between hormones and metabolism, the effect of estrogen replacement therapy, the diagnosis of diabetes, and the relationship between the levels of cortisol and adrenocorticotropic hormone and a variety of endocrine disorders.
- **Exercise 5: Cardiovascular Dynamics.** Examines vessel resistance and pump (heart) mechanics.
- **Exercise 6: Cardiovascular Physiology.** Examines variables influencing heart activity. Topics include setting up and recording baseline heart activity, the refractory period of cardiac muscle, and an investigation of factors that affect heart rate and contractility.
- **Exercise 7: Respiratory System Mechanics.** Investigates physical and chemical aspects of pulmonary function. Students collect data simulating normal lung volumes. Other activities examine factors such as airway resistance and the effect of surfactant on lung function.
- **Exercise 8: Chemical and Physical Processes of Digestion.** Examines factors that affect enzyme activity by manipulating (in compressed time) enzymes, reagents, and incubation conditions.
- **Exercise 9: Renal System Physiology.** Stimulates the function of a single nephron. Topics include factors influencing glomerular filtration, the effect of hormones on urine function, and glucose transport maximum.
- **Exercise 10: Acid-Base Balance.** Topics include respiratory and metabolic acidosis/alkalosis and renal and respiratory compensation.
- **Exercise 11: Blood Analysis.** Topics include hematocrit determination, erythrocyte sedimentation rate determination, hemoglobin determination, blood typing, and total cholesterol determination.
- **Exercise 12: Serological Testing.** Investigates antigen–antibody reactions and their role in clinical tests used to diagnose a disease or an infection.

Post-lab assessments are designed to check students’ understanding of the material presented in the lab exercise and, like the pre-lab, use a variety of questions best suited to assess students’ understanding of the material. When appropriate, additional anatomical model or cadaver images (not identical to those in the procedure) are used. Each post-lab assessment ends with **Apply What You Learned** questions. These are clinical application-type questions that require students to use critical thinking skills to relate each lab to an overall understanding of how body systems work together.

Correlates with Amerman’s *Human Anatomy & Physiology*. As A&P instructors, we have noticed that students often are unable to correlate the lab manual to the textbook. For example, the numbering of the lab exercises and textbook chapters...
typically do not correspond. With our laboratory manual, we purposely organized the lab exercises so they correspond to the chapters of the textbook we use, Human Anatomy & Physiology by Erin Amerman. So when you are working on Chapter 19 (Blood) from the Amerman textbook, Lab exercise 19 in our lab manual will be the blood lab as well. Terminology and most of the illustrations match the Amerman textbook. However, educators and students not using Amerman’s textbook will still find our exercises applicable and effective.

- **Affordability** is key because we know that for students, finances may be an issue. That is why we have worked hard to provide this high-quality lab manual and premium digital content at an affordable price. We also know that students are not the only ones dealing with financial issues. Many departments have experienced budget cuts and lack of funds. We have included many cost-effective lab activities in our lab manual with information in the Instructor Guide on where to purchase the materials used. Practice Anatomy Lab is a virtual study and practice tool that includes a wealth of photos of models and cadavers that otherwise might not be accessible to all students. We also have included PhysioEx activities to supplement or replace the expensive physiology equipment that is lacking in many laboratories.

- **Three versions** are offered. Laboratory Manual for Human Anatomy & Physiology: A Hands-on Approach is available in three versions for your students: Main, Cat, and Pig. The Cat and Pig versions are identical to the Main version except that they include seven additional cat dissection and nine additional fetal pig dissection exercises, respectively, at the back of the lab manual.

- **Custom options** are available. If a customized version of our lab manual is desired, customization by activity level is now available via the Pearson Custom Library. Instructors can easily select which activities they want and/or add their own original material to their custom lab manual.

Assignments in Mastering A&P

Instructors can easily assign the following in the Item Library in Mastering A&P. Please note that the Item Library for Greene is available in the stand-alone Mastering course for Greene. It is also available in the Book/Source menu in the Item Library for our 2-semester A&P textbooks by Amerman, Marieb, and Martini.

- **Pre-lab and post-lab quizzes for each activity** in the lab manual that test on the same content found in the pre-lab and post-lab assignments in the lab manual, excluding the color and draw questions.
- "Roots to Remember" Coaching Activities – Each exercise begins with an assignable activity that gives students practice learning and using word roots in context as they learn new A&P terms.
- **Chemistry Review Tutorials**
- **Art Labeling Activities**
- "**Apply What You Learned**" – Bloom’s Taxonomy Level II Application/Analysis Questions
- **Lab Assistant Videos, Pre-lab Videos, and Animation Coaching Activities** maximize student learning by reviewing key A&P concepts and lab procedures.
- **Bone and Dissection Video Coaching Activities** help students to identify bones and learn how to do organ dissections.
- **Cat Dissection and Fetal Pig Dissection Video Coaching Activities** help students prepare for dissection and identify key anatomical structures. Each video includes one or two comparisons to human structures.
- **A&P Flix and BioFlix Animations** are 3D movie-quality anatomy and biology animations.
- **Practice Anatomy Lab 3.1 Test Bank** includes over 6000 multiple-choice and fill-in-the-blank questions.
- **PhysioEx 10.0 Assignments** include pre-lab and post-lab quizzes.
- **Clinical Scenario and Nurses Need Physiology Coaching Activities** provide students with additional practice in applying concepts to clinical situations.
- **Clinical Case Study Coaching Activities** increase problem-solving skills and prepare students for future careers in allied health. Corresponding **Teaching Strategies**, available in the Instructor Resources in Mastering A&P, enable
instructors to “flip” the classroom by providing valuable tips on when and how to use case studies. The case studies with worksheets are also available to students in the Study Area of Mastering.

Instructor Resources in Mastering A&P

The Instructor Resources include the following:

Computerized Test Bank for every activity and learning outcome that saves instructors time in creating lab quizzes and practicals. Instructors can create tests through TestGen by selecting questions from the provided Test Bank of multiple-choice and art-based questions, customizing questions as needed or adding in new question content. TestGen also allows randomization of the questions to produce up to 25 different versions of the same test. The Test Bank is also available in Microsoft Word format.

Instructor Guide contains instructions for setting up the laboratory activity: where to purchase lab materials; time allotments for each activity; learning objectives for each Exercise and answers to the pre-lab assignments, activity questions, and post-lab assessments, including the Apply What You Learned questions.

Lab Videos & Animations including A&P Flix and Bio Flix 3D Animations, Big Picture Animations, Bone & Dissection Videos, Cat Dissection Videos, Fetal Pig Dissection Videos, Get Ready for A&P Video Tutors, IP Anatomy Review Animations, Lab Assistant Videos, and Pre-lab Videos.

Practice Anatomy Lab Instructor Resources include PAL 3.1, animations, all images from PAL in PowerPoint and JPEG formats, PAL Test Bank, and PAL Lab Guide Answer Key.

PhysioEx Instructor Resources include PEX 10.0 and PhysioEx Test Bank.

Alternative Data Acquisition Instructions include instructions and exercises for BIOPAC, PowerLab, iWorx, and Intelitool.

Clinical Case Studies include case studies and worksheets to increase problem-solving skills and prepare students for future careers in allied health. **Teaching Strategies** for each case include introduction to the case, student learning objectives, prerequisites, and tips for how to use and assign the case in your course and “flipped classroom.” The case studies and worksheets are also available to students in the Study Area of Mastering.

Study Area in Mastering

Students get access to the following study tools in the Study Area of Mastering A&P:

- **Lab Assistant Videos, Pre-lab Videos, Bone and Dissection Videos and Animations** are integrated into each lab exercise for quick, easy access.

- **Practice Anatomy Lab 3.1 (PAL 3.1)**, a virtual anatomy study and practice tool, gives students 24/7 access to the most widely used lab specimens, including the human cadaver, anatomical models, histology, cat, and fetal pig. PAL is easy to use and includes built-in audio pronunciations, rotatable bones, and simulated fill-in-the-blank lab practical exams. PAL 3.1 is accessible on all mobile devices, including smartphones, tablets, and laptops.

- **PAL 3.1 FLASHCARDS**, a popular student tool, allows students to create a customized, mobile-friendly deck of flashcards and quizzes based on images from PAL. Students generate personalized flashcards by selecting only those structures covered in their course.

- **PhysioEx™ 10.0 Laboratory Simulations in Physiology**

- **Pearson eText** (included with Mastering with eText for Laboratory Manual for Human Anatomy & Physiology: A Hands-on Approach), optimized for mobile in Pearson’s fully accessible platform, seamlessly integrates videos and gives students access to their lab manual anytime, anywhere.

Class-Tested and Approved

Making this lab manual, including the text, the art, the photos, and the videos, was an intensive, collaborative process. Each draft of the manuscript was sent to A&P lab instructors and other content experts to evaluate the quality of the activities and accuracy, the art and photo program, and the overall pedagogical effectiveness. Our team worked closely together to analyze the feedback and determine which changes were necessary to improve the lab exercises. In addition, over 200 A&P instructors and 3000 students provided feedback through extensive focus groups and class-testing prior to publication.
Acknowledgments

It is hard to believe that this lab manual began seven years ago as an idea among friends on a trip home from a conference. We had a vision to create a laboratory manual that was user-friendly for the instructor and the student. Pooling our collective knowledge of anatomy and physiology, as well as what tools and techniques work in the lab setting, we set out on this journey five years ago, working diligently through holidays, weekends, and nights. However, none of this would have been possible without the support of our families, friends, and our incredible team at Pearson. They have seen us through the good and the bad times and have been patient with us during the trials and also celebrated the accomplishments. We are so grateful to have had such wonderful individuals in our lives during this journey.

To our Pearson team, you are the most amazing group of individuals we could have ever hoped to work with on this project. We extend a very special thank you to our Editor-in-Chief, Serina Beauparlant. Not only did she dedicate herself completely to this project, but she also became a dear friend in the process. We are all so grateful for the opportunity to have worked with her on this project. Serina is simply the heart and soul of Pearson A&P. She has guided us from start to finish; without Serina there would be no book.

We also would like to thank our longtime Pearson sales representative, Melissa Bland. Melissa has been one of our biggest supporters from the beginning. She encouraged us to get into the ring of publishing and opened many doors for us at Pearson.

We extend a very special thank you to Dapinder Dosanjh. Dapinder kept us on task through a majority of this project. Without her, we would have been lost. We always looked forward to our weekly task list, and we are sure she looked forward to our fifty follow-up emails. We are forever grateful for having had her on our team.

We want to thank Amanda JS Kaufmann and Mike Sloat for filming, editing, and producing our Lab Assistant Videos. Thanks are due Nathan Dixon for the amazing photographs of anatomical models as well as the cover photo that was taken especially for this lab manual. We appreciate the hard work of Tanya Martin, our development editor, and also want to thank Jay McElroy for the tremendous artwork. Special thanks go to Dr. Carol Britson of the University of Mississippi, who kindly advised on this lab manual and shared her impressive lab materials with us.

A huge “thank you” goes out to the Editorial Board, who served as eagle-eye reviewers throughout the development of this project: Sheri Boyce of Messiah College, Maria Carles of Northern Essex Community College, Karen Dunbar Kareiva of Ivy Tech Community College, Ewa Gorski of Community College of Baltimore County, Kerrie Hoar of University of Wisconsin–La Crosse, J. Ellen Lathrop-Davis of Community College of Baltimore County, Shawn Macauley of Muskegon Community College, Shelly Watkins of Central Carolina Community College, and Darrellyn Williams of University of Arkansas–Pulaski Tech College.

We also want to acknowledge the excellent contributions by Dr. Karen L. Keller of Frostburg State University and Jennifer Reaves of Jackson State Community College, who authored the Cat and Pig Dissection Exercises, respectively. Thank you to Wendy Rappazzo, Harford Community College, who contributed the “Apply What You Learned” questions.

To our colleague and dear friend, Angel Nickens, we appreciate all your help and advice. Thank you for your help in developing the Computerized Test Bank. In addition to Angel Nickens, we must also thank all of our colleagues, both past and present, who have inspired us, reviewed exercises, class-tested material, and supported us all through this process. Thank you so much, Dr. Lindsay Massie, Kim Poland, Phillip Correro, Shay Carter, Bud Donahou, Mary Bonds, Bobby King, Pat Miller, Dr. Jerry Hollis, Dr. Larry Sylvester, Dr. Sarah Holt, Dr. Darrell Barnes, Paul Grisham, Dr. Carol Cleveland, Dr. George Hilliard, Anissa McGinnis, and Dr. Michael McPherson.

Special appreciation goes to the Northwest Mississippi Community College administrators: former President Dr. Gary L. Spears, former Vice President Richie Lawson, President Dr. Michael Heindl, and Vice President Dr. Matthew Domas. Without the support of these men, this project would not have been possible.

Each of us would like to say a very special thank you to our families for all their sacrifices during this project.

Melissa:
I would like to thank my parents, Judy, Jerry and Linda Greene, for their constant encouragement and prayers. Thank you to all of my family, the Greenes and the Gardners. Your love and support mean the world to me, and I love you all. I would like to thank my teachers and professors. Thank you to all of my teachers at SBEC for everything you taught me. Thank you to my
biologists at CBU: Dr. Mary Ogilvie, Dr. Stan Eisen, Dr. Anna Ross, Dr. Malinda Fitzgerald, and Bro. Edward Salgado. Your knowledge and expertise in the classroom are the reason I decided to teach biology every day. Thank you to Dr. Mark S. LeDoux for being a tremendous mentor and sharing your knowledge of neuroanatomy and research with me. Finally, I would like to thank my Northwest students, past and present, who have taught me so much and helped me make a better instructor.

Robin:
I would like to thank my wife, Robbie, who has been my biggest supporter; my two daughters, Randi and Rylee; and Randi’s husband, Caleb Aldridge. Special thanks to my parents Joyce and James Robison, especially for that microscope when I was 12; it changed my life. Thanks go to my sister Jamie Loper and brother Chad. Thanks also go to all the teachers, especially Bonnie Stowers, who helped me become the teacher I am.

Lisa:
I would like to say thank you to my husband, Bready, for the countless weekends you have spent hanging out with the kids and never once complained. To my kids, Audrey and Luke, I would like to thank you for tagging along during holidays and afternoons and getting along (most of the time) while we worked. Finally, I would like to thank my parents, especially my mom, for always being an encouragement.

Text and Media Reviewers

Renee Albano, Florida State College at Jacksonville
Patricia Alfing, Davidson County Community College
David Allard, Texas A&M University–Texarkana
Deborah Anderson, St. Norbert College
Meghan Andrikanich, Lorain County Community College
David Ansardi, Calhoun Community College
Ros Arienti, Central Maine Community College
Erin Arnold, Jefferson State Community College
Rena Bacon, Ramapo College of New Jersey
Jerry Barton, Tarrant County College
Melody Bell, Vernon College
Celina Bellanceau, Florida Southern College
Jennifer Bergner, Helena College University of Montana
Claudie Biggers, Amarillo College
Jerry Bowen, Rogers State University
Sheri Boyce, Messiah College
Bridget Boyle, Northwest Iowa Community College
Betsy Brantley, Valencia College
Sacha Bratilova, Delaware Technical Community College
Ron Bridges, Pellissippi State Community College

Carol Britson, University of Mississippi
Jennifer Buntz, Central New Mexico Community College
Susan Burgoon, Amarillo College
Beth Campbell, Itawamba Community College
Maria Carles, Northern Essex Community College
Robert Caron, Bristol Community College
Jocelyn Cash, Central Piedmont Community College
Jose Chestnut, Essex County College
Robert Cleary, Keiser University
Jan Clifton-Gaw, Ivy Tech Community College, Anderson
Vickie Clouse, Montana State University–Northern
Justin Cobb, John Wood Community College
Joy Colley, Aiken Technical College
Beth Collins, Iowa Central Community College
Mary Colon, Seminole State College of Florida
Teresa Cowan, Baker College of Auburn Hills
Nicholas Curtis, Ave Maria University
Kara Danner, Wallace Community College
Deanna Denault, Franklin Pierce University
Elisa Di Menna, Central New Mexico Community College
Lynn Diener, Mount Mary University
Gregory Diersen, Martin Luther College
Matthew Dodge, Olympic College
Wayne Dugge, St. Louis Community College - Meramec
Karen Dunbar Kareiva, Ivy Tech Community College, Valparaiso
Marie Rose Ethington, Genesee Community College
Colin Everhart, St. Petersburg College
Jamal Fakhoury, College of Central Florida
Junio Farnsworth, Vincennes University
Sarah Fauque, Lindsey Wilson College
Jill Feinstein, Richland Community College
Tashauna Felix, Community College of Baltimore County
Julie Fischer, Wallace Community College
Polly Foureman, Chandler-Gilbert Community College
Tamara Frank, Nova Southeastern University
Janice Fritz, St. Clair County Community College
Manuela Gardner, California State University, Long Beach
Emily Getty, Ivy Tech Community College, Kokomo
Nicolette Giasolli, Metropolitan State University of Denver
Gary Glaser, Genesee Community College
Wanda Goleman, Northwestern State University
Ewa Gorski, Community College of Baltimore County
Tammy Greene, Ivy Tech Community College, Kokomo
Tim Grogan, Valencia College
Mark Haefele, Community College of Denver
William Hairston, Harrisburg Area Community College
Niloufar Haque, New York City College of Technology
Clare Hayes, Metropolitan State University of Denver
Martha Heath-Sinclair, Hawkeye Community College
Dawn Hilliard, Northeast Mississippi Community College
Heather Hinkle, Reading Area Community College
Dale Horeth, Tidewater Community College–Virginia Beach
Acknowledgments
Laura Sweet, Eastern Michigan University
Maryam Taabodi, University of Maryland Eastern Shore
Stephanie Tacquard, Alvin Community College
Barry Tanowitz, Santa Barbara City College
Candice Thomas, University of Central Arkansas
Rita Thrasher, Pensacola State College
Diane Tice, SUNY Morrisville
Todd Tolar, Wallace Community College
Dawn Turner, University of Charleston
Kim Van Vliet, St. Johns River State College
Mark Wagner, Portland Community College

Melodie Wakefield, St. Petersburg College
Shelly Watkins, Central Carolina Community College
Jennifer Welch, Madisonville Community College
Kathy White, St. Philip's College
John Whitlock, Mount Aloysius College
Rachel Willard, Arapahoe Community College
Darrellynn Williams, University of Arkansas-Pulaski Technical College
Goldie Willis, Roane State Community College
Stephen Wright, Carson-Newman University
Jay Zimmer, Gardner-Webb University
Brief Contents

<table>
<thead>
<tr>
<th>MAIN LAB EXERCISES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction to Anatomy and Physiology</td>
</tr>
<tr>
<td>2 The Chemistry of Life</td>
</tr>
<tr>
<td>3 The Cell</td>
</tr>
<tr>
<td>4 Histology</td>
</tr>
<tr>
<td>5 The Integumentary System</td>
</tr>
<tr>
<td>6 Bones and Bone Tissue</td>
</tr>
<tr>
<td>7 The Skeletal System</td>
</tr>
<tr>
<td>8 Articulations</td>
</tr>
<tr>
<td>9 The Muscular System</td>
</tr>
<tr>
<td>10 Muscle Tissue and Physiology</td>
</tr>
<tr>
<td>11 Introduction to the Nervous System and Nervous Tissue</td>
</tr>
<tr>
<td>12 The Central Nervous System</td>
</tr>
<tr>
<td>13 The Peripheral Nervous System</td>
</tr>
<tr>
<td>14 The Autonomic Nervous System and Homeostasis</td>
</tr>
<tr>
<td>15 The Special Senses</td>
</tr>
<tr>
<td>16 The Endocrine System</td>
</tr>
<tr>
<td>17 The Cardiovascular System I: The Heart</td>
</tr>
<tr>
<td>18 The Cardiovascular System II: The Blood Vessels</td>
</tr>
<tr>
<td>19 Blood</td>
</tr>
<tr>
<td>20 The Lymphatic System and Immunity</td>
</tr>
<tr>
<td>21 The Respiratory System</td>
</tr>
<tr>
<td>22 The Digestive System</td>
</tr>
<tr>
<td>23 Metabolism and Nutrition</td>
</tr>
<tr>
<td>24 The Urinary System</td>
</tr>
<tr>
<td>25 Fluid, Electrolyte, and Acid-Base Balance</td>
</tr>
<tr>
<td>26 The Reproductive System</td>
</tr>
<tr>
<td>27 Human Development</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAT DISSECTION EXERCISES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The Muscular System of the Cat</td>
</tr>
<tr>
<td>2 The Spinal Nerves of the Cat</td>
</tr>
<tr>
<td>3 The Respiratory System of the Cat</td>
</tr>
<tr>
<td>4 The Digestive System of the Cat</td>
</tr>
<tr>
<td>5 The Cardiovascular System of the Cat</td>
</tr>
<tr>
<td>6 The Urinary System of the Cat</td>
</tr>
<tr>
<td>7 The Reproductive System of the Cat</td>
</tr>
</tbody>
</table>

CREDITS
INDEX
Contents

LAB EXERCISE 1
Introduction to Anatomy and Physiology 1

Pre-Lab Assignments 2
1A Laboratory Safety 8
 PROCEDURE Understanding Laboratory Safety 8
1B The Scientific Method 9
 PROCEDURE Using the Scientific Method to Compare Arm Span and Height 10
1C Human Body Systems 11
 PROCEDURE Identifying Human Body Systems, Organs, and Functions 13
1D Anatomical Position and Directional Terminology 20
 PROCEDURE Demonstrating Anatomical Position and Using Directional Terminology 21
1E Regional Terminology 22
 PROCEDURE Using Regional Terminology to Describe Areas of the Body 22
1F Planes of Section 23
 PROCEDURE Identifying Planes of Section 24
1G Body Cavities, Abdominopelvic Quadrants and Regions, and Serous Membranes 25
 PROCEDURE 1 Identifying Major Organs within Body Cavities and Abdominopelvic Quadrants and Regions 27
 PROCEDURE 2 Understanding the Structure of Serous Membranes 28

Post-Lab Assessments 29

LAB EXERCISE 2
The Chemistry of Life 37

Pre-Lab Assignments 38
2A The Periodic Table, Atomic Structure, and Chemical Bonds 40
 PROCEDURE 1 Using the Periodic Table to Determine Atomic Number, Atomic Mass, and Number of Subatomic Particles 40
 PROCEDURE 2 Using the Periodic Table to Draw Atomic Structure 42
 PROCEDURE 3 Illustrating Chemical Bonds 44
2B Enzymes 44
 PROCEDURE Determining Enzyme-Substrate Specificity of Lactase on Lactose, Sucrose, and Maltose 45

2C The pH Scale 46
 PROCEDURE Determining the pH of Various Household Chemicals 47

2D Organic Molecules 48
 PROCEDURE 1 Testing for the Presence of Monosaccharides and Disaccharides 52
 PROCEDURE 2 Testing for the Presence of Starch 53
 PROCEDURE 3 Testing for the Presence of Peptides and Proteins 54
 PROCEDURE 4 Testing for the Presence of Lipids 54
 PROCEDURE 5 Determining the Chemical Composition of Various Foods 54
 PROCEDURE 6 Extracting Human DNA from Cheek Cells 55

Post-Lab Assessments 57

LAB EXERCISE 3
The Cell 61

Pre-Lab Assignments 62
3A Microscopy 65
 PROCEDURE 1 Exploring the Parts of a Compound Light Microscope 65
 PROCEDURE 2 Calculating Total Magnification 67
 PROCEDURE 3 Focusing a Compound Light Microscope 67
 PROCEDURE 4 Estimating the Diameter of the Microscope Field 69
 PROCEDURE 5 Determining Depth of Field 70
 PROCEDURE 6 Working with a Dissecting Microscope 70

3B Cell Structure 71
 PROCEDURE 1 Identifying Cellular Organelles and Structures 73
 PROCEDURE 2 Preparing a Wet Mount and Observing Cheek Cells 74
 PROCEDURE 3 Observing Various Types of Cells 74

3C Membrane Function 76
 PROCEDURE 1 Examining the Effects of Temperature on the Rate of Diffusion 79
 PROCEDURE 2 Observing Diffusion across a Selectively Permeable Membrane 79
 PROCEDURE 3 Examining the Effect of Tonicity on Osmosis 80
 PROCEDURE 4 Examining the Effects of Particle Size on Filtration 81

3D The Cell Cycle 82
 PROCEDURE Identifying the Stages of the Cell Cycle and Mitosis 86
LAB EXERCISE 7
The Skeletal System 153

Pre-Lab Assignments 154
7A Overview of the Skeletal System 157
PROCEDURE 1 Identifying Major Bones of the Skeletal System 158
PROCEDURE 2 Understanding Terminology Associated with Bone Markings 161
7B The Skull 161
PROCEDURE 1 Identifying Bones and Bone Markings of the Adult Skull 167
PROCEDURE 2 Examining the Fetal Skull 172
7C Vertebral Column and Thoracic Cage 173
PROCEDURE 1 Identifying the Bones and Bone Markings of the Vertebral Column 176
PROCEDURE 2 Identifying the Bones and Bone Markings of the Thoracic Cage 182
7D Pectoral Girdle and Upper Limb 183
PROCEDURE Identifying the Bones and Bone Markings of the Pectoral Girdle and Upper Limb 188
7E Pelvic Girdle and Lower Limb 193
PROCEDURE Identifying the Bones and Bone Markings of the Pelvic Girdle and Lower Limb 198

Post-Lab Assessments 205
LAB EXERCISE 8
Articulations 211

Pre-Lab Assignments 212
8A Classification of Joints 214
PROCEDURE 1 Identifying Joints 216
PROCEDURE 2 Identifying the Components of a Synovial Joint 217
8B Synovial Joints 218
PROCEDURE 1 Classifying Synovial Joints 221
PROCEDURE 2 Demonstrating Synovial Joint Movements 226
PROCEDURE 3 Examining the Elbow, Knee, Shoulder, and Hip Joints 231

Post-Lab Assessments 233
LAB EXERCISE 9
The Muscular System 237

Pre-Lab Assignments 238
9A Overview of Skeletal Muscles 244
PROCEDURE Identifying Major Skeletal Muscles 248
9B Muscles of the Head, Neck, and Trunk 249
PROCEDURE Identifying Muscles of the Head, Neck, and Trunk 257

Post-Lab Assessments 259
LAB EXERCISE 11
Introduction to the Nervous System and Nervous Tissue 311

Pre-Lab Assignments 312
11A Nervous Tissue 314
PROCEDURE 1 Identifying the Components of Nervous Tissue 315
PROCEDURE 2 Exploring the Anatomy of Neurons and Neuroglia 317

11B Electrophysiology of Neurons 319
PROCEDURE Understanding Electrophysiology of Neurons 319

11C Neuronal Synapses 321
PROCEDURE 1 Comparing Electrical and Chemical Synapses 322
PROCEDURE 2 Understanding Chemical Synaptic Transmission 323

11D PhysioEx™ Activities 323
PEX ACTIVITY 1 The Resting Membrane Potential 323
PEX ACTIVITY 2 Receptor Potential 323
PEX ACTIVITY 3 The Action Potential: Threshold 323
PEX ACTIVITY 4 The Action Potential: Importance of Voltage-Gated Na⁺ Channels 323
PEX ACTIVITY 5 The Action Potential: Measuring Its Absolute and Relative Refractory Periods 323
PEX ACTIVITY 6 The Action Potential: Coding for Stimulus Intensity 323
PEX ACTIVITY 7 The Action Potential: Conduction Velocity 323
PEX ACTIVITY 8 Chemical Synaptic Transmission and Neurotransmitter Release 323
PEX ACTIVITY 9 The Action Potential: Putting It All Together 323

Post-Lab Assessments 325

LAB EXERCISE 12
The Central Nervous System 329

Pre-Lab Assignments 330
12A The Brain 332
PROCEDURE 1 Identifying the Major Structures of the Human Brain and Their Functions 336
PROCEDURE 2 Dissecting a Preserved Sheep Brain 339

12B The Spinal Cord 341
PROCEDURE Examining Spinal Cord Anatomy 343

Post-Lab Assessments 345
12C Electroencephalography 345
PROCEDURE Record an EEG and Identify Brain Waves 346
Post-Lab Assessments 347

LAB EXERCISE 13
The Peripheral Nervous System 351

Pre-Lab Assignments 352
13A Cranial Nerves 354
PROCEDURE 1 Identifying the Cranial Nerves and Their Functions 362
PROCEDURE 2 Testing the Response of Cranial Nerves 363
PROCEDURE 3 Identifying Cranial Nerves on a Preserved Sheep Brain 364
13B Spinal Nerves 365
PROCEDURE Identifying the Spinal Nerves and Their Functions 369
13C Sensation 371
PROCEDURE 1 Identifying Sensory Receptors in the Skin 372
PROCEDURE 2 Determining the Size of a Receptive Field 374
13D Reflexes 374
PROCEDURE Demonstrating Reflex Arcs 376
Post-Lab Assessments 377

LAB EXERCISE 14
The Autonomic Nervous System and Homeostasis 381

Pre-Lab Assignments 382
14A Anatomy of the ANS 383
PROCEDURE Identifying Components of the Autonomic Nervous System 383
14B Physiology of the ANS 383
PROCEDURE Examining the Effect of Stress on the ANS 385
Post-Lab Assessments 387

LAB EXERCISE 15
The Special Senses 389

Pre-Lab Assignments 390
15A Overview of the Special Senses 394
PROCEDURE Identifying Stimuli Detected and Special Sense Receptors Used 394
15B Olfaction and Gustation 394
PROCEDURE 1 Examining the Structures of Olfaction and Gustation 396
PROCEDURE 2 Exploring the Relationship between Smell and Taste 399
15C Anatomy of the Eye 399
PROCEDURE 1 Examining the Structures of the Eye 404
PROCEDURE 2 Dissecting a Preserved Eye 407
15D Visual Tests and Demonstrations 409
PROCEDURE 1 Testing Visual Acuity 409
PROCEDURE 2 Testing for Astigmatism 410
PROCEDURE 3 Determining the Near Point of Accommodation 411
PROCEDURE 4 Testing for Color Blindness 411
PROCEDURE 5 Demonstrating the Photopupillary Reflex 412
PROCEDURE 6 Demonstrating the Blind Spot 412
15E Anatomy of the Ear 413
PROCEDURE Examining the Structures of the Ear 415
15F Hearing and Equilibrium Tests 417
PROCEDURE 1 Testing Auditory Acuity 417
PROCEDURE 2 Performing the Sound Localization Test 417
PROCEDURE 3 Performing the Weber Test 418
PROCEDURE 4 Performing the Rinne Test 418
PROCEDURE 5 Performing the Bárány Test 420
PROCEDURE 6 Performing the Romberg Test 420
Post-Lab Assessments 421

LAB EXERCISE 16
The Endocrine System 427

Pre-Lab Assignments 428
16A Overview of the Endocrine System 430
PROCEDURE Understanding the Endocrine System 435
16B Anatomy of the Endocrine System 437
PROCEDURE 1 Examining the Anatomy of the Hypothalamus, Pituitary, and Pineal Glands 438
PROCEDURE 2 Examining the Anatomy of the Thyroid, Parathyroid, and Thymus 440
PROCEDURE 3 Examining the Anatomy of the Pancreas 444
PROCEDURE 4 Examining the Anatomy of the Adrenal Glands 446
PROCEDURE 5 Examining the Anatomy of the Gonads 448
16C PhysioEx™ Activities 450
PEX ACTIVITY 1 Metabolism and Thyroid Hormone 450
PEX ACTIVITY 2 Plasma Glucose, Insulin, and Diabetes Mellitus 450
Post-Lab Assessments 451

LAB EXERCISE 17

The Cardiovascular System I: The Heart 455

Pre-Lab Assignments 456
17A Structure of the Heart 462
 PROCEDURE 1 Identifying the Anatomy of the Heart 465
 PROCEDURE 2 Dissecting a Preserved Heart 468
17B Blood Flow Pathway through the Heart 470
 PROCEDURE Tracing the Pathway of Blood through the Heart 470
17C Cardiac Muscle Tissue 472
 PROCEDURE Identifying Components of Cardiac Muscle Tissue 472
17D The Cardiac Cycle 473
 PROCEDURE 1 Recording Electrical Activity in the Heart 476
 PROCEDURE 2 Auscultating Heart Sounds 479
17E PhysioEx™ Activities 480
 PEX ACTIVITY 1 Investigating the Refractory Period of Cardiac Muscle 480
 PEX ACTIVITY 2 Examining the Effect of Vagus Nerve Stimulation 480
 PEX ACTIVITY 3 Examining the Effect of Temperature on Heart Rate 480
 PEX ACTIVITY 4 Examining the Effect of Chemical Modifiers on Heart Rate 480
 PEX ACTIVITY 5 Examining the Effects of Various Ions on Heart Rate 480
Post-Lab Assessments 481

LAB EXERCISE 18

The Cardiovascular System II: The Blood Vessels 485

Pre-Lab Assignments 486
18A Blood Vessel Anatomy 490
 PROCEDURE Identifying Blood Vessels and Their Anatomy 492
18B Major Arteries and Veins 494
 PROCEDURE 1 Identifying Major Arteries and Veins 503
 PROCEDURE 2 Tracing Blood Flow 506
18C Pulse Palpation and Pulse Rate 507
 PROCEDURE Palpating Pulse and Calculating Pulse Rate before and after Exercise 507
18D Arterial Blood Pressure 508
 PROCEDURE Measuring Blood Pressure before and after Exercise 509
18E Ankle-Brachial Index 511
 PROCEDURE Determining the Ankle-Brachial Index Using a Doppler Ultrasound Device 511
18F PhysioEx™ Activities 512
 PEX ACTIVITY 1 Studying the Effect of Blood Vessel Radius on Blood Flow Rate 512
 PEX ACTIVITY 2 Studying the Effect of Blood Viscosity on Blood Flow Rate 512
 PEX ACTIVITY 3 Studying the Effect of Blood Vessel Length on Blood Flow Rate 512
 PEX ACTIVITY 4 Studying the Effect of Blood Pressure on Blood Flow Rate 512
 PEX ACTIVITY 5 Studying the Effect of Vessel Radius on Pump Activity 512
 PEX ACTIVITY 6 Studying the Effect of Stroke Volume on Pump Activity 512
 PEX ACTIVITY 7 Compensation in Pathological Cardiovascular Conditions 512
Post-Lab Assessments 513

LAB EXERCISE 19

Blood 519

Pre-Lab Assignments 520
19A Formed Elements of Blood 522
 PROCEDURE 1 Identifying the Formed Elements of Blood 524
 PROCEDURE 2 Performing a Differential White Blood Cell Count 526
19B Blood Disorders 526
 PROCEDURE 1 Identifying Blood Disorders and Parasitic Infections 528
 PROCEDURE 2 Identifying Vessel Abnormalities and Blood Clots 530
19C Blood Typing 530
 PROCEDURE 1 Determining Blood Types Using Simulated Blood 532
 PROCEDURE 2 Determining Blood Type Compatibility 533
19D PhysioEx™ Activities 534
 PEX ACTIVITY 1 Hematocrit Determination 534
 PEX ACTIVITY 2 Erythrocyte Sedimentation Rate 534
 PEX ACTIVITY 3 Hemoglobin Determination 534
 PEX ACTIVITY 4 Blood Typing 534
 PEX ACTIVITY 5 Blood Cholesterol 534
Post-Lab Assessments 535

Contents xxi
LAB EXERCISE 20

The Lymphatic System and Immunity 539

Pre-Lab Assignments 540
20A Overview of the Lymphatic System 542
 PROCEDURE 1 Identifying Tissues and Organs of the Lymphatic System 542
 PROCEDURE 2 Tracing Lymph Flow 545
 PROCEDURE 3 Examining a Lymphatic Vessel 546
20B Anatomy of the Lymphatic System 546
 PROCEDURE Examining Lymphatic Tissue and Organs 550
20C Immunity 552
 PROCEDURE Using an ELISA Simulation Kit to Test for Zika Virus 552
20D PhysioEx™ Activities 554
 PEX ACTIVITY 1 Using Direct Fluorescent Antibody Technique to Test for Chlamydia 554
 PEX ACTIVITY 2 Comparing Samples with Ouchterloney Double Diffusion 554
 PEX ACTIVITY 3 Indirect Enzyme-Linked Immunosorbent Assay (ELISA) 554
 PEX ACTIVITY 4 Western Blotting Technique 554

Post-Lab Assessments 555

LAB EXERCISE 21

The Respiratory System 559

Pre-Lab Assignments 560
21A Overview of the Respiratory System 563
 PROCEDURE Identifying the Organs of the Respiratory System 564
21B Anatomy of the Respiratory System 565
 PROCEDURE 1 Examining the Organs and Structures of the Upper Respiratory System 570
 PROCEDURE 2 Examining the Organs and Structures of the Lower Respiratory System 577
 PROCEDURE 3 Comparing Healthy and Damaged Lung Tissue 581
21C Pulmonary Ventilation 581
 PROCEDURE 1 Understanding Pulmonary Ventilation 583
 PROCEDURE 2 Using a Handheld Spirometer 588
 PROCEDURE 3 Calculating Respiratory Volumes and Capacities 588
21D Control of Breathing 589
 PROCEDURE Determining How Selected Factors Affect Breathing 593
21E PhysioEx™ Activities 594
 PEX ACTIVITY 1 Measuring Respiratory Volumes and Calculating Capacities 594

Post-Lab Assessments 595

LAB EXERCISE 22

The Digestive System 601

Pre-Lab Assignments 602
22A Overview of the Digestive System 604
 PROCEDURE 1 Identifying Organs of the Digestive System 607
 PROCEDURE 2 Examining the Histology of the Alimentary Canal 611
22B Anatomy of the Digestive System 612
 PROCEDURE 1 Examining the Oral Cavity and Pharynx 614
 PROCEDURE 2 Examining the Esophagus and Stomach 616
 PROCEDURE 3 Examining the Intestines 620
 PROCEDURE 4 Examining the Accessory Organs of the Digestive System 624
22C Nutrient Digestion 625
 PROCEDURE 1 Investigating Amylase Activity 627
 PROCEDURE 2 Investigating Pepsin Activity 628
 PROCEDURE 3 Investigating Lipase Activity 629
22D PhysioEx™ Activities 630
 PEX ACTIVITY 1 Assessing Starch Digestion by Salivary Amylase 630
 PEX ACTIVITY 2 Exploring Amylase Substrate Specificity 630
 PEX ACTIVITY 3 Assessing Pepsin Digestion of Protein 630
 PEX ACTIVITY 4 Assessing Lipase Digestion of Fat 630

Post-Lab Assessments 631

LAB EXERCISE 23

Metabolism and Nutrition 637

The content for this lab exercise is only available online in Mastering A&P within the Instructor Resources and the Study Area.

Pre-Lab Assignments
23A Overview of Metabolism
 PROCEDURE Examining the Effects of Exercise on Cellular Respiration
23B Energy, Metabolic Rate, and Body Mass
 PROCEDURE 1 Calculating Metabolic Rate
 PROCEDURE 2 Calculating Body Mass Index
23C Nutrition
 PROCEDURE Understanding the Role of Nutrients and a Healthy Diet

Post-Lab Assessments