About the Authors

We dedicate this work to our students both present and past, who always inspire us to "push the envelope."

Elaine N. Marieb

After receiving her Ph.D. in zoology from the University of Massachusetts at Amherst, Elaine N. Marieb joined the faculty of the Biological Science Division of Holyoke Community College. While teaching at Holyoke Community College, where many of her students were pursuing nursing degrees, she developed a desire to better understand the relationship between the scientific study of the human body and the clinical aspects of the nursing practice. To that end, while continuing to teach full time, Dr. Marieb pursued her nursing education, which culminated in a Master of Science degree with a clinical specialization in gerontology from the University of Massachusetts. It is this experience that has informed the development of the unique perspective and accessibility for which her publications are known.

Dr. Marieb has given generously to provide opportunities for students to further their education. She funds the E.N. Marieb Science Research Awards at Mount Holyoke College, which promotes research by undergraduate science majors, and has underwritten renovation of the biology labs in Clapp Laboratory at that college. Dr. Marieb also contributes to the University of Massachusetts at Amherst, where she provided funding for reconstruction and instrumentation of a cutting-edge cytology research laboratory. Recognizing the severe national shortage of nursing faculty, she underwrites the Nursing Scholars of the Future Grant Program at the university.

In 2012 and 2017, Dr. Marieb gave generous philanthropic support to Florida Gulf Coast University as a long-term investment in education, research, and training for healthcare and human services professionals in the local community. In honor of her contributions, the university is now home to the Elaine Nicpon Marieb College of Health and Human Services.

Katja Hoehn

Dr. Katja Hoehn is a professor in the Department of Biology at Mount Royal University in Calgary, Canada. Dr. Hoehn's first love is teaching. Her teaching excellence has been recognized by several awards during her 24 years at Mount Royal University. These include a PanCanadian Educational Technology Faculty Award (1999), a Teaching Excellence Award from the Students' Association of Mount Royal (2001), and the Mount Royal Distinguished Faculty Teaching Award (2004).

Dr. Hoehn received her M.D. (with Distinction) from the University of Saskatchewan, and her Ph.D. in Pharmacology from Dalhousie University. In 1991, the Dalhousie Medical Research Foundation presented her with the Max Forman (Jr.) Prize for excellence in medical research. During her Ph.D. and postdoctoral studies, she also pursued her passion for teaching by presenting guest lectures to first- and second-year medical students at Dalhousie University and at the University of Calgary.

Dr. Hoehn has been a contributor to several books, written numerous research papers in Neuroscience and Pharmacology, and has co-authored the previous four editions of this textbook. For many years, she has also reviewed and authored electronic media that accompanies Pearson anatomy and physiology books.

Following Dr. Marieb’s example, Dr. Hoehn provides financial support for students in the form of a scholarship that she established in 2006 for nursing students at Mount Royal University.

Dr. Hoehn is also actively involved in the Human Anatomy and Physiology Society (HAPS) and is a member of the American Association of Anatomists. When not teaching, she likes to spend time outdoors with her husband and two sons. She also enjoys competing in long-course triathlons, and playing Irish flute down at the local pub.
Today’s students have access to an enormous amount of information about anatomy and physiology. As educators, our biggest challenge is to help students focus on mastering the basic concepts of this field. Providing this firm foundation will help students to become lifelong learners who can critically evaluate new information, connect that information to the foundation they have already established, and apply it in a clinical setting. How can we help students build a strong foundation in anatomy and physiology? We believe that this new edition of our textbook will help learners by building on the strengths of previous editions while using new and innovative ways to help students visualize connections between various concepts.

Unifying Themes

Three unifying themes that have helped to organize and set the tone of this textbook continue to be valid and are retained in this edition. These themes are:

Interrelationships of body organ systems. This theme emphasizes the fact that nearly all regulatory mechanisms have interactions with several organ systems. The respiratory system, for example, cannot carry out its role of gas exchange in the body if there are problems with the cardiovascular system that prevent the normal delivery of blood throughout the body. The System Connections feature and Make Connections questions throughout the book help students connect new information to old information and think of the body as a community of dynamic parts instead of a number of independent units.

Homeostasis. Homeostasis is the normal and most desirable condition of the body. Its loss is always associated with past or present pathology. This theme is not included to emphasize pathological conditions, but rather to illustrate what happens in the body “when things go wrong” and homeostasis is lost. Whenever students see a red balance beam symbol accompanied by an associated clinical topic, their understanding of how the body works to stay in balance is reinforced.

Complementarity of structure and function. This theme encourages students to understand the structure of some body part (ranging from a molecule to an organ) in order to understand the function of that structure. For example, muscle cells can produce movement because they are contractile cells.

New to the Eleventh Edition

New and augmented elements aim to help learners in the following ways.

To help students make connections between new and previously learned material. In order for students to master new concepts, they must link these new concepts with concepts they already understand. In this edition, we help them do this by adding:

- **Text recall icons.** These icons direct the student back to the specific pages where a concept was first introduced.
- **Make Connections questions.** We’ve added more of this type of question to the Check Your Understanding review questions that follow each module within a chapter. To answer these questions, the student must employ concepts learned previously (most often in previous chapters).
- **New kinds of higher-level questions.** Each chapter now has at least five higher-level questions that require students to think more deeply, pulling together strands from multiple concepts. These questions are clearly identified as APPLY, DRAW, PREDICT, MAKE CONNECTIONS, and WHAT IF? questions.
- **New summary tables.** Students have told us that they want more summary tables. In response, 13 new summary tables (two with illustrations) have been added in order to help students see the big picture.

To enhance students’ visual literacy. Anatomy is and has always been taught principally through images. Increasingly, however, physiological data is also represented as images, whether it be molecular interactions or graphical descriptions of
To help students clinically apply what they have learned

- **New clinically relevant photos.** We have added or updated a number of photos that have clinical relevance (procedures, conditions, etc.) that will help students apply what they are reading to real-life situations and to their future careers.

In this edition, certain chapters have received the bulk of our attention and have been more heavily revised. As you can see in the Highlights of New Content (below), these are Chapters 2–4, 9, and 27–29.

As in the previous edition, we have taken painstaking care to ensure that almost all the text and the associated art are covered on the same two-page spread. Although this sounds like a simple goal, it actually takes a great deal of work and has not usually been achieved by other textbooks. We make this effort because it is invaluable to student learning to not have to flip pages back and forth between art and text. Finally, you will notice the appearance of new icons referencing MasteringA&P® interspersed within the text. This guides students to go to the relevant on-line activities to supplement their learning.

Other Highlights of New Content

Chapter 1 The Human Body: An Orientation
- New Figure 1.1 illustrates complementarity of structure and function.
- Updated A Closer Look feature on types of medical imaging and added five new photos.
- New Homeostatic Imbalance features about hiatal hernias and about “wrong site surgery.”

Chapter 2 Chemistry Comes Alive
- New Homeostatic Imbalance feature about patient’s pH predicting outcome of CPR.
- New figures illustrate triglyceride structure (2.16); the difference between saturated and unsaturated fatty acids (2.17); phospholipids (2.18); and protein functions (2.20).
- Revised Figures 2.6 (formation of ionic bonds) and 2.12 (dissociation of salt in water) teach more effectively.
- New summary tables reinforce information about chemical bonds (Table 2.2) and about macromolecules and their monomers and polymers (Table 2.5).

Chapter 3 Cells: The Living Units
- Added Focus Figure 3.1 about the plasma membrane, and reorganized accompanying text.
- Reorganized text about passive membrane transport for improved clarity; updated and reorganized discussion of autophagy and apoptosis.
- Updated information about Tay-Sachs disease.

To help students clinically apply what they have learned
- **Updated Homeostatic Imbalance features.** Many of the Homeostatic Imbalance features have been updated and relevant photos have been added to some. All have been reviewed for accuracy and relevancy. In addition, the updated book design makes these features stand out more clearly.
- **Updated Clinical Case Studies in Chapters 5-29 with added new NCLEX-STYLE questions.** The end-of-chapter review questions, which are now organized into three levels of difficulty based on Bloom’s Taxonomy categories, culminate in a clinical case study that allows students to apply some of the concepts they have learned to a clinical scenario. These case studies have been extensively revised and each case study has two questions that are similar in style to those in the NCLEX exam.
Preface

- New micrographs show micro- and intermediate filaments (Figure 3.20).
- Improved teaching effectiveness of Figures 3.5 (diffusion), 3.17 (processing and distribution of newly synthesized proteins), and 3.30 (stages of transcription).
- New information about telomeres in cancer cells.
- New Homeostatic Imbalance feature about progeria.

Chapter 4 Tissue: The Living Fabric
- New images of cilia show the difference between transmission and scanning electron microscopy (Figure 4.2).
- New in-line figure illustrates apical and basal surfaces of epithelial cells.
- Revised art for epithelial and connective tissue for clarity (Figures 4.4 and 4.11).
- New Figure 4.5 shows how exocrine and endocrine glands differ, and new Figure 4.10 gives an overview of the classification of connective tissue.
- Updated A Closer Look feature about cancer.

Chapter 5 The Integumentary System
- New illustrated summary table comparing cutaneous glands (Table 5.1).
- Revised Figures 5.3 and 5.4 for better teaching effectiveness.
- Updated information about skin color and disease states.
- Updated Homeostatic Imbalance features about hirsutism and about hair loss.
- New Homeostatic Imbalance feature about nail changes with disease.
- Updated statistics for and treatment of melanoma, with new photo (Figure 5.11c).

Chapter 6 Bones and Skeletal Tissues
- New summary Table 6.1 compares cartilage and bone tissue.
- New photos of an osteoclast (Figure 6.7); of a femur in longitudinal section to show compact and spongy bone (Figure 6.3); and of a section of a flat bone (skull bone) (Figure 6.4 top).
- Extensive revision of Figure 6.12, which teaches bone growth at epiphyseal plates, including new X-ray to show epiphyseal cartilage, and new photomicrograph of epiphyseal cartilage.
- Updated information about bone remodeling, hormonal regulation of bone growth, and osteoporosis.

Chapter 7 The Skeleton
- New drawings to illustrate the location of the true and false pelvises, and the pelvic inlet and outlet (Figure 7.33).
- Updated Homeostatic Imbalance features about pes planus (flat feet) and about developmental dysplasia of the hip.
- New photos of bimalleolar fracture (Figure 7.35) and of cleft lip and palate (Figure 7.39).

Chapter 8 Joints
- New Homeostatic Imbalance feature about shoulder dislocations.
- New Table 8.3 summarizes movements at synovial joints.
- Revised Figure 8.4 (bursae and tendon sheaths).
- Updated A Closer Look about prostheses.

Chapter 9 Muscles and Muscle Tissue
- New “Background and Overview” section begins the discussion of the mechanisms of excitation and contraction of skeletal muscle, including a new “big picture” overview in Figure 9.7.
- New introduction to ion channels with art helps students understand skeletal muscle excitation and contraction.
- Reorganized discussions of graded muscle contractions and of smooth muscle, including new Figure 9.24 showing calcium sources for smooth muscle contraction.
- Updated discussion of muscle fatigue.
- Updated Homeostatic Imbalance feature on Duchenne muscular dystrophy.
- Updated A Closer Look feature about anabolic steroids.

Chapter 10 The Muscular System
- Revised art about levers for clarity (Figure 10.2 and 10.3).
- New cadaver dissection photos show dissection of muscles of the anterior neck and throat, superficial muscles of the thorax and shoulder in posterior view, and posterior muscles of the thigh and hip (Figures 10.9, 10.14, and 10.21).
- New photos illustrate thumb movements and show torticollis.

Chapter 11 Fundamentals of the Nervous System and Nervous Tissue
- New Focus Figure 11.4 illustrates postsynaptic potentials and their summation.
- Improved teaching effectiveness of Figure 11.12 (coding of action potentials for stimulus intensity) and Figure 11.19 (illustrating a reflex).
- New information about synthetic opiates in A Closer Look, with new PET scans showing effects of drug addiction.
- Added new research findings associating synaptic pruning and development of schizophrenia.

Chapter 12 The Central Nervous System
- New Figure 12.26 and revised text teach more effectively about the blood brain barrier.
- New Figure 12.30 shows spinal cord segment location in relation to vertebral column.
- New Table 12.2 summarizes spinal cord cross-sectional anatomy.
- Updated Homeostatic Imbalance features about hypothalamic disorders, cerebral palsy, anencephaly, and spina bifida, and about narcolepsy and insomnia, including new use of orexin receptor antagonists to treat insomnia.
- New type of MRI photo shows fiber tracts in brain and spinal cord.

Chapter 13 The Peripheral Nervous System and Reflex Activity
- New drawings of nerves of cervical, brachial, lumbar, and sacral plexuses show their position in relationship to the vertebrae (and hip bone in some cases) (Figures 13.9–13.12).
• New images illustrating the results of damage to the ulnar and radial nerves.
• New summary table of nerve plexuses (Table 13.7).
• New Homeostatic Imbalance feature and photo about an abnormal plantar reflex (Babinski’s sign).
• Redrawn figure illustrating crossed-extensor reflex for improved student understanding.

Chapter 14 The Autonomic Nervous System
• New Figure 14.8 shows sympathetic innervation of the adrenal medulla.
• Clarified section about visceral sensory neurons.
• New photo illustrates Raynaud’s disease.
• Revised Figure 14.5 on the sympathetic trunk for better teaching effectiveness.

Chapter 15 The Special Senses
• Revised Figure 15.2 (the lacrimal apparatus) for better teaching effectiveness.
• New photo of fundus of retina (Figure 15.7).

Chapter 16 The Endocrine System
• New Table 16.1 compares the endocrine and nervous systems.
• New Focus Figure 16.2 describes short- and long-term stress responses.
• Figures 16.5 (effects of growth hormone) and 16.9 (synthesis of thyroid hormone) revised for clarity.
• Updated information about diabetes mellitus, Addison’s disease, and thyroid deficiency in childhood.

Chapter 17 Blood
• Updated information about anticoagulant medications.
• New photo shows petechiae resulting from thrombocytopenia (Figure 17.16).

Chapter 18 The Cardiovascular System: The Heart
• New Focus Figure 18.2 teaches students how to understand the cardiac cycle, with accompanying text reorganized.
• New photo shows an individual having an ECG (Figure 18.16).

Chapter 19 The Cardiovascular System: Blood Vessels
• New “drinking straw” analogy and art to explain resistance.
• New Figure 19.4 shows the structure of most capillary beds according to current understanding, and new text describes those capillary beds.
• Revised Figure 19.6 on proportions of blood volume throughout the vascular tree for greater teaching effectiveness.
• New illustration of cerebral arterial circle (circle of Willis) (Figure 19.24).

Chapter 20 The Lymphatic System and Lymphoid Organs and Tissues
• New illustrated Table 20.1 summarizes key characteristics of the major lymphoid organs.
• Revised Figure 20.9 with orientation diagrams helps students locate Peyer’s patches (aggregated lymphoid nodules).
• Updated information about lymphatic drainage of the CNS.

Chapter 21 The Immune System: Innate and Adaptive Body Defenses
• New Focus Figure 21.1 gives an example of a primary immune response and summarizes innate and adaptive defenses.
• New illustrated Table 21.8 summarizes the components of adaptive immunity and complements the new Focus figure.
• New photo of a macrophage engulfing bacteria.
• Revised Figure 21.4 and text on inflammation, Figure 21.6 on complement activation, and Figure 21.11 on clonal selection of a B cell for greater teaching effectiveness.

Chapter 22 The Respiratory System
• New Figure 22.1 illustrates the four respiratory processes.
• Added section about sleep apnea.
• New scanning electron micrographs of emphysematous and normal lung tissue (Figure 22.22).
• Updated statistics about lung cancer and trends in asthma prevalence.

Chapter 23 The Digestive System
• New Figure 23.25 teaches the enterohepatic circulation of bile salts, and new Figure 23.30 shows the macroscopic anatomy of the small intestine.
• Improved teaching effectiveness of Figure 23.7 (neural reflex pathways in the gastrointestinal tract) and 23.16 (microscopic anatomy of the stomach).
• Added Homeostatic Imbalance features about dry mouth (xerostomia) and about tooth decay in primary teeth.
• Updated Homeostatic Imbalance feature about acute appendicitis to state that surgery is no longer always the first choice of treatment.

Chapter 24 Nutrition, Metabolism, and Energy Balance
• New Figure 24.24 shows the size and composition of various lipoproteins.
• Improved teaching effectiveness of Figure 24.21 (insulin effects during the postabsorptive stage).
• Updated Homeostatic Imbalance features with mechanism of cell death in frostbite, and diet recommendations for individuals with phenylketonuria.
• New information about environmental factors that may contribute to the obesity epidemic in A Closer Look.
• Updated nutritional information about lipids, and updated statistics about the prevalence of obesity in adults and children and about the prevalence of diabetes mellitus.

Chapter 25 The Urinary System
• New Figure 25.18 shows the medullary osmotic gradient and interstitial fluid osmolalities in the renal cortex and medulla.
• New Table 25.1 summarizes the regulation of glomerular filtration rate.
• Improved teaching effectiveness of Figures 25.9 (blood vessels of the renal cortex), 25.12 (the filtration membrane), 25.15 (routes for tubular reabsorption), and 25.16 (tubular reabsorption of water and nutrients).
Preface

• New pyelogram shows anatomy of kidneys, ureters, and urinary bladder (Figure 25.23).
• Added Homeostatic Imbalance feature about renal trauma.
• Updated Homeostatic Imbalance feature about kidney stones.

Chapter 26 Fluid, Electrolyte, and Acid-Base Balance

• New Figure 26.12 summarizes the body’s chemical buffers.
• Improved teaching effectiveness of Figure 26.1 (major fluid compartments of the body), 26.2 (electrolyte composition of blood plasma, interstitial fluid, and intracellular fluid), and 26.7 (disturbances in water balance).
• Clarified definitions of sensible and insensible water loss.

Chapter 27 The Reproductive System

• This chapter has been extensively updated, revised, and reorganized. Almost every figure has been reconceptualized and several new figures have been added. These changes have been made for better teaching effectiveness.
• New opening module now compares male and female reproductive system anatomy and physiology and highlights common features, allowing students to make connections more easily. Homologous structures, patterns of hormone release, and meiosis are included in this section.
• New Figure 27.1 illustrates the basic pattern of interactions along the hypothalamic-pituitary-gonadal (HPG) axis in both males and females.
• The section about meiosis has been extensively rewritten to help increase student understanding. New in-line figures help introduce the basic terminology and some of the concepts before meiosis is discussed in detail.
• A new big-picture overview of meiosis introduces the major events before the details of each step are presented.
• Figures 27.22 (events of oogenesis) and 27.24 (regulation of the ovarian cycle) are extensively revised and updated for increased teaching effectiveness and accuracy.
• New Figure 27.26 depicts the genetic determination of sex.

Chapter 28 Pregnancy and Human Development

• New photo of sperm surrounding an oocyte (Figure 28.2).
• New Figure 28.5 illustrates implantation of a blastocyst.
• New photo of a 22-day embryo illustrates lateral folding (Figure 28.10d).
• Figure 28.12 (neurulation and early mesodermal differentiation) revised for clarity.
• New Focus Figure 28.2 (Focus on Fetal and Newborn Circulation) teaches the special features of fetal circulation and changes that occur in this circulation after birth.
• New Table 28.1 summarizes the special structures of the fetal circulation, their functions, and their postnatal structure.
• Updated information about placental hormone secretion and about the hormonal control of the initiation of labor.
• New information about fetal cells that enter the maternal circulation.
• New Homeostatic Imbalance feature about preeclampsia.

Chapter 29 Heredity

• Added Punnett square showing X-linked inheritance.
• Figure 29.1 (preparing a karyotype) and 29.4 (genotype and phenotype probabilities) revised for clarity.
• New photo of a couple with achondroplasia.
• Updated information about small noncoding RNAs.
• It has become increasingly clear that very few benign traits in humans follow a simple dominant-recessive inheritance pattern. Tongue rolling, astigmatism, freckles, dimples, phenylthiocarbamide tasting, widow’s peak, and double-jointed thumb were all at one time thought to follow this pattern of inheritance. Closer examination has revealed compelling evidence against each of these. Consequently, the examples throughout the chapter have changed.
Producing a new edition of this book is an enormous undertaking. Let us take you through the steps and introduce you to the people behind the scenes that have helped make this book what it is. Every new edition begins with a revision plan. We’d like to thank all of the students and instructors who have provided the feedback (gathered by our editorial team) that forms the basis of this plan. Once this plan was in place, Barbara Price (our text Development Editor) scoured each chapter. This was Barbara’s first exposure to the book and her fresh eyes on the text found opportunities to further clarify the presentation. In addition, she noted places where additional chunking of the text (such as bulleted lists) would help the students. Her excellent work has made this text better. We incorporated her ideas, and reviewer feedback, together with our own updates and ideas for reorganization of the text and art. Thanks to Patricia Bowne for contributing to the Clinical Case Studies and Wendy Mercier for reviewing all of the Case Studies. We also very much appreciate the help of Karen Dougherty, who used her expertise as a physician and educator to review all of the Homeostatic Imbalance features and help us revise and update them.

We then laid out each chapter to maintain text-art correlation before passing the manuscript off to Michele Mangelli. Michele wore many different hats during this revision. She was both the Program Manager for the editorial side of things as well as the Goddess of Production. She reviewed the revised manuscript before she sent it to ace copyeditor Anita Hueftle. Anita saved us on many occasions from public embarrassment by finding our spelling and grammar errors, our logical lapses, and various other inconsistencies. We can’t thank Anita enough for her meticulous and outstanding work! (Any remaining errors are our fault.)

At the same time the text was in revision, the art program was going through a similar process. This book would not be what it is without the help of Laura Southworth, our superb Art Development Editor. Laura’s creativity, attention to detail, and her sense of what will teach well and what won’t have helped us immensely. She has worked tirelessly to make our Focus figures and other art even better. Finding good, usable photos is never easy, and we are grateful for the hard work of Kristin Piljay (Photo Researcher). It was also a pleasure to work with Jean Lake again, who expertly juggled the administrative aspects of the art program and kept us all on track. This team ensured that the artists at Imagineering had all the information they needed to produce beautiful final art products.

As the manuscript made the transition from Editorial to Production, Michelle Mangelli (wearing a different hat—this one as the Production and Design Manager) took over again. As head honcho and skilled handler of all aspects of production, everyone answered to her from this point on. Kudos to our excellent production coordinator, Karen Gulliver, who did much of the hands-on handling, routing, and scheduling of the manuscript. We’d also like to thank Martha Ghent (Proofreader), Betsy Dietrich (Art Proofreader), Sallie Steele (Indexer), Alicia Elliot (Project Manager at Imagineering), and Cenveo (Composer). Izak Paul meticulously read every chapter for scientific accuracy, and we are very grateful for his careful work. Thanks also to Gary Hespenheide for his stunning design work on the cover, chapter opening pages, and the text.

It was a pleasure to work with Lauren Harp, our Acquisitions Editor. Her extensive knowledge of the needs of both faculty and students in anatomy and physiology has helped inform this revision. Her enthusiasm for this book is infectious, her choice for the cover is inspired, and we are delighted to have her on board! Before Lauren became part of the team, Serina Beau-parlant, our Editor-in-Chief, stepped up to helm the planning phase of this revision. Fiercely dedicated to making this book and its associated media resources the best teaching tools that they can be, Serina has been invaluable in shaping this revision. We deeply appreciate all she has done for us and this book. Lauren and Serina were competently aided by Editorial Assistant Dapinder Dosanjh (and before her, Nicky Montalvo).

Other members of our team with whom we have less contact but who are nonetheless vital are: Barbara Yien, Director of Content Development, Stacey Weinberger (our Senior Manufacturing Buyer), and Derek Perrigo (our top-notch Marketing Manager). We appreciate the hard work of our media production team headed by Lauren Chen, Lauren Hill, Laura Tommasi, Sarah Young Dualan, and Cheryl Chi, and also wish to thank Eric Leaver for his astute observations on certain figures.

Kudos to our entire team. We feel we have once again prepared a superb textbook. We hope you agree.

Many people reviewed parts of this text—both professors and students, either individually or in focus groups—and we would like to thank them. Input from the following reviewers has contributed to the continued excellence and accuracy of this text and its accompanying MasteringA&P® assignment options, including Interactive Physiology 2.0:

Matthew Abbott, Des Moines Area Community College
Emily Allen, Rowan College at Gloucester County
Lynne Anderson, Meridian Community College
Acknowledgments

David C. Ansardi, Calhoun Community College
Martin W. Asobayire, Essex Community College
David Babb, West Hills College Lemoore
Yvonne Baptiste-Szymanski, Niagara County Community College
Claudia Barreto, University of New Mexico–Valencia
Jerry Barton, Tarrant County College
Shawn Bearden, Idaho State University
Charles Benton, Madison Area Technical College
J. Gordon Betts, Tyler Junior College
Diana Bourke, Community College of Allegheny County
Sherry Bowen, Indian River State College
Michael Brady, Columbia Basin College
Betsy Brantley, Valencia College
Beth Braun, Truman College
Carol A. Britson, University of Mississippi
C. Steven Cahill, West Kentucky Community and Technical College
Christie Campbell, Ozarks Technical Community College
Maria C. Carles, Northern Essex Community College
Tammya Carmona, Cosumnes River College
Marien Cendon, Miami Dade College
Brendon Chastain, West Kentucky Community Technical College
Sam Chen, Moraine Valley Community College
Alexander G. Cheroske, Mesa Community College–Red Mountain
Brandi Childress, Georgia Perimeter College
William M. Clark, Lone Star College–Kingwood
Joseph Comber, Villanova University
Teresa Cowan, Bakers College–Auburn Hills
Donna Crapanzano, Stony Brook University
Maurice M. Culver, Florida State College at Jacksonville
Jason Dechant, University of Pittsburgh
Smruti A. Desai, Lone Star College–CyFair
Karen H. Dougherty, Hopkinton Community College
Sondra Dubowsky, McLennan Community College
Karen Dunbar Kareiva, Ivy Tech Community College
Kathryn Durham, Lorain County Community College
Karen Eastman, Chattanooga State Community College
Sharon S. Ellerton, Queensborough Community College–CUNY
Paul Emerick, Monroe Community College
Elyce Ervin, University of Toledo
Martha Eshleman, Palaski Technical College
Colin Everhart, St. Petersburg Community College
Brian D. Feige, Mott Community College
Michele Finn, Monroe Community College
John E. Fishback, Ozarks Technical Community College
Maria Florez, Lone Star College–CyFair
Reza Forough, Bellevue College
Juanita A. Forrester, Chattahoochee Technical College
Aaron Fried, Mohawk Valley Community College
Dean Furbish, Wake Technical Community College
Marie Gabbard, College of Western Idaho
Sophia Garcia, Tarrant County College
Jane E. Gavin, University of South Dakota
Peter Germroth, Hillsborough Community College
Emily K. Getty, Ivy Tech Community College
Amy Giesecke, Chattahoochee Technical College
Anna Gilletly, Central New Mexico Community College
Gary Glaser, Genesee Community College
Richard Gonzalez-Diaz, Seminole State College of Florida
Abigail Goosie, Walters State Community College
Pattie S. Green, Tacoma Community College
Edwin Griff, University of Cincinnati
George G. Hanak, Pasco-Hernando State College
Mary Beth Hanlin, Des Moines Area Community College–Boone
Heidi Hawkins, College of Southern Idaho
Martie Heath-Sinclair, Hawkeye Community College
Nora Hebert, Red Rocks Community College
Nadia Hedhli, Hudson County Community College
D.J. Hennager, Kirkwood Community College
Jennifer Hill, Montgomery College–Takoma Park-Silver Spring
Shannon K. Hill, Temple College
Mark Hollier, Georgia Perimeter College
H. Rodney Holmes, Waubonsee Community College
Mark J. Hubley, Prince George’s Community College
Carolyn Huffman, Wichita Area Technical College
Julie Huggins, Arkansas State University
Jason Hunt, Brigham Young University–Idaho
Alexander Ibe, Weatherford College
Alexander Imholtz, Prince George’s Community College
Virginia Irintcheva, Black Hawk College
Brian E. Jordan, C.S. Mott Community College
Thomas Jordan, Pima Community College
Christopher Jung, University of Alaska Anchorage
William M. Karkow, University of Dubuque
Suzanne Keller, Indian Hills Community College
Michael Kielb, Eastern Michigan University
Marta Klesath, North Carolina State University
Nelson H. Kraus, University of Indianapolis
Paul M. Lea IV, Northern Virginia Community College
Steven Lewis, Metropolitan Community College–Penn Valley
Juanita Limas, Kirkwood Community College
Jerri K. Lindsey, Tarrant County College–Northeast
Chelsea Loafman, Central Texas College
Paul Luyster, Tarrant County College
Ken Malachowsky, Florence-Darlington Technical College
Theresa Martin, College of San Mateo
Nicole Mashburn, Calhoun Community College
Abdallah M. Matari, Hudson County Community College
Bhavya Mathur, Chattahoochee Technical College
Acknowledgments

Tiffany Beth McFalls-Smith, Elizabethtown Community and Technical College
Jennifer Menon, Johnson County Community College
Jaime Merigliano, John Tyler Community College
Sharon Miles, Itawamba Community College
Todd Miller, Hunter College of CUNY
Louise Millis, North Hennepin Community College
Justin Moore, American River College
Christine Morin, Prince George’s Community College
Qian F. Moss, Des Moines Area Community College
Regina Munro, Chandler-Gilbert Community College
Necia Nicholas, Calhoun Community College
Maria Oehler, Florida State College–Jacksonville
Betsy Ott, Tyler Junior College
Ellen Ott-Reeves, Blinn College–Bryan
Stephen Page, Community College of Baltimore County & Towson University
Vikash Patel, Nevada State College
Dennis Pearson, Morton College
Diane Pelletier, Green River Community College
Jessica Petersen, Pensacola State College
Jason Plenar, University of Alabama
Becky Pierce, Delta College
Gilbert Pitts, Austin Peay State University
Renee Prentizer, Greenville Technical College
Fernando Prince, Laredo Community College
Sarah A. Pugh, Shelton State Community College
Suzanne Pundt, University of Texas at Tyler
Rolando J. Ramirez, The University of Akron
Wendy Rappazzo, Harford Community College
Terrence J. Ravine, University of South Alabama
Christine S. Rigsby, Middle Georgia State University
Laura H. Ritt, Burlington County College
Cynthia Robison, Wallace Community College
Susan Rohde, Triton College
Brian Sailer, Central New Mexico Community College
Sharon Schapel, Mott Community College
Mark Schmidt, Clark State Community College
Michael W. Sipala, Bristol Community College
Amy Skibiel, Auburn University
Lori Smith, American River College–Los Rios
Kerry Smith, Oakland Community College–Auburn Hills
Tom Sobat, Ivy Tech Community College
Kay Sourbeer, Tidewater Community College
Ashley Spring-Beerensson, Eastern Florida State College
Justin R. St. Juliana, Ivy Tech Community College
Cindy Stanfield, University of South Alabama
Laura Steele, Ivy Tech Community College–Northeast
George A. Steer, Jefferson College of Health Sciences
Michelle Stettner, Meridian Community College
Sherry Stewart, Navarro College

Susan E. Tappen, Central New Mexico Community College
Dean Thornton, South Georgia State College
Rita A. Thrasher, Pensacola State College
Brenda Tondi, George Mason University
Sheela Vemul, Waubonsee Community College
Khursheed Wankadiya, Central Piedmont Community College
Chad Wayne, University of Houston
Kira L. Wennstrom, Shoreline Community College
Shirley A. Whitescarver, Bluegrass Community and Technical College–KCTCS
John Whitlock, Hillsborough Community College
Patricia Wilhelm, Johnson and Wales University
Luann Wilkinson, Marion Technical College
Selwyn A. Williams, Miami Dade College
Darrellyn Williams, Pulaski Technical College
Peggie Williamson, Central Texas College
Heather Wilson-Ashworth, Utah Valley University
Mary Jo A. Witz, Monroe Community College
Jackie Wright, South Plains College
James Robert Yount, Brevard Community College

We would like to acknowledge the following group who reviewed various iterations of the new Focus figures: Matthew Abbott, David Anvard, Jake Dechant, Karen Dougherty, Peter Germroth, Gary Glaser, Suzanne Keller, Gilbert Pitts, Terry Ravine, Michelle Stettner, and Rita Thrasher.

We would also like to acknowledge the support of Katja’s colleagues at Mount Royal University (Trevor Day, Sarah Hewitt, Tracy O’Connor, Sarah Orton, Izak Paul, Lorraine Royal, Karen Sheedy, Kartika Tjandra, and Margot Williams); Department Chairs (Ruth Pickett-Seltner and Melanie Rathburn); and Deans (Jeffrey Goldberg and Jonathan Withey). Thanks also to Katja’s husband, Dr. Lawrence Haynes, a fellow physiologist who has worked together with Katja and has been involved in all aspects of this revision. We would like to thank Katja and Larry’s sons, Eric and Stefan Haynes, for putting up with their parents through many revisions of this book and for continuing to be an inspiration and a joy.

We really would appreciate hearing from you concerning your opinion—suggestions and constructive criticisms—of this text. It is this type of feedback that will help us in the next revision and underlies the continued improvement of this text.

Elaine Marieb

Katja Hoehn

Elaine N. Marieb and Katja Hoehn
Pearson Education
1301 Sansome Street
San Francisco, CA 94111
Contents

UNIT 1 Organization of the Body

1 The Human Body: An Orientation 1
1.1 Form (anatomy) determines function (physiology) 2
1.2 The body’s organization ranges from atoms to the entire organism 4
1.3 What are the requirements for life? 5
1.4 Homeostasis is maintained by negative feedback 9
1.5 Anatomical terms describe body directions, regions, and planes 12
A CLOSER LOOK Medical Imaging: Illuminating the Body 16
1.6 Many internal organs lie in membrane-lined body cavities 17

2 Chemistry Comes Alive 23

PART 1 BASIC CHEMISTRY 24
2.1 Matter is the stuff of the universe and energy moves matter 24
2.2 The properties of an element depend on the structure of its atoms 25
2.3 Atoms bound together form molecules; different molecules can make mixtures 28
2.4 The three types of chemical bonds are ionic, covalent, and hydrogen 31
2.5 Chemical reactions occur when electrons are shared, gained, or lost 35

PART 2 BIOCHEMISTRY 38
2.6 Inorganic compounds include water, salts, and many acids and bases 38
2.7 Organic compounds are made by dehydration synthesis and broken down by hydrolysis 41

2.8 Carbohydrates provide an easily used energy source for the body 43
2.9 Lipids insulate body organs, build cell membranes, and provide stored energy 45
2.10 Proteins are the body’s basic structural material and have many vital functions 48
2.11 DNA and RNA store, transmit, and help express genetic information 53
2.12 ATP transfers energy to other compounds 55

3 Cells: The Living Units 60

3.1 Cells are the smallest unit of life 61

PART 1 PLASMA MEMBRANE 63
3.2 The plasma membrane is a double layer of phospholipids with embedded proteins 63
FOCUS FIGURE 3.1 The Plasma Membrane 64
3.3 Passive membrane transport is diffusion of molecules down their concentration gradient 68
3.4 Active membrane transport directly or indirectly uses ATP 73
FOCUS FIGURE 3.2 Primary Active Transport: The Na⁺-K⁺ Pump 74
3.5 Selective diffusion establishes the membrane potential 79
3.6 Cell adhesion molecules and membrane receptors allow the cell to interact with its environment 81
FOCUS FIGURE 3.3 G Proteins 82

PART 2 THE CYTOPLASM 83
3.7 Cytoplasmic organelles each perform a specialized task 83
3.8 Cilia and microvilli are two main types of cellular extensions 90
PART 3 NUCLEUS 91

3.9 The nucleus includes the nuclear envelope, the nucleolus, and chromatin 91

3.10 The cell cycle consists of interphase and a mitotic phase 96

3.11 Messenger RNA carries instructions from DNA for building proteins 98

FOCUS FIGURE 3.4 Mitosis 100

FOCUS FIGURE 3.5 Translation 106

3.12 Autophagy and proteasomes dispose of unneeded organelles and proteins; apoptosis disposes of unneeded cells 108

DEVELOPMENTAL ASPECTS of Cells 109

4 Tissue: The Living Fabric 115

4.1 Tissue samples are fixed, sliced, and stained for microscopy 117

4.2 Epithelial tissue covers body surfaces, lines cavities, and forms glands 117

4.3 Connective tissue is the most abundant and widely distributed tissue in the body 126

4.4 Muscle tissue is responsible for body movement 138

4.5 Nervous tissue is a specialized tissue of the nervous system 140

4.6 The cutaneous membrane is dry; mucous and serous membranes are wet 141

4.7 Tissue repair involves inflammation, organization, and regeneration 142

A CLOSER LOOK Cancer—The Intimate Enemy 144

DEVELOPMENTAL ASPECTS of Tissues 146

UNIT 2 Covering, Support, and Movement of the Body

5 The Integumentary System 150

5.1 The skin consists of two layers: the epidermis and dermis 150

5.2 The epidermis is a keratinized stratified squamous epithelium 152

5.3 The dermis consists of papillary dermis and reticular dermis 154

5.4 Melanin, carotene, and hemoglobin determine skin color 156

5.5 Hair consists of dead, keratinized cells 157

5.6 Nails are scale-like modifications of the epidermis 160

5.7 Sweat glands help control body temperature, and sebaceous glands secrete sebum 161

5.8 First and foremost, the skin is a barrier 163

5.9 Skin cancer and burns are major challenges to the body 165

DEVELOPMENTAL ASPECTS of the Integumentary System 167

SYSTEM CONNECTIONS 168

6 Bones and Skeletal Tissues 173

6.1 Hyaline, elastic, and fibrocartilage help form the skeleton 174

6.2 Bones perform several important functions 175

6.3 Bones are classified by their location and shape 176

6.4 The gross structure of all bones consists of compact bone sandwiching spongy bone 176

6.5 Bones develop either by intramembranous or endochondral ossification 184

6.6 Bone remodeling involves bone deposition and removal 188

6.7 Bone repair involves hematoma and callus formation, and remodeling 190

6.8 Bone disorders result from abnormal bone deposition and resorption 193

DEVELOPMENTAL ASPECTS of Bones 194

SYSTEM CONNECTIONS 196

7 The Skeleton 199

PART I THE AXIAL SKELETON 199

7.1 The skull consists of 8 cranial bones and 14 facial bones 201

7.2 The vertebral column is a flexible, curved support structure 218

7.3 The thoracic cage is the bony structure of the chest 224

PART II THE APPENDICULAR SKELETON 227

7.4 Each pectoral girdle consists of a clavicle and a scapula 227

7.5 The upper limb consists of the arm, forearm, and hand 230

7.6 The hip bones attach to the sacrum, forming the pelvic girdle 236

7.7 The lower limb consists of the thigh, leg, and foot 240

DEVELOPMENTAL ASPECTS of the Skeleton 246
8 Joints 251

8.1 Joints are classified into three structural and three functional categories 251
8.2 In fibrous joints, the bones are connected by fibrous tissue 252
8.3 In cartilaginous joints, the bones are connected by cartilage 253
8.4 Synovial joints have a fluid-filled joint cavity 254

FOCUS FIGURE 8.1 Synovial Joints 262
8.5 Five examples illustrate the diversity of synovial joints 264
8.6 Joints are easily damaged by injury, inflammation, and degeneration 272

A CLOSER LOOK Joints: From Knights in Shining Armor to Bionic Humans 274

DEVELOPMENTAL ASPECTS of Joints 275

9 Muscles and Muscle Tissue 279

9.1 There are three types of muscle tissue 280
9.2 A skeletal muscle is made up of muscle fibers, nerves, blood vessels, and connective tissues 281
9.3 Skeletal muscle fibers contain calcium-regulated molecular motors 284
9.4 Motor neurons stimulate skeletal muscle fibers to contract 290

FOCUS FIGURE 9.1 Events at the Neuromuscular Junction 292
FOCUS FIGURE 9.2 Excitation-Contraction Coupling 294
FOCUS FIGURE 9.3 Cross Bridge Cycle 297
9.5 Temporal summation and motor unit recruitment allow smooth, graded skeletal muscle contractions 298
9.6 ATP for muscle contraction is produced aerobically or anaerobically 303
9.7 The force, velocity, and duration of skeletal muscle contractions are determined by a variety of factors 306
9.8 How does skeletal muscle respond to exercise? 309
9.9 Smooth muscle is nonstriated involuntary muscle 310

DEVELOPMENTAL ASPECTS of Muscles 316
A CLOSER LOOK Athletes Looking Good and Doing Better with Anabolic Steroids? 317

SYSTEM CONNECTIONS 318

10 The Muscular System 323

10.1 For any movement, muscles can act in one of three ways 324
10.2 How are skeletal muscles named? 324

FOCUS FIGURE 10.1 Muscle Action 325
10.3 Fascicle arrangements help determine muscle shape and force 326
10.4 Muscles acting with bones form lever systems 327
10.5 A muscle’s origin and insertion determine its action 332

Table 10.1 Muscles of the Head, Part I: Facial Expression 333
Table 10.2 Muscles of the Head, Part II: Mastication and Tongue Movement 336
Table 10.3 Muscles of the Anterior Neck and Throat: Swallowing 338
Table 10.4 Muscles of the Neck and Vertebral Column: Head Movements and Trunk Extension 340
Table 10.5 Deep Muscles of the Thorax: Breathing 344
Table 10.6 Muscles of the Abdominal Wall: Trunk Movements and Compression of Abdominal Viscera 346
Table 10.7 Muscles of the Pelvic Floor and Perineum: Support of Abdominopelvic Organs 348
Table 10.8 Superficial Muscles of the Anterior and Posterior Thorax: Movements of the Scapula and Arm 350
Table 10.9 Muscles Crossing the Shoulder Joint: Movements of the Arm (Humerus) 354
Table 10.10 Muscles Crossing the Elbow Joint: Flexion and Extension of the Forearm 357
Table 10.11 Muscles of the Forearm: Movements of the Wrist, Hand, and Fingers 358
Table 10.12 Summary: Actions of Muscles Acting on the Arm, Forearm, and Hand 362
Table 10.13 Intrinsic Muscles of the Hand: Fine Movements of the Fingers 364
Table 10.14 Muscles Crossing the Hip and Knee Joints: Movements of the Thigh and Leg 367
Table 10.15 Muscles of the Leg: Movements of the Ankle and Toes 374
Table 10.16 Intrinsic Muscles of the Foot: Toe Movement and Arch Support 380
Table 10.17 Summary: Actions of Muscles Acting on the Thigh, Leg, and Foot 384
UNIT 3 Regulation and Integration of the Body

11 Fundamentals of the Nervous System and Nervous Tissue 390

11.1 The nervous system receives, integrates, and responds to information 391
11.2 Neuroglia support and maintain neurons 392
11.3 Neurons are the structural units of the nervous system 394
11.4 The resting membrane potential depends on differences in ion concentration and permeability 400

FOCUS FIGURE 11.1 Resting Membrane Potential 402

11.5 Graded potentials are brief, short-distance signals within a neuron 404
11.6 Action potentials are brief, long-distance signals within a neuron 405

FOCUS FIGURE 11.2 Action Potential 406

11.7 Synapses transmit signals between neurons 412

FOCUS FIGURE 11.3 Chemical Synapse 415

11.8 Postsynaptic potentials excite or inhibit the receiving neuron 416

FOCUS FIGURE 11.4 Postsynaptic Potentials and Their Summation 418

11.9 The effect of a neurotransmitter depends on its receptor 420
11.10 Neurons act together, making complex behaviors possible 426

DEVELOPMENTAL ASPECTS of Neurons 428

A CLOSER LOOK Pleasure Me, Pleasure Me! 429

12 The Central Nervous System 434

12.1 Folding during development determines the complex structure of the adult brain 435
12.2 The cerebral hemispheres consist of cortex, white matter, and the basal nuclei 439
12.3 The diencephalon includes the thalamus, hypothalamus, and epithalamus 447
12.4 The brain stem consists of the midbrain, pons, and medulla oblongata 450
12.5 The cerebellum adjusts motor output, ensuring coordination and balance 454
12.6 Functional brain systems span multiple brain structures 456

12.7 The interconnected structures of the brain allow higher mental functions 458
12.8 The brain is protected by bone, meninges, cerebrospinal fluid, and the blood brain barrier 464
12.9 Brain injuries and disorders have devastating consequences 468
12.10 The spinal cord is a reflex center and conduction pathway 470
12.11 Neuronal pathways carry sensory and motor information to and from the brain 476

DEVELOPMENTAL ASPECTS of the Central Nervous System 482

13 The Peripheral Nervous System and Reflex Activity 489

PART I SENSORY RECEPTORS AND SENSATION 490
13.1 Sensory receptors are activated by changes in the internal or external environment 490
13.2 Receptors, ascending pathways, and cerebral cortex process sensory information 493

PART II TRANSMISSION LINES: NERVES AND THEIR STRUCTURE AND REPAIR 496
13.3 Nerves are cordlike bundles of axons that conduct sensory and motor impulses 496
13.4 There are 12 pairs of cranial nerves 498
13.5 31 pairs of spinal nerves innervate the body 507

PART III MOTOR ENDINGS AND MOTOR ACTIVITY 517
13.6 Peripheral motor endings connect nerves to their effectors 517
13.7 There are three levels of motor control 517

PART IV REFLEX ACTIVITY 519
13.8 The reflex arc enables rapid and predictable responses 519
13.9 Spinal reflexes are somatic reflexes mediated by the spinal cord 520

FOCUS FIGURE 13.1 Stretch Reflex 522

DEVELOPMENTAL ASPECTS of the Peripheral Nervous System 526

14 The Autonomic Nervous System 531

14.1 The ANS differs from the somatic nervous system in that it can stimulate or inhibit its effectors 532
14.2 The ANS consists of the parasympathetic and sympathetic divisions 534
14.3 Long preganglionic parasympathetic fibers originate in the craniosacral CNS 536
14.4 Short preganglionic sympathetic fibers originate in the thoracolumbar CNS 538
14.5 Visceral reflex arcs have the same five components as somatic reflex arcs 542
14.6 Acetylcholine and norepinephrine are the major ANS neurotransmitters 543
14.7 The parasympathetic and sympathetic divisions usually produce opposite effects 545
14.8 The hypothalamus oversees ANS activity 547
14.9 Most ANS disorders involve abnormalities in smooth muscle control 548

DEVELOPMENTAL ASPECTS of the ANS 548

SYSTEM CONNECTIONS 550

15 The Special Senses 533

PART 1 THE EYE AND VISION 554
15.1 The eye has three layers, a lens, and humors, and is surrounded by accessory structures 554
15.2 The cornea and lens focus light on the retina 563
15.3 Phototransduction begins when light activates visual pigments in retinal photoreceptors 567
15.4 Visual information from the retina passes through relay nuclei to the visual cortex 573

PART 2 THE CHEMICAL SENSES: SMELL AND TASTE 575
15.5 Airborne chemicals are detected by olfactory receptors in the nose 575
15.6 Dissolved chemicals are detected by receptor cells in taste buds 578

PART 3 THE EAR: HEARING AND BALANCE 580
15.7 The ear has three major areas 580
15.8 Sound is a pressure wave that stimulates mechanosensitive cochlear hair cells 585
15.9 Sound information is processed and relayed through brain stem and thalamic nuclei to the auditory cortex 589
15.10 Hair cells in the maculae and cristae ampullares monitor head position and movement 590
15.11 Ear abnormalities can affect hearing, equilibrium, or both 594

DEVELOPMENTAL ASPECTS of the Special Senses 595

16 The Endocrine System 601

16.1 The endocrine system is one of the body’s two major control systems 602
16.2 The chemical structure of a hormone determines how it acts 603
16.3 Hormones act through second messengers or by activating specific genes 603
16.4 Three types of stimuli cause hormone release 607
16.5 Cells respond to a hormone if they have a receptor for that hormone 608
16.6 The hypothalamus controls release of hormones from the pituitary gland in two different ways 609

FOCUS FIGURE 16.1 Hypothalamus and Pituitary Interactions 610
16.7 The thyroid gland controls metabolism 617
16.8 The parathyroid glands are primary regulators of blood calcium levels 621
16.9 The adrenal glands produce hormones involved in electrolyte balance and the stress response 622
16.10 The pineal gland secretes melatonin 627

FOCUS FIGURE 16.2 Stress and the Adrenal Gland 628
16.11 The pancreas, gonads, and most other organs secrete hormones 630

A CLOSER LOOK Sweet Revenge: Taming the Diabetes Monster? 633

DEVELOPMENTAL ASPECTS of the Endocrine System 636

SYSTEM CONNECTIONS 637

UNIT 4 Maintenance of the Body

17 Blood 642

17.1 The functions of blood are transport, regulation, and protection 643
17.2 Blood consists of plasma and formed elements 643
17.3 Erythrocytes play a crucial role in oxygen and carbon dioxide transport 645
17.4 Leukocytes defend the body 651
17.5 Platelets are cell fragments that help stop bleeding 657
17.6 Hemostasis prevents blood loss 657
17.7 Transfusion can replace lost blood 663
17.8 Blood tests give insights into a patient’s health 666

DEVELOPMENTAL ASPECTS of Blood 666
18 The Cardiovascular System: The Heart 670

18.1 The heart has four chambers and pumps blood through the pulmonary and systemic circuits 671
18.2 Heart valves make blood flow in one direction 679
18.3 Blood flows from atrium to ventricle, and then to either the lungs or the rest of the body 680

FOCUS FIGURE 18.1 Blood Flow through the Heart 681

18.4 Intercalated discs connect cardiac muscle fibers into a functional syncytium 683
18.5 Pacemaker cells trigger action potentials throughout the heart 686
18.6 The cardiac cycle describes the mechanical events associated with blood flow through the heart 692

FOCUS FIGURE 18.2 The Cardiac Cycle 694

18.7 Stroke volume and heart rate are regulated to alter cardiac output 696

DEVELOPMENTAL ASPECTS of the Heart 700

19 The Cardiovascular System: Blood Vessels 706

PART 1 BLOOD VESSEL STRUCTURE AND FUNCTION 707

19.1 Most blood vessel walls have three layers 709
19.2 Arteries are pressure reservoirs, distributing vessels, or resistance vessels 710
19.3 Capillaries are exchange vessels 710
19.4 Veins are blood reservoirs that return blood toward the heart 712
19.5 Anastomoses are special interconnections between blood vessels 714

PART 2 PHYSIOLOGY OF CIRCULATION 714

19.6 Blood flows from high to low pressure against resistance 714
19.7 Blood pressure decreases as blood flows from arteries through capillaries and into veins 716
19.8 Blood pressure is regulated by short- and long-term controls 718
19.9 Intrinsic and extrinsic controls determine blood flow through tissues 725
19.10 Slow blood flow through capillaries promotes diffusion of nutrients and gases, and bulk flow of fluids 730

FOCUS FIGURE 19.1 Bulk Flow across Capillary Walls 732

PART 3 CIRCULATORY PATHWAYS: BLOOD VESSELS OF THE BODY 734

19.11 The vessels of the systemic circulation transport blood to all body tissues 735
Table 19.3 Pulmonary and Systemic Circulations 736
Table 19.4 The Aorta and Major Arteries of the Systemic Circulation 738
Table 19.5 Arteries of the Head and Neck 740
Table 19.6 Arteries of the Upper Limbs and Thorax 742
Table 19.7 Arteries of the Abdomen 744
Table 19.8 Arteries of the Pelvis and Lower Limbs 748
Table 19.9 The Veae Cavae and the Major Veins of the Systemic Circulation 750
Table 19.10 Veins of the Head and Neck 752
Table 19.11 Veins of the Upper Limbs and Thorax 754
Table 19.12 Veins of the Abdomen 756
Table 19.13 Veins of the Pelvis and Lower Limbs 758

DEVELOPMENTAL ASPECTS of Blood Vessels 759

A CLOSER LOOK Atherosclerosis? Get Out the Cardiovascular Drâno 760

SYSTEM CONNECTIONS 761

20 The Lymphatic System and Lymphoid Organs and Tissues 766

20.1 The lymphatic system includes lymphatic vessels, lymph, and lymph nodes 767
20.2 Lymphoid cells and tissues are found in lymphoid organs and in connective tissue of other organs 770
20.3 Lymph nodes cleanse lymph and house lymphocytes 771
20.4 The spleen removes bloodborne pathogens and aged red blood cells 773
20.5 MALT guards the body's entryways against pathogens 774
20.6 T lymphocytes mature in the thymus 776

DEVELOPMENTAL ASPECTS of the Lymphatic System and Lymphoid Organs and Tissues 776

SYSTEM CONNECTIONS 778

21 The Immune System: Innate and Adaptive Body Defenses 781

PART 1 INNATE DEFENSES 782

21.1 Surface barriers act as the first line of defense to keep invaders out of the body 782
21.2 Innate internal defenses are cells and chemicals that act as the second line of defense 783

PART 3 ADAPTIVE DEFENSES 790
21.3 Antigens are substances that trigger the body's adaptive defenses 791
21.4 B and T lymphocytes and antigen-presenting cells are cells of the adaptive immune response 792
21.5 In humoral immunity, antibodies are produced that target extracellular antigens 796
21.6 Cellular immunity consists of T lymphocytes that direct adaptive immunity or attack cellular targets 801

FOCUS FIGURE 21.1 An Example of a Primary Immune Response 808
21.7 Insufficient or overactive immune responses create problems 811

DEVELOPMENTAL ASPECTS of the Immune System 814

22 The Respiratory System 818

PART 1 FUNCTIONAL ANATOMY 820
22.1 The upper respiratory system warms, humidifies, and filters air 820
22.2 The lower respiratory system consists of conducting and respiratory zone structures 824
22.3 Each multilobed lung occupies its own pleural cavity 833

PART 2 RESPIRATORY PHYSIOLOGY 834
22.4 Volume changes cause pressure changes, which cause air to move 834
22.5 Measuring respiratory volumes, capacities, and flow rates helps us assess ventilation 840
22.6 Gases exchange by diffusion between the blood, lungs, and tissues 842
22.7 Oxygen is transported by hemoglobin, and carbon dioxide is transported in three different ways 847

FOCUS FIGURE 22.1 The Oxygen-Hemoglobin Dissociation Curve 848
22.8 Respiratory centers in the brain stem control breathing with input from chemoreceptors and higher brain centers 853
22.9 Exercise and high altitude bring about respiratory adjustments 857
22.10 Respiratory diseases are major causes of disability and death 858

DEVELOPMENTAL ASPECTS of the Respiratory System 860

SYSTEM CONNECTIONS 862

23 The Digestive System 868

PART 1 OVERVIEW OF THE DIGESTIVE SYSTEM 869
23.1 What major processes occur during digestive system activity? 870
23.2 The GI tract has four layers and is usually surrounded by peritoneum 871
23.3 The GI tract has its own nervous system called the enteric nervous system 874

PART 2 FUNCTIONAL ANATOMY OF THE DIGESTIVE SYSTEM 875
23.4 Ingestion occurs only at the mouth 876
23.5 The pharynx and esophagus move food from the mouth to the stomach 881
23.6 The stomach temporarily stores food and begins protein digestion 884
23.7 The liver secretes bile; the pancreas secretes digestive enzymes 893
23.8 The small intestine is the major site for digestion and absorption 900
23.9 The large intestine absorbs water and eliminates feces 906

PART 3 PHYSIOLOGY OF DIGESTION AND ABSORPTION 912
23.10 Digestion hydrolyzes food into nutrients that are absorbed across the gut epithelium 912
23.11 How is each type of nutrient processed? 912

DEVELOPMENTAL ASPECTS of the Digestive System 918

SYSTEM CONNECTIONS 920

24 Nutrition, Metabolism, and Energy Balance 926

PART 1 NUTRIENTS 927
24.1 Carbohydrates, lipids, and proteins supply energy and are used as building blocks 927
24.2 Most vitamins act as coenzymes; minerals have many roles in the body 931

PART 2 METABOLISM 933
24.3 Metabolism is the sum of all biochemical reactions in the body 934
24.4 Carbohydrate metabolism is the central player in ATP production 936

FOCUS FIGURE 24.1 Oxidative Phosphorylation 941
24.5 Lipid metabolism is key for long-term energy storage and release 946
24.6 Amino acids are used to build proteins or for energy 948
24.7 Energy is stored in the absorptive state and released in the postabsorptive state 949
24.8 The liver metabolizes, stores, and detoxifies 955

A CLOSER LOOK Obesity: Magical Solution Wanted 958

PART 3 ENERGY BALANCE 960

24.9 Neural and hormonal factors regulate food intake 960
24.10 Thyroxine is the major hormone that controls basal metabolic rate 962
24.11 The hypothalamus acts as the body’s thermostat 963

DEVELOPMENTAL ASPECTS of Nutrition and Metabolism 968

25 The Urinary System 974

25.1 The kidneys have three distinct regions and a rich blood supply 975
25.2 Nephrons are the functional units of the kidney 978
25.3 Overview: Filtration, absorption, and secretion are the key processes of urine formation 983
25.4 Urine formation, step 1: The glomeruli make filtrate 984
25.5 Urine formation, step 2: Most of the filtrate is reabsorbed into the blood 989
25.6 Urine formation, step 3: Certain substances are secreted into the filtrate 994
25.7 The kidneys create and use an osmotic gradient to regulate urine concentration and volume 995

FOCUS FIGURE 25.1 Medullary Osmotic Gradient 996

25.8 Renal function is evaluated by analyzing blood and urine 1000
25.9 The ureters, bladder, and urethra transport, store, and eliminate urine 1002

DEVELOPMENTAL ASPECTS of the Urinary System 1006

26 Fluid, Electrolyte, and Acid-Base Balance 1012

26.1 Body fluids consist of water and solutes in three main compartments 1013
26.2 Both intake and output of water are regulated 1016
26.3 Sodium, potassium, calcium, and phosphate levels are tightly regulated 1019

26.4 Chemical buffers and respiratory regulation rapidly minimize pH changes 1026
26.5 Renal regulation is a long-term mechanism for controlling acid-base balance 1029
26.6 Abnormalities of acid-base balance are classified as metabolic or respiratory 1033

A CLOSER LOOK Sleuthing: Using Blood Values to Determine the Cause of Acidosis or Alkalosis 1034

DEVELOPMENTAL ASPECTS of Fluid, Electrolyte, and Acid-Base Balance 1035

SYSTEM CONNECTIONS 1036

UNIT 5 Continuity

27 The Reproductive System 1041

27.1 The male and female reproductive systems share common features 1042

PART 1 ANATOMY OF THE MALE REPRODUCTIVE SYSTEM 1047

27.2 The testes are enclosed and protected by the scrotum 1048
27.3 Sperm travel from the testes to the body exterior through a system of ducts 1050
27.4 The penis is the copulatory organ of the male 1050
27.5 The male accessory glands produce the bulk of semen 1052

PART 2 PHYSIOLOGY OF THE MALE REPRODUCTIVE SYSTEM 1053

27.6 The male sexual response includes erection and ejaculation 1053
27.7 Spermatogenesis is the sequence of events that leads to formation of sperm 1054
27.8 Male reproductive function is regulated by hypothalamic, anterior pituitary, and testicular hormones 1059

PART 3 ANATOMY OF THE FEMALE REPRODUCTIVE SYSTEM 1060

27.9 Immature eggs develop in follicles in the ovaries 1061
27.10 The female duct system includes the uterine tubes, uterus, and vagina 1062
27.11 The external genitalia of the female include those structures that lie external to the vagina 1067
27.12 The mammary glands produce milk 1068
CHAPTER 27

PART 4 PHYSIOLOGY OF THE FEMALE REPRODUCTIVE SYSTEM 1069

27.13 Oogenesis is the sequence of events that leads to the formation of ova 1069

27.14 The ovarian cycle consists of the follicular phase and the luteal phase 1073

27.15 Female reproductive function is regulated by hypothalamic, anterior pituitary, and ovarian hormones 1074

27.16 The female sexual response is more diverse and complex than that of males 1078

PART 5 SEXUALLY TRANSMITTED INFECTIONS 1080

27.17 Sexually transmitted infections cause reproductive and other disorders 1080

DEVELOPMENTAL ASPECTS of the Reproductive System 1081

SYSTEM CONNECTIONS 1085

28 Pregnancy and Human Development 1091

28.1 Fertilization combines the sperm and egg chromosomes, forming a zygote 1092

FOCUS FIGURE 28.1 Sperm Penetration and the Blocks to Polyspermy 1094

28.2 Embryonic development begins as the zygote undergoes cleavage and forms a blastocyst en route to the uterus 1097

28.3 Implantation occurs when the embryo burrows into the uterine wall, triggering placenta formation 1098

28.4 Embryonic events include gastrula formation and tissue differentiation, which are followed by rapid growth of the fetus 1102

FOCUS FIGURE 28.2 Fetal and Newborn Circulation 1108

28.5 During pregnancy, the mother undergoes anatomical, physiological, and metabolic changes 1112

28.6 The three stages of labor are the dilation, expulsion, and placental stages 1114

28.7 An infant’s extraterine adjustments include taking the first breath and closure of vascular shunts 1116

28.8 Lactation is milk secretion by the mammary glands in response to prolactin 1116

A CLOSER LOOK Contraception: To Be or Not To Be 1118

28.9 Assisted reproductive technology may help an infertile couple have offspring 1119

CHAPTER 29

29 Heredity 1124

29.1 Genes are the vocabulary of genetics 1125

29.2 Genetic variation results from independent assortment, crossing over, and random fertilization 1126

29.3 Several patterns of inheritance have long been known 1128

29.4 Environmental factors may influence or override gene expression 1131

29.5 Factors other than nuclear DNA sequence can determine inheritance 1131

29.6 Genetic screening is used to detect genetic disorders 1133

Appendices

Answers Appendix A-1

A The Metric System A-18

B Functional Groups in Organic Molecules A-20

C The Amino Acids A-21

D Two Important Metabolic Pathways A-22

E Periodic Table of the Elements A-25

F Reference Values for Selected Blood and Urine Studies A-26

Glossary G-1

Photo and Illustration Credits C-1

Index I-1