LIGHT VEHICLE
DIESEL ENGINES

James D. Halderman
Curt Ward
This new title is designed to meet the needs of a semester course in light vehicle diesel engines. This title is designed to be the “keystone” course for an automotive program because it includes all of the advanced technology in on-board diagnosis and up-to-date diesel technology all in one title.

DEPTH OF CONTENT AND FORMAT
Scope: The scope of this title is intended to meet the needs of a textbook that covers light vehicle diesel engines to supplement and enhance an automotive two-year curriculum. The first 9 chapters are designed to introduce diesel engine construction and engine mechanical systems. Chapters 10 through 21 cover the emission control and service procedures that every technician needs to know when servicing a light vehicle diesel engine. Chapters 22 through 25 cover each of the most commonly used diesel engines in detail.

Organization: The content includes the basics needed by all service technicians and also covers the following organization for most systems:

- Purpose and function of the system
- Parts involved and operational description
- Diagnosis and service

ASE A9 CORRELATED This text material meets all of the tasks specified by ASE for the Light Diesel (A9) test content area. The correlation to both the text pages and the task sheet are found in appendix 2.

A COMPLETE INSTRUCTOR AND STUDENT SUPPLEMENTS PACKAGE All Professional Technician textbooks are accompanied by a full set of instructor and student supplements. Please see page vi for a detailed list of supplements.

A FOCUS ON DIAGNOSIS AND PROBLEM SOLVING The Professional Technician Series has been developed to satisfy the need for a greater emphasis on problem diagnosis. Automotive instructors and service managers agree that students and beginning technicians need more training in diagnostic procedures and skill development. To meet this need and demonstrate how real-world problems are solved, Case Studies features are included throughout and highlight how real-life problems are diagnosed and repaired.

The following pages highlight the unique core features that set the Professional Technician Series book apart from other automotive textbooks.
The Case of Erratic Electrical Symptoms

The owner of a 2010 Dodge Truck with a 6.7-liter Cummins engine complained of a noticeable change in the level of the interior or exterior lighting, as well as the speed of the blower motor.

The owner stated that this situation occurred just after starting the truck. The service technician was able to verify the customer concern and monitored the battery voltage using a scan tool to confirm what the technician thought was happening. The intake heaters on the Cummins 6.7 draw so much current that the battery voltage is reduced, causing the dimming of the interior lights and the blower motor to turn slower than normal. The intake manifold heaters may continue to run for several minutes after the vehicle has started. No repairs were made and the customer was informed as to why this situation was occurring.

Summary:
Complaint – Customer complained that the interior lights were dimmer than normal shortly after starting the engine.
Cause – The battery voltage was reduced by the high amperage draw of the intake heaters.
Correction – No repairs were needed and the customer was informed that this was a normal condition on this diesel pickup.

FREQUENTLY ASKED QUESTIONS

Why Check DTCs before Checking TSBs?
DTCs must be known before searching for service bulletins because bulletins often include information on solving problems that involve a stored diagnostic trouble code (DTC).
NOTE: Push on the rubber (elastomer sleeve) of the vibration damper with your fingers or a pencil. If the rubber does not spring back, replace the damper.

NOTES Notes are included to point out a fact or situation that will help the reader better understand a specific task or procedure.

CAUTION: Some bearings may have oil holes in the top shell only. If these are installed incorrectly, no oil will flow to the connecting or main rods, resulting in instant engine failure. To help the oil spread across the entire bearing, some bearings use an oil groove.

CAUTIONS Cautions are stated whenever there is a possibility that the service being performed could result in damage to the vehicle or property if not done according to the procedure published in the service information.

WARNING The cast-iron Cummins inline six-cylinder head is very heavy, requiring an engine hoist to remove it from the block. Attempting to lift the head without help or a hoist could result in personal injury.

WARNINGS Warnings are stated when there is a possibility that personal injury could result if the service work is not done according to the procedure published in the service information.

THE SUMMARY, REVIEW QUESTIONS, AND CHAPTER QUIZ at the end of each chapter help students review the material presented in the chapter and test themselves to see how much they’ve learned.

STEP BY STEP These photo sequences show the breakdown of the Duramax diesel engine (Chapter 23), the Cummins 6.7 liter six cylinder engine (Chapter 24), and the 3.0 liter Fiat Chrysler V-6 diesel engine (Chapter 25).
RESOURCES IN PRINT AND ONLINE

Light Vehicle Diesel Engines

<table>
<thead>
<tr>
<th>Name of Supplement</th>
<th>Print</th>
<th>Online</th>
<th>Audience</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor Resource Manual</td>
<td>✔</td>
<td></td>
<td>Instructors</td>
<td>NEW! The Ultimate teaching aid: Chapter summaries, key terms, chapter learning objectives, lecture resources, discuss/demonstrate classroom activities, and answers to the in text review and quiz questions.</td>
</tr>
<tr>
<td>TestGen</td>
<td>✔</td>
<td></td>
<td>Instructors</td>
<td>Test generation software and test bank for the text.</td>
</tr>
<tr>
<td>PowerPoint Presentation</td>
<td>✔</td>
<td></td>
<td>Instructors</td>
<td>Slides include chapter learning objectives, lecture outline of the text, and graphics from the book.</td>
</tr>
<tr>
<td>ASE Correlated Task Sheets – For Instructors</td>
<td>✔</td>
<td></td>
<td>Instructors</td>
<td>Downloadable ASE task sheets for easy customization and development of unique task sheets.</td>
</tr>
<tr>
<td>ASE Task Sheets – For Students</td>
<td>✔</td>
<td></td>
<td>Students</td>
<td>Study activity manual that correlates ASE Automobile Standards to chapters and page numbers in the text. Available to students at a discounted price when packaged with the text.</td>
</tr>
<tr>
<td>VitalSource eBook</td>
<td>✔</td>
<td></td>
<td>Students</td>
<td>An alternative to purchasing the print textbook, students can subscribe to the same content online and save up to 50% off the suggested list price of the print text. Visit www.vitalsource.com</td>
</tr>
</tbody>
</table>

All online resources can be downloaded from the Instructor's Resource Center: www.pearsonighered.com/irc
A large number of people and organizations have cooperated in providing the reference material and technical information used in this text. The authors wish to express sincere thanks to the following persons for their special contributions:

- **Tom Birch**
 Yuba College
- **Carl Borsani**
 Graphic Home
- **Richard Krieger**
 Michigan Institute of Technology
- **Jeff Rehkopf**
 Florida State College
- **Chuck Taylor**
 Sinclair Community College

TECHNICAL AND CONTENT REVIEWERS The following people reviewed the manuscript before production and checked it for technical accuracy and clarity of presentation. Their suggestions and recommendations were included in the final draft of the manuscript. Their input helped make this textbook clear and technically accurate while maintaining the easy-to-read style that has made other books from the same author so popular.

- **A.C. Durdin**
 Moraine Park Technical College
- **Al Engledahl**
 College of DuPage
- **Tom Freels**
 Sinclair Community College
- **Christopher Fry**
 Harry S Truman College
- **Marty Kamimoto**
 Fresno City College
- **Richard Krieger**
 Michigan Institute of Technology
- **Carlton H. Mabe, Sr.**
 Virginia Western Community College
- **Kenneth Redick**
 Hudson Valley Community College
- **Jeff Rehkopf**
 Florida State College
- **Matt Roda**
 Mott Community College
- **Chuck Taylor**
 Sinclair Community College
- **Dan Warning**
 Joliet Junior College

SPECIAL THANKS The authors wish to thank Chuck Taylor of Sinclair Community College in Dayton, Ohio, plus Mario Dinovo and Brian Quinn of Joliet Junior College who helped with many of the photos. A special thanks to Dick Krieger, Jeff Rehkopf, and Tom Birch for their detailed and thorough reviews of the manuscript before publication. Most of all, we wish to thank Michelle Halderman for her assistance in all phases of manuscript preparation.

—Jim Halderman

—Curt Ward
JIM HALDERMAN brings a world of experience, knowledge, and talent to his work. His automotive service experience includes working as a flat-rate technician, a business owner, and a professor of Automotive Technology at a leading U.S. community college.

He has a Bachelor of Science Degree from Ohio Northern University and a Masters Degree in Education from Miami University in Oxford, Ohio. Jim also holds a U.S. Patent for an electronic transmission control device. He is an ASE certified Master Automotive Technician and Advanced Engine Performance (L1) ASE certified.

Jim is the author of many Automotive textbooks, all published by Pearson.

Jim has presented numerous technical seminars to national audiences including the California Automotive Teachers (CAT) and the Illinois College Automotive Instructor Association (ICAIA). He is also a member and presenter at the North American Council of Automotive Teachers (NACAT). Jim was also named Regional Teacher of the Year by General Motors Corporation and a member of the advisory board for Technological Studies department at Ohio Northern University.

Jim and his wife, Michelle, live in Dayton, Ohio. They have two children. You can reach Jim at:

jim@jameshalderman.com

CURT WARD Curt Ward brings a wealth of talent, experience, and knowledge to his work. Curt is an automotive professor at Joliet Junior College and serves as a visiting automotive instructor at Southern Illinois University. Previously he was an adjunct professor at other area community colleges. Before his work at the college, Curt worked as a technical training instructor for the Chrysler Corporation for fifteen years. Prior to his years at Chrysler, he has worked as a technician, shop foreman and service manager in the retail sector of the automotive industry for thirteen years. During this time Curt became a Chrysler Master Technician. Curt has an Associates of Applied Science in Automotive Service Technology from Southern Illinois University. He has a Bachelor’s of Fine Arts in Organizational Communications from North Central College. He earned his Master’s degree in Adult Education at the University of Phoenix. Curt is an ASE Master Automotive Technician.

Curt has presented technical seminars at numerous conferences around the country. He has presented for the Illinois College Automotive Instructor Association (ICAIA), the California Automotive Teachers (CAT), and the North American Council of Automotive Teachers (NACAT).

Curt is an active member in the Illinois Automotive Instructor Association (ICAIA) and the North American Council of Automotive Teachers (NACAT). He has served as the Secretary and the President of the NACAT organization and was the Conference Host for the 2015 NACAT Conference. In 2015 Curt was named the NACAT MVP award winner for his outstanding contribution to the NACAT organization.

Curt and his wife Tammy have five children and five grandchildren. Together they enjoy traveling and exploring historical sites. In his spare time, Curt enjoys modeling 3-rail O-gauge railroads. You can reach Curt at:

curt@curtward.net
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diesel Engine Operation</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Diesel Engine Blocks and Rotating Assemblies</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Diesel Cylinder Heads and Valve Trains</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Diesel Engine Lubrication Systems</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>Diesel Engine Cooling System</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>Diesel Engine Condition Diagnosis</td>
<td>68</td>
</tr>
<tr>
<td>7</td>
<td>Diesel Engine Disassembly, Cleaning, and Crack Detection</td>
<td>82</td>
</tr>
<tr>
<td>8</td>
<td>Diesel Engine Assembly</td>
<td>93</td>
</tr>
<tr>
<td>9</td>
<td>Turbocharger Systems</td>
<td>107</td>
</tr>
<tr>
<td>10</td>
<td>Air Induction and EGR Systems</td>
<td>117</td>
</tr>
<tr>
<td>11</td>
<td>Diesel and Biodiesel Fuels</td>
<td>129</td>
</tr>
<tr>
<td>12</td>
<td>Fuel Supply and Low-Pressure Fuel Systems</td>
<td>135</td>
</tr>
<tr>
<td>13</td>
<td>High-Pressure Common Rail Diesel Fuel Systems</td>
<td>142</td>
</tr>
<tr>
<td>14</td>
<td>Hydraulically Actuated Electronic Unit Injector (HEUI) Systems</td>
<td>157</td>
</tr>
<tr>
<td>15</td>
<td>Exhaust and Aftertreatment Systems</td>
<td>165</td>
</tr>
<tr>
<td>16</td>
<td>Diesel Service Procedures</td>
<td>176</td>
</tr>
<tr>
<td>17</td>
<td>Drivetrain Electricity and Electronics</td>
<td>183</td>
</tr>
<tr>
<td>18</td>
<td>CAN and Network Communications</td>
<td>205</td>
</tr>
<tr>
<td>19</td>
<td>Diesel OBD II</td>
<td>222</td>
</tr>
<tr>
<td>20</td>
<td>OBD-II Diesel Monitors</td>
<td>230</td>
</tr>
<tr>
<td>21</td>
<td>OBD-II Diesel Diagnosis</td>
<td>239</td>
</tr>
<tr>
<td>22</td>
<td>Ford Power Stroke Diesel Engines</td>
<td>250</td>
</tr>
<tr>
<td>23</td>
<td>Duramax Diesel Engines</td>
<td>268</td>
</tr>
<tr>
<td>24</td>
<td>Cummins Diesel Engines</td>
<td>290</td>
</tr>
<tr>
<td>25</td>
<td>Fiat Chrysler Diesel Engines</td>
<td>309</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>A9 Sample ASE-Type Certification Test</td>
<td>323</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>ASE A9 Task Correlation Chart</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>338</td>
</tr>
</tbody>
</table>
CONTENTS

chapter 1
DIESEL ENGINE OPERATION 1

- Learning Objectives 1
- Key Terms 1
- Engines 1
- Four-Stroke Cycle Operation 1
- Engine Construction Overview 3
- Diesel Engines 4
- Engine Size 6
- Compression Ratio 7
- Torque 8
- Power 8

SUMMARY 9
REVIEW QUESTIONS 9
CHAPTER QUIZ 10

chapter 2
DIESEL ENGINE BLOCKS AND ROTATING ASSEMBLIES 11

- Learning Objectives 11
- Key Terms 11
- Diesel Engine Blocks 11
- Crankshafts 14
- Crankshaft Construction 16
- Crankshaft Features 17
- Crankshaft Service 18
- Engine Bearings 19
- Bearing Clearance 22
- Camshaft Bearings 23

SUMMARY 24
REVIEW QUESTIONS 25
CHAPTER QUIZ 25

chapter 3
DIESEL CYLINDER HEADS AND VALVE TRAINS 26

- Learning Objectives 26
- Key Terms 26
- Cylinder Heads 26
- Intake and Exhaust Valves 27
- Valve Seats 28
- Valve Springs 29
- Cylinder Head Passages 30
- Camshaft 31
- Rocker Arms and Bridges 33
- Pushrods 33
- Lifter or Tappets 34
- Camshaft Removal 35
- Cylinder Head Disassembly 35

SUMMARY 37
REVIEW QUESTIONS 38
CHAPTER QUIZ 38

chapter 4
DIESEL ENGINE LUBRICATION SYSTEMS 39

- Learning Objectives 39
- Key Terms 39
- Lubrication Principles 39
- Oil Pumps 40
- Oil Passages 43
- Oil Pans 45
- Engine Oil 46
- API Rating 46
- European Rating System 47
- Oil Filters 47

SUMMARY 50
REVIEW QUESTIONS 50
CHAPTER QUIZ 50

chapter 5
DIESEL ENGINE COOLING SYSTEM 51

- Learning Objectives 51
- Key Terms 51
- Cooling Systems 51
- Cooling System Operation 52
- Thermostats 52
- Radiators 54
- Pressure Caps 55
- Coolant Recovery Systems 56
chapter 6
DIESEL ENGINE CONDITION DIAGNOSIS 68

- Learning Objectives 68
- Key Terms 68
- Typical Engine-Related Complaints 68
- Diagnostic Trouble Codes and Technical Service Bulletins 68
- Visual Inspection 69
- Engine Noise/Vibration Diagnosis 71
- Crankcase Pressure Test 72
- Oil Pressure Testing 73
- Misfire Diagnosis 74
- Engine-Related Misfire Diagnosis 75
- Compression Test 75
- Engine Starting and Charging Diagnosis 77

SUMMARY 80
REVIEW QUESTIONS 81
CHAPTER QUIZ 81

chapter 7
DIESEL ENGINE DISASSEMBLY, CLEANING, AND CRACK DETECTION 82

- Learning Objectives 82
- Key Terms 82
- Preparing the Engine for Removal 82
- Rotating Assemblies Removal 84
- Cylinder Head Disassembly 85
- Mechanical Cleaning 86
- Chemical Cleaners 87
- Spray and Steam Cleaning 87
- Thermal Cleaning 88
- Tank and Vapor Cleaning 88
- Ultrasonic and Vibratory Cleaning 89
- Crack Detection 90

SUMMARY 91
REVIEW QUESTIONS 91
CHAPTER QUIZ 91

chapter 8
DIESEL ENGINE ASSEMBLY 93

- Learning Objectives 93
- Key Terms 93
- Details 93
- Short Block Preparation 93
- Cylinder Head Preparation 94
- Short Block Assembly 94
- Piston/Rod Installation 98
- Cylinder Head Installation 100
- Torque-to-Yield Head Bolts 101
- Valve Train Assembly 103
- Final Assembly 104

SUMMARY 105
REVIEW QUESTIONS 106
CHAPTER QUIZ 106

chapter 9
TURBOCHARGER SYSTEMS 107

- Learning Objectives 107
- Key Terms 107
- Introduction 107
- Turbocharger Purpose and Function 107
- Turbochargers 108
- Boost Control 111
- Variable Geometry Turbocharger 111
- Air Charge Cooler 114
- Turbocharger Diagnosis 114

SUMMARY 116
REVIEW QUESTIONS 116
CHAPTER QUIZ 116
chapter 10
AIR INDUCTION AND EGR SYSTEMS 117
- Learning Objectives 117
- Key Terms 117
- Air Induction System 117
- Air Induction System Diagnosis 120
- Intake Manifold Heater 121
- Glow Plugs 122
- EGR System 124
- EGR System Diagnosis 126

summary 127
review Questions 128
chapter Quiz 128

chapter 11
DIESEL AND BIODIESEL FUELS 129
- Learning Objectives 129
- Key Terms 129
- Diesel Fuel 129
- Biodiesel 132
- E-Diesel Fuel 133

summary 134
review Questions 134
chapter Quiz 134

chapter 12
FUEL SUPPLY AND LOW-PRESSURE FUEL SYSTEMS 135
- Learning Objectives 135
- Key Terms 135
- Low-Pressure Fuel System Components 135
- Low-Pressure Fuel System Service 139

summary 140
review Questions 141
chapter Quiz 141

chapter 13
HIGH-PRESSURE COMMON RAIL DIESEL FUEL SYSTEMS 142
- Learning Objectives 142
- Key Terms 142
- Functions of High-Pressure Injection Systems 142
- High-Pressure Common Rail Injection 144
- High-Pressure Pump 146
- Common Rail Injector 148
- Powertrain Control Module 150
- High-Pressure Common Rail (HPCR) Fuel System Service Procedures 151

summary 155
review Questions 155
chapter Quiz 156

chapter 14
HYDRAULICALLY ACTUATED ELECTRONIC UNIT INJECTOR (HEUI) SYSTEMS 157
- Learning Objectives 157
- Key Terms 157
- HEUI Systems 157
- Control Pressure 158
- Injector Types 159
- HEUI Service and Diagnostics 161

summary 164
review Questions 164
chapter Quiz 164

chapter 15
EXHAUST AND AFTERTREATMENT SYSTEMS 165
- Learning Objectives 165
- Key Terms 165
- Exhaust Chemistry 165
- Exhaust System Components 167
- Diesel Oxidation Catalyst (DOC) 168

summary 170
review Questions 170
chapter Quiz 170