A Roadmap for Selecting a Statistical Method

<table>
<thead>
<tr>
<th>Data Analysis Task</th>
<th>For Numerical Variables</th>
<th>For Categorical Variables</th>
</tr>
</thead>
</table>
| Describing a group or several groups | Ordered array, stem-and-leaf display, frequency distribution, relative frequency distribution, percentage distribution, cumulative percentage distribution, histogram, polygon, cumulative percentage polygon *(Sections 2.2, 2.4)*
Mean, median, mode, geometric mean, quartiles, range, interquartile range, standard deviation, variance, coefficient of variation, skewness, kurtosis, boxplot, normal probability plot *(Sections 3.1, 3.2, 3.3, 6.3)*
Index numbers *(online Section 16.8)*
Dashboards *(Section 17.2)* | Summary table, bar chart, pie chart, doughnut chart, Pareto chart *(Sections 2.1 and 2.3)* |
| Inference about one group | Confidence interval estimate of the mean *(Sections 8.1 and 8.2)*
t test for the mean *(Section 9.2)*
Chi-square test for a variance or standard deviation *(online Section 12.7)* | Confidence interval estimate of the proportion *(Section 8.3)*
Z test for the proportion *(Section 9.4)* |
| Comparing two groups | Tests for the difference in the means of two independent populations *(Section 10.1)*
Wilcoxon rank sum test *(Section 12.4)*
Paired t test *(Section 10.2)*
F test for the difference between two variances *(Section 10.4)*
Wilcoxon signed ranks test *(online Section 12.8)* | Z test for the difference between two proportions *(Section 10.3)*
Chi-square test for the difference between two proportions *(Section 12.1)*
McNemar test for two related samples *(online Section 12.6)* |
| Comparing more than two groups | One-way analysis of variance for comparing several means *(Section 11.1)*
Kruskal-Wallis test *(Section 12.5)*
Randomized block design *(online Section 11.3)*
Two-way analysis of variance *(Section 11.2)*
Friedman rank test *(online Section 12.9)* | Chi-square test for differences among more than two proportions *(Section 12.2)* |
| Analyzing the relationship between two variables | Scatter plot, time series plot *(Section 2.5)*
Covariance, coefficient of correlation *(Section 3.5)*
Simple linear regression *(Chapter 13)*
t test of correlation *(Section 13.7)*
Time-series forecasting *(Chapter 16)*
Sparklines *(Section 2.7)* | Contingency table, side-by-side bar chart, PivotTables *(Sections 2.1, 2.3, 2.6)*
Chi-square test of independence *(Section 12.3)* |
| Analyzing the relationship between two or more variables | Colored scatter plots, bubble chart, treemap *(Section 2.7)*
Multiple regression *(Chapters 14 and 15)*
Dynamic bubble charts *(Section 17.2)*
Regression trees *(Section 17.3)*
Cluster analysis *(Section 17.5)*
Multidimensional scaling *(Section 17.6)* | Multidimensional contingency tables *(Section 2.6)*
Drilldown and slicers *(Section 2.7)*
Logistic regression *(Section 14.7)*
Classification trees *(Section 17.4)*
Multiple correspondence analysis *(Section 17.6)* |
Basic Business Statistics
Concepts and Applications
Basic Business Statistics
Concepts and Applications

FOURTEENTH EDITION

Mark L. Berenson
Department of Information Management and Business Analytics
School of Business, Montclair State University

David M. Levine
Department of Information Systems and Statistics
Zicklin School of Business, Baruch College, City University of New York

Kathryn A. Szabat
Department of Business Systems and Analytics
School of Business, La Salle University

David F. Stephan
Two Bridges Instructional Technology

Pearson
330 Hudson Street, NY NY 10013
To our spouses and children,
Rhoda, Marilyn, Mary, Kathy, Lori, Sharyn, and Mark

and to our parents, in loving memory,
Nat, Ethel, Lee, Reuben, Mary, William, Ruth and Francis J.
Mark L. Berenson, David M. Levine, Kathryn A. Szabat, and David F. Stephan are all experienced business school educators committed to innovation and improving instruction in business statistics and related subjects.

Mark L. Berenson is Professor of Information Management and Business Analytics at Montclair State University and also Professor Emeritus of Information Systems and Statistics at Baruch College. He currently teaches graduate and undergraduate courses in statistics and in operations management in the School of Business and an undergraduate course in international justice and human rights that he co-developed in the College of Humanities and Social Sciences.

Over the years, Berenson has received several awards for teaching and for innovative contributions to statistics education. In 2005, he was the first recipient of the Catherine A. Becker Service for Educational Excellence Award at Montclair State University and, in 2012, he was the recipient of the Khubani/Telebrands Faculty Research Fellowship in the School of Business.

David Levine, Professor Emeritus of Statistics and CIS at Baruch College, CUNY, is a nationally recognized innovator in statistics education for more than three decades. Levine has coauthored 14 books, including several business statistics textbooks; textbooks and professional titles that explain and explore quality management and the Six Sigma approach; and, with David Stephan, a trade paperback that explains statistical concepts to a general audience. Levine has presented or chaired numerous sessions about business education at leading conferences conducted by the Decision Sciences Institute (DSI) and the American Statistical Association, and he and his coauthors have been active participants in the annual DSI Data, Analytics, and Statistics Instruction (DASI) mini-conference. During his many years teaching at Baruch College, Levine was recognized for his contributions to teaching and curriculum development with the College’s highest distinguished teaching honor. He earned B.B.A. and M.B.A. degrees from CCNY, and a Ph.D. in industrial engineering and operations research from New York University.

As Associate Professor of Business Systems and Analytics at La Salle University, Kathryn Szabat has transformed several business school majors into one interdisciplinary major that better supports careers in new and emerging disciplines of data analysis including analytics. Szabat strives to inspire, stimulate, challenge, and motivate students through innovation and curricular enhancements, and shares her coauthors’ commitment to teaching excellence and the continual improvement of statistics presentations. Beyond the classroom she has provided statistical advice to numerous business, nonbusiness, and academic communities, with particular interest in the areas of education, medicine, and nonprofit capacity building. Her research activities have led to journal publications, chapters in scholarly books, and conference presentations. Szabat is a member of the American Statistical Association (ASA), DSI, Institute for Operation Research and Management Sciences (INFORMS), and DSI DASI. She received a B.S. from SUNY-Albany, an M.S. in statistics from the Wharton School of the University of Pennsylvania, and a Ph.D. degree in statistics, with a cognate in operations research, from the Wharton School of the University of Pennsylvania.
Advances in computing have always shaped David Stephan’s professional life. As an undergraduate, he helped professors use statistics software that was considered advanced even though it could compute only several things discussed in Chapter 3, thereby gaining an early appreciation for the benefits of using software to solve problems (and perhaps positively influencing his grades). An early advocate of using computers to support instruction, he developed a prototype of a mainframe-based system that anticipated features found today in Pearson’s MathXL and served as special assistant for computing to the Dean and Provost at Baruch College. In his many years teaching at Baruch, Stephan implemented the first computer-based classroom, helped redevelop the CIS curriculum, and, as part of a FIPSE project team, designed and implemented a multimedia learning environment. He was also nominated for teaching honors. Stephan has presented at SEDSI and DSI DASI (formerly MSMESB) mini-conferences, sometimes with his coauthors. Stephan earned a B.A. from Franklin & Marshall College and an M.S. from Baruch College, CUNY, and completed the instructional technology graduate program at Teachers College, Columbia University.

For all four coauthors, continuous improvement is a natural outcome of their curiosity about the world. Their varied backgrounds and many years of teaching experience have come together to shape this book in ways discussed in the Preface.
Brief Contents

Preface xxiv

First Things First 1

1 Defining and Collecting Data 16
2 Organizing and Visualizing Variables 41
3 Numerical Descriptive Measures 120
4 Basic Probability 168
5 Discrete Probability Distributions 199
6 The Normal Distribution and Other Continuous Distributions 223
7 Sampling Distributions 252
8 Confidence Interval Estimation 275
9 Fundamentals of Hypothesis Testing: One-Sample Tests 311
10 Two-Sample Tests 351
11 Analysis of Variance 398
12 Chi-Square and Nonparametric Tests 440
13 Simple Linear Regression 484
14 Introduction to Multiple Regression 536
15 Multiple Regression Model Building 592
16 Time-Series Forecasting 629
17 Business Analytics 678
18 Getting Ready to Analyze Data in the Future 704
19 Statistical Applications in Quality Management (online) 19-1
20 Decision Making (online) 20-1

Appendices A-H 711

Self-Test Solutions and Answers to Selected Even-Numbered Problems 761

Index 792

Credits 805
Preface xiv

First Things First 1

USING STATISTICS: “The Price of Admission” 1

FTF.1 Think Differently About Statistics 2
Statistics: A Way of Thinking 2
Statistics: An Important Part of Your Business Education 3

FTF.2 Business Analytics: The Changing Face of Statistics 4
“Big Data” 4

FTF.3 Starting Point for Learning Statistics 5
Statistic 5
Can Statistics (pl., statistic) Lie? 6

FTF.4 Starting Point for Using Software 6
Using Software Properly 8

REFERENCES 9
KEY TERMS 9

EXCEL GUIDE 10
EG.1 Getting Started with Excel 10
EG.2 Entering Data 10
EG.3 Open or Save a Workbook 10
EG.4 Working with a Workbook 11
EG.5 Print a Worksheet 11
EG.6 Reviewing Worksheets 11
EG.7 If You Use the Workbook Instructions 11

JMP GUIDE 12
JG.1 Getting Started with JMP 12
JG.2 Entering Data 13
JG.3 Create New Project or Data Table 13
JG.4 Open or Save Files 13
JG.5 Print Data Tables or Report Windows 13
JG.6 JMP Script Files 13

MINITAB GUIDE 14
MG.1 Getting Started with Minitab 14
MG.2 Entering Data 14
MG.3 Open or Save Files 14
MG.4 Insert or Copy Worksheets 15
MG.5 Print Worksheets 15

1 Defining and Collecting Data 16

USING STATISTICS: Defining Moments 16

1.1 Defining Variables 17
Classifying Variables by Type 17
Measurement Scales 18

1.2 Collecting Data 19
Populations and Samples 20
Data Sources 20

1.3 Types of Sampling Methods 21
Simple Random Sample 22
Systematic Sample 22
Stratified Sample 23
Cluster Sample 23

1.4 Data Cleaning 24
Invalid Variable Values 25
Coding Errors 25
Data Integration Errors 25
Missing Values 26
Algorithmic Cleaning of Extreme Numerical Values 26

1.5 Other Data Preprocessing Tasks 26
Data Formatting 26
Stacking and Unstacking Data 27
Recoding Variables 27

1.6 Types of Survey Errors 28
Coverage Error 28
Nonresponse Error 28
Sampling Error 28
Measurement Error 29
Ethical Issues About Surveys 29

CONSIDER THIS: New Media Surveys/Old Survey Errors 29

USING STATISTICS: Defining Moments, Revisited 31

SUMMARY 31
REFERENCES 31
KEY TERMS 31

CHECKING YOUR UNDERSTANDING 32

CHAPTER REVIEW PROBLEMS 32

CASES FOR CHAPTER 1 33
Managing Ashland MultiComm Services 33
CardioGood Fitness 33
Clear Mountain State Student Survey 34
Learning with the Digital Cases 34

CHAPTER 1 EXCEL GUIDE 35
EG1.1 Defining Variables 35
EG1.2 Collecting Data 35
EG1.3 Types of Sampling Methods 35
EG1.4 Data Cleaning 36
EG1.5 Other Data Preprocessing 36

CHAPTER 1 JMP GUIDE 37
JG1.1 Defining Variables 37
JG1.2 Collecting Data 37
JG1.3 Types of Sampling Methods 37
JG1.4 Data Cleaning 38
JG1.5 Other Preprocessing Tasks 39
CHAPTER 1 MINITAB GUIDE 39
MG1.1 Defining Variables 39
MG1.2 Collecting Data 39
MG1.3 Types of Sampling Methods 39
MG1.4 Data Cleaning 40
MG1.5 Other Preprocessing Tasks 40

CHAPTER 2 MINITAB GUIDE 39

CHAPTER 2 JMP GUIDE 102

CHAPTER 2 EXCEL GUIDE 90
EG2.1 Organizing Categorical Variables 90
EG2.2 Organizing Numerical Variables 92
Charts Group Reference 94
EG2.3 Visualizing Categorical Variables 94
EG2.4 Visualizing Numerical Variables 96
EG2.5 Visualizing Two Numerical Variables 99
EG2.6 Organizing a Mix of Variables 100
EG2.7 Visualizing a Mix of Variables 101
EG2.8 Filtering and Querying Data 102

CHAPTER 2 EXCEL GUIDE 102
EG2.1 Organizing Categorical Variables 90
EG2.2 Organizing Numerical Variables 92
Charts Group Reference 94
EG2.3 Visualizing Categorical Variables 94
EG2.4 Visualizing Numerical Variables 96
EG2.5 Visualizing Two Numerical Variables 99
EG2.6 Organizing a Mix of Variables 100
EG2.7 Visualizing a Mix of Variables 101
EG2.8 Filtering and Querying Data 102

CHAPTER 2 MINITAB GUIDE 113
MG2.1 Organizing Categorical Variables 113
MG2.2 Organizing Numerical Variables 113
MG2.3 Visualizing Categorical Variables 113
MG2.4 Visualizing Numerical Variables 115
MG2.5 Visualizing Two Numerical Variables 117
MG2.6 Organizing a Mix of Variables 118
MG2.7 Visualizing a Mix of Variables 118
MG2.8 Filtering and Querying Data 119

CHAPTER 3 JMP GUIDE 112
JG2.1 Organizing Categorical Variables 103
JG2.2 Organizing Numerical Variables 104
JG2.3 Visualizing Categorical Variables 106
JG2.4 Visualizing Numerical Variables 107
JG2.5 Visualizing Two Numerical Variables 109
JG2.6 Organizing a Mix of Variables 110
JG2.7 Visualizing a Mix of Variables 110
JG2.8 Filtering and Querying Data 111
JMP Guide Gallery 112

CHAPTER 3 NUMERICAL DESCRIPTIVE MEASURES 120

CASES FOR CHAPTER 2 88
Managing Ashland MultiComm Services 88
Digital Case 88
CardioGood Fitness 89
The Choice Is Yours Follow-Up 89
Clear Mountain State Student Survey 89

USING STATISTICS: “The Choice Is Yours” 41
2.1 Organizing Categorical Variables 42
The Summary Table 42
The Contingency Table 43
2.2 Organizing Numerical Variables 46
The Frequency Distribution 47
Classes and Excel Bins 49
The Relative Frequency Distribution and the Percentage Distribution 49
The Cumulative Distribution 51
2.3 Visualizing Categorical Variables 54
The Bar Chart 54
The Pie Chart and the Doughnut Chart 55
The Pareto Chart 56
Visualizing Two Categorical Variables 58
2.4 Visualizing Numerical Variables 61
The Stem-and-Leaf Display 61
The Histogram 61
The Percentage Polygon 63
The Cumulative Percentage Polygon (Ogive) 64
2.5 Visualizing Two Numerical Variables 67
The Scatter Plot 67
The Time-Series Plot 68
2.6 Organizing a Mix of Variables 70
Drill-down 71
2.7 Visualizing a Mix of Variables 72
Colored Scatter Plot 72
Bubble Charts 73
PivotChart (Excel) 73
Treemap (Excel, JMP) 73
Sparklines (Excel) 74
2.8 Filtering and Querying Data 75
Excel Slicers 75
2.9 Pitfalls in Organizing and Visualizing Variables 77
Obscuring Data 77
Creating False Impressions 78
Chartjunk 79
EXHIBIT: Best Practices for Creating Visual Summaries 80

USING STATISTICS: “The Choice Is Yours,” Revisited 81
SUMMARY 81
REFERENCES 82
KEY EQUATIONS 82
KEY TERMS 83
CHECKING YOUR UNDERSTANDING 83
CHAPTER REVIEW PROBLEMS 83

USING STATISTICS: More Descriptive Choices 120
3.1 Measures of Central Tendency 121
The Mean 121
The Median 123
The Mode 124
The Geometric Mean 125
3.2 Measures of Variation and Shape 126
The Range 126
The Variance and the Standard Deviation 127
The Coefficient of Variation 130
Z’ Scores 130
Shape: Skewness 132
Shape: Kurtosis 132
3.3 Exploring Numerical Variables 137
Quartiles 137
EXHIBIT: Rules for Calculating the Quartiles from a Set of Ranked Values 137
4 Basic Probability 168

USING STATISTICS: Possibilities at M&R Electronics World 168

4.1 Basic Probability Concepts 169
- Events and Sample Spaces 169
- Types of Probability 170
- Summarizing Sample Spaces 171
- Simple Probability 172
- Joint Probability 173
- Marginal Probability 174
- General Addition Rule 174

4.2 Conditional Probability 178
- Computing Conditional Probabilities 178
- Decision Trees 179
- Independence 181
- Multiplication Rules 182
- Marginal Probability Using the General Multiplication Rule 183

4.3 Ethical Issues and Probability 185

4.4 Bayes’ Theorem 186

CONSIDER THIS: Divine Providence and Spam 188

4.5 Counting Rules 189

USING STATISTICS: Possibilities at M&R Electronics World, Revisited 192

SUMMARY 193
REFERENCES 193
KEY EQUATIONS 193
KEY TERMS 194
CHECKING YOUR UNDERSTANDING 194
CHAPTER REVIEW PROBLEMS 194

CASES FOR CHAPTER 4 196

Digital Case 196
CardioGood Fitness 196
The Choice Is Yours Follow-Up 196
Clear Mountain State Student Survey 196

CHAPTER 4 EXCEL GUIDE 197

EG4.1 Basic Probability Concepts 197
EG4.4 Bayes’ Theorem 197
EG4.5 Counting Rules 197

CHAPTER 4 JMP

JG4.4 Bayes’ Theorem 198

CHAPTER 4 MINITAB GUIDE 198

MG4.5 Counting Rules 198

5 Discrete Probability Distributions 199

USING STATISTICS: Events of Interest at Ricknel Home Centers 199

5.1 The Probability Distribution for a Discrete Variable 200
- Expected Value of a Discrete Variable 200
- Variance and Standard Deviation of a Discrete Variable 201

5.2 Binomial Distribution 204

EXHIBIT: Properties of the Binomial Distribution 204
- Histograms for Discrete Variables 207
- Summary Measures for the Binomial Distribution 208

5.3 Poisson Distribution 211

5.4 Covariance of a Probability Distribution and Its Application in Finance 214

5.5 Hypergeometric Distribution (online) 214

5.6 Using the Poisson Distribution to Approximate the Binomial Distribution (online) 214

USING STATISTICS: Events of Interest…., Revisited 215

SUMMARY 215
REFERENCES 215
The Normal Distribution and Other Continuous Distributions 223

USING STATISTICS: Normal Load Times at MyTVLab 223

6.1 Continuous Probability Distributions 224

6.2 The Normal Distribution 224

EXHIBIT: Normal Distribution Important Theoretical Properties 225

Role of the Mean and the Standard Deviation 226
Calculating Normal Probabilities 227
VISUAL EXPLORATIONS: Exploring the Normal Distribution 231
Finding X Values 232

6.3 Evaluating Normality 237

Comparing Data Characteristics to Theoretical Properties 237
Constructing the Normal Probability Plot 238

6.4 The Uniform Distribution 241

6.5 The Exponential Distribution (online) 243

6.6 The Normal Approximation to the Binomial Distribution (online) 243

USING STATISTICS: Normal Load Times…, Revisited 243

SUMMARY 243
REFERENCES 244
KEY EQUATIONS 244
KEY TERMS 244
CHECKING YOUR UNDERSTANDING 245
CHAPTER REVIEW PROBLEMS 245

7 Sampling Distributions 252

USING STATISTICS: Sampling Oxford Cereals 252

7.1 Sampling Distributions 253

7.2 Sampling Distribution of the Mean 253

The Unbiased Property of the Sample Mean 253
Standard Error of the Mean 255
Sampling from Normally Distributed Populations 256
Sampling from Non-normally Distributed Populations—The Central Limit Theorem 259

EXHIBIT: Normality and the Sampling Distribution of the Mean 260
VISUAL EXPLORATIONS: Exploring Sampling Distributions 263

7.3 Sampling Distribution of the Proportion 264

7.4 Sampling from Finite Populations (online) 267

USING STATISTICS: Sampling Oxford Cereals, Revisited 267

SUMMARY 268
REFERENCES 268
KEY EQUATIONS 268
KEY TERMS 268
CHECKING YOUR UNDERSTANDING 269
CHAPTER REVIEW PROBLEMS 269

CASES FOR CHAPTER 7 270

Managing Ashland MultiComm Services 270
Digital Case 271

CHAPTER 7 EXCEL GUIDE 272
EG7.2 Sampling Distribution of the Mean 272

CHAPTER 7 JMP GUIDE 273
JG7.2 Sampling Distribution of the Mean 273

CHAPTER 7 MINITAB GUIDE 274
MG7.2 Sampling Distribution of the Mean 274
CHAPTER 10 EXCEL GUIDE 388
EG10.1 Comparing The Means of Two Independent Populations 388
EG10.2 Comparing The Means of Two Related Populations 390
EG10.3 Comparing The Proportions of Two Independent Populations 391
EG10.4 F Test For The Ratio of Two Variances 392

CHAPTER 10 JMP GUIDE 393
JG10.1 Comparing The Means of Two Independent Populations 393
JG10.2 Comparing The Means of Two Related Populations 394
JG10.3 Comparing The Proportions of Two Independent Populations 394
JG10.4 F Test For The Ratio of Two Variances 394

CHAPTER 10 MINITAB GUIDE 395
MG10.1 Comparing The Means of Two Independent Populations 395
MG10.2 Comparing The Means of Two Related Populations 396
MG10.3 Comparing The Proportions of Two Independent Populations 396
MG10.4 F Test For The Ratio of Two Variances 397

11 Analysis of Variance 398

USING STATISTICS: The Means to Find Differences at Arlingtons 398

11.1 The Completely Randomized Design: One-Way ANOVA 399
Analyzing Variation in One-Way ANOVA 400
F Test for Differences Among More Than Two Means 402
One-Way ANOVA F Test Assumptions 407
Levene Test for Homogeneity of Variance 407
Multiple Comparisons: The Tukey-Kramer Procedure 409
The Analysis of Means (ANOM) 411

11.2 The Factorial Design: Two-Way ANOVA 414
Factor and Interaction Effects 415
Testing for Factor and Interaction Effects 416
Multiple Comparisons: The Tukey Procedure 420
Visualizing Interaction Effects: The Cell Means Plot 421
Interpreting Interaction Effects 422

11.3 The Randomized Block Design (online) 426

11.4 Fixed Effects, Random Effects, and Mixed Effects Models (online) 426

USING STATISTICS: The Means to Find Differences at Arlingtons Revisited 426

SUMMARY 426
REFERENCES 427
KEY EQUATIONS 427
KEY TERMS 428
CHECKING YOUR UNDERSTANDING 428
CHAPTER REVIEW PROBLEMS 428

CASES FOR CHAPTER 11 430
Managing Ashland MultiComm Services 430
Digital Case 431
Sure Value Convenience Stores 431
CardioGood Fitness 431
More Descriptive Choices Follow-Up 431
Clear Mountain State Student Survey 431
CHAPTER 11 EXCEL GUIDE 432
EG11.1 The Completely Randomized Design: One-Way ANOVA 432
EG11.2 The Factorial Design: Two-Way Anova 434
CHAPTER 11 JMP GUIDE 435
JG11.1 The Completely Randomized Design: One-Way ANOVA 435
JG11.2 The Factorial Design: Two-Way Anova 436
CHAPTER 11 MINITAB GUIDE 437
MG11.1 The Completely Randomized Design: One-Way ANOVA 437
MG11.2 The Factorial Design: Two-Way Anova 438

12 Chi-Square and Nonparametric Tests 440

USING STATISTICS: Avoiding Guesswork About Resort Guests 440
12.1 Chi-Square Test for the Difference Between Two Proportions 441
12.2 Chi-Square Test for Differences Among More Than Two Proportions 448
The Marascuilo Procedure 451
The Analysis of Proportions (ANOP) 453
12.3 Chi-Square Test of Independence 454
12.4 Wilcoxon Rank Sum Test for Two Independent Populations 460
12.5 Kruskal-Wallis Rank Test for the One-Way ANOVA 466
Assumptions of the Kruskal-Wallis Rank Test 469
12.6 McNemar Test for the Difference Between Two Proportions (Related Samples) (online) 470
12.7 Chi-Square Test for the Variance or Standard Deviation (online) 470
12.8 Wilcoxon Signed Ranks Test for Two Related Populations (online) 471
12.9 Friedman Rank Test for the Randomized Block Design (online) 471

USING STATISTICS: Avoiding Guesswork..., Revisited 471

SUMMARY 471
REFERENCES 472
KEY EQUATIONS 472
KEY TERMS 473
CHECKING YOUR UNDERSTANDING 473
CHAPTER REVIEW PROBLEMS 473

CASES FOR CHAPTER 12 475
Managing Ashland MultiComm Services 475
Digital Case 476
Sure Value Convenience Stores 476
CardioGood Fitness 476
More Descriptive Choices Follow-Up 477
Clear Mountain State Student Survey 477

CHAPTER 12 EXCEL GUIDE 478
EG12.1 Chi-Square Test for the Difference Between Two Proportions 478
EG12.2 Chi-Square Test for Differences Among More Than Two Proportions 478

EG12.3 Chi-Square Test of Independence 479
EG12.4 Wilcoxon Rank Sum Test: A Nonparametric Method for Two Independent Populations 479
EG12.5 Kruskal-Wallis Rank Test: A Nonparametric Method for the One-Way ANOVA 480

CHAPTER 12 JMP GUIDE 481
JG12.1 Chi-Square Test for the Difference Between Two Proportions 481
JG12.2 Chi-Square Test for Difference Among More Than Two Proportions 481
JG12.3 Chi-Square Test Of Independence 481
JG12.4 Wilcoxon Rank Sum Test For Two Independent Populations 481
JG12.5 Kruskal-Wallis Rank Test For The One-Way Anova 482

CHAPTER 12 MINITAB GUIDE 482
MG12.1 Chi-Square Test For The Difference Between Two Proportions 482
MG12.2 Chi-Square Test for Differences Among More Than Two Proportions 483
MG12.3 Chi-Square Test of Independence 483
MG12.4 Wilcoxon Rank Sum Test: A Nonparametric Method for Two Independent Populations 483
MG12.5 Kruskal-Wallis Rank Test: A Nonparametric Method for The One-Way ANOVA 483

13 Simple Linear Regression 484

USING STATISTICS: Knowing Customers at Sunflowers Apparel 484
Preliminary Analysis 485
13.1 Simple Linear Regression Models 486
13.2 Determining the Simple Linear Regression Equation 487
The Least-Squares Method 487
Predictions in Regression Analysis: Interpolation Versus Extrapolation 490
Computing the Y Intercept, b0 and the Slope, b1 491
VISUAL EXPLORATIONS: Exploring Simple Linear Regression Coefficients 493
13.3 Measures of Variation 495
Computing the Sum of Squares 495
The Coefficient of Determination 496
Standard Error of the Estimate 498
13.4 Assumptions of Regression 500
13.5 Residual Analysis 500
Evaluating the Assumptions 500
13.6 Measuring Autocorrelation: The Durbin-Watson Statistic 504
Residual Plots to Detect Autocorrelation 504
The Durbin-Watson Statistic 505
13.7 Inferences About the Slope and Correlation Coefficient 508
t Test for the Slope 508
F Test for the Slope 509
Confidence Interval Estimate for the Slope 511
t Test for the Correlation Coefficient 511
16.4 Autoregressive Modeling for Trend Fitting and Forecasting 647
 Selecting an Appropriate Autoregressive Model 648
 Determining the Appropriateness of a Selected Model 649
 EXHIBIT: Autoregressive Modeling Steps 651

16.5 Choosing an Appropriate Forecasting Model 655
 Residual Analysis 655
 The Magnitude of the Residuals Through Squared or Absolute Differences 656
 The Principle of Parsimony 656
 A Comparison of Four Forecasting Methods 657

16.6 Time-Series Forecasting of Seasonal Data 659
 Least-Squares Forecasting with Monthly or Quarterly Data 659

16.7 Index Numbers (online) 665

CONSIDER THIS: Let the Model User Beware 665

USING STATISTICS: Is the ByYourDoor Service Trending? 629

16.1 Time Series Component Factors 630
16.2 Smoothing an Annual Time Series 632
 Moving Averages 633
 Exponential Smoothing 635
16.3 Least-Squares Trend Fitting and Forecasting 637
 The Linear Trend Model 637
 The Quadratic Trend Model 639
 The Exponential Trend Model 640
 Model Selection Using First, Second, and Percentage Differences 642

EXHIBIT: Model Selection Using First, Second, and Percentage Differences 642

17 Business Analytics 678

USING STATISTICS: Back to Arlingtons for the Future 678

17.1 Business Analytics Categories 679
 Inferential Statistics and Predictive Analytics 680
 Supervised and Unsupervised Methods 680

CONSIDER THIS: What’s My Major if I Want to be a Data Miner? 681
17.2 Descriptive Analytics 682
 Dashboards 682
 Data Dimensionality and Descriptive Analytics 683
17.3 Predictive Analytics for Prediction 684
17.4 Predictive Analytics for Classification 687
17.5 Predictive Analytics for Clustering 688
17.6 Predictive Analytics for Association 691
 Multidimensional scaling (MDS) 692
17.7 Text Analytics 693
17.8 Prescriptive Analytics 694

USING STATISTICS: Back to Arlingtons…., Revisited 695

REFERENCES 696
KEY EQUATIONS 696
KEY TERMS 696
CHECKING YOUR UNDERSTANDING 696
CHAPTER REVIEW PROBLEMS 696

CASES FOR CHAPTER 17 698
 The Mountain States Potato Company 698
 The Craybill Instrumentation Company 698

CHAPTER 17 SOFTWARE GUIDE 699
 Introduction 699
 SG17.2 Descriptive Analytics 699
 SG17.3 Predictive Analytics for Prediction 701
 SG17.4 Predictive Analytics for Classification 701
 SG17.5 Predictive Analytics for Clustering 702
 SG17.6 Predictive Analytics for Association 702

18 Getting Ready to Analyze Data in the Future 704

USING STATISTICS: Mounting Future Analyses 704

18.1 Analyzing Numerical Variables 705
 EXHIBIT: Questions to Ask When Analyzing Numerical Variables 705
 Describe the Characteristics of a Numerical Variable? 705
 Reach Conclusions About the Population Mean or the Standard Deviation? 705
 Determine Whether the Mean and/or Standard Deviation Differ Depending on the Group? 706
 Determine Which Factors Affect the Value of a Variable? 706
 Predict the Value of a Variable Based on the Values of Other Variables? 707
 Classify or Associate Items 707
 Determine Whether the Values of a Variable Are Stable Over Time? 707

18.2 Analyzing Categorical Variables 707
 EXHIBIT: Questions to Ask When Analyzing Categorical Variables 707
 Describe the Proportion of Items of Interest in Each Category? 707
 Reach Conclusions About the Proportion of Items of Interest? 708
 Determine Whether the Proportion of Items of Interest Differ Depending on the Group? 708
 Predict the Proportion of Items of Interest Based on the Values of Other Variables? 708
 Classify or Associate Items 708
 Determine Whether the Proportion of Items of Interest Is Stable Over Time? 708

USING STATISTICS: The Future to Be Visited 709

CHAPTER REVIEW PROBLEMS 709

19 Statistical Applications in Quality Management (online) 19-1

USING STATISTICS: Finding Quality at the Beachcomber 19-1
19.1 The Theory of Control Charts 19-2
19.2 Control Chart for the Proportion: The p Chart 19-4
19.3 The Red Bead Experiment: Understanding Process Variability 19-10
19.4 Control Chart for an Area of Opportunity: The c Chart 19-12
19.5 Control Charts for the Range and the Mean 19-15
 The R Chart 19-16
 The X Chart 19-18
19.6 Process Capability 19-15
 Customer Satisfaction and Specification Limits 19-21
 Capability Indices 19-23
 CPL, CPU, and CPL 19-24
19.7 Total Quality Management 19-26
19.8 Six Sigma 19-28
 The DMAIC Model 19-29
 Roles in a Six Sigma Organization 19-30
 Lean Six Sigma 19-30

USING STATISTICS: Finding Quality at the Beachcomber, Revisited 19-31
SUMMARY 19-31
REFERENCES 19-32
KEY EQUATIONS 19-32
KEY TERMS 19-33
CHAPTER REVIEW PROBLEMS 19-34

CASES FOR CHAPTER 19 19-36
 The Harnwell Sewing Machine Company Case 19-36
 Managing Ashland Multicomm Services 19-38

CHAPTER 19 EXCEL GUIDE 19-39
 EG19.2 Control Chart for the Proportion: The p Chart 19-39
 EG19.4 Control Chart for an Area of Opportunity: The c Chart 19-40
 EG19.5 Control Charts for the Range and the Mean 19-41
 EG19.6 Process Capability 19-42

CHAPTER 19 JMP GUIDE 19-43
 JG19.2 Control Chart for the Proportion: The p Chart 19-43
 JG19.4 Control Chart for an Area of Opportunity: The c Chart 19-44
 JG19.5 Control Charts for the Range and the Mean 19-45
 JG19.6 Process Capability 19-46
As business statistics evolves and becomes an increasingly important part of one’s business education, how business statistics gets taught and what gets taught becomes all the more important.

We, the authors, think about these issues as we seek ways to continuously improve the teaching of business statistics. We actively participate in Decision Sciences Institute (DSI), American Statistical Association (ASA), and Data, Analytics, and Statistics Instruction and Business (DASI) conferences. We use the ASA’s Guidelines for Assessment and Instruction (GAISE) reports and combine them with our experiences teaching business statistics to a diverse student body at several universities.

When writing for introductory business statistics students, five principles guide us.

Help students see the relevance of statistics to their own careers by using examples from the functional areas that may become their areas of specialization. Students need to learn statistics in the context of the functional areas of business. We present each statistics topic in the context of areas such as accounting, finance, management, and marketing and explain the application of specific methods to business activities.

Emphasize interpretation and analysis of statistical results over calculation. We emphasize the interpretation of results, the evaluation of the assumptions, and the discussion of what should be done if the assumptions are violated. We believe that these activities are more important to students’ futures and will serve them better than focusing on tedious manual calculations.

Give students ample practice in understanding how to apply statistics to business. We believe that both classroom examples and homework exercises should involve actual or realistic data, using small and large sets of data, to the extent possible.

Familiarize students with the use of data analysis software. We integrate using Microsoft Excel, JMP, and Minitab into all statistics topics to illustrate how software can assist the business decision making process. (Using software in this way also supports our second point about emphasizing interpretation over calculation).

Provide clear instructions to students that facilitate their use of data analysis software. We believe that providing such instructions assists learning and minimizes the chance that the software will distract from the learning of statistical concepts.

What’s New in This Edition?

This fourteenth edition of *Basic Business Statistics* features many passages rewritten in a more concise style that emphasize definitions as the foundation for understanding statistical concepts. In addition to changes that readers of past editions have come to expect, such as new examples and Using Statistics case scenarios and an extensive number of new end-of-section or end-of-chapter problems, the edition debuts:

- **A First Things First Chapter** that builds on the previous edition’s novel Important Things to Learn First Chapter by using real-world examples to illustrate how developments such as the increasing use of business analytics and “big data” have made knowing and understanding statistics that much more critical. This chapter is available as complimentary online download, allowing students to get a head start on learning.
• **JMP Guides** that provide detailed, hands-on instructions for using JMP to illustrate the concepts that this book teaches. JMP provides a starting point for continuing studies in business statistics and business analytics and features visualizations that are easy to construct and that summarize data in innovative ways. The JMP Guides join the Excel and Minitab Guides, themselves updated to reflect the most recent editions of those programs.

• **Tabular Summaries** that state hypothesis test and regression example results along with the conclusions that those results support now appear in Chapters 9 through 15.

• **An All-New Business Analytics Chapter (Chapter 17)** that makes extensive use of JMP and Minitab to illustrate predictive analytics for prediction, classification, clustering, and association as well as explaining what text analytics does and how descriptive and prescriptive analytics relate to predictive analytics. This chapter benefits from the insights the coauthors have gained from teaching and lecturing on business analytics as well as research the coauthors have done for a companion title on business analytics forthcoming for Fall 2018.

Continuing Features that Readers Have Come to Expect

This edition of *Basic Business Statistics* continues to incorporate a number of distinctive features that has led to its wide adoption over the previous editions. Table 1 summarizes these carry-over features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Statistics Business Scenarios</td>
<td>A Using Statistics scenario that highlights how statistics is used in a business functional area begins each chapter. Each scenario provides an applied context for learning in its chapter. End-of-chapter “Revisited” sections reinforces the statistical methods that a chapter discusses and apply those methods to the questions raised in the scenario. In this edition, seven chapters have new or revised Using Statistics scenarios.</td>
</tr>
<tr>
<td>Emphasis on Data Analysis and Interpretation of Results</td>
<td>Basic Business Statistics was among the first business statistics textbooks to focus on interpretation of the results of a statistical method and not on the mathematics of a method. This tradition continues, now supplemented by JMP results complimenting the Excel and Minitab results of recent prior editions.</td>
</tr>
<tr>
<td>Software Integration</td>
<td>Software instructions in this book feature chapter examples and were personally written by the authors, who collectively have over one hundred years experience teaching the application of software to business. Software usage also features templates and applications developed by the authors that minimize the frustration of using software while maximizing statistical learning</td>
</tr>
<tr>
<td>Opportunities for Additional Learning</td>
<td>Student Tips, LearnMore bubbles, and Consider This features extend student-paced learning by reinforcing important points or examining side issues or answering questions that arise while studying business statistics such as “What is so ‘normal’ about the normal distribution?”</td>
</tr>
<tr>
<td>Highly Tailorable Context</td>
<td>With an extensive library of separate online topics, sections, and even two full chapters, instructors can combine these materials and the opportunities for additional learning to meet their curricular needs.</td>
</tr>
<tr>
<td>Software Flexibility</td>
<td>With modularized software instructions, instructors and students can switch among Excel, Excel with PHStat, JMP, and Minitab as they use this book, taking advantage of the strengths of each program to enhance learning.</td>
</tr>
</tbody>
</table>
TABLE 1 Distinctive Features Continued in the Fourteenth Edition (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>End-of-Section and End-of-Chapter Reinforcements</td>
<td>“Exhibits” summarize key processes throughout the book. “Key Terms” provides an index to the definitions of the important vocabulary of a chapter. “Learning the Basics” questions test the basic concepts of a chapter. “Applying the Concepts” problems test the learner’s ability to apply those problems to business problems. For the more quantitatively-minded, “Key Equations” list the boxed number equations that appear in a chapter.</td>
</tr>
<tr>
<td>Innovative Cases</td>
<td>End-of-chapter cases include a case that continues through many chapters as well as “Digital Cases” that require students to examine business documents and other information sources to sift through various claims and discover the data most relevant to a business case problem as well as common misuses of statistical information. (Instructional tips for these cases and solutions to the Digital Cases are included in the Instructor’s Solutions Manual.)</td>
</tr>
<tr>
<td>Answers to Even-Numbered Problems</td>
<td>An appendix provides additional self-study opportunities by provides answers to the “Self-Test” problems and most of the even-numbered problems in this book.</td>
</tr>
<tr>
<td>Unique Excel Integration</td>
<td>Many textbooks feature Microsoft Excel, but Basic Business Statistics comes from the authors who originated both the Excel Guide workbooks that illustrate model solutions, developed Visual Explorations that demonstrate selected basic concepts, and designed and implemented PHStat, the Pearson statistical add-in for Excel that places the focus on statistical learning. (See Appendix H for a complete summary of PHStat.)</td>
</tr>
</tbody>
</table>

Chapter-by-Chapter Changes Made for This Edition

Because the authors believe in continuous quality improvement, *every chapter of Basic Business Statistics* contains changes to enhance, update, or just freshen this book. Table 2 provides a chapter-by-chapter summary of these changes.

TABLE 2 Chapter-by-Chapter Change Matrix

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Using Statistics Changed</th>
<th>JMP Guide Changed</th>
<th>Problems Changed</th>
<th>Selected Chapter Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTF</td>
<td>•</td>
<td>•</td>
<td>n.a.</td>
<td>Think Differently About Statistics Starting Point for Learning Statistics</td>
</tr>
<tr>
<td>1</td>
<td>•</td>
<td>•</td>
<td>40%</td>
<td>Data Cleaning Other Data Preprocessing Tasks</td>
</tr>
<tr>
<td>2</td>
<td>•</td>
<td>•</td>
<td>60%</td>
<td>Organizing a Mix of Variables Visualizing A Mix of Variables Filtering and Querying Data Reorganized categorical variables discussion. Expanded data visualization discussion. New samples of 379 retirement funds and 100 restaurant meal costs for examples.</td>
</tr>
<tr>
<td>3</td>
<td>•</td>
<td>•</td>
<td>50%</td>
<td>New samples of 379 retirement funds and 100 restaurant meal costs for examples. Updated NBA team values data set.</td>
</tr>
<tr>
<td>Chapter</td>
<td>Using Statistics Changed</td>
<td>JMP Guide</td>
<td>Problems Changed</td>
<td>Selected Chapter Changes</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>4</td>
<td>•</td>
<td>43%</td>
<td></td>
<td>Basic Probability Concepts rewritten. Bayes’ theorem example moved online</td>
</tr>
<tr>
<td>5</td>
<td>•</td>
<td>60%</td>
<td></td>
<td>Section 5.1 and Binomial Distribution revised. Covariance of a Probability Distribution and The Hypergeometric Distribution moved online.</td>
</tr>
<tr>
<td>6</td>
<td>•</td>
<td>33%</td>
<td></td>
<td>Normal Distribution rewritten. The Exponential Distribution moved online.</td>
</tr>
<tr>
<td>7</td>
<td>•</td>
<td>47%</td>
<td></td>
<td>Sampling Distribution of the Proportion rewritten.</td>
</tr>
<tr>
<td>8</td>
<td>•</td>
<td>40%</td>
<td></td>
<td>Confidence Interval Estimate for the Mean revised. Revised “Managing Ashland MultiComm Services” continuing case.</td>
</tr>
<tr>
<td>9</td>
<td>•</td>
<td>20%</td>
<td></td>
<td>Chapter introduction revised. Section 9.1 rewritten. New Section 9.4 example.</td>
</tr>
<tr>
<td>10</td>
<td>•</td>
<td>45%</td>
<td></td>
<td>New Effect Size (online). Using Statistics scenario linked to Chapter 11 and 17. New paired t test and the difference between two proportions examples.</td>
</tr>
<tr>
<td>11</td>
<td>•</td>
<td>20%</td>
<td></td>
<td>New Using Statistics scenario data. The Randomized Block Design moved online.</td>
</tr>
<tr>
<td>12</td>
<td>•</td>
<td>42%</td>
<td></td>
<td>Extensive use of new tabular summaries. Revised “Managing Ashland MultiComm Services” continuing case.</td>
</tr>
<tr>
<td>13</td>
<td>•</td>
<td>46%</td>
<td></td>
<td>Chapter introduction revised. Section 13.2 revised.</td>
</tr>
<tr>
<td>14</td>
<td>•</td>
<td>30%</td>
<td></td>
<td>Section 14.1 revised. Section 14.3 reorganized and revised. New dummy variable example. Influence Analysis moved online.</td>
</tr>
<tr>
<td>15</td>
<td>•</td>
<td>37%</td>
<td></td>
<td>Using Transformations in Regression Models rewritten and expanded. Model Building rewritten</td>
</tr>
<tr>
<td>16</td>
<td>•</td>
<td>67%</td>
<td></td>
<td>Chapter introduction reorganized and revised. All-new chapter examples.</td>
</tr>
<tr>
<td>17</td>
<td>•</td>
<td>42%</td>
<td></td>
<td>All-new chapter. Predictive analytics discussion expanded Uses JMP and Minitab extensively.</td>
</tr>
<tr>
<td>18</td>
<td>47%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Serious About Writing Improvements

Ever review a textbook that reads the same as an edition from years ago? Or read a preface that claims writing improvements but offers no evidence? Among the writing improvements in this edition of *Basic Business Statistics*, the authors have turned to tabular summaries to guide readers to reaching conclusions and making decisions based on statistical information. The authors believe that this writing improvement, which appears in Chapters 9 through 15, not only adds clarity to the purpose of the statistical method being discussed but better illustrates the role of statistics in business decision-making processes. Judge for yourself using the sample from Chapter 10 Example 10.1.

Previously, part of the solution to Example 10.1 was presented as:

You do not reject the null hypothesis because \(t_{\text{STAT}} = -1.6341 \geq -1.7341 \). The \(p \)-value (as computed in Figure 10.5) is 0.0598. This \(p \)-value indicates that the probability that \(t_{\text{STAT}} < -1.6341 \) is equal to 0.0598. In other words, if the population means are equal, the probability that the sample mean delivery time for the local pizza restaurant is at least 2.18 minutes faster than the national chain is 0.0598. Because the \(p \)-value is greater than \(a = 0.05 \), there is insufficient evidence to reject the null hypothesis. Based on these results, there is insufficient evidence for the local pizza restaurant to make the advertising claim that it has a faster delivery time.

In this edition, we present the equivalent solution (on page 357):

Table 10.4 summarizes the results of the pooled-variance \(t \) test for the pizza delivery data using the calculation above (not shown in this sample) and Figure 10.5 results. Based on the conclusions, local branch of the national chain and a local pizza restaurant have similar delivery times. Therefore, as part of the last step of the DCOVA framework, you and your friends exclude delivery time as a decision criteria when choosing from which store to order pizza.

<table>
<thead>
<tr>
<th>Result</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The (t_{\text{STAT}} = -1.6341) is greater than (-1.7341). The (t) test (p)-value = 0.0598 is greater than the level of significance, (a = 0.05).</td>
<td>1. Do not reject the null hypothesis (H_0). 2. Conclude that insufficient evidence exists that the mean delivery time is lower for the local restaurant than for the branch of the national chain. 3. There is a probability of 0.0598 that (t_{\text{STAT}} < -1.6341).</td>
</tr>
</tbody>
</table>

A Note of Thanks

Creating a new edition of a textbook is a team effort, and we thank our Pearson Education editorial, marketing, and production teammates: Suzanna Bainbridge, Dana Bettez, Kaylee Carlson, Deirdre Lynch, Stephanie Green, and Morgan Danna. Special thanks to the recently-retired Sherry Berg for her design and production oversight in helping to get this edition underway. (Her contributions will be missed!) And we would be remiss not to note the continuing work of Joe Vetere to prepare our screen shot illustrations and the efforts of Julie Kidd of SPi Global to ensure that this edition meets the highest standard of book production quality that is possible.

We also thank Alan Chesen of Wright State University for his diligence in being the accuracy checker for this edition and thank the following people whose comments helped us improve this edition: Mohammad Ahmadi, University of Tennessee-Chattanooga; Sung Ahn,
We thank the RAND Corporation and the American Society for Testing and Materials for their kind permission to publish various tables in Appendix E, and to the American Statistical Association for its permission to publish diagrams from the American Statistician. Finally, we would like to thank our families for their patience, understanding, love, and assistance in making this book a reality.

Contact Us!

Please email us at authors@davidlevinestatistics.com or tweet us @BusStatBooks with your questions about the contents of this book. Please include the hashtag #BBS14 in your tweet or in the subject line of your email. We also welcome suggestions you may have for a future edition of this book. And while we have strived to make this book as error-free as possible, we also appreciate those who share with us any perceived problems or errors that they encounter.

If you need assistance using software, please contact your academic support person or Pearson Support at support.pearson.com/getsupport/. They have the resources to resolve and walk you through a solution to many technical issues in a way we do not.

As you use this book, be sure to make use of the "Resources for Success" that Pearson Education supplies for this book (described on the following pages). We also invite you to visit bbs14.davidlevinestatistics.com (bit.ly/2xwQoBT), where we may post additional information or new content as necessary.

Mark L. Berenson
David M. Levine
Kathryn A. Szabat
David F. Stephan
Get the Most Out of MyLab Statistics

MyLab™ Statistics is the leading online homework, tutorial, and assessment program for teaching and learning statistics, built around Pearson’s best-selling content. MyLab Statistics helps students and instructors improve results; it provides engaging experiences and personalized learning for each student so learning can happen in any environment. Plus, it offers flexible and time-saving course management features to allow instructors to easily manage their classes while remaining in complete control, regardless of course format.

Preparedness

One of the biggest challenges in many mathematics and statistics courses is making sure students are adequately prepared with the prerequisite skills needed to successfully complete their course work. Pearson offers a variety of content and course options to support students with just-in-time remediation and key-concept review.

• Build homework assignments, quizzes, and tests to support your course learning outcomes. From Getting Ready (GR) questions to the Conceptual Question Library (CQL), we have your assessment needs covered from the mechanics to the critical understanding of Statistics. The exercise libraries include technology-led instruction, including new Excel-based exercises, and learning aids to reinforce your students’ success.

• Using proven, field-tested technology, auto-graded Excel Projects allow instructors to seamlessly integrate Microsoft® Excel® content into their course without having to manually grade spreadsheets. Students have the opportunity to practice important statistical skills in Excel, helping them to master key concepts and gain proficiency with the program.

Used by more than 37 million students worldwide, MyLab Statistics delivers consistent, measurable gains in student learning outcomes, retention, and subsequent course success.

pearson.com/mylab/statistics
Resources for Success

MyLab™ Statistics Online Course for Basic Business Statistics by Berenson/Levine/Szabat/Stephan (requires access code for use)

MyLab™ Statistics is available to accompany Pearson’s market leading text offerings. To give students a consistent tone, voice, and teaching method each text’s flavor and approach is tightly integrated throughout the accompanying MyLab Statistics course, making learning the material as seamless as possible.

New! Auto-Graded Excel Grader Projects
Using proven, field-tested technology, auto-graded Excel Projects allow instructors to seamlessly integrate Microsoft® Excel® content into their course without having to manually grade spreadsheets.
Students have the opportunity to practice important statistical skills in Excel, helping them to master key concepts and gain proficiency with the program.

Tutorials and Study Cards for Statistical Software
Tutorials provide brief video walkthroughs and step-by-step instructional study cards on common statistical procedures such as confidence interval estimation, ANOVA, regression, and hypothesis testing. Tutorials and study cards are supplied for Excel 2013 and 2016, Excel with PHStat, JMP, and Minitab.

Diverse Question Libraries
Build homework assignments, quizzes, and tests to support your course learning outcomes. From Getting Ready (GR) questions to the Conceptual Question Library (CQL), we have your assessment needs covered from the mechanics to the critical understanding of Statistics. The exercise libraries include technology-led instruction, including new Excel-based exercises, and learning aids to reinforce your students’ success.

pearson.com/mylab/statistics
Resources for Success

Instructor Resources

Instructor’s Solutions Manual, by Alan Chesen, Wright State University, presents solutions for end-of-section and end-of-chapter problems and answers to case questions, and provides teaching tips for each chapter. The Instructor’s Solutions Manual is available for download at www.Pearson.com or in MyLab Statistics.

Lecture PowerPoint Presentations, by Patrick Schur, Miami University (Ohio), are available for each chapter. These presentations provide instructors with individual lecture notes to accompany the text. The slides include many of the figures and tables from the textbook. Instructors can use these lecture notes as is or customize them in Microsoft PowerPoint. The PowerPoint presentations are available for download at www.Pearson.com or in MyLab Statistics.

Test Bank contains true/false, multiple-choice, fill-in, and problem-solving questions based on the definitions, concepts, and ideas developed in each chapter of the text. The Test Bank is available for download at www.Pearson.com or in MyLab Statistics.

TestGen (www.pearsoned.com/testgen) enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text. TestGen is algorithmically based, allowing instructors to create multiple but equivalent versions of the same question or test with the click of a button. Instructors can also modify test bank questions or add new questions. The software and test bank are available for download from Pearson Education’s online catalog.

Student Resources

Student’s Solutions Manual, by Alan Chesen, Wright State University, provides detailed solutions to virtually all the even-numbered exercises and worked-out solutions to the self-test problems. (ISBN-13: 978-0-13-468504-5)

Online resources complement and extend the study of business statistics and support the content of this book. These resources include **data files** for in-chapter examples and problems, **templates and model solutions**, and **optional topics and chapters**. (See Appendix C for a complete description of the online resources.)

PHStat helps create Excel worksheet solutions to statistical problems. PHStat uses Excel building blocks to create worksheet solutions. These worksheet solutions illustrate Excel techniques and students can examine them to gain new Excel skills. Additionally, many solutions are what-if templates in which the effects of changing data on the results can be explored. Such templates are fully reusable on any computer on which Excel has been installed. PHStat requires an access code and separate download for use. PHStat access codes can be bundled with this textbook using ISBN-13: 978-0-13-468497-0.

More than 4,000 colleges and universities worldwide use Minitab software to help students learn quickly and to provide them with a skill-set that’s in demand in today’s data-driven workforce. Minitab includes a comprehensive collection of statistical tools to teach beginning through advanced courses. Bundling Minitab software ensures students have the software they need for the duration of their course work. (ISBN-10: 0-13-445640-8; ISBN-13: 978-0-13-445640-9)