MECHANICAL AND ELECTRICAL SYSTEMS IN BUILDINGS

Sixth Edition

Richard R. Janis
M.S., M. Arch., P.E., Registered Architect, LEED AP
Senior Lecturer
School of Engineering and School of Architecture
Washington University

William K. Y. Tao
M.S., D.Sc., P.E.
Affiliate Professor
School of Engineering and School of Architecture
Washington University

Pearson
330 Hudson Street, NY, NY 10013
This book on mechanical and electrical systems covers five major disciplines: HVAC, plumbing and fire protection, electrical power and telecommunications, illumination, and noise and vibration control.

Coauthors Richard R. Janis and William K.Y. Tao have both taught university courses on mechanical and electrical systems for more than 30 years while working as consulting engineers. Their various courses have emphasized the roles of participants in the building process as well as the theories and technologies of system design. In 1989, they finished the first edition of this text in response to the need for a text that was up to date with current practice, emphasizing the Why? and the How? as energy and well as the What?

The topics covered in this book are in a state of continuous advancement, triggering the need for substantial updating every few years. This sixth edition incorporates new developments in all the major disciplines, with updates on electrical, lighting, telecom, plumbing, and HVAC.

New items in the sixth edition include:

- Life-cycle cost analyses including societal cost of pollution and economic benefits of indoor environmental quality (IEQ)
- An entire chapter exploring energy impact and economics of various generic architectural and systems options
- VRF heat pump and heat recovery operations using three pipe technology
- Operation of condensing boilers and furnaces and direct fired heating
- Energy and comfort advantages of high-volume, low-speed (HVLS) fans
- EPA WaterSense, the latest development in water conserving fixtures
- Economics of solar photovoltaic systems

The U.S. building industry is embracing sustainable design principles, which were part of the authors’ practice and course offerings long before the concept was accepted. Sustainable design means that engineers, architects, owners, contractors, and facility managers must interact in a team effort to provide high-quality, productive environments for people while considering the impact of their decisions on the environment. This book is a text and reference for students and professionals interested in an interactive, multidisciplinary approach to the building process.

ORGANIZATION OF SIXTH EDITION

In prior editions, Chapters 1 and 2 grew and became unwieldy with the addition of topics. In this sixth edition, even more materials are added to account for advancements in energy and sustainable design. Accordingly, we have reorganized and expanded these new and existing materials into four chapters instead of two. The book is now organized as follows:

Chapter 1, Introduction to Mechanical and Electrical Systems, Sustainable Design, and Evaluating Options, includes new life-cycle cost examples which consider the off-site cost of pollution and the economic effects of indoor environmental quality.

Chapter 2, HVAC Fundamentals, covers the engineering basics required to understand systems.

Chapter 3, HVAC Load Estimating, includes an updated detailed example of heating and cooling load calculations using a building example consistent with current energy codes.

Chapter 4, HVAC Load Management, contains the analysis of various architectural, ventilation, lighting, and appliance options on a hypothetical 30,000 ft² building. Analysis includes the effect on load, initial building cost, energy cost, and life-cycle cost for alternative designs involving the following factors:

- Building geometry and form
- Wall orientation
- Altering glass orientation
- Window-to-wall area ratio
- Control solar loads through windows
- Thermal properties of walls and roof
- Infiltration load control potential
- Ventilation criteria and controls
- Task lighting
- Daylighting
- Appliances load control

Chapters 5 through 9 cover HVAC systems and equipment. These chapters are updated to include new technologies to save energy and in some instances reduce the cost of systems. New, enhanced, and expanded topics include condensing boilers and furnaces, direct fired heating, ground source heat pumps, VRF heat pumps and heat recovery, and high-volume, low-speed fans.
Chapter 10 covers plumbing. Updates include condensing water heaters, instantaneous water heaters, and the EPA WaterSense program.

Chapter 11 covers fire protection with general updates for improved clarity.

Chapters 12 through 15 cover electrical systems with general updates including current economics of solar PV systems.

Chapters 16 through 19 cover lighting, including general updates, strategies for high performance, and enhanced coverage of newly dominant LED light sources.

Chapter 20 on noise and vibration takes on a higher level of importance as sound is increasingly recognized for its effect on indoor environmental comfort.

Chapter 21 on architectural accommodation covers system coordination, space planning options, and has many images to convey the visual impact of design.

DOWNLOAD INSTRUCTOR RESOURCES FROM THE INSTRUCTOR RESOURCE CENTER

To access supplementary materials online, instructors need to request an instructor access code. Go to www.pearsonhighered.com/irc to register for an instructor access code. Within 48 hours of registering, you will receive a confirming e-mail including an instructor access code. Once you have received your code, locate your text in the online catalog and click on the Instructor Resources button on the left side of the catalog product page. Select a supplement, and a login page will appear. Once you have logged in, you can access instructor material for all Prentice Hall textbooks. If you have any difficulties accessing the site or downloading a supplement, please contact Customer Service at http://247pearsoned.custhelp.com/.

The authors are indebted to reviewers, students, co-professionals, technical associations, and leading product manufacturers (listed separately illustration credits) for their cooperation in providing data, illustrations, and insights.

Richard R. Janis
William Tao

ACKNOWLEDGMENTS

Contributing Authors

We wish to acknowledge several individuals who contributed to specialty chapters:

Chapter 15: Communications, Life Safety, and Security Systems
Steve Brohammer, RCDD, and Janis Christopher, RCDD
William Tao & Associates, Inc.
St. Louis, MO

Chapter 17: Lighting Equipment and Systems
Davis Krailo, LC
Technical Manager—Engineering
Sylvania
Danvers, MA
Steve Andert, P.E.
William Tao & Associates, Inc.
St. Louis, MO

Chapter 20: Noise and Vibrations in Mechanical and Electrical Systems
J. T. Weissenburger, ScD, P.E.
President, Engineering Dynamics International
St. Louis, MO

Organizations

Special thanks go to the following organizations for providing valuable design data:

ASHRAE American Society for Heating Refrigeration and Air Conditioning Engineers
IESNA Illuminating Engineering Society of North America
ASPE American Society for Plumbing Engineers
NCAC National Council of Acoustical Consultants
NEC National Electrical Code
NFPA National Fire Protection Association
TIA/EIA Telecommunication Industry Association

Reviewers

We wish to thank the following reviewers for their helpful comments and suggestions:

Irving Nazario, North Carolina State University
Mohd Fairuz Shiratuddin, The University of Southern Mississippi
Shariar Makarechi, Southern Polytechnic University
CONTENTS

Preface iii
Acknowledgment iv

1 Introduction to Mechanical and Electrical Systems, Sustainable Design, and Evaluating Options 1
1.1 Sustainable Design 1
1.2 Indoor Environmental Quality 5
1.3 Commissioning 9
1.4 Evaluating Design Options 11
Questions 17

2 HVAC Fundamentals 19
2.1 Basics of Energy and Power 19
2.2 Fuels 21
2.3 Properties of Air–Water Mixtures 23
2.4 Fluid Flow and Pressure in Mechanical Systems 27
2.5 Energy Transport in HVAC Systems 27
2.6 Environmental Comfort 30
Questions 31

3 HVAC Load Estimating 33
3.1 Nature of HVAC Loads 33
3.2 Load Criteria 33
3.3 Calculating Heating Loads 34
3.4 Calculating Cooling Loads 42
3.5 Reference Tables and Figures 46
Questions 49

4 HVAC Load Management 51
4.1 Load Management Strategies and Criteria for Evaluation 51
4.2 Evaluation of Load Management Strategies 54
4.3 Summary 71
Questions 72

5 HVAC Delivery Systems 74
5.1 Control of Heating and Cooling 74
5.2 Zoning 74
5.3 Controls and Automation 75
5.4 Commonly Used Systems for Zone Control 79
5.5 Dedicated Outside Air Systems 102
Questions 103

6 Cooling Production Equipment and Systems 104
6.1 Refrigeration Cycles 104
6.2 Cooling Production Equipment 110
6.3 Direct Expansion (DX) Systems 110
6.4 Chilled-Water Systems 114
6.5 Heat Rejection from Cooling Systems to the Environment 121
6.6 Chilled-Water Plant Design 123
Questions 135

7 Heating Production Equipment and Systems 136
7.1 Types of Heating Systems 136
7.2 Heating Energy Sources 136
7.3 Combustion Efficiency 137
7.4 Furnaces and Air Heaters 138
7.5 Boilers 138
7.6 Selection of Medium and Equipment 141
7.7 Auxiliary Systems 147
7.8 Operating and Safety Controls 153
7.9 Heating Plant Design 154
7.10 District Heating 154
7.11 Cogeneration 156
7.12 Fuel Cells 157
7.13 Solar Heating 157
Questions 159

8 Air-Handling Equipment and Systems 160
8.1 Air-Handling Equipment 160
8.2 Heat Transfer 160
8.3 Air Cleaning 163
8.4 Air Mixing 167
8.5 Fans 168
8.6 Duct Systems 175
CONTENTS

8.7 Air Devices 179
8.8 General Guidelines for Duct System Design 184
8.9 Underfloor Air Systems (UFAD) 184
8.10 Energy Recovery from Exhaust 189
8.11 Natural Ventilation 190
Questions 191

9 Piping Equipment and Systems 193
9.1 Piping Systems and Components 193
9.2 Pumps 195
9.3 Heat Exchangers 202
9.4 Piping 203
Questions 217

10 Plumbing Equipment and Systems 218
10.1 Water Supply and Treatment 218
10.2 Domestic Water Distribution Systems 220
10.3 Plumbing Fixtures and Components 234
10.4 Planning Plumbing Facilities 241
10.5 Sanitary Drainage Systems 244
10.6 Sewage Treatment and Disposal 251
10.7 Storm Drainage System 255
10.8 Plumbing Services for Other Building Equipment 259
Questions 259

11 Fire Protection Equipment and Systems 260
11.1 Classification of Fire and Construction Hazards 261
11.2 Planning for Fire Protection 262
11.3 Fire Safety Design 262
11.4 Fire Detection and Signaling Devices 264
11.5 Fire Alarm Systems 266
11.6 Fire Suppression Systems 266
11.7 Automatic Sprinkler Systems 271
11.8 Smoke Controls 278
Questions 282

12 Introduction to Electricity 284
12.1 Basic Properties of Electricity 284
12.2 Alternating Current (AC) 289
12.3 Advantages of AC over DC Systems 291
12.4 AC-to-DC Conversion 291
12.5 Single-Phase Versus Three-Phase Alternator 291
12.6 Power and Power Factor 292
12.7 Voltage and Voltage Drop 295
12.8 Summary of Properties 295
Questions 296

13 Power Supply and Distribution 297
13.1 Power Supply Sources 297
13.2 Power Distribution Systems 297
13.3 System and Equipment Voltage Ratings 297
13.4 Grounding 300
13.5 Short-Circuit and Interrupting Capacity 302
13.6 Emergency Power Systems 303
13.7 Solar Photovoltaic Systems 307
13.8 Power Equipment 309
13.9 Conductors 313
13.10 Wiring Methods 314
13.11 Installation of Wires in Raceways 317
13.12 Wiring Devices 320
13.13 Protective Devices 322
Questions 325

14 Electrical Design and Wiring 327
14.1 Electrical Design Procedure 327
14.2 Analysis of Building Needs 327
14.3 Determination of Electrical Loads 328
14.4 System Selection and Typical Equipment Ratings 329
14.5 Coordination with Other Design Decisions 331
14.6 Preparation of Electrical Plans and Specifications 332
14.7 National Electrical Code 333
14.8 Branch Circuits 336
14.9 Tables and Schedules 338
14.10 Power Wiring Design Problem 339
14.11 Wiring of Low-Voltage Systems 346
Questions 348

15 Communications, Life Safety, and Security Systems 350
15.1 Common Characteristics of Telecommunication Systems 350
15.2 Classification of Telecommunication Systems 350
15.3 Components and Wiring 350
15.4 Telecommunication Systems 354
15.5 Data Distribution Systems 357
20 Noise and Vibrations in Mechanical and Electrical Systems 437
20.1 Retrospection 437
20.2 Noise Control: An Overview 437
20.3 Building Spaces Where Acoustical Concerns May Arise 437
20.4 Basic Concepts of Sound 439
20.5 Adding Decibel Quantities 440
20.6 Sound Pressure, Sound Power, and Sound Intensity Level 442
20.7 Useful Design Criteria 444
20.8 Acoustical Design Considerations in HVAC Systems 446
20.9 Mechanical Equipment Rooms 447
20.10 Rooftop Units (RTUs) 448
20.11 Noise in Air Supply Systems 449
20.12 Sound in Ducts 450
20.13 Duct Silencers 452
20.14 Plenum Chambers 454
20.15 Sound Power Division in Duct Branches 454
20.16 Duct End Reflection Loss 454
20.17 Return Air Systems 455
20.18 Room Sound Correction 455
20.19 Transmission of Sound Through Walls and Ceilings 455
20.20 Isolation of Mechanical Vibration 458
20.21 Vibration Isolators 462
20.22 Seismic Vibration Control and Restraint 463
20.23 The Richter Scale 464
20.24 Guidelines for Seismic Design 465
Questions 467

21 Architectural Accommodation and Coordination of Mechanical and Electrical Systems 469
21.1 Systems to Be Integrated 469
21.2 Space Allowances for Mechanical and Electrical Systems 469
21.3 Utility Service Connections 469
21.4 HVAC Decisions and Coordination 470
21.5 Selecting the Energy Source for Heating 470
21.6 Cooling Equipment and Systems Coordination 476
21.7 HVAC Air Handling and Delivery 480
21.8 Plumbing Coordination 485
21.9 Fire Suppression 489
21.10 Electrical Decisions and Coordination 489

15.6 Security Systems 359
15.7 Telephone Systems 360
15.8 Fire Alarm Systems 362
15.9 Sound System 365
15.10 Time and Program Systems 366
15.11 Videoconferencing 367
15.12 Miscellaneous and Specialty Systems 369
Questions 369

16 Light and Lighting 371
16.1 Light and the Energy Spectrum 371
16.2 Physics of Light 371
16.3 Vision and the Visible Spectrum 376
16.4 Color 377
16.5 Means of Controlling Light 379
Questions 381

17 Lighting Equipment and Systems 382
17.1 Electrical Light Sources 382
17.2 Factors to Consider in Selecting Light Sources and Equipment 382
17.3 Incandescent Light Sources 386
17.4 Fluorescent Light Sources 388
17.5 High-Intensity-Discharge Light Sources 392
17.6 Light-Emitting Diodes (LEDs) 394
17.7 General Comparison of Light Sources 397
17.8 Luminaires 397
17.9 Outdoor Luminaires 400
Questions 401

18 Calculating Illumination Levels 403
18.1 Illumination Criteria 403
18.2 Basis for Illumination Calculations 403
18.3 The Zonal Cavity Method 404
18.4 Application of the Zonal Cavity Method 409
18.5 Point Method 412
18.6 Computer Calculations and Computer-Aided Design 414
Questions 416

19 Lighting Design 418
19.1 Design Considerations 418
19.2 Lighting Design Development 422
19.3 Lighting Design Documentation 427
19.4 Daylight 429
19.5 Exterior Lighting Design 434
Questions 435
CONTENTS

21.11 Generators 498
21.12 Ceilings 498
21.13 Equipment Access Accommodations 501
21.14 Vertical Chases 501
21.15 Roof Elements 502
Questions 502

Appendix A
Glossary of Terms, Acronyms, and Abbreviations 504
Appendix B
Glossary of Technical Organizations 515
Appendix C
Units and Conversion of Quantities 516
Index 521