To the Student

Welcome to the fascinating study of the human body! Though you and I might never meet in person, I consider you and every other student who uses this textbook to be “my” student. Just as I want to ensure the success of the students in my classroom, I am similarly invested in your success. For this reason, this book was designed with you in mind—every feature, study tool, and media presentation is intended to help you achieve your goals.

This book was written not only for you, but also about you. The great thing about human A&P is that no matter what your goals are, it is relevant to your life. Human A&P is you: it’s also me, your family, your friends, and indeed every human who ever lived or will live. There’s nothing in the study of A&P that is irrelevant or esoteric, because every single detail revolves around you and your life. How many other courses can make that claim?

So dive right in and begin to explore the science of you. I sincerely hope that you enjoy your study of human A&P and find it as fascinating and wondrous as I do.

—Dr. A.
erin.amerman2018@gmail.com

To the Instructor

Why I Wrote This Book

I get the question, “Why did you write this book?” quite regularly. The short answer to this is that writing and teaching are just in my DNA somewhere. For the long answer, we have to look back in time and start with my 5-year-old self.

When I was in kindergarten, I was placed with another kid, Kyle, into a separate group for reading time because we were the only two kids in the class who could already read. It struck my 5-year-old brain as inconceivable that so many of my classmates couldn’t read. Reading was so easy; anyone could do it! Maybe, I reasoned, they just needed a book to teach them how to read. So I gathered up some construction paper and crayons and got to writing. And thus my first “textbook” was born: The Bird and Mr. Bear.

Fast forward a few years to my medical school education. While in medical school, I co-taught a human physiology course, and during my first class I had one of those “aha” moments: Teaching somehow just “felt right.” I connected with my students, and they connected with me. This feeling only grew over the next two semesters. But still, I was in medical school, and who would be crazy enough to go through the pain of medical school, graduate, and then not ever practice as a physician?

Well, it turns out that I was crazy enough to do just that. I was lucky enough to find a full-time position teaching anatomy and physiology. And while I loved teaching, there were far more challenges than I had anticipated. My students were different from my former classmates. The difference wasn’t in intelligence—my students were smart. But, this new generation of students seemed to be ill prepared for the rigors of a college science course. They lacked study skills, they had little to no background in science, and—alarmingly—they couldn’t read or understand their textbooks. For these reasons, so many bright, motivated students struggled with the course.

As a teacher, this was the last thing I wanted to see. So I did the same thing I did in kindergarten: grabbed some paper and started writing. First came my own lab exercises, which were followed by lecture outlines and notes. As I wrote, I “Americanized” the content (a term coined by a student) with concise prose, simple diagrams, stories/analogies, and active-learning exercises. My students’ responses were enthusiastic; indeed, many asked if they could return their textbooks and just use my notes instead.

A vision for a new textbook began to form in my mind: one for today’s students. It would:

• be written at a level my students could understand and, at the same time, still provide the information they need;
• anticipate where they need help with the science and provide the necessary in-the-moment coaching; and
• reduce cognitive overload and present information—in both text and art—in manageable chunks that are more easily digestible.

Eight years later, in 2014, my vision finally became reality with the publication of Human Anatomy & Physiology. Today I am thrilled with the very positive response to the first edition and am happy to now be able to offer the second edition. We worked very hard to ensure that it is even stronger in motivating and helping students learn. This is what I have wanted since The Bird and Mr. Bear—to help people learn.

Key Features

Many of the key features found in this textbook, the companion workbook, Active-Learning Workbook, and media came directly from my experience teaching and working with a range of students and seeing what helps them learn. These features include the following:

• Module 1.1 How to Succeed in A&P in Chapter 1 introduces students to core study skills, including how to manage time, how to take notes, and how to study for an A&P exam. I also guide students through how to use the textbook, workbook, and online tools.
• Recurring Core Principles icons appear throughout the book and remind students to recall and apply four core principles introduced in Chapter 1: Structure-Function, Feedback Loops, Gradients, and Cell-Cell Communication.
• Over 50 Concept Boosts and Study Boosts coach students on key A&P concepts that are often difficult or complex.

V
Preface

Emphasis is placed on explaining challenging topics, often incorporating familiar analogies and simple illustrations, giving students a boost in fully understanding the content.

- **Concept Boost Video Tutors** walk students through select Concept Boost topics that are particularly tough to understand. **Concept Boost Video Tutors include:**
 - Chapter 3: Understanding Water Movement in Osmosis
 - Chapter 10: How Do Positive Ions Create a Negative Resting Membrane Potential?
 - Chapter 16: Understanding the Relationship between Negative Feedback Loops and Thyroid Function
 - Chapter 21: Making Sense of the Oxygen-Hemoglobin Dissociation Curve
 - Chapter 25: How Can Respiratory Changes Compensate for Metabolic Acidosis?

These Video Tutors are assignable in MasteringA&P® and are also available in the Study Area of MasteringA&P.

- **One-concept-at-a-time art** focuses on teaching one concept per figure so that a student can instantly grasp the key idea without being distracted by a sea of details. For key physiology concepts, unique sequence figures unpack information systematically so that each scene contains only the most important information, again making it easier for today’s students to focus on key details.

- **In-text simple illustrations** appear as needed to help students visualize concepts being described.

- **Big Picture figures** visually summarize key physiological processes and anatomy concepts, highlighting only what is most important.

- Mobile-ready **Big Picture Animations** with interactive quizzes bring the Big Picture figures to life and help reinforce students’ understanding of each step in a key process. These animations are assignable in MasteringA&P and are also available in the Study Area of MasteringA&P.

- **HAPS-based Learning Outcomes** begin each module within a chapter. Additionally, the assessments in MasteringA&P are organized by these Learning Outcomes.

- **Pronunciations** use phonetic sounds (instead of traditional symbols) to help students learn correct pronunciations.

- **Flashback** questions encourage students to think about previously learned concepts they will need to apply in order to understand upcoming discussions.

- **Quick Check** questions appear throughout each module to test students’ basic understanding of the material. Answers to Quick Check questions are available in the Study Area of MasteringA&P.

- **Apply What You Learned** questions at the end of each module ask students to think critically and apply what they’ve just learned to a real-world scenario. Answers to Apply What You Learned questions can be found in Appendix A.

- **A&P in the Real World** features highlight clinical conditions and disorders that illustrate and reinforce key A&P concepts discussed in the chapter.

- **Chapter running case studies** with assessments challenge students to apply their knowledge of key A&P concepts to a real-world clinical scenario, while allowing instructors to “flip” the classroom and incorporate critical thinking and/or group activities. These cases are assignable in MasteringA&P. They can also be found in MasteringA&P both in the Instructor Resources and in the Study Area.

- **Active-Learning Workbook** provides students with a kinesthetic learning modality. It includes labeling, drawing, and build-your-own summary-table exercises that students can complete as they read the textbook. This workbook can be packaged as a print supplement with the Amerman textbook at no additional cost. It is also available in MasteringA&P as an editable Word document and as a downloadable PDF in the Instructor Resources and in the Study Area.

What’s New in the Second Edition

- **IMPROVED** one-concept-at-a-time art and Big Picture figures: The Amerman art program is already touted for visually unpacking concepts, making it easier for students to focus on the key ideas. The second edition of Amerman builds on this one-concept-at-a-time approach by including over 20 new or revised critical figures that conclude with Big Picture visual summaries (e.g., see newly revised The Big Picture of Chemical Synaptic Transmission, The Big Picture of Pulmonary Ventilation, The Big Picture of Tubular Reabsorption and Secretion).

- **NEW** summary tables help consolidate and summarize key information (e.g., Figure 3.5: Functions of membrane proteins; Figure 10.1: Three types of muscle tissue; Figure 12.9: Structures of the limbic system; Table 20.1: Summary of the First and Second Lines of Defense; Table 21.2: Accessory Muscles of Inspiration and Expiration).

- **EXPANDED** coaching throughout: Building off the very positive feedback to Amerman’s coaching in the first edition, the second edition features several new or revised Concept Boost discussions. The Concept Boosts help demystify foundational principles or concepts that students often find to be stumbling blocks (e.g., new Concept Boosts in Chapter 3: Is Osmosis the Diffusion of Water?; Chapter 10: Connecting the Crossbridge Cycle to the Sliding-Filament Mechanism).

- **EXPANDED animations:** 5 Big Picture Animations (for a total of 10) animate key figures from the Amerman textbook, using the same visuals, terminology, and explanations found in the book. This helps students visualize key processes and reinforces the main ideas behind the process. These animations are assignable as coaching activities in MasteringA&P and are available in the Study Area of MasteringA&P.

 The Big Picture Animations from the first edition included Chapter 3: The Big Picture of Protein Synthesis; Chapter 10: The Big Picture of Skeletal Muscle Contraction; Chapter 11: The Big Picture of Action Potentials and the Big Picture of Chemical Synaptic Transmission; and Chapter 24: The Big Picture of Renal Physiology.
The new Big Picture Animations for the second edition include:

- Chapter 16: The Big Picture of Hormonal Response to Stress
- Chapter 17: The Big Picture of Blood Flow through the Heart
- Chapter 20: The Big Picture of the Immune Response to the Common Cold
- Chapter 21: The Big Picture of Respiration
- Chapter 26: The Big Picture of Hormonal Regulation of the Ovarian and Uterine Cycles

NEW Practice Tests via QR codes at the end of every chapter provide students with quick on-the-go practice on their smartphones, tablets, and computers.

What’s New in MasteringA&P
Please see the front of this book for information on the new media and assignments for the second edition of Amerman with MasteringA&P.

Chapter-by-Chapter Changes in the Second Edition

Chapter 1: Introduction
Module 1.1: How to Succeed in Your Anatomy and Physiology Course
- “Learning styles” was changed to “learning modalities.”

Module 1.3: The Language of Anatomy and Physiology
- New A&P in the Real World box on Medical Errors has been added.
- In Figure 1.7: Regional terms, part a, the length of the bracket for Cephalic term was fixed.

Module 1.4: Organization of the Human Body
- “Dorsal” was changed to “posterior” and “ventral” to “anterior” when discussing body cavities, including in Figure 1.9: The posterior and anterior body cavities.

Module 1.5: Core Principles in Anatomy and Physiology
- Receptors in Figure 1.13: Comparison of how negative feedback mechanisms control room and body temperature, part b, were changed to those in skin.
- An additional paragraph example of positive versus negative feedback processes was added.
- Figure 1.18: Core principles icons, was updated to combine illustrations and icons with definitions and examples of each core principle.

Chapter 2: The Chemistry of Life
Module 2.2: Matter Combined: Mixtures and Chemical Bonds
- In Figure 2.6: Nonpolar versus polar covalent bonds, the number of electrons in the valence shell of the water molecule has been corrected to be eight.
- In the Concept Boost: Determining the Type of Bonds in a Molecule or Compound, three new small illustrations of the possible atomic and molecular combinations have been added.

Module 2.3: Chemical Reactions
- The text discussing Figure 2.10: Enzyme-substrate interaction, has been updated to cover each step of the process.

Module 2.4: Inorganic Compounds: Water, Acids, Bases, and Salts
- In Figure 2.11: The behavior of hydrophilic and hydrophobic molecules in water, the illustrations have been updated with larger blow-ups that show hydration spheres and label partial charges.

Module 2.5: Organic Compounds: Carbohydrates, Lipids, Proteins, and Nucleotides
- In Figure 2.23: Levels of protein structure, the primary structure (part a) has been redone to show the atomic components of the amino acid molecules, and the secondary structures (part b) have been reworked to show the atoms of the alpha helix and beta-pleated sheet structures. In addition, in part d, the quaternary structures, one chain in each structure now shows the underlying tertiary structure.
- Under ATP, a bit of additional explanation of how ATP is used as energy storage for cellular processes was added.
- In Figure 2.26: Structure of the nucleic acids DNA and RNA, the top adenine in part a has been changed to the correct purple color.

Chapter 3: The Cell
Module 3.2: Structure of the Plasma Membrane
- Figure 3.5: Functions of membrane proteins, has been made into an illustrated table.

Module 3.3: Transport across the Plasma Membrane
- The section on Osmosis has been updated to prevent the oversimplification that this process is the diffusion of water, with the addition of the concept of osmotic pressure. In addition, Figure 3.8: Passive transport: osmosis, has been reworked to clarify the concentrations of solute in all compartments. Also, the Concept Boost has been replaced with a new one—called Is Osmosis the Diffusion of Water? Taking a Closer Look—that includes a new illustration.

Module 3.4: Cytoplasmic Organelles
- In Figure 3.15: The cell and its organelles, labels have been added for additional structures such as those in the nucleus.

Chapter 4: Histology
Module 4.1: Introduction to Tissues
- The first edition (1e) A&P in the Real World box on Diseases of Collagen and Elastic Fibers has been refocused in second edition (2e) on Marfan Syndrome.

Module 4.2: Epithelial Tissues
- In Figure 4.5: Structure of simple epithelia, orientation diagrams have been added to each part showing where in the body the examples were taken from.
- In Figure 4.10: Multicellular exocrine glands, the structures of the compound acinar and compound tubuloacinar glands have been updated and clarified.
- There is now a mention of apocrine secretion under Glandular Epithelia.
Module 4.7 Membranes
- In Figure 4.24: True membranes, in part b on synovial membranes, the orientation diagram has been enlarged and clarified.

Chapter 5: The Integumentary System

Module 5.1: Overview of the Integumentary System
- Figure 5.1: Basic anatomy of the skin, has been enhanced to clarify the structures shown. This enhanced art has been used as orientation diagrams throughout the chapter as appropriate.
- In Figure 5.2: Homeostatic regulation of the body temperature by the integumentary system, part a illustrating the response to rising body temperature has been clarified by showing a brain as the site of thermoreceptors.

Module 5.5: Accessory Structures of the Integument: Hair, Nails, and Glands
- In Figure 5.9: Hair structure, part b has been redone to clarify the structure of the hair bulb.
- In Figure 5.11: Sweat glands and sebaceous glands, a new part has been added showing an illustration of an apocrine sweat gland.

Chapter 6: Bones and Bone Tissue

Module 6.2: Microscopic Structure of Bone Tissue
- In Figure 6.7: Functions of osteoblasts and osteocytes, step 3 has been reworked to show that the “arms” of the osteocytes contact each other through the canaliculi.

Module 6.3: Bone Formation: Ossification
- Figure 6.11: The process of intramembranous ossification, has been reimagined to make the structures more realistic and clearer using a horizontal layout. The steps in the figure and text have been updated to clarify the description as well.
- Figure 6.12: The process of endochondral ossification, has been enhanced to clarify the structures in the process and to make it match the visual presentation in Figure 6.11.

Module 6.4: Bone Growth in Length and Width
- Figure 6.14: Growth at the epiphyseal plate, has been reimagined to show the process more clearly.

Chapter 7: The Skeletal System

Module 7.2: The Skull
- In Figure 7.3: Cavities of the skull, and 1e Figure 7.4: Cranial vault and base, have been switched in order to cover all of the cranial cavity before discussing other cavities.
- In Table 7.2: Bones of the skull, view identification labels have been added to all illustrations to keep students oriented.
- In Figure 7.7: Posterior, superior, and inferior views of the skull, in part c the position and extent of the vomer have been clarified.
- In Figure 7.9: Internal view of the skull, the labels have been repositioned to clarify relationships between the bones and their components.

Chapter 8: Articulations

Module 8.1: Overview of Joints
- The first module has been broadened to include an overview of joint function (moved from the 1e chapter introduction) and joint classification.

Module 8.2: Fibrous and Cartilaginous Joints
- The information on fibrous and cartilaginous joints has now been combined into the second module.
- In Figure 8.2: The two types of cartilaginous joints, the epiphyseal plate in part a has been redone to look more realistic.

Module 8.6: Types of Synovial Joints
- In A&P in the Real World, Knee Injuries and the Unhappy Triad, the text and illustration have been reworked to discuss and show the tear in the lateral meniscus.
- Figure 8.15: Anatomical structure of the shoulder joint, has been reimagined. It now has a new part a showing an anterior view of the articular capsule, and a new part c showing a frontal section.

Chapter 9: The Muscular System

Module 9.1: Overview of Skeletal Muscles
- Under Structure of Skeletal Muscles, the subheading Gross Anatomy of a Skeletal Muscle has been added to point out this coverage.
- Figure 9.2: Fascicle pattern and muscle shape, has been rearranged to clarify the relationship between the muscles and the different shapes.
- Under Lever Systems and in Figure 9.5: Lever systems, the text and illustrations have been updated to use some new analogies.
- The 1e Concept Boost on Understanding Lever Systems and Mechanical Advantage has been replaced by a Study Boost on How to Tell the Three Types of Levers Apart that uses simplified illustrations of these concepts.

Module 9.2: Muscles of the Head, Neck, and Vertebral Column
- Figure 9.10: Muscles of chewing, part b, has been replaced with a lateral view showing the pterygoid muscles.
- The Concept Boost on Demystifying Muscle Actions now includes an illustrated example using the muscles of the jaw, so the Boost has been moved up to follow the Muscles of Mastication subsection.
- In Figure 9.13: Muscles of the vertebral column, parts a and b have been combined into a single part, which shows the erector spinae group on the left side of the torso and the transversospinalis group on the right side. Part b is now the cadaver photo.
- The 1e Study Boost: Sorting Out the Erector Spinae has been deleted.

Module 9.4: Muscles of the Pectoral Girdle and Upper Limb
- In Figure 9.18: Muscles that move the scapula, the label Rotator cuff has been added.

Module 9.5: Muscles of the Hip and Lower Limb
- In Figure 9.21: Anterior and medial muscles that move the thigh and leg, parts b and c have been switched.
Chapter 10: Muscle Tissue and Physiology

Module 10.1: Overview of Muscle Tissue
- Figure 10.1: Three types of muscle tissue, has been made into an illustrated table with additional information on the location, structure, and function of each tissue type.

Module 10.2: Structure and Function of Skeletal Muscle Fibers
- The text section called Myofilament Arrangement and the Sarcomere (with 1e Figure 10.7: Structure and bands of the sarcomere, now 2e Figure 10.6) has been moved before Putting It All Together: The Big Picture of Skeletal Muscle Structure. In addition, the sarcomere has now been labeled in 1e Figure 10.6: The Big Picture of Levels of Organization within a Skeletal Muscle (2e Figure 10.8).
- Figure 10.9: The sliding-filament mechanism, has been reworked to show one relaxed sarcomere above one contracted, with all bands indicated in both.

Module 10.3: Skeletal Muscle Fibers as Electrically Excitable Cells
- Several subsections from 1e Chapter 11 (Nervous Tissue) have been moved here in order to present a more complete explanation of action potentials. These subsections, which include Ion Channels and Gradients, Generation of the Resting Membrane Potential, and The Electrochemical Gradient (with the included figures), replace the 1e section called The Na⁺/K⁺ ATPase Pump and the Sodium and Potassium Ion Concentration Gradients. The Concept Boost on How Do Positive Ions Create a Negative Resting Membrane Potential has also been moved here.
- Several ion channels have been added to the depictions of the axon terminal structure and function in 2e Figures 10.14 and 10.15 (1e Figures 10.12 and 10.13).

Module 10.4: The Process of Skeletal Muscle Contraction and Relaxation
- A new Concept Boost on Connecting the Crossbridge Cycle to the Sliding-Filament Mechanism has been added.

Module 10.6: Muscle Tension at the Fiber Level
- The 1e Concept Boost on Understanding How Events at the Myofilaments Produce Tension of a Whole Muscle has been deleted.

Chapter 11: Introduction to the Nervous System and Nervous Tissue

Module 11.1: Overview of the Nervous System
- In Figure 11.3: Summary of the structural and functional divisions of the nervous system, the presentation of the information has been reworked, and illustrations of example organs for the divisions have been added.

Module 11.3: Electrophysiology of Neurons
- A reminder section on Generation of the Resting Membrane Potential has been added, to take into account the sections on this subject that have been moved to Chapter 10.
- 1e Figure 11.11: Measurement of voltage across a plasma membrane, has been added as an orientation diagram to 1e Figure 11.14: Ion movements leading to changes in the membrane potential, forming 2e Figure 11.11 on ion movements.
- The Big Picture of Action Potentials, 1e Figure 11.20, now 2e Figure 11.17, has been enlarged and updated so the depictions of structures are clearer and more 3D.

Module 11.4: Neuronal Synapses
- The section now called Summation of Postsynaptic Potentials and Neural Integration has been moved before the section on Termination of Synaptic Transmission to reflect the chronological order of these processes.
- What was 1e Figure 11.22: The structures of electrical and chemical synapses, now 2e Figure 11.19, has been reworked to focus more on the blow-ups showing the channels and receptors.
- The 1e Concept Boost called How Summation Connects Local Potentials and Action Potentials has been deleted and the information incorporated into the Big Picture of Chemical Synaptic Transmission, 1e Figure 11.26, now 2e Figure 11.25, to illustrate the entire process in one place.
- A new illustrated Concept Boost has been added on Sorting Out the Different Types of Channels and Pumps in the Membrane of a Neuron.
- 1e Figure 11.25: Methods of termination of synaptic transmission, now 2e Figure 11.23, has been reworked to add a blow-up showing events at the synaptic cleft more clearly.

Chapter 12: The Central Nervous System

Module 12.1: Overview of the Central Nervous System
- A new A&P in the Real World box on The Myth of Brain Differences between the Sexes has been added. This box has the new subtitle Pseudoscience Exposed. This subtitle has been added to appropriate A&P boxes throughout the text.

Module 12.2: The Brain
- The section on The Limbic System has been moved after the sections on Basal Nuclei and White Matter.
- A table of information has been added to Figure 12.9: Structure of the Limbic System, to make the information more accessible.

2e Module 12.3: Homeostasis Part I: Role of the Brain in Maintenance of Homeostasis
2e Module 12.4: Higher Mental Functions
- The modules on Homeostasis Part I: Role of the Brain in Maintenance of Homeostasis and Higher Mental Functions have been moved up in the chapter to follow Module 12.2: The Brain, in order to have the discussion of brain functions follow that of brain structures directly.

Chapter 13: The Peripheral Nervous System

Module 13.3 Spinal Nerves
- In Figure 13.4: Structure and function of roots, spinal nerves, and rami, the depiction of the rami communicantes has been reworked to clarify them.
- Under Brachial Plexus, there is a new Concept Boost called Sorting Out the Brachial Plexus, with a new schematic illustration.
- In Figure 13.9: The sacral plexus, text was rearranged to clarify the relationships.
Chapter 16: The Endocrine System

Module 16.1: Overview of the Endocrine System
- A new Figure 16.1 called Overview of Hormone Function has been added.
- The 1e section Types of Chemical Signals is now called Paracrine and Autocrine Signals to reflect the clarified text.
- The second half of the module under the heading Hormones has been reorganized. We now introduce Classes of Hormones first, then a new subsection on Hormone Transport through the Blood. Then we get to Target Cells and Receptors, followed by Mechanisms of Hormone Action. This is followed up with Effects of Hormone Actions, then Hormone Interactions, and a new subsection gathering information on Hormone Half-Life and Elimination. Regulation of Hormone Secretion is its own section following Hormones.
- 1e Figure 16.3 on mechanisms of hormone action has been split into two figures. The first, 2e Figure 16.4, now presents a G-protein second-messenger system; it is titled Mechanism of action of hydrophilic hormones via an adenylate cyclase–cAMP second-messenger system. The second, 2e Figure 16.5, is titled Mechanism of action of hydrophobic hormones via an intracellular receptor mechanism.

Module 16.2: The Hypothalamus and the Pituitary Gland
- All figures in the chapter that depict the anterior and posterior pituitary glands, particularly 2e Figures 16.8 and 16.9 (1e Figures 16.6 and 16.7), now show clarified anatomy of the infundibulum.

Module 16.3: The Thyroid and Parathyroid Glands
- MIT and DIT have been added to the discussion of thyroid hormone synthesis and its depiction in 2e Figure 16.15 (1e Figure 16.13).

Chapter 17: The Cardiovascular System I: The Heart

Module 17.1: Overview of the Heart
- A new part has been added to Figure 17.1: Location and basic anatomy of the heart in the thoracic cavity, showing the mediastinum in a transverse section. What was part c of this figure, on the heart chambers, has now been split off into a separate figure, 2e Figure 17.2.

Module 17.2: Heart Anatomy and Blood Flow Pathway
- In what was 1e Figure 17.3, now 2e Figure 17.4, on the pericardium and layers of the heart wall, a new blow-up has been added to part b showing the heart wall layers in more detail.
- A cadaver photo has been added to 2e Figure 17.6: The internal anatomy of the heart (1e Figure 17.5).
- The Big Picture of Blood Flow through the Heart, 2e Figure 17.8, has been reworked to be shown as a cycle.
- The section on Coronary Circulation has been moved after the sections on heart internal anatomy and blood flow.
- A new A&P in the Real World box on Thoracotomy was added.

Module 17.3: Cardiac Muscle Tissue Anatomy and Electrophysiology
● A new blow-up and a light micrograph have been added to 1e Figure 17.9, now 2e Figure 17.10: Cardiac muscle cells.
● The section on Electrophysiology of Cardiac Muscle Tissue: Pacemaker Cells has been moved before the section on Electrophysiology of Cardiac Muscle Tissue: Contractile Cells.

Chapter 18: The Cardiovascular System II: The Blood Vessels

Module 18.2: Physiology of Blood Flow
● Figure 18.4: Factors that determine blood pressure, has been changed to show vessel radius (rather than diameter) to match the text discussion.
● A new Concept Boost called Taking a Closer Look at Systemic Arterial Pressure.

Module 18.3: Maintenance of Blood Pressure
● The text under Nervous System Maintenance of Blood Pressure—and Figure 18.7: Effects of the autonomic nervous system on blood pressure, Figure 18.8: Maintaining homeostasis, and Figure 18.9: Blood pressure maintenance—have all been updated to emphasize that it is not parasympathetic neurons that cause vasodilation, but the autonomic centers in the brainstem inhibiting sympathetic neurons.
● The 1e A&P in the Real World box on Carotid Sinus Massage has been replaced by one on Vasovagal Syncope. A brief discussion of carotid sinus massage has been moved into the text.

Module 18.5: Capillary Pressures and Water Movement
● The discussion of osmotic pressure has been updated to match the current explanation of osmosis in 2e Chapter 3.

For the same reason, the 1e Concept Boost on Understanding the Pulling Force of Osmotic Pressure has been replaced. In its place there is a Study Boost called Another Way to Think about Hydrostatic and Osmotic Pressure.

Chapter 19: Blood

Module 19.2: Erythrocytes and Oxygen Transport
● The dimensions of a red blood cell have been added both to the text under Erythrocyte Structure and to Figure 19.2: Erythrocyte structure.
● In Figure 19.3: Hemoglobin structure, an orientation diagram of the depiction of hemoglobin from Figure 19.2 has been added, and the heme in oxyhemoglobin has been deleted.

Module 19.4: Platelets
● A new Putting It All Together: The Big Picture of Formed Elements section has been added to the end of this module, with a new two-page Big Picture figure, 2e Figure 19.11, of the same name.

Module 19.5: Hemostasis
● Under Hemostasis Part 3: Coagulation, the newer term contact activation pathway has been added as an alternate for intrinsic pathway, as well as tissue factor pathway as an alternate for extrinsic pathway. These terms have also been added to 2e Figure 19.14: Hemostasis Part 3: Coagulation cascade.

Chapter 20: The Lymphatic System and Immunity

Module 20.1: Structure and Function of the Lymphatic System
● In Figure 20.7: Location and structure of lymph nodes, the lymph node section in part c has been redrawn for clarity and to make it more 3D. In addition, a bit more explanation of these structures has been added to the text under Lymph Nodes.

Module 20.3: Innate Immunity: Internal Defenses
● Under Phagocytes, additional information about dendritic cells has been added.
● Under Complement, the lectin pathway has been added to both the text and to Figure 20.10: Pathways for activation of the complement system.

Module 20.4: Adaptive Immunity: Cell-Mediated Immunity
● The new Antigens subsection at the beginning of the module emphasizes coverage of this subject.
● In the Concept Boost called Why Do We Need Both Class I and Class II MHC Molecules?, the CD4 molecule has been added to the illustration of the TH cell, and the CD8 molecule to the illustration of the TC cell.
● Figure 20.15: T cell activation, clonal selection, and differentiation, has been updated to show a dendritic cell displaying antigenic fragments to TH and TC cells. The clones produced by both of these types of cells are now shown to differentiate into both memory and effector cells. Explanation of the role of dendritic cells in this process has been added to the text section called T Cell Activation, Clonal Selection, and Differentiation.
● In Figure 20.16: Effects of TH cells, a macrophage is now shown presenting an antigen fragment to and activating the TH cell.

Module 20.5: Adaptive Immunity: Antibody-Mediated Immunity
● Figure 20.19: B cell activation, clonal selection, and differentiation, has been updated with the addition of CD4 molecule to the TH cell.

Module 20.6: Putting It All Together: The Big Picture of the Immune Response
● Figures 20.24, 20.25, and 20.26 are the Big Picture figures of the immune response to the common cold, a bacterial infection, and cancer cells, respectively. All of them have been updated to show the role of the dendritic cell. In addition, CD4 and CD8 molecules have been added as appropriate. The text for each of these has been updated to match these changes.
Chapter 21: The Respiratory System

Module 21.1: Overview of the Respiratory System
- In 1e Figure 21.2, The conducting and respiratory zones of the respiratory system, has been deleted, as these concepts are shown in Figure 21.1.

Module 21.2: Anatomy of the Respiratory System
- The illustration of 1e Figure 21.5, Anatomy of the pharynx, (now 2e Figure 21.4) has been extended, using the 1e figure as an orientation diagram to a new larger illustration showing the pharynx with the tonsils and larynx for context.
- In 1e Figure 21.8 (now 2e Figure 21.7), Anatomy of the trachea, a new blow-up of the carina has been added.

Module 21.3: Pulmonary Ventilation
- Under The Process of Pulmonary Ventilation, there are new subsections called Pressure Gradients of Ventilation, which introduces atmospheric, intrapulmonary, and intrapleural pressures, and Mechanics of Inspiration and Expiration, which replaces Volume Changes during Ventilation.
- In the text on Mechanics of Inspiration and Expiration, more discussion of the accessory muscles has been added. In addition, there is a new Table 21.2 on accessory muscles of inspiration and expiration.
- In Figures 21.14–21.16 (now 2e Figures 21.13–21.15), on pressure and volume changes in pulmonary ventilation as well as the Big Picture figure, are now presented as cycles, with the addition of step 5 Between inspiration and expiration. What was 1e Figure 21.15 has been moved up to become 2e Figure 21.13, to match the text changes, with the other figures renumbered accordingly. 2e Figure 21.15, The Big Picture of Pulmonary Ventilation, has been extended to a full page, with the addition of the pressures involved.

Module 21.5: Gas Transport through the Blood
- In 1e Figure 21.25 (2e Figure 21.24), Transport of carbon dioxide, the illustrations have been enlarged to make the information more accessible.
- A new Concept Boost called How Does a Buffer Work? has been added.
- The 1e Concept Boost on Relating Ventilation and Blood pH is now a Study Boost.

Module 21.7: Neural Control of Ventilation
- In 1e Figure 21.28, now 2e Figure 21.27: Neural control of the basic pattern of ventilation, the information has been updated to include the respiratory pattern generator (RPG), and to show the nuclei for the glossopharyngeal and vague nerves in the brainstem and those nerves innervating the lung and heart.
- The RPG is now also shown in 1e Figure 21.29, now 2e Figure 21.28: Role of the central chemoreceptors in regulation of blood pH via regulation of blood pH via the rate of ventilation.
- In 1e Figure 21.30: Role of the peripheral chemoreceptors has been deleted. Note that the text section on this is still included, however.
- Under Control of the Rate and Depth of Ventilation, a new subsection called Voluntary Control has been added.

Chapter 22: The Digestive System

Module 22.1: Overview of the Digestive System
- After the section Basic Digestive Functions and Processes, this module has been reorganized. Next there is a new section called Organization of the Digestive System, with subsections on Peritoneal Membranes, Blood and Nerve Supply, and Histology of the Alimentary Canal. Following this is the moved section Regulation of Motility by the Nervous and Endocrine Systems. In the process of this reorganization, Figure 22.2 is now The abdominopelvic cavity, whereas Figure 22.3 is The basic tissue organization of most of the alimentary canal.

Module 22.3: The Stomach
- Under Stomach Mucosa: Gastric Glands, the term enteroendocrine cells has been replaced with diffuse neuroendocrine system (DNES) cells.

Module 22.6: The Pancreas, Liver, and Gallbladder
- In Figure 22.22: Gross anatomy of the liver, the orientation diagram for part b has been replaced with a posteroinferior view.
- The A&P box called Do We Really Need to “Detox”? has been given the new subtitle Pseudoscience Exposed.
- In Figure 22.26: Secretion of bile, the structures shown in the figure have been rearranged for clarity in understanding the process.

Module 22.7: Nutrient Digestion and Absorption
- Under Lipid Digestion, a new Study Boost called An Analogy to Understanding Emulsification has been added.

Chapter 23: Metabolism and Nutrition

Module 23.2: Glucose Catabolism and ATP Synthesis
- The Concept Boost called Why Do We Breathe? has been reworked to separate the discussion into two questions: Why do we inhale oxygen, and why do we exhale the carbon dioxide we produce?
- The Concept Boost now called ATP Yield from Oxidative Catabolism has been reworked to clarify the text and make it more relatable to students.

Module 23.4: Anabolic Pathways
- In Figure 23.14: The Big Picture of Nutrient Anabolism, organ and cell illustrations have been added to appropriate steps to clarify where these processes are occurring.

Module 23.6: The Metabolic Rate and Thermoregulation
- The subtitle Pseudoscience Exposed has been added to the A&P in the Real World box called “Rev” Your Metabolism.
- In Figure 23.18: Maintaining homeostasis: regulation of core body temperature by negative feedback loops, part b, in response to falling body temperature, the fact that the receptors are primarily in the skin rather than the hypothalamus has been clarified.
Module 23.7: Nutrition and Body Mass
- The subtitle Pseudoscience Exposed has been added to the A&P in the Real World box called Vitamin and Mineral Megadoses.

Chapter 24: The Urinary System
Module 24.4: Renal Physiology I: Glomerular Filtration
- In Figure 24.12, Filtration and the filtration membrane, a new blow-up part a has been added that shows a glomerular capillary and podocyte, leading to the existing illustration of a section through the filtration membrane, now part b.
- In Figure 24.13: Net filtration pressure in the glomerular capillaries, a blow-up illustrated table has been added, showing whether the pressures favor or oppose filtration.

Module 24.5: Renal Physiology II: Tubular Reabsorption and Secretion
- Figure 24.19, The Big Picture of Tubular Reabsorption and Secretion, has been reimagined to move the substances being reabsorbed and secreted closer to where these processes are occurring. Blow-up boxes with illustrations of substance movement along the tubules are now shown.

Module 24.6: Renal Physiology III: Regulation of Urine Concentration and Volume
- Part b of Figure 24.21: The countercurrent multiplier in the nephron loop, has moved into the text as part of the Concept Boost on Demystifying the Countercurrent Multiplier.
- Figure 24.22 has been reworked to focus more on the medullary osmotic gradient. It has been retitled Maintenance of the medullary osmotic gradient by the vasa recta and the countercurrent exchanger.

Module 24.10: The Big Picture of Urine Formation, Storage, and Excretion
- There is a new Module 24.10: The Big Picture of Urine Formation, Storage, and Elimination with a new Big Picture figure, Figure 24.28, of the same name.

Chapter 25: Fluid, Electrolyte, and Acid-Base Homeostasis
Module 25.2: Fluid Homeostasis
- Under Movement of Water between Compartments, three new subsections have been added to update the discussion to match the new explanation of osmosis in Chapter 3: The Cell. These subsections are called Hydrostatic Pressure, Osmotic Pressure and Tonicity, and How Hydrostatic Pressure and Osmotic Pressure Influence Water Movement.
- Figure 25.4: Fluid movement between compartments has been updated to go with the new text discussion.

Module 25.4 Acid-Base Homeostasis
- A new A&P in the Real World box called Pseudoscience Exposed: Alkaline Diets was added.

Chapter 26: The Reproductive System
- All figures that show the pituitary glands have been updated in this chapter to match the clarified illustration used in 2e Chapter 16.

Module 26.1: Overview of the Reproductive System and Meiosis
- The 1e Concept Boost called Comparing Mitosis and Meiosis has been made into a regular text section, in order to incorporate Figure 26.2: Comparing meiosis and mitosis, into the discussion.

Module 26.3: Physiology of the Male Reproductive System
- Figure 26.7: Spermatogenesis in the seminiferous tubules, has been changed to clarify the process.

Module 26.5: Physiology of the Female Reproductive System
- In Figure 26.14, the right half of the figure that showed the development of a follicle has been deleted, as this information is shown in Figure 26.15. 2e Figure 26.14 has been retitled The stages of oogenesis.
- The 1e section Hormonal Control of Female Reproduction has been retitled Ovarian Follicles and the Ovarian Cycle to better represent the section’s content. The 1e subheading Comparison of Oogenesis and Follicle Development has been deleted, as it was superseded by the new heading; the content of this subsection is still in the text.
- In Figure 26.15: The ovarian cycle, labels for the three phases of the cycle have been added.
- The Uterine Cycle has now been made an overall heading; this section includes the new subheading Phases of the Uterine Cycle as well as the 1e subheading Hormonal Control of the Uterine Cycle. The content of the section is very similar to that in 1e.
- In Figure 26.19: The Big Picture of Hormonal Regulation of the Ovarian and Uterine Cycles, new illustrations of all parts of the ovarian cycle have been added, as well as new explanatory text and labels.

Chapter 27: Development and Heredity
Module 27.2: Pre-embryonic Period: Fertilization through Implantation
- Under Development of Extraembryonic Membranes, explanatory text has been added under the subheading Allantois.

Module 27.4: Fetal Period: Week 9 until Birth
- In Figure 27.10: Development during the fetal period, the part descriptions under the photos have been corrected to identify the conceptus as a fetus.
- In Figure 27.11: Comparison of fetal and newborn cardiovascular systems, the oxygenation of the blood in various parts of the systems has been clarified using the representative colors.

Appendix
NEW Appendix on the Scientific Method
Believe it or not, this book you are now holding has been about 12 years in the making—over 9 years for the first edition and nearly 3 for the second edition. When I first started writing it, my daughter wasn’t even 2 years old; now she is an eighth grader. But I was certainly not alone on this journey, as a huge number of people were involved in bringing this book to life. Saying a simple “thank you” in the acknowledgments seems so insufficient given the quality and quantity of their contributions, but these thanks are genuine and heartfelt.

I will start with my family because they have gone on this journey with me through both editions. Were it not for the help and understanding of my husband Chris Amerman, my daughter Elise, my mother Cathy Young, and my dear friend David Ferguson, this book would have never been completed. They served as a source of unwavering support, encouragement, and ideas. Elise is also very patient with how much I have to work, and I am so thankful for that. I realize that it isn’t easy having a mom who works 7 days a week, 12 hours per day, always chasing another deadline, so thank you for your understanding. I should also thank my dogs for dropping toys in the middle of my laptop, and my cats for never failing to do precisely the least helpful thing possible.

A special thank you must be extended to the brilliant Lourdes Norman-McKay, who has been such an amazing friend and source of support. Chris, Elise, and I have been so fortunate to get to know her and her family. I can’t wait to read her textbook, and, hey, I won’t just read the ending of the book—I’ll definitely start at the beginning and read it all the way through!

Next is the core team of the book, whom I’ve come to think of as parts of the brain, each performing absolutely vital functions that maintained homeostasis of the whole book. First is Serina Beauparlant, who, as editor-in-chief, is our brainstem. She has tirelessly performed all of those critical behind-the-scenes functions, ranging from wrangling budgets and securing administrative support to running focus groups and analyzing reviewer feedback. It has been Serina’s driving force that kept the book alive over these long years. Simply put, without her, there would be no book.

Our team’s cerebral hemispheres are our two brilliant developmental editors, Suzanne Olivier and Laura Southworth. As our text development editor, Suzanne is the left cerebral hemisphere. Her ability to logically and patiently approach a chapter from a “big picture” perspective ensures our chapters maintain a consistent narrative flow. It’s impossible to overstate her role—not only does Suzanne always manage to find a chapter’s sticking points, but she also always proposes solutions to these problems that make the chapter better. The readability, logical flow, and text-art coordination of this book are largely due to Suzanne’s efforts.

Laura Southworth, as our art development editor, is the right cerebral hemisphere. Laura not only is a very talented artist but also has an incredible ability to analyze a figure and work magic to make it teach better. This is in part due to her amazing skill for visual-spatial layout (a skill I absolutely lack), which is arguably the most important part of a figure. No matter what we gave her or how rough our ideas or sketches, Laura turned it into gold. This is why “Let’s ask Laura” is our mantra when Suzanne and I are working on a chapter. Any time we are perplexed by a figure, Laura unfailingly finds a solution.

The role of team thalamus was played by content producer Jessica Picone, who is new to the team for the second edition. This is a high compliment, as without a functional thalamus, absolutely nothing can get done! Jessica has been a wonderful addition to the team, and I feel very fortunate to be working with her. Like the thalamus, Jessica skillfully manages to monitor, process, and sort absolutely all material for the chapters and supplements for this project. Basically, everything goes through Jessica, and without her ability to juggle it all, we would be lost.

Rounding out the team is Barbara Yien, our cerebellum. Barbara has been involved with this project from the very start, first as a project editor and now as Courseware Director, Content Development. Her even-keeled approach has helped trouble-shoot scheduling, budgeting, and our marketing efforts. Whenever we come to a sticking point, we look to Barbara, who always manages to find a way to correct the “motor error” and keep everything balanced and on track.

(Now that I’ve written this, I’m wondering exactly what part of the brain I represent on the team. The basal nuclei? Maybe the hypothalamus? Hopefully not the pineal gland, as I don’t want to make my students sleepy . . .)

Every member of this core “brain” team deserves the highest praise for their skills, dedication, and willingness to persistently climb the mountain that was this book. I am beyond grateful to them for this, and I am also deeply thankful for their friendship. I’d also like to recognize our new editor Jennifer McGill Walker, with whom I can’t wait to start working—the third edition is just around the corner!

Assisting the core team was a group of incredibly talented people without whom the book could not have happened: our indomitable
marketing team of Allison Rona, Derek Perrigo, Brad Parkins, Maggie Moylan Leen, Tim Galligan, Jessica Moro, Mansour Bethoney, Patrice Jones, and Yez Alayan; design director Mark Ong; copyeditor Bonnie Boehm; the Pearson media team, including Stacy Treco, Laura Tommasi, Caroline Power, Katie Foley, Cheryl Chi, Kristen Sanchez, Patrice Fabel, Sarah Sheffield, and Sarah Young-Dualan; our content production team including Nancy Tabor and Caroline Ayres; our manufacturing buyer Stacey Weinberger; Animated Biomedical Productions; editorial assistant Dapinder Dosanjh; and editorial extern Linh Bui, Grinnell College.

Next I want to thank and acknowledge everyone who contributed to the book, particularly Virginia Irintcheva, who authored the script and storyboards for the book’s animations and interactive figures and assessments in MasteringA&P. Everyone who contributed their work devoted a huge amount of time and effort to this project—as I’m sure they will tell you, authoring materials is hard work! I am so grateful that each of them was willing to share his or her talents and play a role in the success of this project. I am also grateful to the Editorial Consultants who provided invaluable feedback on teaching ideas and carefully accuracy-checked pages and to all of the many academic reviewers and focus group attendees who have shared their time, expertise, and ideas with us. I appreciated the detailed feedback from Edwin Griff, University of Cincinnati; Howard Motoike, LaGuardia CC; Laila Nimri, Seminole State College; Paul Nodzak, M.D., University of Cincinnati; immunology researcher Bryan Van Lugt, and Michael Wiley, University of Toronto. Thanks, too, to Saeid Baki-Hashemi, Southwest Tennessee Community College for his advice on highlighting the importance of science vs. pseudoscience and for suggesting the addition of an overview of the scientific method (see new Appendix D Scientific Method).

A special “thank you” to Dr. Richard Gonzalez Diaz, Seminole State who shared ideas for now and for the future.

Thanks to Professors Maria Carles and Emily Gonzalez, Northern Essex Community College—Lawrence; Ayanna Alexander-Street, Lehman College; Carlene Tonini-Boutacoff, College of San Mateo and Lori Smith, American River College for giving us an opportunity to hear directly from their students about what types of print and media tools help them learn and what we can do to make these materials even more useful in future editions.

Thanks to Bert Atsma, Union County College for his wonderful update of the Active-Learning Workbook. Thank you as well to Suzi Pundt, University of Texas-Tyler for updating the PPTs and Lecture Outlines and Patty Bostwick Taylor, Florence-Darlington Technical College for updating the Test Bank, Instructor’s Guide and other supplemental materials.

Many thanks to the contributors to the assessments in Mastering A&P including Allison Beck, Black Hawk College; HongVu Duong, M.D., Nevada State College; Ken Malachowsky, Florence-Darlington Technical College; Stephanie A. Tacquard, Alvin Community College; and Geraldine Wright, Tidewater Community College.

I’d also like to recognize the superb work on expanded Dynamic Study Modules by Mary Colon, Seminole State College of Florida; Angel Nickens, Northwest Mississippi Community College and Stephen Page, Community College of Baltimore County. Special thanks to Vikash Patel, Nevada State College for his work on the Ready-to-go Teaching Modules.

I would also like to sincerely thank Lauren Harp, Courseware Portfolio Manager. I met Lauren in 2005 when she was the marketing manager for natural sciences. She passed my name along to Serina as a potential author after we had a two-hour-long conversation in my office about what I would like to see in a textbook. Had she not done this, Human Anatomy & Physiology likely wouldn’t exist.

Finally, none of this would have been possible without the unwavering support of Managing Director of Pearson Science Paul Corey, Editorial Director of Pearson Science Adam Jaworski, and Finance Director of Pearson Science Hogan Nymberg. All have supported this project from the beginning, and it was only because of their continued encouragement and belief in our team that you are holding this book right now. They have my eternal gratitude for allowing us to bring our vision to life.

Editorial Consultants

Emily Allen, Rowan College of Gloucester County
Bert Atsma, Union County College
Patty Bostwick Taylor, Florence-Darlington Technical College
Sheri L. Boyce, Messiah College
Robert G. Carroll, East Carolina University
Suzanne Pundt, University of Texas at Tyler
Mark Seifert, Indiana University-Purdue University, Indianapolis

Sharon S. Ellerton, Queensborough Community College
Jeff E. Engel, Western Illinois University
Karen L. Keller, Frostburg State University
Naomi Machell, Delaware County Community College
Ken Malachowsky, Florence-Darlington Technical College

Second Edition Reviewers

Pius Aboloye, North Lake College
Shaheem Abrahams, Thomas Nelson Community College
Sandra Acquah, Montgomery College–Rockville

Ticiano Alegre, North Lake College
Ayanna Alexander-Street, Lehman College
Leah Allen, Montgomery College
Antoinette Anastasia, Fairleigh Dickinson University

John Andreucci, Seneca College of Applied Art & Technology (Ontario, Canada)

Meghan Andrikanich, Lorain County Community College
Penny P. Antley, University of Louisiana–Lafayette

Kanzoni Asabigi, Wayne County Community College
Saeid Baki, Southwest Tennessee Community College

Donna Balding, Middle Georgia State University
Sarah Balizan, New Mexico State University–Doña Ana Community College
Acknowledgments

Amanda Banker, Southwest Tennessee Community College
Marcin Baranowski, Passaic County Community College
Marilynn Bartels, Black Hawk College
Allison L. Beck, Black Hawk College
Jerilyn Belle, Bevill State Community College
Charles E. Benton Jr., Madison Area Technical College
Cathy Bill, Columbus State Community College
Evelyn J. Biluk, Chippewa Valley Technical College–River Fall
Jennifer Blickwedehl, Trocaire College
Patty Bostwick Taylor, Florence-Darlington Technical College
Sheri Boyce, Messiah College
Tara Breeland-Southam, Bossier Parish Community College
Althea M. Brown, Wayne County Community College
Julia Brown, Chippewa Valley Technical College
Jerry Brunson, University of Louisiana–Monroe
Bertha M. Byrd, Wayne County Community College
Christie Campbell, Ozarks Technical Community College
Susan R. Capasso, St. Vincents College
Michelle Carey, Hutchinson Community College
Maria Carles, Northern Essex Community College
Vlad Chiriac, Durham College (Ontario, Canada)
Loraine N. Christie, Seneca College of Applied Art & Technology (Ontario, Canada)
Lori D. Coble, South Dakota School of Mines & Technology
Elizabeth Collins, Iowa Central Community College
Xixuan Collins, Black Hawk College
Mary B. Colon, Seminole State College of Florida
Matthew Connor, South Arkansas Community College
Kelly J. Craig, Colorado Mesa University
Kenneth Crane, Texarkana College
John Crawford, Lindenwood University
Gregory J. Crowther, University of Washington Bothell
Judith D’Aleo, Plymouth State University
Amy Dawson, New River Community College
Carrie Dollar, St. Clair County Community College
Barbara Dorsett, Gadsden State Community College
Mary L. Dougherty, Catawba Valley Community College
Hon-Vu Q. Duong, Nevada State College
Curtis Eckerman, Austin Community College
Paula K. Edgar, John Wood Community College
Ann M. Findley, University of Louisiana–Monroe
Julie Fischer, Wallace Community College
Teresa G. Fischer, Indian River State College
John E. Fishback, Ozarks Technical Community College
Robert S. Fitch, Wenatchee Valley College
Jodie M. Fleming, North Carolina Central University
Lisa Flick, Monroe Community College
Christine Foley, Southwest Texas Junior College
Eric Forman, Sauk Valley Community College
Reza Forough, Bellevue College
Polly Fourman, Chandler-Gilbert Community College
Mark Garbrecht, Winona State University
Linda D. Gaylo, Mercer County Community College
Mike Gehner, Xavier University
Ellen Genovese, Mercer County Community College
Emily K. Getty, Ivy Tech Community College–Kokomo
Diane Gibson, Hazard Community & Technical College
Larry E. Gibson, University of North Georgia
Sabine Globig, Hazard Community & Technical College
Richard Gonzalez Diaz, Seminole State College of Florida
Ewa Gorski, Community College of Baltimore County
Janelle Green, Hazard Community & Technical College
Melissa L. Greene, Northwest Mississippi Community College–Senatobia
Edwin R. Griff, University of Cincinnati
Geoff Gruenberg, Baker College–Flint
Kyle P. Harris, Temple University, College of Public Health
Kim Hensley, Southern West Virginia Community & Technical College
Kristine Hicks, University of Central Arkansas
Austin Hicks, University of Alabama
Elizabeth Hodgson, York College of Pennsylvania
Jessica C. Hogan, Central Virginia Community College
Dale R. Horeth, Tidewater Community College
Julie Huggins, Arkansas State University
Sandra Hutchinson, Santa Monica College
Michael Irowa, Wayne County Community College
Joby Jacob, La Guardian Community College
Lori Janus-Baxa, Gateway Technical College
Naomi Jones, Bellevue College
Kebret Kebede, Nevada State College
Eric Kenz, Columbus State Community College
Peter Kobela, Owensboro Community & Technical College
Gopal Krishna, Moberly Area Community College–Columbia
Dean Kruse, Portland Community College
James A. Landis, Lakeland Community College
Shannon Larson, College of Southern Nevada
Joyce Ellen Lathrop-Davis, Community College of Baltimore County
Steven A. Leadon, Durham Technical Community College
Aaron Livingston, Portland Community College–Southeast
Alex Lowrey, University of North Georgia–Gainesville
Debby Machuca, Portland Community College
Ken Malachowsky, Florence-Darlington Technical College
Patricia L. Mansfield, Santa Ana College
Bruce Maring, Daytona State College
Sarah Mattox Holt, Northwest Mississippi Community College
John W. McCain, Owens State Community College–Findlay
Annie McKinnon, Howard College
Larry R. McLean, Ivy Tech Community College–Lawrenceburg
Carrie McVean Waring, Colorado Mesa University
Laurie S. Meadows, Roane State Community College
Jaime Mergliano, John Tyler Community College
Glenn Merrick, Lake Superior College
Michael Midgley, Quinipiac University
Joseph R. Mikula, North Central Michigan College
Sharon Miles, Itawamba Community College
Michelle Milner, Itawamba Community College
Robert Moldenhauer, St. Clair County Community College
Marty Montpetit, John Tyler Community College
Erica Morley, Mesa Community College
Susan Moss, Imperial Valley College
Magdalena Muchlinski, University of Kentucky
Acknowledgments

David Mullaney, Naugatuck Valley Community College
Angel Nickens, Northwest Mississippi Community College
Paul I. Nodzak, M.D., University of Cincinnati
Weston Opitz, Kansas Wesleyan University
Stephen H. Page, Community College of Baltimore County & Towsnall University
Ivan Paul, John Wood Community College
Emma Phillips, Blue Ridge Community College
Jason Pienaar, University of Alabama
Christine Priano, CUNY–Borough of Manhattan Community College
Candice Pullen, Central Queensland University (Queensland, Australia)
Suzanne Pundt, University of Texas–Tyler
Kastubha Qanungo, Trident Technical College
Denise Rakestraw, Itawamba Community College
James Rayburn, Jacksonville State University
Gary Reid, Trinity Valley Community College
Nicole Reinke, University of Sunshine Coast (Queensland, Australia)

Susan Rohde, Triton College
Deborah Rhoden, Sneed State Community College
Antonina B. Ries, Ivy Tech Community College
Robin Robison, Northwest Mississippi Community College
Laurie A. Rocco, Monroe Community College
Vanessa Rowan, Palm Beach Atlantic University
Hiranya S. Roychowdhury, New Mexico State University–Doña Ana Community College

John W. Rumsey, Indian River State College
Ali Saleh, Passaic County Community College
Methea Sapp, Spokane Community College
Michelle M. Scanavino, Moberly Area Community College
Michael Schneider, Ivy Tech Community College of Indiana
Victoria Schneider, Montgomery College–Rockville
Benn Scott, Louisiana Delta Community College
Ehsan Siddique, Broward College
Scott L. Simerlein, Purdue University–North Central
Doug Sizemore, Bevill State Community College
Patricia M. Smeltz, John Tyler Community College
Pamela S. Smith, Madisonville Community College
Gehan Soliman, Fayetteville Technical Community College
Alison Stamatis, Weatherford College
Lisa Strong, Northwest Mississippi Community College
Karla Svedarsky, Chippewa Valley Technical College
Stephanie Tacquard, Alvin Community College
Candice Thomas, University of Central Arkansas
Michael W. Thompson, Jefferson Community & Technical College
Sanjay K. Tiwary, Hinds Community College
Paula Trilling, Asheville-Buncombe Technical Community College
Lisa Tunks, Broward College
Albert Urazaev, Ivy Tech Community College
Sarah Warrington, Southwest Tennessee Community College
Chad Wayne, University of Houston
Shay West, Colorado Mesa University
Valerie Wheat, Jefferson Community & Technical College
Emily C. Whiteley, Catawba Valley Community College
Catharine C. Whitling, University of North Georgia

Esther Wilczynski, Trocaire College
Jeffrey Williams, Victoria College
Vanessa L. Williams, University of Georgia
Martha T. Wolfe, Elizabethtown Community & Technical College
Leon Wooten, Kilgore College
Geraldine Wright, Tidewater Community College
Imogene Younger, Southwest Tennessee Community College
Martin Zahn, Thomas Nelson Community College
Gina M. Zainelli, Gateway Technical College

Media Reviewers

Big Picture Animations & Concept Boost Video Tutors
Emily Allen, Rowan College of Gloucester County
Willie Asobayire, Essex County Community College
Vince Austin, Bluegrass Community & Technical College
Marianne Baricevic, Raritan Valley Community College
Jerry Barton, Tarrant County College
C. Audra Bassett-Touchell, Asheville-Buncombe Technical Community College
David Bastedo, San Bernardino Valley College
Carol Britson, University of Mississippi
Jack Brown, Paris Junior College
Carolyn Bunde, Idaho State University
Susan Burgoon, Amarillo College
C. Steven Cahill, West Kentucky Community & Technical College
Maria C. Carles, Northern Essex Community College
Brendan K. Chastain, West Kentucky Community & Technical College

Ken Crane, Texarkana College
Kathryn A. Durham, Lorain County Community College
Sharon Ellerton, Queensborough Community College
Julie Fischer, Wallace Community College
Theresa Gillian, Virginia Tech
Lauren Gollahon, Texas Tech University
Pamela Gregory, Tyler Junior College
Kristine Hicks, University of Central Arkansas
Mark Hollier, Georgia State University—Perimeter College–Clarkston
William F. Huber, St. Louis Community College
Julie Huggins, Arkansas State University
Tom Jordan, Pima Community College–NW
Michelle Klein, Prince George’s Community College
Adewale Ladiyan, Baltimore City Community College
Jodi Long, Santa Fe College
Bruce Maring, Daytona State University
Jaime Mergliano, John Tyler Community College
Howard Motoike, LaGuardia Community College
Maria Oehler, Florida State College–Jacksonville
John Patillo, Middle Georgia State College
Diane Pelletier, Green River Community College
Suzanne Pundt, University of Texas at Tyler
Elizabeth Randolph, Front Range Community College
Rozanne Redlinski, Erie Community College
Ann Riedl, Front Range Community College
Michelle M. Scanavino, Moberly Area Community College
Acknowledgments

Sharon Schapel, Mott Community College
Joanne Settel, Baltimore City Community College
Jason Shaw, Brigham Young University-Idaho
Mark Slivkoff, Collin College
Lisa Strong, Northwest Mississippi Community College
Patricia Visser, Jackson Community College
Kathy Warren, Daytona State College
Pete Wickley, Cayahoga Community College

Interactive Physiology 2.0
Matthew Abbott, Des Moines Area Community College
Emily Allen, Rowan College at Gloucester County
Lynne Anderson, Meridian Community College
David Babb, West Hills College Lemoore
Jerry Barton, Tarrant County College
Shawn Bearden, Idaho State University
Charles Benton, Madison Area Technical College
Gordon Betts, Tyler Junior College
Michael Brady, Columbia Basin College
Betsy Brantley, Valencia College
Carol A. Britson, University of Mississippi
Christie Campbell, Ozarks Technical Community College
Maria C. Carles, Northern Essex Community College
Tamyra Carmona, Cosmosmes River College
Marien Cendon, Miami Dade College
Brendon Chastain, West Kentucky Community Technical College
Sam Chen, Moraime Valley Community College
Alexander Cheroske, Mesa Community College
William M. Clark, Lone Star College–Kingwood
Jason Dechant, University of Pittsburgh
Smruti Desai, Lone Star College–Cyfair
Karen Dougherty, Hopkinksville Community College
Sondra Dubowsky, McLenman Community College
Kathryn Durham, Lorain County Community College
Karen Eastman, Chattanooga State Community College
Sharon S. Ellerton, Queensborough Community College–CUNY
Paul Emerick, Monroe Community College
Colin Everhart, St. Petersburgh Community College
Brian Feige, Mott Community College
Michele Finn, Monroe Community College
John E. Fishback, Ozarks Technical Community College
Aaron Fried, Mohawk Valley Community College
Jane Gavin, University of South Dakota
Peter Germroth, Hillsborough Community College
Anna Gilletly, Central New Mexico Community College
Gary Glaser, Genesea Community College
Richard Gonzalez-Diaz, Seminole State College of Florida
Abigail Goosie, Walters State College
Pattie S. Green, Tacoma Community College
Edwin Griff, University of Cincinnati
George Hanak, Pasco Hernando State College
Mary Beth Hanlin, Des Moines Area Community College–Boone
Nora Hebert, Red Rocks Community College
Katja Hoehn, Mount Royal University
Rodney Holmes, Waubonsee Community College
Mark Hubley, Prince George’s Community College

Carlyon Huffman, Wichita Area Technical College
Julie Huggins, Arkansas State University
Alexander Ibe, Weatherford College
Alexander Imholtz, Prince George’s Community College
Virginia Irinkaeva, Truckee Meadows Community College
Thomas Jordan, Pima Community College
William M. Karkow, University of Dubuque
Suzanne Keller, Indian Hills Community College
Michael Kielp, Eastern Michigan University
Paul Lea, Northern Virginia Community College
Paul Luyster, Tarrant County College
Ken Malachowsky, Florence-Darlington Technical College
Theresa Martin, College of San Mateo
Nicole Mashburn, Calhoun Community College
Jennifer Menon, Johnson County Community College
Jaime Mergliano, John Tyler Community College
Sharon Miles, Itawamba Community College
Louise Mills, North Hennepin Community College
Justin Moore, American River College
Christine Morin, Prince George’s Community College
Maria Oehler, Florida State College–Jacksonville
Betsy Ott, Tyler Junior College
Stephen Page, Community College of Baltimore County & Townson University
Vikash Patel, Nevada State College
Dennis Pearson, Morton College
Diane Pelletier, Green River Community College
Jessica Petersen, Pensacola State College
Jason Pienaar, University of Alabama
Becky Pierce, Delta College
Gilbert Pitts, Austin Peay State University
Renee Prenitzer, Greenville Technical College
Fernando Prince, Laredo Community College
Suzanne Pundt, University of Texas at Tyler
Wendy Rappazzo, Hartford Community College
Terrence J. Ravine, University of South Alabama
Christine S. Rigsby, Middle Georgia State University
Cynthia Robison, Wallace Community College
Sharon Schapel, Mott Community College
Mark Schmidt, Clark State Community College
Michael W. Sipala, Bristol Community College
Lori Smith, Amerman River College–Los Rios
Kerry Smith, Oakland Community College–Auburn Hills
Tom Sobat, Ivy Tech Community College
Kay Sourbeer, Tidewater Community College
Cindy Stanfield, University of South Alabama
Laura Steele, Ivy Tech Community College–Northeast
George Steer, Jefferson College of Health Sciences
Dean Thornton, South Georgia State College
Rita Thrasher, Pensacola State College
Brenda Tondi, George Mason University
Carlene Tomini-Boutacoff, College of San Mateo
Sheela Vennu, Waubonsee Community College
Khusreesh Wankadiya, Central Piedmont Community College
Kira L. Wennstrom, Shoreline Community College
Shirley Whitescarver, Bluegrass Community & Technical College—KCTCS
Darrellyn Williams, Pulaski Technical College
Heather Wilson-Ashworth, Utah Valley University
Jackie Wright, South Plains College

First Edition Reviewers
Joslyn Ahlgren, University of Florida
Anitha Akkal, Joliet Junior College
Ticiano Alegre, North Lake College
Ayanna Alexander-Street, Lehman College
Emily Allen, Rowan College at Gloucester County
Matt Allen, Indiana University–Purdue University, Indianapolis, School of Medicine
Beth Altschafl, University of Wisconsin–Madison
Teresa Alvarez, St. Louis Community College–Forest Park
Kathy Pace Ames, Illinois Central College
Heather Evans Anderson, Winthrop University
March Ard, University of Mississippi Medical Center/Hinds Community College
Bert Atsma, Union County College
Vince Austin, Bluegrass Community & Technical College
Stephanie Baiyasi, Delta College
Tim Ballard, University of North Carolina–Wilmington
Stephen Bambas, University of South Dakota
Michelle Baragona, Northeast Mississippi Community College
Mary Lou Bareither, University of Illinois–Chicago
Marianne Baricicve, Raritan Valley Community College
Verona Barr, Heartland Community College
David Barton, Indian Hills Community College
Jerry Barton, Tarrant County College–South
Thomas Bell, Rutgers University at Camden
Dena Berg, Tarrant County College–Northwest
Tom Betsy, Bergen County Community College
Gordon J. Betts, Tyler Junior College
Laura Bianco, Delaware Technical Community College of Wilmington
Heather Billings, West Virginia School of Medicine
Ruth Birch, St. Louis Community College–Florissant Valley
Bonnie Blazer-Yost, Indiana University–Purdue University, Indianapolis
Rob Blum, Lehigh Carbon Community College
Sue Bodine, University of California, Davis
Franklyn F. Bolander, University of South Carolina
Patty Bostwick Taylor, Florence-Darlington Technical College
Sherry Bowen, Indian River State College
Sheri Boyce, Messiah College
Laura Branagan, Foothill College
Eldon Braun, University of Arizona
Carol Britson, University of Mississippi
David Brown, East Carolina University, Brody School of Medicine
Jack Brown, Paris Junior College
Kristen Bruzzini, Maryville University
Diep Burbridge, Long Beach City College
Warren Burggren, University of North Texas
Ed Burke, Truckee Meadows Community College

Steve Burnett, Clayton State University
Rebecca Burton, Alverno College
Beth Campbell, Itawamba Community College
Jamie Campbell, Truckee Meadows Community College
Geralyn Caplan, Owensboro Community & Technical College
Tammyra Carmona, Cosumnes River College
Steven J. Carlisle, John Tyler Community College
Robert Carroll, East Carolina University, Brody School of Medicine
Jana Causey, Pearl River Community College
Karen Chooijian, California State University, Fresno
Robert Clark, Ozarks Technical Community College
Pamela Cole, Shelton State Community College
Francisco Coro, Miami Dade College
Ron Cotright, East Carolina University, Brody School of Medicine
Linda Costanzo, Virginia Commonwealth University
Ken Crane, Texarkana College
Robert Crocker, SUNY–Farmingdale State College
James Crowder, Brookdale Community College
Michael Cryder, Riverside Community College
Paul Currie, Hazard Community & Technical College
Judith D’Aleo, Plymouth State University
Lynnette Danzl-Tauer, Rock Valley College
Mary Dawson, Kingsborough Community College
Danielle Desroches, William Patterson University
Gary Diffee, University Wisconsin–Madison
Josh Drouin, Lock Haven University
Joseph D’Silva, Norfolk State University
Sondra Dubowsky, McLeanman Community College
Kathryn Durham, Lorain County Community College
Abdeslem El Idrissi, College of Staten Island
Sharon Ellerton, Queensborough Community College
Kurt Elliott, Northwest Vista College
Jeff Engel, Western Illinois University
Greg Erianne, Naugatuck Valley Community College
Victor Eroschenko, University of Idaho (retired)
Martha Eshleman, University of Arkansas—Pulaski Technical College

Marirose Ethington, Geneseo Community College
David Evans, Pennsylvania College of Technology
Brian Feige, Mott Community College
Michael Ferrari, University of Michigan, School of Medicine
Linda Flora, Delaware County Community College
Maria Florez, Lone Star College–CyFair
Cliff Fontenot, Southeastern Louisiana University
Barbara Fritz, Rochester Community & Technical College
Larry Frolich, Miami Dade College–Wolfson
Van Fromhofer, Hudson Valley Community College
Chris Gan, Highline Community College
Joseph Gar, West Kentucky Community & Technical College
Esther Gardner, NYU Langone Medical Center
Lynn Gargan, Queensborough Community College–Northeast
Lori Garrett, Parkland College
Michelle K. Gaston, Northern Virginia Community College
Jane Gavin, University of South Dakota, Sanford School of Medicine
Michelle Gibson, Montcalm Community College
Acknowledgments

Mike Gilbert, Fresno City College
Theresa Gillian, Virginia Tech
Lauren Gollahon, Texas Tech University
Matthew Gosses, Owens Community College
Margaret Grant, Hudson Valley Community College
Bruce Gray, Simmons College
Melissa Greene, Northwest Mississippi Community College
Patricia Halpin, University of New Hampshire–Manchester
Chris Harendza, Montgomery County Community College
Rebecca Harris, Pitt Community College
Nora Hebert, Red Rocks Community College
Gary Heisermann, Salem State University
DJ Hennager, Kirkwood Community College
Kristin Hensley, Rowan University
Brent Hill, University of Central Arkansas
Karen Hlinka, West Kentucky Community & Technical College
Elizabeth Hoffman, Baker College–Clinton
Rodney Holmes, Waukesha Community College
Mark Hubley, Prince George’s Community College
Julie Huggins, Arkansas State University
Jason Hunt, Brigham Young University–Idaho
Peggy Hunter, Camosun College
Jim Hutchins, Weber State University
Sandra Hutchinson, Sinclair Community College
Alexander Ibe, Weatherford College
Virginia Irintcheva, Truckee Meadows Community College
Bruce Johnson, Cornell University
Corey S. Johnson, University of North Carolina–Chapel Hill
Eddie Johnson, Central Oregon Community College
Cindy Jones, Colorado Community College Online
Margaret Kauffman, Ohlone College
Karen Keller, Frostburg State University
Suzanne Keller, Indian Hills Community College
Will Kleinpflug, Middlesex County College
Michael Klemz, Indiana University–Purdue University, Indianapolis, School of Medicine
Chad Knight, Northern Virginia Community College
Karen Krabbenhoft, University of Wisconsin-Madison, School of Medicine
Chris Kule, Pennsylvania College of Technology
Edward LaBelle, Rowan College of Gloucester County
Jason LaPres, Lone Star College–North Harris
Barbara Lax, Community College of Allegheny
Steven Leadon, Durham Technical Community College
Marian Leal, Sacred Heart University
Lisa M. J. Lee, University of Colorado, School of Medicine
Peggy LePage, North Hennepin Community College
John LePrie, University of North Carolina–Greensboro
Michael Levitzky, Louisiana State University Health Sciences Center
Robert Logan, North Shore Community College–Lynn
Shawn Macaulay, Muskegon Community College
Naomi Machell, Delaware County Community College
Erin MacKenzie, Howard College
Ken Malachowsky, Florence-Darlington Technical College
Bruce Maring, Daytona State College–West/Deland
Patricia Marquardt, Wayne County Community College
Karen Martin, Fulton-Montgomery Community College
Theresa Martin, College of San Mateo
Alice McAfee, University of Toledo
Jameson McCann, Guilford Technical Community College
Jenny McFarland, Edmonds Community College
Cherie McKeever, Montana State University-Great Falls College of Technology
Karen McLeLLan, Indiana University–Purdue University, Ft. Wayne
Mark Meade, Jacksonville State University
Jaime Merglino, John Tyler Community College
Anthony Mescher, Indiana University School of Medicine–Bloomington
Steve Meyer, Florida State College at Jacksonville
Justin Moore, American River College
Erin Morrey, Perimeter College–Georgia State University
Qian Moss, Des Moines Area Community College
Susan Moss, Imperial Valley College
Howard Motoike, LaGuardia Community College
Jen Musa, Broome Community College
Barbara Musolf, Clayton State University
Cheryl Neudauer, Minneapolis Community & Technical College
Chad Newton, Bakersfield College
Mary Jane Niles, University of South Florida
Maria Oehler, Florida State College at Jacksonville
Justicia Opoku-Edusei, University of Maryland
David Osborne, Texas Tech Health Science Center
Betsy Ott, Tyler Junior College
Ellen Ott-Reses, Blinn College
Anthony Paganini, Michigan State University
Russ Palmeri, Asheville-Buncombe Technical Community College
Michele Paradies, SUNY–Orange County Community College
Diane Pelletier, Green River Community College
Chris Picken, SUNY–Suffolk County Community College
Rebecca Pierce, Delta Community College
Melissa Piliang, Cleveland Clinic
John Placyk, University of Texas at Tyler
Brandon Poe, Springfield Technical Community College
Peter Porter, Moraine Valley Community College
Frank Powell, University of California, San Diego
Renee Prenitzer, Greenville Technical College
Cynthia Prentice-Craver, Chemeketa Community College
Steven Price, Virginia Commonwealth University
Suzanne Pundt, University of Texas at Tyler
David Quadagno, Florida State University
Saeed Rahmanian, Roane State Community College
Scott Rahschulte, Ivy Tech Community College–Lawrenceburg
Elizabeth Randolph, Front Range Community College
Wendy Rappazzo, Harford Community College
Terrence J. Ravine, University of South Alabama
Laura Ritt, Burlington County College
Dawn Roberts, Pellissippi State Community College
Mark Robertson, Delta College
Robin Robison, Northwest Mississippi Community College
Alex Robling, Indiana University School of Medicine
Susan Rohde, Triton College
Amanda Rosenzweig, Delgado Community College
Kyla Ross, Georgia State University
John Rowe, Florida Gateway College
Stephen Sarikas, Lasell College
Leif Saul, University of Colorado–Boulder
Lou Scala, Passaic County Community College
Connie Scanga, University of Pennsylvania School of Nursing
Sharon Schapel, Mott Community College
Steve Schenk, College of Central Florida-Citrus
Catherine Scholz, Gwinnett Technical College
Mark Seifert, Indiana University–Purdue University, Indianapolis, School of Medicine
Donald Shaw, University of Tennessee at Martin
Matthew “Doc” Sheehan, Clinton Community College
Gidi Shemer, University of North Carolina–Chapel Hill
Michael Shipley, Midwestern State University
Brian Shmaefsky, Lone Star College–Kirkwood
Marilyn Shopper, Johnson County Community College
Pam Siergiej, Roane State Community College
Lyndda Skidmore, Wayne County Community College
Dianne Snyder, Augusta State University
Debbie Socci, Seminole State College of Florida
Annette Soponis, Reading Area Community College
Ashley Spring, Brevard Community College
Maria Squire, University of Scranton
Claudia Stanescu, University of Arizona
Cindy Stanfield, University of South Alabama
George Steer, Jefferson College of Health Sciences
Jill Stein, Essex County College
Nora Stevens, Portland Community College–Cascade
Leo Stoudier, Broward College
Diana Sturges, Georgia Southern University
Carole Subotich, Rowan College of Gloucester County
Eric Sun, Middle Georgia State University
Cynthia Surmacz, Bloomsburg University
Robert Swatski, Harrisburg Area Community College–York
Carolyn Szutarski, Camden County College
Yong Tang, Front Range Community College
George Tanner, Indiana University School of Medicine
Shyra Tedesco, Ivy Tech Community College–Madison
Alvin Telser, Northwestern University, Feinberg School of Medicine
Terry Thompson, Wor-Wic Community College
Maureen Tubbiola, St. Cloud State University
Katherine “Kate” Van de Wal, Community College of Baltimore County
Padmaja Vedartham, Lone Star College–CyFair
Heather Walker, Clemson University
Michael Walls, Ivy Tech Community College–Evansville
Lynn Wandrey, Mott Community College
Delon Washo-Krupps, Arizona State University
Amy Way, Lock Haven University
Chad Wayne, University of Houston
Mary Weis, Collin College
Lisa Welch, Weatherford College–Eccles
Corrie Whisner, Cornell University
Shirley Whitescarver, Bluegrass Community & Technical College
Sheila Wicks, Malcolm X College
Michael Wiley, University of Toronto
Samia Williams, Santa Fe College
Peggie Williamson, Central Texas College
Larry Wilmore, Lamar State University–Orange
Colleen Winters, Towson University
Diane Wood, Southeast Missouri State University
Amber Wyman, Finger Lakes Community College
Jim Yount, Brevard Community College
Anne Marie Yunker, Cuyahoga Community College
Nina Zanetti, Siena College
Scott Zimmerman, Missouri State University
Brief Contents

Unit 1 Fundamental Principles of Anatomy and Physiology
- **Chapter 1** Introduction to Anatomy and Physiology 1
- **Chapter 2** The Chemistry of Life 31
- **Chapter 3** The Cell 68
- **Chapter 4** Histology 123

Unit 2 Body Coverings and Movement
- **Chapter 5** The Integumentary System 160
- **Chapter 6** Bones and Bone Tissue 184
- **Chapter 7** The Skeletal System 210
- **Chapter 8** Articulations 257
- **Chapter 9** The Muscular System 283
- **Chapter 10** Muscle Tissue and Physiology 337

Unit 3 Integration, Control, and Maintenance of Homeostasis
- **Chapter 11** Introduction to the Nervous System and Nervous Tissue 381
- **Chapter 12** The Central Nervous System 422
- **Chapter 13** The Peripheral Nervous System 475
- **Chapter 14** The Autonomic Nervous System and Homeostasis 516
- **Chapter 15** The Special Senses 536
- **Chapter 16** The Endocrine System 584

Unit 4 Transport and Immunity
- **Chapter 17** The Cardiovascular System I: The Heart 630
- **Chapter 18** The Cardiovascular System II: The Blood Vessels 670
- **Chapter 19** Blood 723
- **Chapter 20** The Lymphatic System and Immunity 754
- **Chapter 21** The Respiratory System 802

Unit 5 Regulation of the Body’s Intake and Output
- **Chapter 22** The Digestive System 851
- **Chapter 23** Metabolism and Nutrition 902
- **Chapter 24** The Urinary System 947
- **Chapter 25** Fluid, Electrolyte, and Acid-Base Homeostasis 993

Unit 6 Continuity of Life
- **Chapter 26** The Reproductive System 1022
- **Chapter 27** Development and Heredity 1066

Appendices
- **Appendix A** Answers to Apply What You Learned and Assess What You Learned A-1
- **Appendix B** The Metric System B-1
- **Appendix C** Laboratory Reference Values C-1
- **Appendix D** Scientific Method D-1
Contents

Unit 1 Fundamental Principles of Anatomy and Physiology

1 Introduction to Anatomy and Physiology 1

1.1 How to Succeed in Your Anatomy and Physiology Course 1
 How to Develop Study Skills 2
 How to Make the Best Use of Class and Lab Time 4
 How to Use This Book and Its Associated Materials 5

1.2 Overview of Anatomy and Physiology 7
 Characteristics of Living Organisms 7
 Levels of Structural Organization and Body Systems 8
 Types of Anatomy and Physiology 8

1.3 The Language of Anatomy and Physiology 9
 The Anatomical Position and Directional Terms 12
 Regional Terms 13
 Planes of Section 16

1.4 The Organization of the Human Body 17
 The Posterior Body Cavity 17
 The Anterior Body Cavity 18

1.5 Core Principles in Anatomy and Physiology 21
 Overall Theme: Physiological Processes Operate to Maintain the Body’s Homeostasis 21
 Core Principle One: Feedback Loops Are a Key Mechanism Used to Maintain Homeostasis 22
 Core Principle Two: Structure and Function Are Related at All Levels of Organization 25
 Core Principle Three: Gradients Drive Many Physiological Processes 26
 Core Principle Four: Cell-Cell Communication Is Required to Coordinate Body Functions 27
 Concept Boost Putting Anatomical Terms Together 15
 Concept Boost Debunking Some Common Misconceptions about Homeostasis 25

2 The Chemistry of Life 31

2.1 Atoms and Elements 31
 Atoms and Atomic Structure 32
 Elements in the Periodic Table and the Human Body 32
 Isotopes and Radioactivity 33

2.2 Matter Combined: Mixtures and Chemical Bonds 34
 Mixtures 34
 Chemical Bonds 35
 Ions and Ionic Bonds 36
 Covalent Bonds 37

2.3 Chemical Reactions 41
 Chemical Notation 41
 Energy and Chemical Reactions 42
 Homeostasis and Types of Chemical Reactions 43
 Reaction Rates and Enzymes 43

2.4 Inorganic Compounds: Water, Acids, Bases, and Salts 46
 Water 46
 Acids and Bases 47
 Salts and Electrolytes 50

2.5 Organic Compounds: Carbohydrates, Lipids, Proteins, and Nucleotides 50
 Monomers and Polymers 51
 Carbohydrates 51
 Lipids 53
 Proteins 56
 Nucleotides and Nucleic Acids 59
 Concept Boost Determining the Type of Bonds in a Molecule or Compound 40
 Concept Boost Making Sense of the pH Scale 49

A&P in the Real World Medical Errors 12
A&P in the Real World Abdominal Pain 19
A&P in the Real World Medical Imaging 21
A&P in the Real World Childbirth, Pitocin, and Positive Feedback Loops 26

A&P in the Real World Nuclear Medicine 34
A&P in the Real World Enzyme Deficiencies 45
A&P in the Real World The Good, the Bad, and the Ugly of Fatty Acids 55
3 The Cell 68

3.1 Introduction to Cells 68
Basic Processes of Cells 68
Overview of Cell Structure 69
Cell Size and Diversity 70

3.2 Structure of the Plasma Membrane 70
The Phospholipid Bilayer 71
The Fluid Mosaic Model of the Plasma Membrane 72

3.3 Transport across the Plasma Membrane 74
Passive Transport Processes 75
Active Transport via Membrane Proteins 80
Consequences of Ion Transport across the Plasma Membrane: Introduction to Electrophysiology 82
Active Transport via Vesicles 83

3.4 Cytoplasmic Organelles 87
Mitochondria 89
Peroxisomes 90
Ribosomes 90
The Endomembrane System 91

3.5 The Cytoskeleton 96
Types of Filaments 96
Cellular Extensions 98

3.6 The Nucleus 100
Nuclear Envelope 101
Chromatin and Chromosomes 102
Nucleoli 103

3.7 Protein Synthesis 103
Genes and the Genetic Code 103
Transcription 104
Translation 107
Putting It All Together: The Big Picture of Protein Synthesis 109
Regulation of Gene Expression 109

3.8 The Cell Cycle 111
Phases of the Cell Cycle 111
Cell Cycle Control and Cancer 116

4 Histology 123

4.1 Introduction to Tissues 124
Types of Tissues 124
The Extracellular Matrix 124
Cell Junctions 126

4.2 Epithelial Tissues 127
Components and Classification of Epithelia 128
Covering and Lining Epithelia 129
Glandular Epithelia 134

4.3 Connective Tissues 137
Connective Tissue Proper 137
Specialized Connective Tissues 142

4.4 Muscle Tissues 146
Components of Muscle Tissue 147
Types of Muscle Tissue 148

4.5 Nervous Tissue 148

4.6 Putting It All Together: The Big Picture of Tissues in Organs 151

4.7 Membranes 152
True Membranes 152
Membrane-like Structures 153

4.8 Tissue Repair 154
Capacity of Specific Tissues for Tissue Repair 154
Other Factors Affecting Tissue Repair 155

Concept Boost “But It All Looks Pink!” Part 1 128
Concept Boost “But It All Looks Pink!” Part 2 150
The Big Picture of Tissues in Organs 151
A&P in the Real World Marfan Syndrome 126
A&P in the Real World Carcinogens and Epithelial Tissues 130
A&P in the Real World Adipose Tissue and Obesity 142
A&P in the Real World Osteoarthritis and Glucosamine Supplements 144
A&P in the Real World Friction Rubs 154
Unit 2 Body Coverings and Movement

5 The Integumentary System 160

5.1 Overview of the Integumentary System 160
Skin Structure 160
Functions of the Integumentary System 162

5.2 The Epidermis 164
Keratinocytes 164
Other Cells of the Epidermis 167
Thick and Thin Skin 167

5.3 The Dermis 168
Papillary Layer 168
Reticular Layer 169
Skin Markings 169

5.4 Skin Pigmentation 171
Melanin 171
Other Pigments That Affect Skin Color: Carotene and Hemoglobin 173
Skin Color as a Diagnostic Tool 173

5.5 Accessory Structures of the Integument: Hair, Nails, and Glands 174
Hair 174
Nails 176
Glands 177

5.6 Pathology of the Skin 178
Burns 179
Skin Cancer 180

Study Boost Remembering the Strata of the Epidermis 166
Concept Boost Understanding Epidermal Growth 167
A&P in the Real World Cellulite 164
A&P in the Real World Topical Medications 166
A&P in the Real World Skin Wrinkles 171
A&P in the Real World Pseudoscience Exposed: Tanning and a “Healthy Tan” 172
A&P in the Real World Acne 178

6 Bones and Bone Tissue 184

6.1 Introduction to Bones as Organs 184
Functions of the Skeletal System 185
Bone Structure 186

A&P in the Real World Bone Marrow Transplantation 188
A&P in the Real World Osteopetrosis 192
A&P in the Real World Osteoporosis and Healthy Bone Tissue 197
A&P in the Real World Achondroplasia 198
A&P in the Real World Gigantism and Acromegaly 201

7 The Skeletal System 210

7.1 Overview of the Skeletal System 210
Structure of the Skeleton and Skeletal Cartilages 210
Bone Markings 212

7.2 The Skull 214
Overview of Skull Structure 214
Cavities of the Skull 226
Fetal Skull 228
Hyoid Bone 229

7.3 The Vertebral Column and Thoracic Cage 230
Overview of the Vertebral Column 230
Structure of the Vertebrae 232
Intervertebral Discs 237
The Thoracic Cage 238

7.4 Bones of the Pectoral Girdle and Upper Limb 240
The Pectoral Girdle 240
The Humerus 242
Bones of the Forearm: The Radius and Ulna 243
Bones of the Wrist: Carpals 245
Bones of the Hand and Fingers: Metacarpals and Phalanges 245
Contents

7.5 Bones of the Pelvic Girdle and Lower Limb 247
The Pelvis and Bones of the Pelvic Girdle 247
The Femur and Patella 250
Bones of the Leg: The Tibia and Fibula 251
Bones of the Ankle and Foot: The Tarsals, Metatarsals, and Phalanges 252

Study Boost Rememnering Skull Bones and Vertebral 236
Study Boost Remembering Bones of the Upper and Lower Limbs 254
Concept Boost Understanding How Skull Bones Relate to One Another 225

A&P in the Real World Forensic Skull Anatomy 229
A&P in the Real World Vertebral Compression Fractures 235
A&P in the Real World Herniated Disc 237
A&P in the Real World The Sternum and CPR 239
A&P in the Real World Wrist Fractures 246

8 Articulations 257
8.1 Overview of Joints 257
Functions of Joints 257
Classes of Joints 258

8.2 Fibrous and Cartilaginous Joints 258
Fibrous Joints 258
Cartilaginous Joints 260

8.3 Structure of Synovial Joints 261
The Joint Cavity 261
Stabilizing and Supportive Structures 262
Arthritis 264

8.4 Function of Synovial Joints 264
Functional Classes of Synovial Joints 264
Movements at Synovial Joints 266
Range of Motion 270

8.5 Types of Synovial Joints 270
Structural Classes of Synovial Joints 270
Putting It All Together: The Big Picture of Joint Classifications and Stability versus Mobility 272
Specific Hinge Joints: The Elbow and the Knee 274
Specific Ball-and-Socket Joints: The Shoulder and the Hip 276

Study Boost Keeping Synovial Joint Movements Straight 270
Concept Boost Demystifying Muscle Actions 301

9 The Muscular System 283
9.1 Overview of Skeletal Muscles 283
Structure of Skeletal Muscles 283
Naming Muscles 286
Functions of Skeletal Muscles 287
Studying Muscles 291

9.2 Muscles of the Head, Neck, and Vertebral Column 294
Muscles of Facial Expression 294
Extrinsic Eye Muscles 297
Muscles of the Head and Neck 297
Muscles of the Vertebral Column 304

9.3 Muscles of the Trunk and Pelvic Floor 306
Muscles of Ventilation 306
Abdominal Muscles 306
Muscles of the Pelvic Diaphragm, Urogenital Diaphragm, and Perineum 309

9.4 Muscles of the Pectoral Girdle and Upper Limb 312
Muscles That Move the Scapula at the Pectoral Girdle 312
Muscles That Move the Arm at the Shoulder Joint 314
Muscles That Move the Forearm and Hand 315

9.5 Muscles of the Hip and Lower Limb 321
Muscles of the Hip, Thigh, Knee, and Leg 321
Muscles of the Ankle, Foot, and Toes 323

9.6 Putting It All Together: The Big Picture of Muscle Movement 333
Study Boost How to Tell the Three Types of Levers Apart 291
Concept Boost Demystifying Muscle Actions 301
The Big Picture of Muscle Movement 332
A&P in the Real World Muscle Knots 284
A&P in the Real World Urinary Incontinence and Kegel Exercises 312
A&P in the Real World Hip Joint Replacement Surgery 280
A&P in the Real World Shoulder Dislocations 278
A&P in the Real World Wrist Fractures 246
A&P in the Real World Epiphyseal Plate Fractures 260
A&P in the Real World Bursitis 263
A&P in the Real World Knee Injuries and the Unhappy Triad 276
A&P in the Real World Shoulder Dislocations 278
A&P in the Real World Hip Joint Replacement Surgery 280
11.6 Functional Groups of Neurons 416
 Neuronal Pools 416
 Neural Circuits 417
 Concept Boost How Does Myelin Insulate an Axon and Increase Its Speed of Propagation? 402
 Concept Boost Sorting Out the Different Types of Channels and Pumps in the Membrane of a Neuron 410
 The Big Picture of Action Potentials 404
 The Big Picture of Chemical Synaptic Transmission 412
 A&P in the Real World Poliovirus and Retrograde Axonal Transport 386
 A&P in the Real World Gliomas and Astrocytomias 390
 A&P in the Real World Local Anesthetic Drugs 396
 A&P in the Real World Multiple Sclerosis 403
 A&P in the Real World Arthropod Venom 411
 A&P in the Real World Psychiatric Disorders and Treatments 416
 A&P in the Real World Epileptic Seizures 418

12 The Central Nervous System 422

12.1 Overview of the Central Nervous System 423
 Overview of CNS Functions 423
 Basic Structure of the Brain and Spinal Cord 423
 Overview of CNS Development 425

12.2 The Brain 426
 The Cerebrum 426
 The Diencephalon 432
 The Cerebellum 433
 The Brainstem 434
 Putting It All Together: The Big Picture of Major Brain Structures and Their Functions 439

12.3 Homeostasis Part I: Role of the Brain in Maintenance of Homeostasis 441
 Homeostasis of Vital Functions 441
 Body Temperature and Feeding 441
 Sleep and Wakefulness 442

12.4 Higher Mental Functions 445
 Cognition and Language 445
 Learning and Memory 447
 Emotion 448

12.5 Protection of the Brain 449
 The Cranial Meninges 449
 The Ventricles and Cerebrospinal Fluid 451
 The Blood Brain Barrier 453

12.6 The Spinal Cord 455
 Protection of the Spinal Cord 455
 External Spinal Cord Anatomy 456
 Internal Spinal Cord Anatomy 456

12.7 Sensation Part I: Role of the CNS in Sensation 459
 General Somatic Senses 460
 Introduction to the Special Senses 463

12.8 Movement Part I: Role of the CNS in Voluntary Movement 464
 Motor Pathways from the Brain through the Spinal Cord 464
 Role of the Brain in Voluntary Movement 465
 Putting It All Together: The Big Picture of CNS Control of Voluntary Movement 468
 Concept Boost Where Exactly Is the Blood Brain Barrier? 454
 The Big Picture of Brain Anatomy 439
 The Big Picture of Major Brain Structures and Their Functions 440
 The Big Picture of CNS Control of Voluntary Movement 469
 A&P in the Real World Pseudoscience Exposed: The Myth of Brain Differences between the Sexes 424
 A&P in the Real World Locked-In Syndrome 438
 A&P in the Real World Fever 442
 A&P in the Real World States of Altered Consciousness Mimicking Sleep 444
 A&P in the Real World Dementia 446
 A&P in the Real World Aphasiass 447
 A&P in the Real World Infectious Meningitis 451
 A&P in the Real World Epidural Anesthesia and Lumbar Punctures 456
 A&P in the Real World Phantom Limb Pain 463
 A&P in the Real World Parkinson's Disease 467

13 The Peripheral Nervous System 475

13.1 Overview of the Peripheral Nervous System 475
 Divisions of the PNS 476
 Overview of Peripheral Nerves and Associated Ganglia 477
 Functional Overview of the PNS 478

13.2 The Cranial Nerves 479
 The Sensory Cranial Nerves 479
The Motor Cranial Nerves 482
The Mixed Cranial Nerves 483

13.3 The Spinal Nerves 488
 Structure of Spinal Nerves and Spinal Nerve Plexuses 489
 Cervical Plexuses 489
 Brachial Plexuses 490
 Thoracic Spinal Nerves 492
 Lumbar Plexuses 492
 Sacral Plexuses 494
 Summary of the Distribution of Spinal Nerve Branches 496

13.4 Sensation Part II: Role of the PNS in Sensation 497
 Sensory Receptors 497
 Sensory Neurons 500
 Putting It All Together: The Big Picture of the Detection and Perception of Somatic Sensation by the Nervous System 503

13.5 Movement Part II: Role of the PNS in Movement 504
 From CNS to PNS: Motor Output 504
 The Role of Lower Motor Neurons 504
 Putting It All Together: The Big Picture of Control of Movement by the Nervous System 504

13.6 Reflex Arcs: Integration of Sensory and Motor Function 506
 Reflex Arcs 506
 The Role of Stretch Receptors in Skeletal Muscles 506
 Types of Reflexes 507
 Sensory and Motor Neuron Disorders 510

Study Boost Remembering the Cranial Nerves 479
Concept Boost Sorting Out the Brachial Plexus 492

The Big Picture of Detection and Interpretation of Somatic Sensation by the Nervous System 503
The Big Picture of Control of Movement by the Nervous System 505

14 The Autonomic Nervous System and Homeostasis 516

14.1 Overview of the Autonomic Nervous System 516
 Functions of the ANS and Visceral Reflex Arcs 517
 Comparison of Somatic and Autonomic Nervous Systems 517
 Divisions of the ANS 518

14.2 The Sympathetic Nervous System 519
 Gross and Microscopic Anatomy of the Sympathetic Nervous System 519
 Sympathetic Neurotransmitters and Receptors 521
 Effects of the Sympathetic Nervous System on Target Cells 522
 Pharmacology and Sympathetic Nervous System Receptors 526

14.3 The Parasympathetic Nervous System 526
 Gross and Microscopic Anatomy of the Parasympathetic Nervous System 527
 Parasympathetic Neurotransmitters and Receptors 528
 Effects of the Parasympathetic Nervous System on Target Cells 528

14.4 Homeostasis Part II: PNS Maintenance of Homeostasis 530
 Interactions of Autonomic Divisions 530
 Autonomic Tone 532
 Summary of Nervous System Control of Homeostasis 532

Study Boost Remembering the Difference between Preganglionic and Postganglionic Neurons 518
Concept Boost Understanding the Different Effects of the Sympathetic and Parasympathetic Nervous Systems 518

A&P in the Real World Pseudoscience Exposed: The Sympathetic Nervous System and Weight Loss Supplements 525
A&P in the Real World Side Effects of Anticholinergic Drugs 531
A&P in the Real World Postural Orthostatic Tachycardia Syndrome 532

15 The Special Senses 536

15.1 Overview of the Special Senses 536
 Comparison of the General and Special Senses 536
 Sensory Transduction 537
Contents

The Big Picture of the Hormonal Response to Stress 624
A&P in the Real World Paraneoplastic Syndrome 587
A&P in the Real World Pseudoscience Exposed: Human Growth Hormone and the “Fountain of Youth” 599
A&P in the Real World Calcitonin, Parathyroid Hormone, and Osteoporosis 608
A&P in the Real World HPA Axis Suppression and Corticosteroid Therapy 614
A&P in the Real World Pseudoscience Exposed: Leptin and Obesity 620

Unit 4 Transport and Immunity

17 The Cardiovascular System I: The Heart 630
17.1 Overview of the Heart 630
Location and Basic Structure of the Heart 630
Functions of the Heart 632
17.2 Heart Anatomy and Blood Flow Pathway 633
The Pericardium, Heart Wall, and Heart Skeleton 633
The Great Vessels, Chambers, and Valves of the Heart 635
Putting It All Together: The Big Picture of Blood Flow through the Heart 640
The Coronary Circulation 642
17.3 Cardiac Muscle Tissue Anatomy and Electrophysiology 644
Histology of Cardiac Muscle Tissue and Cells 645
Cardiac Electrophysiology: Pacemaker Cells and the Cardiac Conduction System 647
Cardiac Electrophysiology: Contractile Cells 650
The Electrocardiogram 652
17.4 Mechanical Physiology of the Heart: The Cardiac Cycle 655
The Relationship between Pressure Changes, Blood Flow, and Valve Function 655
Heart Sounds 656
Events of the Cardiac Cycle 656
Connecting the Electrical and Mechanical Events in the Heart 658
17.5 Cardiac Output and Regulation 662
Determination of Cardiac Output 662
Factors That Influence Stroke Volume 662
Factors That Influence Heart Rate 664
Regulation of Cardiac Output 664
Heart Failure 665

Study Boost Revisiting Electrophysiology 647
Concept Boost Deconstructing the Cardiac Cycle Diagram 660
Concept Boost Understanding How Changes in Preload, Contractility, and Afterload Affect Stroke Volume 663

18 The Cardiovascular System II: The Blood Vessels 670
18.1 Overview of Arteries and Veins 670
Structure and Function of Arteries and Veins 671
Vascular Anastomoses 673
18.2 Physiology of Blood Flow 675
Introduction to Hemodynamics 675
Factors That Determine Blood Pressure 676
Blood Pressure in Different Portions of the Circulation 678
18.3 Maintenance of Blood Pressure 681
Short-Term Maintenance of Blood Pressure 681
Long-Term Maintenance of Blood Pressure by the Endocrine and Urinary Systems 685
Summary of Blood Pressure Maintenance 685
Disorders of Blood Pressure: Hypertension and Hypotension 686
18.4 Capillaries and Tissue Perfusion 687
Capillary Structure and Function 687
Blood Flow through Capillary Beds 689
Tissue Perfusion in Special Circuits 691
18.5 Capillary Pressures and Water Movement 692
Pressures at Work in a Capillary 692
Capillary Net Filtration Pressure 694
Edema 695
Contents

18.6 Anatomy of the Systemic Arteries 696
 Arteries of the Head and Neck 696
 Arteries of the Thorax 699
 Arteries of the Upper Limb 702
 Arteries of the Lower Limb 702
 Pulse Points 704

18.7 Anatomy of the Systemic Veins 707
 Veins of the Head and Neck 707
 Veins of the Thorax and Abdomen 708
 Veins of the Upper Limb 711
 Veins of the Lower Limb 713

18.8 Putting It All Together: The Big Picture of Blood Vessel Anatomy 715

 Study Boost Another Way to Think about Hydrostatic and Osmotic Pressures 695
 Concept Boost A Closer Look at Cross-Sectional Area and Velocity 676
 Concept Boost Taking a Closer Look at Systolic and Diastolic Pressures 679
 The Big Picture of Systemic Blood Flow in the Body 718
 A&P in the Real World Atherosclerosis 674
 A&P in the Real World Varicose Veins 681
 A&P in the Real World Vasovagal Syncope 686
 A&P in the Real World Cerebrovascular Accident 699
 A&P in the Real World Drugs and the Hepatic Portal System 713
 A&P in the Real World Vein Grafting 713

19.4 Platelets 733
 Platelet Characteristics 733
 Platelet Formation 735
 Putting It All Together: The Big Picture of Formed Elements 735

19.5 Hemostasis 738
 Hemostasis Part 1: Vascular Spasm 738
 Hemostasis Part 2: Platelet Plug Formation 739
 Hemostasis Part 3: Coagulation 739
 Hemostasis Part 4: Clot Retraction 743
 Hemostasis Part 5: Thrombolysis 743
 Putting It All Together: The Big Picture of Hemostasis 744
 Regulation of Clotting 744
 Disorders of Clotting 744

19.6 Blood Typing and Matching 746
 Blood Typing 746
 Blood Transfusions 748
 Concept Boost Making Sense of the Coagulation Cascade 742
 Concept Boost What about the Donor’s Antibodies? 750
 The Big Picture of Formed Elements 736
 The Big Picture of Hemostasis 745
 A&P in the Real World Cirrhosis 725
 A&P in the Real World Complete Blood Count 731
 A&P in the Real World Leukemias 738
 A&P in the Real World Anticlot Medications 746
 A&P in the Real World Hemolytic Disease of the Newborn, or Erythroblastosis Fetalis 749

19 Blood 723

19.1 Overview of Blood 723
 Overview of Blood Functions 724
 Plasma 724

19.2 Erythrocytes and Oxygen Transport 725
 Erythrocyte Structure 726
 Lifespan of an Erythrocyte 727
 Anemia 730

19.3 Leukocytes and Immune Function 731
 Granulocytes 731
 Agranulocytes 732
 Leukocyte Formation: Leukopoiesis 733

20 The Lymphatic System and Immunity 754

20.1 Structure and Function of the Lymphatic System 755
 Functions of the Lymphatic System 755
 Lymphatic Vessels and Lymph Circulation 755
 Lymphoid Tissues and Organs 758

20.2 Overview of the Immune System 762
 Types of Immunity 763
 Surface Barriers 763
 Overview of Cells and Proteins of the Innate and Adaptive Immune Systems 764
 How the Lymphatic and Immune Systems Work Together 765
20.3 Innate Immunity: Internal Defenses 765
- Cells of Innate Immunity 765
- Antimicrobial Proteins 766
- Inflammatory Response 768
- Fever 771

20.4 Adaptive Immunity: Cell-Mediated Immunity 772
- Antigens 773
- T Cell Response to Antigen Exposure 774
- Effects of T Cells 778
- Organ and Tissue Transplantation and Rejection 779

20.5 Adaptive Immunity: Antibody-Mediated Immunity 780
- Phase 1: B Cell Activation, Clonal Selection, and Differentiation 781
- Phase 2: Antibodies and Their Effects 782
- Phase 3: Immunological Memory 785

20.6 Putting It All Together: The Big Picture of the Immune Response 788
- Scenario 1: The Common Cold 788
- Scenario 2: Bacterial Infection 788
- Scenario 3: Cancer 791
- Pathogens That Evade the Immune Response 793

20.7 Disorders of the Immune System 793
- Hypersensitivity Disorders 793
- Type I: Immediate Hypersensitivity 793
- Type II: Antibody-Mediated Hypersensitivity 794
- Type III: Immune Complex-Mediated Hypersensitivity 795
- Type IV: Delayed-Type Hypersensitivity 795
- Immunodeficiency Disorders 795
- Autoimmune Disorders 797

Concept Boost Why Do We Need Both Class I and Class II MHC Molecules? 775

The Big Picture of the Immune Response to the Common Cold 789

The Big Picture of the Immune Response to a Bacterial Infection 790

The Big Picture of the Immune Response to Cancer Cells 792

A&P in the Real World Lymphedema 757

A&P in the Real World How Pathogens Can Evade Surface Barriers 764

A&P in the Real World Anti-inflammatory Medications 770

A&P in the Real World Pseudoscience Exposed: The Myth of Vaccines and Autism 786

A&P in the Real World Complete Blood Count with Differential 791

A&P in the Real World Treatments for Allergies 794

A&P in the Real World The Tuberculin Skin Test 795

21 The Respiratory System 802

21.1 Overview of the Respiratory System 802
- Anatomy of the Respiratory System: An Overview 802
- Basic Functions of the Respiratory System 804

21.2 Anatomy of the Respiratory System 804
- The Nose and Nasal Cavity 805
- The Pharynx 807
- The Larynx 808
- The Trachea 809
- The Bronchial Tree 812
- Alveoli and the Respiratory Membrane 813
- The Lungs and Pleurae 815

21.3 Pulmonary Ventilation 818
- The Pressure-Volume Relationship 818
- The Process of Pulmonary Ventilation 819
- Physical Factors Influencing Pulmonary Ventilation 824
- Pulmonary Volumes and Capacities 825

21.4 Gas Exchange 827
- The Behavior of Gases 828
- Pulmonary Gas Exchange 828
- Factors Affecting Efficiency of Pulmonary Gas Exchange 829
- Tissue Gas Exchange 831
- Factors Affecting Efficiency of Tissue Gas Exchange 831

21.5 Gas Transport through the Blood 832
- Oxygen Transport 832
- Carbon Dioxide Transport 835

21.6 Putting It All Together: The Big Picture of Respiration 838

21.7 Neural Control of Ventilation 840
- Control of the Basic Pattern of Ventilation 840
- Control of the Rate and Depth of Ventilation 841

21.8 Diseases of the Respiratory System 844
- Restrictive Lung Diseases 844
- Obstructive Lung Diseases 844

Study Boost Relating Ventilation and Blood pH 838

Concept Boost Making Sense of the Oxygen-Hemoglobin Dissociation Curve 834

Concept Boost How Does a Buffer Work? 837

The Big Picture of Pulmonary Ventilation 823

The Big Picture of Respiration 839

A&P in the Real World Smoker’s Cough 811

A&P in the Real World Tuberculosis 815
Contents

A&P in the Real World Pleuritis and Pleural Friction Rub 817
A&P in the Real World Infant Respiratory Distress Syndrome 825
A&P in the Real World Hyperbaric Oxygen Therapy 828
A&P in the Real World V/Q Mismatch 831
A&P in the Real World Carbon Monoxide Poisoning 835
A&P in the Real World High-Altitude Acclimatization 844

Unit 5 Regulation of the Body’s Intake and Output

22 The Digestive System 851

22.1 Overview of the Digestive System 851
Basic Digestive Functions and Processes 852
Organization of the Digestive System 853
Regulation of Motility by the Nervous and Endocrine Systems 856

22.2 The Oral Cavity, Pharynx, and Esophagus 857
Structure of the Oral Cavity 857
The Teeth and Mastication 858
The Tongue 860
The Salivary Glands 860
The Pharynx 862
The Esophagus 862
Swallowing 863

22.3 The Stomach 864
Gross Anatomy of the Stomach 864
Histology of the Stomach 866
Functions of the Stomach 868

22.4 The Small Intestine 872
Divisions of the Small Intestine 872
Structure and Functions of the Small Intestine 873
Motility of the Small Intestine 874

22.5 The Large Intestine 875
Gross Anatomy of the Large Intestine 876
Histology of the Large Intestine 876
Bacteria in the Large Intestine 876
Motility of the Large Intestine and Defecation 877

22.6 The Pancreas, Liver, and Gallbladder 879
The Pancreas 879
The Liver and Gallbladder 881

22.7 Nutrient Digestion and Absorption 886
Overview of Digestion and Absorption 886
Digestion and Absorption of Carbohydrates 887
Digestion and Absorption of Proteins 889
Digestion and Absorption of Lipids 890
Digestion and Absorption of Nucleic Acids 894
Absorption of Water, Electrolytes, and Vitamins 894

22.8 Putting It All Together: The Big Picture of Digestion 895

Study Boost An Analogy to Understand Emulsification 890
Concept Boost Understanding Absorption in the Alimentary Canal 887

The Big Picture of Digestion 896
A&P in the Real World Peritonitis 853
A&P in the Real World Dental Caries 866
A&P in the Real World Gastroesophageal Reflux Disease (GERD) 870
A&P in the Real World Vomiting 870
A&P in the Real World Appendicitis 876
A&P in the Real World Pseudoscience Exposed: Do We Really Need to “Detox”? 883
A&P in the Real World Lactose Intolerance 887
A&P in the Real World Intrinsic Factor and Vitamin B12 Deficiency 894

23 Metabolism and Nutrition 902

23.1 Overview of Metabolism and Nutrition 902
Phases of Metabolism: Catabolism and Anabolism 903
Energy Requirements of Metabolic Reactions 903
Adenosine Triphosphate (ATP) and Phosphorylation 904
Nutrients and ATP Generation 905

23.2 Glucose Catabolism and ATP Synthesis 907
Overview of Glucose Catabolism and ATP Synthesis 907
Glucose Catabolism Part 1: Glycolysis 908
Intermediate Step: The Fate of Pyruvate 910
Glucose Catabolism Part 2: The Citric Acid Cycle 910
23.3 Fatty Acid and Amino Acid Catabolism 916
Fatty Acid Catabolism 916
Amino Acid Catabolism 918
Putting It All Together: The Big Picture of Nutrient Catabolism 919

23.4 Anabolic Pathways 920
Glucose Anabolism 920
Fatty Acid Anabolism 921
Amino Acid Anabolism 922
Putting It All Together: The Big Picture of Nutrient Anabolism 922

23.5 Metabolic States and Regulation of Feeding 923
Metabolic States 924
Regulation of Feeding 926

23.6 The Metabolic Rate and Thermoregulation 927
Metabolic Rate 927
Heat Exchange between the Body and the Environment 928
Thermoregulation: Body Temperature Regulation 929

23.7 Nutrition and Body Mass 932
Overview of Nutrients 933
Macronutrients 933
Micronutrients 935
Structural Lipid: Cholesterol 938
Diet and Body Mass 941
Obesity 942

Concept Boost How Electron Movement Can Be Harnessed to Do Work 906
Concept Boost Why Do We Breathe? 913
Concept Boost ATP Yield from Oxidative Catabolism 914

The Big Picture of Glucose Catabolism and Oxidative Phosphorylation 915
The Big Picture of Nutrient Catabolism 919
The Big Picture of Nutrient Anabolism 923

A&P in the Real World Cyanide and the ETC 916
A&P in the Real World Phenylketonuria 920
A&P in the Real World Fatty Liver Disease and Wasting 922
A&P in the Real World Fasting and Protein Wasting 926
A&P in the Real World Pseudoscience Exposed: “Rev” Your Metabolism 929
A&P in the Real World Pseudoscience Exposed: Vitamin and Mineral Megadoses 940
27 Development and Heredity 1066

27.1 Overview of Human Development 1066
The Process of Prenatal Development 1067
The Postnatal Period 1067

27.2 Pre-embryonic Period: Fertilization through Implantation (Weeks 1 and 2) 1068
Fertilization 1068
Cleavage and Blastocyst Formation 1071
Implantation 1071
Development of Extraembryonic Membranes 1074

27.3 Embryonic Period: Week 3 through Week 8 1076
Gastrulation and Formation of Germ Layers 1076
Organogenesis 1077

27.4 Fetal Period: Week 9 until Birth (about Week 38) 1079
Placentation 1079
Fetal Development 1081
Putting It All Together: The Big Picture of Prenatal Development 1083

27.5 Pregnancy and Childbirth 1085
Maternal Changes during Pregnancy 1085
Parturition 1088

27.6 Postnatal Changes in the Newborn and Mother 1090
Changes in the Newborn 1090
Changes in the Mother 1091

27.7 Heredity 1093
Introduction to Heredity 1093
Patterns of Inheritance 1094
The Big Picture of Prenatal Development 1084
A&P in the Real World Assisted Reproductive Technology 1069
A&P in the Real World Ectopic Pregnancy 1075
A&P in the Real World Placenta Previa 1079
A&P in the Real World Prematurity 1082
A&P in the Real World Preeclampsia 1087
A&P in the Real World Prenatal and Newborn Genetic Screening 1097

APPENDIX A Answers to Apply What You Learned and Assess What You Learned A-1
APPENDIX B The Metric System B-1
APPENDIX C Laboratory Reference Values C-1
APPENDIX D Scientific Method D-1

Credits CR-1
Glossary G-1
Index I-1