Contents

PREFACE to the SEVENTH EDITION
SAFETY PRECAUTIONS
LOCKER INVENTORY
WASTE DISPOSAL

EXPERIMENTS

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Chemistry</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>Instructor Demonstrations</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Student Experiments</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Instrumental Measurements</td>
<td>17</td>
</tr>
<tr>
<td>A</td>
<td>Length Measurements</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Mass Measurements</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Mass and Volume of an Unknown Solid</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Volume Measurements</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Temperature Measurements</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Density of Liquids and Solids</td>
<td>29</td>
</tr>
<tr>
<td>A</td>
<td>Instructor Demonstration – Density</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Density of Water</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Density of an Unknown Liquid</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Density of a Rubber Stopper</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Density of an Unknown Solid</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Thickness of Aluminum Foil</td>
<td></td>
</tr>
</tbody>
</table>

* Assigned Unknown
4 Freezing Point and Melting Point 43
 Topic: Change of Physical State
 A. Cooling Curve and Freezing Point
 *B. Melting Point of an Unknown

5 Physical Properties and Chemical Properties 55
 Topic: Physical and Chemical Properties
 A. Instructor Demonstrations
 B. Observation of Elements
 *C. Physical Properties
 D. Chemical Properties

6 "Atomic Fingerprints" 67
 Topic: Emission Spectra and Electron Energy Levels
 A. Continuous Spectrum – White Light
 B. Line Spectrum – Hydrogen
 C. Line Spectra – Helium, Neon, Argon, Krypton, and Mercury
 *D. Identifying Unknown Elements in a Fluorescent Light

7 Families of Elements 79
 Topic: The Periodic Table
 A. Analysis of Known Solutions
 *B. Analysis of an Unknown Solution

8 Identifying Cations in Solution 89
 Topic: Qualitative Cation Analysis
 A. Analysis of a Known Cation Solution
 *B. Analysis of an Unknown Cation Solution

9 Identifying Anions in Solution 101
 Topic: Qualitative Anion Analysis
 A. Analysis of a Known Anion Solution
 *B. Analysis of an Unknown Anion Solution

10 Analysis of a Penny 111
 Topic: Writing and Balancing Chemical Equations
 A. Instructor Demonstration – Combination Reactions
 B. Decomposition Reactions
 C. Single-Replacement Reactions
 D. Double-Replacement Reactions
 E. Neutralization Reactions
 *F. Percentages of Copper and Zinc in a Penny

11 Determination of Avogadro's Number 125
 Topic: Avogadro's Number and the Mole Concept
 A. Calibrating a Dropper Pipet
 B. Calculating Molecules in the Monolayer
 *C. Determining Avogadro's Number
12 Empirical Formulas of Compounds

Topic: Empirical Formula

A. Empirical Formula of Magnesium Oxide
B. Empirical Formula of Copper Sulfide

13 Analysis of Alum

Topic: Percent Composition and Empirical Formula

A. Percentage of Water in Alum Hydrate
B. Percentage of Water in an Unknown Hydrate
C. Water of Crystallization in an Unknown Hydrate

14 Decomposing Baking Soda

Topic: Mass–Mass Stoichiometry and Percent Yield

A. Percent Yield of Na₂CO₃ from Baking Soda
B. Percentage of NaHCO₃ in an Unknown Mixture

15 Precipitating Calcium Phosphate

Topic: Mass–Mass Stoichiometry and Percent Yield

A. Percent Yield of Ca₃(PO₄)₂ from CaCl₂
B. Percentage of CaCl₂ in an Unknown Mixture

16 Generating Hydrogen Gas

Topic: Mass–Volume Stoichiometry and Combined Gas Law

A. Molar Volume of Hydrogen Gas
B. Atomic Mass of an Unknown Metal

17 Generating Oxygen Gas

Topic: Mass–Volume Stoichiometry and Combined Gas Law

A. Percentage of KClO₃ in a Known Mixture
B. Percentage of KClO₃ in an Unknown Mixture

18 Molecular Models and Chemical Bonds

Topic: Structural and Electron Dot Formulas

A. Molecular Models with Single Bonds
B. Molecular Models with Double Bonds
C. Molecular Models with Triple Bonds
D. Molecular Models with Two Double Bonds
E. Unknown Molecular Models

19 Analysis of Saltwater

Topic: Solubility and Solution Concentration

A. Instructor Demonstration – Supersaturation
B. Solutes and Solvents
C. Rate of Dissolving
D. Concentration of Sodium Chloride in Saltwater
Contents

20 Analysis of Vinegar

Topic: Acid–Base Titrations
- A. Preparation of Sodium Hydroxide Solution
- B. Titration of Acetic Acid in Vinegar

21 Electrical Conductivity of Aqueous Solutions

Topic: Net Ionic Equations
- A. Conductivity Testing—Evidence for Ions in Aqueous Solution
- B. Conductivity Testing—Evidence for a Chemical Reaction
- C. Net Ionic Equations—A Study Assignment

22 Activity Series for Metals

Topic: Oxidation Numbers and Redox Reactions
- A. Oxidation Numbers of Iron
- B. Oxidation Numbers of Manganese
- C. Oxidation Numbers of Sulfur
- D. Oxidation Numbers of Nitrogen
- E. Oxidation–Reduction Equations—A Study Assignment
- F. Activity Series and an Unknown Metal

23 Organic Models and Classes of Compounds

Topic: Structural Formulas of Molecular Models
- A. Molecular Models of Hydrocarbons
- B. Molecular Models of Hydrocarbon Derivatives
- C. Unknown Molecular Models

24 Separation of Food Colors and Amino Acids

Topic: Paper Chromatography
- A. Separation of Food Colors by Paper Chromatography
- B. Identification of Amino Acids by Paper Chromatography

25 Laboratory Instruments and Techniques

Topic: Lab Final Exam
- A. Lab Practical Exam
- B. Lab Written Exam

APPENDICES

- A Laboratory Burner
- B Decigram Balance
- C Centigram Balance
- D Milligram Balance
- E Volumetric Pipet
- F Activity Series for Metals
- G Solubility Rules
- H Laboratory Notebook
- I Glossary
- J Answers to Prelaboratory Assignments
At a chemistry conference, an instructor using the lab manual mentioned that the experiments were remarkably “bullet-proof.” I responded that our department instructs over 1000 intro chem students in the laboratory each year, and our chemistry program employs rotating adjunct faculty who bring a fresh set of eyes to the experiments we supervise. This constant turnover affords ongoing feedback and the opportunity to further refine each procedure and assignment.

The *Pearson Laboratory Manual for Introductory Chemistry, 7e*, continues to evolve with increased sensitivity to environmental and safety concerns in the laboratory. In this edition, we have indicated “green chemicals” and a recycle icon appears in the margin of each procedure as a reminder to students that chemicals are to be disposed of in the waste containers provided.

What’s New in the Seventh Edition?

Responding to environmental regulations and instructor reviews of the previous edition, students will benefit from a variety of new content in the Seventh Edition including:

- **Environmental Icons** to alert students to recycle chemical waste.
- **Instructor Demonstrations** to reduce chemical waste.
- **Experimental Procedures** changes that provide a better work flow.
- **Prelaboratory Assignments** to help students prepare for experiments.
- **Postlaboratory Assignments** to help students synthesize principles in experiments.

What Features are in each Experiment?

To help introductory chemistry students be prepared for laboratory and to have a safe experience, each experiment has the following features:

- A set of **Objectives** that summarize the goals for each experiment.
- A **Discussion** with example exercises that illustrate the calculations and equations.
- A list of **Equipment and Chemicals** to organize the experimental materials.
- A stepwise **Procedure** to systematically guide the flow of activity.
- A **Prelaboratory Assignment** with safety precautions to prepare students before lab.
- A **Data Table** to help students learn to accurately record observations and measurements.
Instructor’s Manual and Quiz Item File

A complementary Instructor’s Manual is provided with each adoption of the laboratory manual. The Annotated Instructor’s Edition contains the following for each experiment: suggested unknowns and directions for dispensing and preparing solutions, sample data tables, answers to postlaboratory assignments, and a Quiz Item File containing over 500 class-tested questions.

The Annotated Instructor’s Edition also contains a Master List of Reagents & Suppliers for all chemicals required for each experiment, along with directions for the preparation of aqueous solutions. A list of websites, addresses, and phone numbers of chemical and equipment suppliers is provided to assist stockroom personnel.

Acknowledgments

These latest experiments reflect the suggestions of instructors and students who have emailed questions and comments. A successful laboratory program is helped immeasurably by capable stockroom personnel. The ongoing refinement of these experiments has been facilitated by our stockroom lab technicians, Steven Cox and Cuong Bui. I, along with my colleagues, greatly appreciate the support provided by Steve, Cuong, and staff.

I am grateful to Anastasia Slesareva, Pearson Content Producer, Science, for her helpful discussions and for keeping everything flowing seamlessly and on schedule for this latest edition.

Reviewers of the Previous Edition

Elaine M. Alfonsetti
Broome Community College

David Baker
Delta College

Edward L. Barnes
Fayetteville Technical Community College

Melekeh Nasiri
University of California, Davis

Melinda Neal
Cowley College

Edmund J. Niedzinski
American River College

Raymond Sadeghi
University of Texas, San Antonio

Clarissa Sorensen-Unruh
Central New Mexico College

Charles H. Corwin
Department of Chemistry
American River College
Sacramento, CA 95841
corwinc@arc.losrios.edu