Introduction to Management Science
13th Edition

Introduction to Management Science

Bernard W. Taylor III
Virginia Polytechnic Institute and State University

Pearson
New York, NY
To Diane, Kathleen, and Lindsey
Brief Contents

Preface xiii

1 Management Science 1

2 Linear Programming: Model Formulation and Graphical Solution 33

3 Linear Programming: Computer Solution and Sensitivity Analysis 76

4 Linear Programming: Modeling Examples 114

5 Integer Programming 187

6 Transportation, Transshipment, and Assignment Problems 240

7 Network Flow Models 299

8 Project Management 350

9 Multicriteria Decision Making 422

10 Nonlinear Programming 493

11 Probability and Statistics 518

12 Decision Analysis 553

13 Queuing Analysis 614

14 Simulation 654

15 Forecasting 706

16 Inventory Management 773

Appendix A Normal and Chi-Square Tables 815

Appendix B Setting Up and Editing a Spreadsheet 817

Appendix C The Poisson and Exponential Distributions 821

Solutions to Selected Odd-Numbered Problems 823

Glossary 832

Index 837

The following items can be found on the Companion Web site that accompanies this text:

Web Site Modules

Module A: The Simplex Solution Method A-1

Module B: Transportation and Assignment Solution Methods B-1

Module C: Integer Programming: The Branch and Bound Method C-1

Module D: Nonlinear Programming Solution Techniques D-1

Module E: Game Theory E-1

Module F: Markov Analysis F-1
Contents

Preface

<table>
<thead>
<tr>
<th>1 Management Science</th>
<th>Management Science Application: Allocating Seat Capacity on Indian Railways Using Linear Programming</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The Management Science Approach to Problem Solving</td>
<td>Management Science in Health Care</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>Time Out: for Pioneers in Management Science</td>
<td>Management Science Models in Decision Support Systems</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Management Science Application: Room Pricing with Management Science and Analytics at Marriott</td>
<td>Summary</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>Management Science and Business Analytics</td>
<td>Example Problem Solutions</td>
<td>7</td>
<td>64</td>
</tr>
<tr>
<td>Model Building: Break-Even Analysis</td>
<td>Problems</td>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>Computer Solution</td>
<td>Case Problem</td>
<td>13</td>
<td>73</td>
</tr>
</tbody>
</table>
| Management Science Modeling Techniques | **2 Linear Programming:**
Model Formulation and Graphical Solution
| Management Science Application:
Renewable Energy Investment Decisions at GE Energy | **3 Linear Programming:**
Computer Solution and Sensitivity Analysis | 16 | 50 |
| **Management Science Application:**
Management Science and Analytics
Business Usage of Management Science Techniques | **Management Science Application:**
Determining Optimal Fertilizer Mixes at Soquimich (South America) | 17 | 54 |
| **Management Science Application:**
Management Science in Health Care | Irregular Types of Linear Programming Problems | 20 | 56 |
| Management Science Models in Decision Support Systems | Characteristics of Linear Programming Problems | | 59 |
| **Summary** | **Example Problem Solutions** | 23 | 60 |
| **Problems** | **Problems** | 23 | 64 |
| **Case Problem** | **Case Problem** | 30 | 73 |

Linear Programming:

Model Formulation and Graphical Solution

Management Science Application:
Scheduling Air Ambulance Service in Ontario (Canada)

Management Science Application:
Improving Profitability at Norske Skog with Linear Programming

Sensitivity Analysis

Summary

Example Problem Solutions

Problems

Case Problem

Model Formulation	Sensitivity Analysis	34	84
A Maximization Model Example		34	
Time Out: for George B. Dantzig	**Summary**	35	95
	Example Problem Solutions	95	
	Problems	98	
	Case Problem	111	
4 Linear Programming: Modeling Examples 114
 A Product Mix Example 115
 Time Out: for George B. Dantzig 120
 A Diet Example 120
 An Investment Example 123
 A Marketing Example 128
 Management Science Application:
 Scheduling Radio Ads with Analytics and Linear Programming 129
 A Transportation Example 133
 A Blend Example 136
 A Multiperiod Scheduling Example 140
 Management Science Application:
 Linear Programming Blending Applications in the Petroleum Industry 141
 Management Science Application:
 Employee Scheduling with Management Science 143
 A Data Envelopment Analysis Example 145
 Management Science Application:
 Evaluating American Red Cross Chapters Using DEA 147
 Summary 149 • Example Problem Solutions 150 • Problems 152 • Case Problem 182

5 Integer Programming 187
 Integer Programming Models 188
 Management Science Application:
 Selecting Volunteer Teams at Eli Lilly to Serve in Impoverished Communities 191
 Integer Programming Graphical Solution 191
 Computer Solution of Integer Programming Problems with Excel and QM for Windows 193
 Time Out: for Ralph E. Gomory 194
 Management Science Application:
 Scheduling Appeals Court Sessions in Virginia with Integer Programming 197
 Management Science Application:
 Forming Business Case Student Teams at Indiana University 202
 0–1 Integer Programming Modeling Examples 202
 Management Science Application:
 A Set Covering Model for Determining Fire Station Locations in Istanbul 211
 Summary 211 • Example Problem Solution 212 • Problems 212 • Case Problem 230

6 Transportation, Transshipment, and Assignment Problems 240
 The Transportation Model 241
 Time Out: for Frank L. Hitchcock and Tjalling C. Koopmans 243
 Management Science Application:
 Reducing Transportation Costs in the California Cut Flower Industry 244
 Computer Solution of a Transportation Problem 244
 Management Science Application:
 Analyzing Container Traffic Potential at the Port of Davisville (RI) 250
 The Assignment Model 254
 Computer Solution of an Assignment Problem 254
 Management Science Application:
 Supplying Empty Freight Cars at Union Pacific Railroad 257
 Management Science Application:
 Assigning Umpire Crews at Professional Tennis Tournaments 258
 Summary 259 • Example Problem Solution 259 • Problems 260 • Case Problem 290

7 Network Flow Models 299
 Network Components 300
 The Shortest Route Problem 301
 The Minimal Spanning Tree Problem 309
 Management Science Application:
 Determining Optimal Milk Collection Routes in Italy 312
 The Maximal Flow Problem 313
 Time Out: for E. W. Dijkstra, L. R. Ford, Jr., and D. R. Fulkerson 314
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Science Application: Distributing Railway Cars to Customers at CSX</td>
<td>315</td>
</tr>
<tr>
<td>Summary</td>
<td>320</td>
</tr>
<tr>
<td>Example Problem Solution</td>
<td>320</td>
</tr>
<tr>
<td>Problems</td>
<td>322</td>
</tr>
<tr>
<td>Case Problem</td>
<td>342</td>
</tr>
<tr>
<td>Project Management</td>
<td>350</td>
</tr>
<tr>
<td>The Elements of Project Management</td>
<td>351</td>
</tr>
<tr>
<td>Management Science Application: The Panama Canal Expansion Project</td>
<td>353</td>
</tr>
<tr>
<td>Time Out: for Henry Gantt</td>
<td>357</td>
</tr>
<tr>
<td>Management Science Application: Transportation Construction Projects</td>
<td>359</td>
</tr>
<tr>
<td>CPM/PERT</td>
<td>360</td>
</tr>
<tr>
<td>Time Out: for Morgan R. Walker, James E. Kelley, Jr., and D. G. Malcolm</td>
<td>362</td>
</tr>
<tr>
<td>Probabilistic Activity Times</td>
<td>369</td>
</tr>
<tr>
<td>Management Science Application: Salvaging the Costa Concordia Cruise Ship</td>
<td>375</td>
</tr>
<tr>
<td>Microsoft Project</td>
<td>377</td>
</tr>
<tr>
<td>Project Crashing and Time–Cost Trade-Off</td>
<td>380</td>
</tr>
<tr>
<td>Management Science Application: Reconstructing the Pentagon after 9/11</td>
<td>384</td>
</tr>
<tr>
<td>Formulating the CPM/PERT Network as a Linear Programming Model</td>
<td>385</td>
</tr>
<tr>
<td>Summary</td>
<td>393</td>
</tr>
<tr>
<td>Example Problem Solution</td>
<td>393</td>
</tr>
<tr>
<td>Problems</td>
<td>396</td>
</tr>
<tr>
<td>Case Problem</td>
<td>419</td>
</tr>
<tr>
<td>Multicriteria Decision Making</td>
<td>422</td>
</tr>
<tr>
<td>Goal Programming</td>
<td>423</td>
</tr>
<tr>
<td>Graphical Interpretation of Goal Programming</td>
<td>427</td>
</tr>
<tr>
<td>Computer Solution of Goal Programming Problems with QM for Windows and Excel</td>
<td>430</td>
</tr>
<tr>
<td>Management Science Application: Workforce Planning for the U.S. Army Medical Department with Goal Programming</td>
<td>430</td>
</tr>
<tr>
<td>Time Out: for Abraham Charnes and William W. Cooper</td>
<td>434</td>
</tr>
<tr>
<td>The Analytical Hierarchy Process</td>
<td>437</td>
</tr>
<tr>
<td>Management Science Application: Selecting Sustainable Transportation Routes Across the Pyrenees Using AHP</td>
<td>437</td>
</tr>
<tr>
<td>Management Science Application: Ranking Twentieth-Century Army Generals Using AHP</td>
<td>444</td>
</tr>
<tr>
<td>Scoring Models</td>
<td>447</td>
</tr>
<tr>
<td>Management Science Application: A Scoring Model for Determining U.S. Army Installation Regions</td>
<td>449</td>
</tr>
<tr>
<td>Summary</td>
<td>449</td>
</tr>
<tr>
<td>Example Problem Solution</td>
<td>450</td>
</tr>
<tr>
<td>Problems</td>
<td>453</td>
</tr>
<tr>
<td>Case Problem</td>
<td>488</td>
</tr>
<tr>
<td>Nonlinear Programming</td>
<td>493</td>
</tr>
<tr>
<td>Nonlinear Profit Analysis</td>
<td>494</td>
</tr>
<tr>
<td>Constrained Optimization</td>
<td>497</td>
</tr>
<tr>
<td>Solution of Nonlinear Programming Problems with Excel</td>
<td>499</td>
</tr>
<tr>
<td>A Nonlinear Programming Model with Multiple Constraints</td>
<td>503</td>
</tr>
<tr>
<td>Nonlinear Model Examples</td>
<td>505</td>
</tr>
<tr>
<td>Summary</td>
<td>510</td>
</tr>
<tr>
<td>Example Problem Solution</td>
<td>511</td>
</tr>
<tr>
<td>Problems</td>
<td>511</td>
</tr>
<tr>
<td>Case Problem</td>
<td>516</td>
</tr>
<tr>
<td>Probability and Statistics</td>
<td>518</td>
</tr>
<tr>
<td>Types of Probability</td>
<td>519</td>
</tr>
<tr>
<td>Fundamentals of Probability</td>
<td>521</td>
</tr>
<tr>
<td>Management Science Application: Treasure Hunting with Probability and Statistics</td>
<td>523</td>
</tr>
<tr>
<td>Statistical Independence and Dependence</td>
<td>524</td>
</tr>
<tr>
<td>Expected Value</td>
<td>531</td>
</tr>
<tr>
<td>Management Science Application: A Probability Model for Analyzing Coast Guard Patrol Effectiveness</td>
<td>532</td>
</tr>
<tr>
<td>The Normal Distribution</td>
<td>533</td>
</tr>
<tr>
<td>Summary</td>
<td>543</td>
</tr>
<tr>
<td>Example Problem Solution</td>
<td>543</td>
</tr>
<tr>
<td>Problems</td>
<td>545</td>
</tr>
<tr>
<td>Case Problem</td>
<td>551</td>
</tr>
</tbody>
</table>
12 Decision Analysis 553
Components of Decision Making 554
Decision Making Without Probabilities 555
Management Science Application:
Planning for Terrorist Attacks and
Epidemics in Los Angeles County with Decision Analysis 562
Decision Making with Probabilities 562
Decision Analysis With Additional Information 576
Utility 582
Summary 584 • Example Problem Solutions 584 • Problems 587 • Case Problem 610

13 Queuing Analysis 614
Elements of Waiting Line Analysis 615
The Single-Server Waiting Line System 616
Time Out: for Agner Krarup Erlang 617
Management Science Application:
Using Queuing Analysis to Design Health Centers in Abu Dhabi 624
Undefined and Constant Service Times 625
Finite Queue Length 628
Management Science Application:
Providing Telephone Order Service in the Retail Catalog Business 631
Finite Calling Population 631
The Multiple-Server Waiting Line 634
Management Science Application:
Making Sure 911 Calls Get Through at AT&T 637
Additional Types of Queuing Systems 639
Summary 640 • Example Problem Solutions 640 • Problems 642 • Case Problem 651

14 Simulation 654
The Monte Carlo Process 655
Time Out: for John Von Neumann 660
Computer Simulation with Excel Spreadsheets 660
Simulation of a Queuing System 665
Management Science Application:
Planning for Catastrophic Disease Outbreaks Using Simulation 668
Continuous Probability Distributions 669
Statistical Analysis of Simulation Results 674
Management Science Application:
Predicting Somali Pirate Attacks Using Simulation 675
Crystal Ball 676
Verification of the Simulation Model 683
Areas of Simulation Application 683
Summary 684 • Example Problem Solution 685 • Problems 688 • Case Problem 702

15 Forecasting 706
Forecasting Components 707
Management Science Application:
Forecasting Advertising Demand at NBC 709
Time Series Methods 710
Management Science Application:
Forecasting Empty Shipping Containers at CSAV (Chile) 714
Management Science Application:
Forecasting Trends for Denim Jeans 719
Forecast Accuracy 722
Time Series Forecasting Using Excel 726
Management Science Application:
Demand Forecasting at Zara 727
Regression Methods 730
Management Science Application:
An Airline Passenger Forecasting Model 734
Data Mining 739
Summary 740 • Example Problem Solutions 740 • Problems 743 • Case Problem 769

16 Inventory Management 773
Elements of Inventory Management 774
Management Science Application:
Inventory Optimization at Procter & Gamble 776
Inventory Control Systems 777
Time Out: for Ford Harris 778
Economic Order Quantity Models 778
The Basic EOQ Model 779
The EOQ Model with Noninstantaneous Receipt 784
The EOQ Model with Shortages 787

Management Science Application:
 Inventory Management at Zara 790
EOQ Analysis with QM for Windows 790
EOQ Analysis with Excel and Excel QM 791
Quantity Discounts 792

Management Science Application:
 Quantity Discount Orders at Mars 795
Reorder Point 796
Determining Safety Stock by Using Service Levels 798
Order Quantity for a Periodic Inventory System 800

Summary 802 • Example Problem Solution 802 • Problems 804 • Case Problem 812

Appendix A
Normal and Chi-Square Tables 815

Appendix B
Setting Up and Editing a Spreadsheet 817

Appendix C
The Poisson and Exponential Distributions 821
Solutions to Selected Odd-Numbered Problems 823
Glossary 832
Index 837

The following items can be found on the Companion Web site that accompanies this text:

Web Site Modules

- **Module A**: The Simplex Solution Method A-1
- **Module B**: Transportation and Assignment Solution Methods B-1
- **Module C**: Integer Programming: The Branch and Bound Method C-1
- **Module D**: Nonlinear Programming Solution Techniques D-1
- **Module E**: Game Theory E-1
- **Module F**: Markov Analysis F-1
New to This Edition

Management science is the application of mathematical models and computing technology to help decision makers solve problems. Therefore, new text revisions like this one tend to focus on the latest technological advances used by businesses and organizations for solving problems, as well as new features that students and instructors have indicated would be helpful to them in learning about management science. Following is a list of the substantial new changes made for this 13th edition of the text:

- This revision incorporates the latest version of Excel® 2016 and includes more than 175 new spreadsheet screenshots.
- More than 60 new exhibit screenshots have been added to show the latest versions of Microsoft® Project 2016, QM for Windows, Excel QM, TreePlan, and Crystal Ball.
- This edition includes 20 new end-of-chapter homework problems, so it now contains more than 800 homework problems and 69 cases.
- All 800-plus Excel homework files on the Instructor's Web site have been replaced with new Excel 2016 files.
- Updated “Chapter Web links” are included for every chapter. More than 550 Web links are provided to access tutorials, summaries, and notes available on the Internet for the various topics in the chapters. Also included are links to YouTube videos that provide additional learning resources.
- Twelve of the 48 “Management Science Application” boxes are new for this edition. All of these new boxes provide applications of management science techniques by companies and organizations.

Solving Teaching and Learning Challenges

The objective of management science is to solve the decision-making problems that confront and confound managers in both the public and private sectors by developing mathematical models of those problems. These models have traditionally been solved with various mathematical techniques, all of which lend themselves to specific types of problems. Thus, management science as a field of study has always been inherently mathematical in nature, and as a result sometimes complex and rigorous. My main goal through 13 editions of this book has always been to make these mathematical topics seem less complex and thus more palatable to undergraduate business students. To achieve this goal I try to provide simple, straightforward explanations of often difficult mathematical topics. I try to use lots of examples that demonstrate in detail the fundamental mathematical steps of the modeling and solution techniques. Although in the past three decades the emphasis in management science has shifted away from strictly mathematical to mostly computer solutions, my objective has not changed. I have provided clear, concise explanations of the techniques used in management science to model problems and provided many examples of how to solve these models on the computer while still including some of the fundamental mathematics of the techniques.
The stuff of management science can seem abstract, and students sometimes have trouble perceiving the usefulness of quantitative courses in general. I remember that when I was a student, I could not foresee how I would use such mathematical topics (in addition to a lot of the other things I learned in college) in any job after graduation. Part of the problem is that the examples used in books often do not seem realistic. Unfortunately, examples must be made simple to facilitate the learning process. Larger, more complex examples reflecting actual applications would be too complex to help the student learn the modeling technique. The modeling techniques presented in this text are, in fact, used extensively in the business world, and their use is increasing rapidly because of computer and information technology, and the emerging field of business analytics. Therefore, the chances that students will use the modeling techniques that they learn from this text in a future job are very great indeed.

Even if these techniques are not used on the job, the logical approach to problem solving embodied in management science is valuable for all types of jobs in all types of organizations. Management science consists of more than just a collection of mathematical modeling techniques; it embodies a philosophy of approaching a problem in a logical manner, as does any science. Thus, this text not only teaches specific techniques but also provides a very useful method for approaching problems.

My primary objective throughout all revisions of this text is readability. The modeling techniques presented in each chapter are explained with straightforward examples that avoid lengthy written explanations. These examples are organized in a logical step-by-step fashion that the student can subsequently apply to the problems at the end of each chapter. I have tried to avoid complex mathematical notation and formulas wherever possible. These various factors will, I hope, make the material more interesting and less intimidating to students.

Developing Employability Skills

For students to succeed in a rapidly changing job market, they need to know how to develop a variety of analytical and quantitative skills that they will use in their future careers. In this 13th edition of *Introduction to Management Science* we focus on developing these skills in the following ways.

Management Science Applications

Management Science Application boxes are located in every chapter in the text. They describe how a company, an organization, or an agency uses the particular management science technique being presented and demonstrated in the chapter to compete in a global environment. There are 48 of these boxes, 12 of which are new, throughout the text. They encompass a broad range of business and public-sector applications, both foreign and domestic.

Excel Spreadsheets

This new edition continues to emphasize Excel spreadsheet solutions of problems. Spreadsheet solutions are demonstrated in all the chapters in the text (except for Chapter 2, on linear programming modeling and graphical solution) for virtually every management science modeling technique presented. These spreadsheet solutions are presented in optional subsections, allowing the instructor to decide whether to cover them. The text includes more than 140 new Excel spreadsheet screenshots for Excel 2016. Most of these screenshots include reference callout boxes that describe the solution steps within the spreadsheet. Files that include all the Excel spreadsheet solutions are demonstrated in all the chapters in the text (except for Chapter 2, on linear programming modeling and graphical solution) for virtually every management science modeling technique presented. These spreadsheet solutions are presented in optional subsections, allowing the instructor to decide whether to cover them. The text includes more than 140 new Excel spreadsheet screenshots for Excel 2016. Most of these screenshots include reference callout boxes that describe the solution steps within the spreadsheet. Files that include all the Excel spreadsheet solutions are located in every chapter in the text. They describe how a company, an organization, or an agency uses the particular management science technique being presented and demonstrated in the chapter to compete in a global environment. There are 48 of these boxes, 12 of which are new, throughout the text. They encompass a broad range of business and public-sector applications, both foreign and domestic.
model solutions for the examples in the text (data files) are included on the Companion Web site and can be easily downloaded by the student to determine how the spreadsheet was set up and the solution derived, and to use as templates to work homework problems. In addition, Appendix B at the end of the text provides a tutorial on how to set up and edit spreadsheets for problem solution. At top left is an example of one of the Excel spreadsheet files (from Chapter 3) that is available on the Companion Web site accompanying the text.

Spreadsheet Add-Ins

Several spreadsheet add-in packages are available with this book, often in trial and premium versions. For complete information on options for downloading each package, please visit http://www.pearsonhighered.com/taylor.

Excel QM

For some management science topics, the Excel formulas that are required for solution are lengthy and complex and thus are very tedious and time consuming to type into a spreadsheet. In several of these instances in the book, including Chapter 6 on transportation and assignment problems, Chapter 12 on decision analysis, Chapter 13 on queuing, Chapter 15 on forecasting, and Chapter 16 on inventory control, spreadsheet “add-ins” called Excel QM are demonstrated. These add-ins provide a generic spreadsheet setup with easy-to-use dialog boxes and all of the formulas already typed in for specific problem types. Unlike other “black box” software, these add-ins allow users to see the formulas used in each cell. The input, results, and the graphics are easily seen and can be easily changed, making this software ideal for classroom demonstrations and student explorations. At left is an example of an Excel QM file (from Chapter 13 on queuing analysis) that is on the Companion Web site that accompanies the text.

Risk Solver Platform for Education

This program is a tool for risk analysis, simulation, and optimization in Excel. The Companion Web site will direct you to a trial version of the software.

TreePlan

Another spreadsheet add-in program that is demonstrated in the text is TreePlan, a program that will set up a generic spreadsheet for the solution of decision-tree problems in Chapter 12 on decision analysis. This is also available on the Companion Web site. At left is an example of one of the TreePlan files (from Chapter 12) that is on the text Companion Web site.
Crystal Ball

Another spreadsheet add-in program is Crystal Ball by Oracle. Crystal Ball is demonstrated in Chapter 14 on simulation and shows how to perform simulation analysis for certain types of risk analysis and forecasting problems. Here is an example of one of the Crystal Ball files (from Chapter 14) that is on the Companion Web site. The Companion Web site will direct you to a trial version of the software.

QM for Windows Software Package

QM for Windows is a computer package that is included on the text Companion Web site, and many students and instructors will prefer to use it with this text. This software is very user-friendly, requiring virtually no preliminary instruction except for the “help” screens that can be accessed directly from the program. It is demonstrated throughout the text in conjunction with virtually every management science modeling technique, except simulation. The text includes 50 QM for Windows screens used to demonstrate example problems. Thus, for most topics problem solution is demonstrated via both Excel spreadsheets and QM for Windows. Files that include all the QM for Windows solutions, for example, in the text are included on the accompanying Companion Web site. Here is an example of one of the QM for Windows files (from Chapter 4 on linear programming) that is on the Companion Web site.

Microsoft Project

Chapter 8 on project management includes the popular software package Microsoft Project. Here is an example of one of the Microsoft Project files (from Chapter 8) that is available on the text Companion Web site. The Companion Web site will direct you to a trial version of the software.
Problems and Cases

Previous editions of the text always provided a substantial number of homework questions, problems, and cases for students to practice on. This edition includes more than 800 homework problems, 20 of which are new, and 69 end-of-chapter case problems.

Example Problem Solutions

As a prelude to the problems, this section presents example solutions to two linear programming problems.

Problem Statement

Moore’s Meatpacking Company produces a hot dog mixture in 1,000-pound batches. The mixture contains two ingredients—chicken and beef. The cost per pound of each of these ingredients is as follows:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Cost/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken</td>
<td>$3</td>
</tr>
<tr>
<td>Beef</td>
<td>$5</td>
</tr>
</tbody>
</table>

Each batch has the following recipe requirements:

a. At least 500 pounds of chicken
b. At least 200 pounds of beef

The ratio of chicken to beef must be at least 2 to 1. The company wants to know the optimal mixture of ingredients that will minimize cost. Formulate a linear programming model for this problem.

Solution

Step 1: Identify Decision Variables

Recall that the problem should not be “swallowed whole.” Identify each part of the model separately, starting with the decision variables:

\[x_1 = \text{lb. of chicken} \]
\[x_2 = \text{lb. of beef} \]

Step 2: Formulate the Objective Function

\[\text{minimize } Z = 3x_1 + 5x_2 \]

where

\[Z = \text{cost per 1,000-lb batch} \]
\[3x_1 = \text{cost of chicken} \]
\[5x_2 = \text{cost of beef} \]

Step 3: Establish Model Constraints

The constraints of this problem are embodied in the recipe restrictions and (not to be overlooked) the fact that each batch must consist of 1,000 pounds of mixture:

\[x_1 + x_2 = 1,000 \]
\[x_1 = 500 \text{ lb. of chicken} \]
\[x_2 = 200 \text{ lb. of beef} \]
\[x_1/2 = \text{or } x_1 - x_2 \geq 0 \]

and

\[x_1, x_2 \geq 0 \]

The Model

\[\text{minimize } Z = 3x_1 + 5x_2 \]

subject to

\[x_1 + x_2 = 1,000 \]
\[x_1 \geq 500 \]
\[x_2 \geq 200 \]
\[x_1 - 2x_2 \geq 0 \]
\[x_1, x_2 \geq 0 \]

Marginal Notes

Notes in the margins of this text serve the same basic function as notes that students themselves might write in the margin. They highlight certain topics to make it easier for students to locate them, summarize topics and important points, and provide brief definitions of key terms and concepts.

Examples

The primary means of teaching the various quantitative modeling techniques presented in this text is through examples. Thus, examples are liberally inserted throughout the text, primarily to demonstrate how problems are solved with the different quantitative techniques and to make them easier to understand. These examples are organized in a logical step-by-step solution approach that the student can subsequently apply to the homework problems.

Example Problem Solutions

At the end of each chapter, just prior to the homework questions and problems, is a section that provides solved examples to serve as a guide for doing the homework problems. These examples are solved in a detailed, step-by-step fashion. Here is an example from Chapter 2.

Chapter Web Links

The files on the Companion Web site contains Chapter Web links for every chapter in the text. These Web links access tutorials, summaries, and notes available on the Internet for the various techniques and topics in every chapter in the text. Also included are YouTube videos that provide additional learning resources and tutorials about many of the topics and techniques, links to the development and developers of the techniques in the text, and links to the Web sites for the companies and organizations that are featured in the “Management Science Application” boxes in every chapter. The “Chapter Web links” file includes more than 550 Web links.
Chapter Modules
Several of the strictly mathematical topics—such as the simplex and transportation solution methods—are included as chapter modules on the Companion Web site, at http://www.pearsonhighered.com/taylor.

Table of Contents Overview
An important objective is to have a well-organized text that flows smoothly and follows a logical progression of topics, placing the different management science modeling techniques in their proper perspective. The following Figure 1.6 from Chapter 1 outlines the organization of topics in the book.

The first 10 chapters are related to mathematical programming that can be solved using Excel spreadsheets, including linear, integer, nonlinear, and goal programming, as well as network techniques.

Within these mathematical programming chapters, the traditional simplex procedure for solving linear programming problems mathematically is located in Module A on the Companion Web site, at http://www.pearsonhighered.com/taylor, that accompanies this text. It can still be covered by the student on the computer as part of linear programming, or it can be excluded, without leaving a “hole” in the presentation of this topic. The integer programming mathematical branch and bound solution method (Chapter 5) is located in Module C on the Companion Web site. In Chapter 6, on the transportation and assignment problems, the strictly mathematical solution approaches, including the northwest corner, VAM, and stepping-stone methods, are located in Module B on the Companion Web site. Because transportation and assignment problems are specific types of network problems, the two chapters that cover network flow models and project networks that can be solved with linear programming, as well as traditional model-specific solution techniques and software, follow Chapter 6 on transportation and assignment problems. In addition, in Chapter 10, on nonlinear programming, the traditional mathematical solution techniques, including the substitution method and the method of Lagrange multipliers, are located in Module D on the Companion Web site.

Chapters 11 through 14 include topics generally thought of as being probabilistic, including probability and statistics, decision analysis, queuing, and simulation. Module F on Markov analysis and Module E on game theory are on the Companion Web site. Forecasting in Chapter 15 and inventory management in Chapter 16 are both unique topics related to operations management.
Instructor Teaching Resources

This text comes with the following teaching resources.

<table>
<thead>
<tr>
<th>Supplements available to instructors at www.pearsonhighered.com irc</th>
<th>Features of the Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor's Solutions Manual developed by the author</td>
<td>• Detailed solutions for all end-of-chapter exercises and cases</td>
</tr>
<tr>
<td></td>
<td>• One file per chapter provided in MS Word format</td>
</tr>
<tr>
<td>Excel Homework Solutions developed by the author</td>
<td>• A corresponding Excel solution file for almost all 840 end-of-chapter homework and case problem in the text</td>
</tr>
<tr>
<td></td>
<td>• Organized by chapter and problem number</td>
</tr>
<tr>
<td></td>
<td>• Also include Excel homework solution files for TreePlan, Crystal Ball, and Microsoft Project</td>
</tr>
<tr>
<td>Test Bank authored by Geoff Willis of the University of Central Oklahoma</td>
<td>• 2,000 questions, including true/false, multiple-choice, and problem-solving questions for each chapter</td>
</tr>
<tr>
<td></td>
<td>• Each question followed by the correct answer, page references, main headings, difficulty rating, and key words</td>
</tr>
<tr>
<td>TestGen® Computerized Test Bank</td>
<td>• Pearson Education's test-generating software, PC and Mac compatible, and preloaded with all of the Test Bank questions</td>
</tr>
<tr>
<td></td>
<td>• Can manually or randomly view test questions and drag and drop to create a test</td>
</tr>
<tr>
<td></td>
<td>• Can add or modify test bank questions as needed</td>
</tr>
<tr>
<td>PowerPoint Presentations authored by Geoff Willis of the University of Central Oklahoma</td>
<td>• Available for every chapter</td>
</tr>
<tr>
<td></td>
<td>• Features figures, tables, Excel spreadsheets and main points</td>
</tr>
<tr>
<td></td>
<td>• They meet accessibility standards for students with disabilities. Features include, but not limited to:</td>
</tr>
<tr>
<td></td>
<td>◦ Keyboard and Screen Reader access</td>
</tr>
<tr>
<td></td>
<td>◦ Alternative text for images</td>
</tr>
<tr>
<td></td>
<td>◦ High color contrast between background and foreground colors</td>
</tr>
<tr>
<td>Chapter Web Links developed by the author</td>
<td>• Internet links to tutorials, summaries, notes and videos</td>
</tr>
</tbody>
</table>

Acknowledgments

As with any other large project, the revision of a textbook is not accomplished without the help of many people. The 13th edition of this book is no exception, and I would like to take this opportunity to thank those who have contributed to its preparation.

I thank the reviewers of this and previous editions: Dr. B. S. Bal, Nagraj Balakrishnan, Edward M. Barrow, Ali Behnezhad, Weldon J. Bowling, Rod Carlson, Petros Christofi, Yar M. Ebadi, Richard Ehrhardt, Warren W. Fisher, James Flynn, Wade Furgeson, Soumen Ghosh,

I am also very grateful to Tracy McCoy at Virginia Tech for her valued assistance. I would like to thank my Content Producer, Sugandh Juneja, at Pearson, for her valuable assistance and patience. I very much appreciate the help and hard work of Roberta Sherman and all the folks at SPi Global, who produced this edition, and the text’s accuracy checker, M. Khurrum S. Bhutta. Finally, I would like to thank my editors, Dan Tylman and Neeraj Bhalla, at Pearson, for their continued help and patience.