About the Authors

ERIC J. SIMON
is a professor in the Department of Biology and Health Science at New England College (Henniker, New Hampshire). He teaches introductory biology to science majors and nonscience majors, as well as upper-level courses in tropical marine biology and careers in science. Dr. Simon received a B.A. in biology and computer science, an M.A. in biology from Wesleyan University, and a Ph.D. in biochemistry from Harvard University. His research focuses on innovative ways to use technology to increase active learning in the science classroom, particularly for nonscience majors. Dr. Simon is also the author of the introductory biology textbook Biology: The Core, 2nd Edition, and a coauthor of Campbell Biology: Concepts & Connections, 9th Edition.

 To my lifelong friends BZ, SR, and SR, who have taught me the value of loyalty and trust during decades of unwavering friendship

JANE B. REECE
was Neil Campbell’s longtime collaborator and a founding author of Campbell Essential Biology and Campbell Essential Biology with Physiology. Her education includes an A.B. in biology from Harvard University (where she was initially a philosophy major), an M.S. in microbiology from Rutgers University, and a Ph.D. in bacteriology from the University of California, Berkeley. At UC Berkeley, and later as a postdoctoral fellow in genetics at Stanford University, her research focused on genetic recombination in bacteria. Dr. Reece taught biology at Middlesex County College (New Jersey) and Queensborough Community College (New York). Dr. Reece’s publishing career began in 1978 when she joined the editorial staff of Benjamin Cummings, and since then, she played a major role in a number of successful textbooks. She was the lead author of Campbell Biology Editions 8–10 and a founding author of Campbell Biology: Concepts & Connections.

 To my wonderful coauthors, who have made working on our books a pleasure

JEAN L. DICKEY
is Professor Emerita of Biological Sciences at Clemson University (Clemson, South Carolina). After receiving her B.S. in biology from Kent State University, she went on to earn a Ph.D. in ecology and evolution from Purdue University. In 1984, Dr. Dickey joined the faculty at Clemson, where she devoted her career to teaching biology to nonscience majors in a variety of courses. In addition to creating content-based instructional materials, she developed many activities to engage lecture and laboratory students in discussion, critical thinking, and writing, and implemented an investigative laboratory curriculum in general biology. Dr. Dickey is the author of Laboratory Investigations for Biology, 2nd Edition, and is a coauthor of Campbell Biology: Concepts & Connections, 9th Edition.

 To my mother, who taught me to love learning, and to my daughters, Katherine and Jessie, the twin delights of my life

NEIL A. CAMPBELL
(1946–2004) combined the inquiring nature of a research scientist with the soul of a caring teacher. Over his 30 years of teaching introductory biology to both science majors and nonscience majors, many thousands of students had the opportunity to learn from him and be stimulated by his enthusiasm for the study of life. He is greatly missed by his many friends in the biology community. His coauthors remain inspired by his visionary dedication to education and are committed to searching for ever-better ways to engage students in the wonders of biology.
Preface

Biology education has been transformed in the last decade. The non-majors introductory biology course was (in most cases) originally conceived as a slightly less deep and broad version of the general biology course. But a growing recognition of the importance of this course—one that is often the most widely enrolled within the department, and one that serves as the sole source of science education for many students—has prompted a reevaluation of priorities and a reformulation of pedagogy. Many instructors have narrowed the focus of the course from a detailed compendium of facts to an exploration of broader themes within the discipline—themes such as the central role of evolution and an understanding of the process of science. For many educators, the goals have shifted from communicating a great number of bits of information toward providing a deep understanding of fewer, but broader, principles. Luckily for anyone teaching or learning biology, opportunities to marvel at the natural world and the life within it abound. Furthermore, nearly everyone realizes that the subject of biology has a significant impact on his or her own life through its connections to medicine, biotechnology, agriculture, environmental issues, forensics, and many other areas. Our primary goal in writing Campbell Essential Biology is to help teachers motivate and educate the next generation of citizens by communicating the broad themes that course through our innate curiosity about life.

Goals of the Book

Although our world is rich with “teachable moments” and learning opportunities, an explosion of knowledge threatens to bury a curious person under an avalanche of information. “So much biology, so little time” is the universal lament of biology educators. Neil Campbell conceived of Campbell Essential Biology as a tool to help teachers and students focus on the most important areas of biology. To that end, the book is organized into four core areas: cells, genes, evolution, and ecology. Dr. Campbell’s vision, which we carry on and extend in this edition, has enabled us to keep Campbell Essential Biology manageable in size and thoughtful in the development of the concepts that are most fundamental to understanding life. We’ve aligned this new edition with today’s “less is more” approach in biology education for nonscience majors—where the emphasis is on fewer topics but broader themes—while never allowing the important content to be diluted.

We formulated our approach after countless conversations with teachers and students in which we noticed some important trends in how biology is taught. In particular, many instructors identify three goals: (1) to engage students by relating biology content to their lives and the greater society; (2) to help students understand the process of science by teaching critical thinking skills that can be used in everyday life; and (3) to demonstrate how biology’s broader themes—such as evolution and the relationship of structure to function—serve to unify the entire subject. To help achieve these goals, every chapter of this book includes several important features. First, a chapter-opening essay called Biology and Society highlights a connection between the chapter’s core content and students’ lives. Second, an essay called The Process of Science (in the body of the chapter) describes how the scientific process has illuminated the topic at hand, using a classic or modern experiment as an example. Third, a chapter-closing Evolution Connection essay relates the chapter to biology’s unifying theme of evolution. Fourth, the broad themes that unify all subjects within biology are explicitly called out (in blue) multiple times within each chapter. Finally, to maintain a cohesive narrative throughout each chapter, the content is tied together with a unifying chapter thread, a relevant high-interest topic that is touched on several times in the chapter and woven throughout the three feature essays. Thus, this unifying chapter thread ties together the pedagogical goals of the course, using a topic that is compelling and relevant to students.

New to This Edition

This latest edition of Campbell Essential Biology goes even further than previous editions to help students relate the material to their lives, understand the process of science, and appreciate how broad themes unify all aspects of biology. To this end, we’ve added significant new features and content to this edition:

- **A new approach to teaching the process of science.** Conveying the process of science to nonscience-major undergraduate students is one of the most important goals of this course. Traditionally, we taught the scientific method as a predefined series of steps to be followed in an exact order (observation, hypothesis, experiment, and so forth). Many instructors have shifted away from such a specific flow chart to a more nuanced approach that involves multiple pathways, frequent restarts, and other features that more accurately reflect how science is actually undertaken. Accordingly, we have revised the way that the process of science is discussed within our text, both in Chapter 1 (where the process is discussed in detail) and in The Process of Science essay in every chapter of the textbook. Rather than using specific terms in a specific order to describe the process, we now divide it into three broad interrelated areas: background, method, and results. We believe that this new approach better conveys how science actually proceeds and demystifies the topic for non-scientists. Chapter 1 also contains important information that promotes critical thinking, such as discussion of control groups, pseudoscience, and recognizing reliable sources of information. We believe that providing students with such critical-thinking tools is one of the most important outcomes of the nonscience-major introductory course.

- **Major themes in biology incorporated throughout the book.** In 2009, the American Association for the Advancement of Science published a document that served as a call to action in undergraduate biology education. The principles of this document, which
is titled “Vision and Change,” are becoming widely accepted throughout the biology education community. “Vision and Change” presents five core concepts that serve as the foundation of undergraduate biology. In this edition of Campbell Essential Biology, we repeatedly and explicitly link book content to themes multiple times in each chapter, calling out such instances with boldfaced blue text. For example, in Chapter 4 (A Tour of the Cell), the interrelationships of cellular structures are used to illustrate the theme of interactions within biological systems. The plasma membrane is presented as an example of the relationship between structure and function. The cellular structures in the pathway from DNA to protein are used to illustrate the importance of information flow. The chloroplasts and mitochondria serve as an example of the transformations of energy and matter. The DNA within these structures is also used to illustrate biology’s overarching theme of evolution. Students will find three to five examples of themes called out in each chapter, which will help them see the connections between these major themes and the course content. To reinforce these connections, this edition of Campbell Essential Biology includes new end-of-chapter questions and Mastering Biology activities that promote critical thinking relating to these themes. Additionally, PowerPoint lecture slides have been updated to incorporate chapter examples and offer guidance to faculty on how to include in these themes within classroom lectures.

- **Updated connections to students’ lives.** In every edition of Campbell Essential Biology, we seek to improve and extend the ways that we connect the course content to students’ lives. Accordingly, every chapter begins with an improved feature called Why It Matters showing the relevance of the chapter content from the very start. Additionally, with every edition, we introduce some new unifying chapter threads intended to improve student relevance. For example, this edition includes new threads that discuss evolution in a human-dominated world (Chapter 14) and the importance of biodiversity to human affairs (Chapter 20). As always, we include some updated Biology and Society chapter-opening essays (such as “A Solar Revolution” in Chapter 7), The Process of Science sections (such as a recent experiment investigating the efficacy of radiation therapy to treat prostate cancer, in Chapter 2), and Evolution Connection chapter-closing essays (such as an updated discussion of biodiversity hot spots in Chapter 20). As we always do, this edition includes many content updates that connect to students’ lives, such as information on cutting-edge cancer therapies (Chapter 8) and recent examples of DNA profiling (Chapter 12).

- **Developing data literacy through infographics.** Many non-science-major students express anxiety when faced with numerical data, yet the ability to interpret data can help with many important decisions we all face. Increasingly, the general public encounters information in the form of infographics, visual images used to represent data. Consistent with our goal of preparing students to approach important issues critically, this edition includes a series of new infographics, or Visualizing the Data figures. Examples include the elemental composition of the human body (Chapter 2), a comparison of calories burned through exercise versus calories consumed in common foods (Chapter 5), and ecological footprints (Chapter 19). In addition to the printed form, these infographics are available as an interactive feature in the eText and as assignable tutorial questions within Mastering Biology.

- **Helping students to understand key figures.** For this new edition, a key figure in each chapter is supplemented by a short video explaining the concept to the student. These Figure Walkthrough videos will be embedded in the eText and will be assignable in Mastering Biology. The animations are written and narrated by authors Eric Simon and Jean Dickey, as well as teacher and contributor Rebecca Burton.

Attitudes about science and scientists are often shaped by a single, required science class—this class. We hope to nurture an appreciation of nature into a genuine love of biology. In this spirit, we hope that this textbook and its supplements will encourage all readers to make biological perspectives a part of their personal worldviews. Please let us know how we are doing and how we can improve the next edition of Campbell Essential Biology.

ERIC SIMON
Department of Biology and Health Science
New England College
Henniker, NH 03242
SimonBiology@gmail.com

JEAN DICKEY
Clemson, SC
dickeyj@clemson.edu

JANE B. REECE
Berkeley, California
Acknowledgments

Throughout the process of planning and writing *Campbell Essential Biology*, the author team has had the great fortune of collaborating with an extremely talented group of publishing professionals and educators. We are all truly humbled to be part of one of the most experienced and successful publishing teams in biology education. Although the responsibility for any shortcomings lies solely with the authors, the merits of the book and its supplements reflect the contributions of a great many dedicated colleagues.

First and foremost, we must acknowledge our huge debt to Neil Campbell, the founding author of this book and a source of ongoing inspiration for each of us. Although this edition has been carefully and thoroughly revised—to update its science, its connections to students’ lives, its pedagogy, and its currency—it remains infused with Neil’s original vision and his commitment to share biology with introductory students.

This edition benefited significantly from the efforts of contributor Rebecca S. Burton from Alverno College. Using her years of teaching expertise, Becky made substantial improvements to two chapters, contributed to the development of new and revised Chapter Thread essays, and helped shape the emphasis on the unifying themes throughout the text and in Mastering Biology. We thank Becky for bringing her considerable talents to bear on this edition!

This book could not have been completed without the efforts of the *Campbell Essential Biology* team at Pearson Education. Leading the team is courseware portfolio management specialist Alison Rodal, who is tireless in her pursuit of educational excellence and who inspires all of us to constantly seek better ways to help teachers and students. Alison stands at the interface between the book development team and the educational community of professors and students. Her insights and contributions are invaluable. We also thank the Pearson Science executive team for their supportive leadership, in particular, senior vice president of portfolio management Adam Jaworski, director of portfolio management Beth Wilbur, and directors of courseware content development Barbara Yien and Ginnie Simione Jutson.

It is no exaggeration to say that the talents of the best editorial team in the industry are evident on every page of this book. The authors were continuously guided with great patience and skill by courseware senior analyst John Burner and senior developmental editor Susan Teahan. We owe this editorial team—which also includes the wonderfully capable and friendly editorial assistant Alison Candlin—a deep debt of gratitude for their talents and hard work.

Once we formulated our words and images, the production and manufacturing teams transformed them into the final book. Senior content producer Lori Newman oversaw the production process and kept everyone and everything on track. We also thank the managing content producer Mike Early for his careful oversight. Every edition of *Campbell Essential Biology* is distinguished by continuously updated and beautiful photography. For that we thank photo researcher Kristin Piljay, who constantly dazzles us with her keen ability to locate memorable images.

For the production and composition of the book, we thank senior project editor Margaret McConnell of Integra Software Services, whose professionalism and commitment to the quality of the finished product is visible throughout. The authors owe much to copyeditor Joanna Dinsmore and proofreader Pete Shanks for their keen eyes and attention to detail. We thank design manager Mark Ong and designer Tani Hasegawa of TT Eye for the beautiful interior and cover designs; and we are grateful to Rebecca Marshall and Courtney Coffman and the artists at Lachina for rendering clear and compelling illustrations. We also thank rights and permissions project manager Matt Perry at Cenveo and the manager of rights and permissions Ben Ferrini. In the final stages of production, the talents of manufacturing buyer Stacy Weinberger shone.

Most instructors view the textbook as just one piece of the learning puzzle, with the book’s supplements and media completing the picture. We are lucky to have a *Campbell Essential Biology* supplements team that is fully committed to the core goals of accuracy and readability. Content producer Lori Newman expertly coordinated the supplements, a difficult task given their number and variety. We also thank media project manager Ziki Dekel for his work on the excellent Instructor Resources and eText that accompanies the text. We owe particular gratitude to the supplements authors, especially the indefatigable and eagle-eyed Ed Zalisko of Blackburn College, who wrote the Instructor Guide and the PowerPoint Lectures; the highly skilled and multitalented Doug Darnowski of Indiana University Southeast, who revised the Quiz Shows and Clicker Questions; and Jean DeSaix of the University of North Carolina at Chapel Hill, Justin Shaffer of the University of California, Irvine, Kristen Miller of the University of Georgia, and Suann Yang of SUNY Geneseo, our collaborative team of Test Bank authors for ensuring excellence in our assessment program. In addition, the authors thank Reading Quiz authors Amaya Garcia Costas of Montana State University and Cindy Klevickis of University of Madison University; Reading Quiz accuracy reviewer Veronica Menendez; Practice Test author Chris Romero of Front Range Community College; and Practice Test accuracy reviewer Justin Walgaurnery of the University of Hawaii.

We wish to thank the talented group of publishing professionals who worked on the comprehensive media program that accompanies *Campbell Essential Biology*. The team members dedicated to Mastering Biology are true “game changers” in the field of biology education. We thank rich media content producers Ziki Dekel and Tod Regan for coordinating our multimedia plan. Vital contributions were also made by associate Mastering media producer Kaitlin Smith and web developer Barry Offringa. We also thank Sarah Jensen, senior content developer, for her efforts to make our media products the best in the industry.

As educators and writers, we are very lucky to have a crack marketing team. Product marketing manager Christa Pelaez and field marketing manager Kelli Galli seemed to be everywhere at once as they helped us achieve
our authorial goals by keeping us constantly focused on the needs of students and instructors.

We also thank the Pearson Science sales representatives, district and regional managers, and learning technology specialists for representing *Campbell Essential Biology* on campuses. These representatives are our lifeline to the greater educational community, telling us what you like (and don’t like) about this book and the accompanying supplements and media. Their enthusiasm for helping students makes them not only ideal ambassadors but also our partners in education. We urge all educators to take full advantage of the wonderful resource offered by the Pearson sales team.

Eric Simon would like to thank his colleagues at New England College for their support and for providing a model of excellence in education, in particular, Lori Koziol, Deb Dunlop, Mark Mitch, Bryan Partridge, and Wayne Lesperance. Eric would also like to acknowledge the contributions of Jim Newcomb of New England College for lending his keen eye for accuracy and for always being available to discuss teaching innovations; Jay Withgott for sharing his expertise; Elyse Carter Vosen for providing much-needed social context; Jamey Barone for her sage sensitivity; and Amanda Marsh for her expert eye, sharp attention to detail, tireless commitment, constant support, compassion, and seemingly endless wisdom.

At the end of these acknowledgments, you’ll find a list of the many instructors who provided valuable information about their courses, reviewed chapters, and/or conducted class tests of *Campbell Essential Biology* with their students. All of our best ideas spring from the classroom, so we thank them for their efforts and support.

Most of all, we thank our families, friends, and colleagues, who continue to tolerate our obsession with doing our best for science education. And finally, we all wish to welcome budding superstar Leo to our *Campbell Essential Biology* family.

ERIC SIMON, JEAN DICKEY, JANE REECE

Reviewers of this Edition

Lois Bartsch	Sue Hum-Musser	Sanghamitra Saha
Metropolitan Community College	Western Illinois University	University of Houston Downtown
Allison Beck	Brian Kram	Mark Smith
Black Hawk College	Prince George’s Community College	Santiago Canyon College
Lisa Boggs	Tangela Marsh	Anna Sorin
Southwestern Oklahoma State University	Ivy Tech Community College East Central Region	University of Memphis
Steven Brumbaugh	Roy Mason	Jennifer Stueckle
Green River College	Mt. San Jacinto College	West Virginia University
Ryan Caesar	Mary Miller	Alice Tarun
Schriener University	Baton Rouge Community College	Alfred State SUNY College of Technology
Alexander Cheroske	Michele Nash	Ron Tavernier
Moorpark College	Springfield Technical Community College	SUNY Canton
Gregory Dahlem	Mary Poffenroth	Anotia Wijte
Northern Kentucky University	San Jose State University	Irvine Valley College
Richard Gardner	Michelle Rogers	Edwin Wong
South Virginia University	Austin Peay State University	Western Connecticut State University
Thomas Hinckley	Troy Rohn	Calvin Young
Landmark College	Boise State University	Fullerton College

Reviewers of Previous Editions

Marilyn Abbott	William Sylvester Allred, Jr.	Mohammad Ashraf
Lindenwood College	Northern Arizona University	Olive-Harvey College
Tammy Adair	Megan E. Anduri	Heather Ashworth
Baylor University	California State University, Fullerton	Utah Valley University
Shazia Ahmed	Estrella Z. Ang	Tami Aspin
Texas Woman’s University	University of Pittsburgh	North Dakota State
Felix O. Akojie	David Arieti	Bert Atsma
Paducah Community College	Oakton Community College	Union County College
Shireen Alemadi	C. Warren Arnold	Yael Avisar
Minnesota State University, Moorhead	Allan Hancock Community College	Rhode Island College
ACKNOWLEDGMENTS
Shannon Dullea
North Dakota State College of Science

David A. Eakin
Eastern Kentucky University

Brian Earle
Cedar Valley College

Ade Ejiere
Johnston Community College

Dennis G. Emery
Iowa State University

Hilary Engebretson
Whatcom Community College

Renee L. Engle-Goodner
Merritt College

Virginia Erickson
Highline Community College

Carl Estrella
Merced College

Marirose T. Ethington
Geneseo Community College

Paul R. Evans
Brigham Young University

Zephiehia E. Evans
Purdue University

Jean Everett
College of Charleston

Holly Swain Ewald
University of Louisville

Dianne M. Fair
Florida Community College at Jacksonville

Joseph Faryniarz
Naugatuck Valley Community College

Phillip Fawley
Westminster College

Lynn Fireston
Ricks College

Jennifer Floyd
Leeuward Community College

Dennis M. Forsythe
The Citadel

Angela M. Foster
Wake Technical Community College

Brandon Lee Foster
Wake Technical Community College

Carl F. Friese
University of Dayton

Suzanne S. Frucht
Northwest Missouri State University

Edward G. Gabriel
Lycoming College

Anne M. Galbraith
University of Wisconsin, La Crosse

Kathleen Gallucci
Elon University

J. Yvette Gardner
Clayton State University

Richard Gardner
South Carolina State University

Gregory R. Garman
Centralia College

Wendy Jean Garrison
University of Mississippi

Gail Gasparich
Towson University

Kathy Gifford
Butler County Community College

Sharon L. Gilman
Coastal Carolina University

Mac Given
Neumann College

Patricia Glas
The Citadel

Ralph C. Goff
Mansfield University

Marian R. Goldsmith
University of Rhode Island

Andrew Goliszek
North Carolina Agricultural and Technical State University

Tamar Liberman Goulet
University of Mississippi

Curt Gravis
Western State College of Colorado

Larry Gray
Utah Valley State College

Tom Green
West Valley College

Robert S. Greene
Santa Fe Community College

Paul Gurn
Naugatuck Valley Community College

Peggy J. Guthrie
University of Central Oklahoma

Henry H. Hagedorn
University of Arizona

Blanche C. Haning
Vance-Granville Community College

Laszlo Hanzely
Northern Illinois University

Sig Harden
Troy University

Sherry Harrel
Eastern Kentucky University

Reba Harrel
Hinds Community College

Frankie Harris
Independence Community College

Lysa Marie Hartley
Methodist College

Janet Haynes
Long Island University

Michael Held
St. Peter’s College

Consetta Helmick
University of Idaho

J. L. Henriksen
Bellevue University

Michael Henry
Contra Costa College

Linda Hensel
Mercer University

Jana Henson
Georgetown College

James Hewlett
Finger Lakes Community College

Richard Hilton
Towson University

Thomas Hinckley
Landmark College

Juliana Hinton
McNeese State University

Phyllis C. Hirsch
East Los Angeles College

W. Wyatt Hoback
University of Nebraska at Kearney

Elizabeth Hodgeson
York College of Pennsylvania

Jay Hodgson
Armstrong Atlantic State University

A. Scott Holaday
Texas Tech University

Robert A. Holmes
Hutchinson Community College

R. Dwain Horrocks
Brigham Young University

Howard L. Hosick
Washington State University

Carl Huether
University of Cincinnati

Sue Hum-Musser
Western Illinois University

Celene Jackson
Western Michigan University

John Jahoda
Bridgewater State College

Dianne Jennings
Virginia Commonwealth University

Richard J. Jensen
Saint Mary’s College

Corey Johnson
University of North Carolina

Scott Johnson
Wake Technical Community College

Tari Johnson
Normandale Community College

Tia Johnson
Mitchell Community College

Gregory Jones
Santa Fe College, Gainesville, Florida
ACKNOWLEDGMENTS

Paula A. Piehl
Potomac State College of West Virginia University
Bill Pietrafica
State University of New York Oneonta
Gregory Podgorski
Utah State University
Mary Poffenroth
San Jose State University
Rosamond V. Potter
University of Chicago
Karen Powell
Western Kentucky University
Martha Powell
University of Alabama
Elena Pravosudova
Sierra College
Hallie Ray
Rappahannock Community College
Jill Raymond
Rock Valley College
Dorothy Read
University of Massachusetts, Dartmouth
Nathan S. Reyna
Howard Payne University
Philip Ricker
South Plains College
Todd Rimkus
Marymount University
Lynn Rivers
Henry Ford Community College
Jennifer Roberts
Lewis University
Laurel Roberts
University of Pittsburgh
Michelle Rogers
Austin Peay State University
Troy Rohn
Boise State University
April Rottman
Rock Valley College
Maxine Losoff Rusche
Northern Arizona University
Michael L. Rutledge
Middle Tennessee State University
Mike Runyan
Lander University
Travis Ryan
Furman University
Tyson Sacco
Cornell University
Sanhamittra Saha
University of Houston Downtown
Bassam M. Salameh
Antelope Valley College
Sarmad Saman
Quinsigamond Community College
Carsten Sanders
Kutztown University
Pamela Sandstrom
University of Nevada, Reno
Leba Sarkis
Aims Community College
Walter Saviuk
Daytona Beach Community College
Neil Schanker
College of the Siskiyous
Robert Schoch
Boston University
John Richard Schrock
Emporia State University
Julie Schroer
Bismarck State College
Karen Schuster
Florida Community College at Jacksonville
Brian W. Schwartz
Columbus State University
Michael Scott
Lincoln University
Eric Scully
Towson State University
Lois Sealy
Valencia Community College
Sandra S. Seidel
Elon University
Wayne Seifert
Brookhaven College
Susmita Sengupta
City College of San Francisco
Justin Shaffer
University of California, Irvine
Patty Shields
George Mason University
Cara Shillington
Eastern Michigan University
Brian Shmaefsky
Kingwood College
Rainy Inman Shorey
Ferris State University
Cahleen Shrier
Azusa Pacific University
Jed Shumsky
Drexel University
Greg Sievert
Emporia State University
Jeffrey Simmons
West Virginia Wesleyan College
Frederick D. Singer
Radford University
Anu Singh-Cundy
Western Washington University
Kerri Skinner
University of Nebraska at Kearney
Sandra Slivka
Miramar College
Jennifer Smith
Triton College
Margaret W. Smith
Butler University
Mark Smith
San Diego City College
Thomas Smith
Armstrong Atlantic State University
Anna Sorin
University of Memphis
Deena K. Spielman
Rock Valley College
Minou D. Spradley
San Diego City College
Ashley Spring
Eastern Florida State College
Robert Stamatis
Daytona Beach Community College
Joyce Stamm
University of Evansville
Eric Stavney
Highline Community College
Michael Stevens
Utah Valley University
Bethany Stone
University of Missouri, Columbia
Jennifer Stueckle
West Virginia University
Mark T. Sugalski
New England College
Marshall D. Sundberg
Emporia State University
Adelaide Svoboda
Nazareth College
Alice Tarun
Alfred State SUNY College of Technology
Ron Tavernier
SUNY Canton
Sharon Thoma
Edgewood College
Kenneth Thomas
Hillsborough Community College
Sumesh Thomas
Baltimore City Community College
Betty Thompson
Baptist University
Chad Thompson
Westchester Community College
Paula Thompson
Florida Community College
Michael Anthony Thornton
Florida Agriculture and Mechanical University
Linda Tichenor
University of Arkansas, Fort Smith
John Tjepkema
University of Maine, Orono
Bruce L. Tomlinson
State University of New York, Fredonia
Leslie R. Towill
Arizona State University
Bert Tribbee
California State University, Fresno
Nathan Trueblood
California State University, Sacramento
Robert Turner
Western Oregon University
Michael Twaddle
University of Toledo
Virginia Vandergon
California State University, Northridge
William A., Velhagen, Jr.
Longwood College
Melinda Verdone
Rock Valley College
Leonard Vincent
Fullerton College
Jonathan Visick
North Central College
Michael Vitale
Daytona Beach Community College
Lisa Volk
Fayetteville Technical Community College
Daryle Waechter-Brulla
University of Wisconsin, Whitewater
Stephen M. Wagener
Western Connecticut State University
Sean E. Walker
California State University, Fullerton
James A. Wallis
St. Petersbug Community College
Eileen Walsh
Westchester Community College
Helen Walter
Diablo Valley College
Kristen Walton
Missouri Western State University
Jennifer Warner
University of North Carolina at Charlotte
Arthur C. Washington
Florida Agriculture and Mechanical University
Kathy Watkins
Central Piedmont Community College
Dave Webb
St. Clair County Community College
Harold Webster
Pennsylvania State University, DuBois
Ted Weinheimer
California State University, Bakersfield
Lisa A. Werner
Pima Community College
Joanne Westin
Case Western Reserve University
Wayne Whaley
Utah Valley State College
Joseph D. White
Baylor University
Quinton White
Jacksonville University
Leslie Y. Whiteman
Virginia Union University
Rick Wiedenmann
New Mexico State University at Carlsbad
Anotia Wijte
Irvine Valley College
Peter J. Wilkin
Purdue University North Central
Bethany Williams
California State University, Fullerton
Daniel Williams
Winston-Salem University
Judy A. Williams
Southeastern Oklahoma State University
Dwina Willis
Freed Hardeman University
David Wilson
University of Miami
Mala S. Wingerd
San Diego State University
E. William Wischusen
Louisiana State University
Darla J. Wise
Concord College
Michael Womack
Macon State College
Edwin Wong
Western Connecticut State University
Bonnie Wood
University of Maine at Presque Isle
Holly Woodruff (Kupfer)
Central Piedmont Community College
Jo Wen Wu
Fullerton College
Mark L. Wygoda
McNeese State University
Calvin Young
Fullerton College
Shirley Zajdel
Housatonic Community College
Samuel J. Zeakes
Radford University
Uko Zylstra
Calvin College
Detailed Contents

1 Learning About Life 2

- CHAPTER THREAD Swimming with the Turtles 3

- BIOLOGY AND SOCIETY A Passion for Life 3
- The Scientific Study of Life 4
 An Overview of the Process of Science 4
 Hypotheses, Theories, and Facts 7
 Controlled Experiments 8
- THE PROCESS OF SCIENCE Do Baby Turtles Swim? 8
 Evaluating Scientific Claims 9
- The Properties of Life 10
- Major Themes in Biology 11
 The Relationship of Structure to Function 12
 Information Flow 12
 Pathways That Transform Energy and Matter 13
 Interactions within Biological Systems 14
 Evolution 16
- EVOLUTION CONNECTION Turtles in the Tree of Life 18

2 Essential Chemistry for Biology 22

- CHAPTER THREAD Helpful Radiation 23

- BIOLOGY AND SOCIETY Nuclear Medicine 23
- Some Basic Chemistry 24
 Matter: Elements and Compounds 24
 Atoms 25
 Chemical Bonding and Molecules 27
 Chemical Reactions 28
- Water and Life 29
 Water 29
 Acids, Bases, and pH 31
- EVOLUTION CONNECTION Radioactivity as an Evolutionary Clock 33

3 The Molecules of Life 36

- CHAPTER THREAD Lactose Intolerance 37

- BIOLOGY AND SOCIETY Got Lactose? 37
- Organic Compounds 38
 Carbon Chemistry 38
 Giant Molecules from Smaller Building Blocks 39
- Large Biological Molecules 40
 Carbohydrates 40
 Lipids 43
 Proteins 46
 Nucleic Acids 49
- THE PROCESS OF SCIENCE Does Lactose Intolerance Have a Genetic Basis? 51
- EVOLUTION CONNECTION The Evolution of Lactose Intolerance in Humans 51
Contents

10 The Structure and Function of DNA

- *Deadly Viruses*
- *Biology and Society* The Global Threat of Zika Virus
- **DNA: Structure and Replication**
 - DNA and RNA Structure
 - Watson and Crick’s Discovery of the Double Helix
 - DNA Replication
- **From DNA to RNA to Protein**
 - How an Organism’s Genotype Determines Its Phenotype
 - From Nucleotides to Amino Acids: An Overview
 - The Genetic Code
 - Transcription: From DNA to RNA
 - The Processing of Eukaryotic RNA
 - Translation: The Players
 - Translation: The Process
 - Review: DNA → RNA → Protein
 - Mutations
- **Viruses and Other Noncellular Infectious Agents**
 - Bacteriophages
 - Plant Viruses
 - Animal Viruses
- **The Process of Science** Can DNA and RNA Vaccines Protect Against Viruses?
- HIV, the AIDS Virus
- Prions
- **Evolution Connection** Emerging Viruses

11 How Genes Are Controlled

- *Cancer*
- **Biology and Society** Breast Cancer and Chemotherapy
- **How and Why Genes Are Regulated**
 - Gene Regulation in Bacteria
 - Gene Regulation in Eukaryotic Cells
 - Cell Signaling
 - Homeotic Genes
 - Visualizing Gene Expression
- **Cloning Plants and Animals**
 - The Genetic Potential of Cells
 - Reproductive Cloning of Animals
 - Therapeutic Cloning and Stem Cells
- **The Genetic Basis of Cancer**
 - Genes That Cause Cancer
- **The Process of Science** Can Avatars Improve Cancer Treatment?
- Cancer Risk and Prevention
- **Evolution Connection** The Evolution of Cancer in the Body
How Biological Diversity Evolves

268

CHAPTER THREAD
Evolution in the Human-Dominated World

269

BIOLOGY AND SOCIETY
Humanity’s Footprint

269

The Origin of Species
What Is a Species?
270
Reproductive Barriers between Species
271
Mechanisms of Speciation
274

THE PROCESS OF SCIENCE
Do Human Activities Facilitate Speciation?
276

Earth History and Macroevolution
The Fossil Record
279
Plate Tectonics and Biogeography
281
Mass Extinctions and Explosive Diversifications of Life
283
Mechanisms of Macroevolution
Large Effects from Small Genetic Changes
283
The Evolution of Biological Novelty
284

Classifying the Diversity of Life
Classification and Phylogeny
286
Classification: A Work in Progress
288

EVOLUTION CONNECTION
Evolution in the Anthropocene
289

The Evolution of Microbial Life

292

CHAPTER THREAD
Human Microbiota

293

BIOLOGY AND SOCIETY
Our Invisible Inhabitants

293

Major Episodes in the History of Life

294

The Origin of Life
A Four-Stage Hypothesis for the Origin of Life
296
From Chemical Evolution to Darwinian Evolution
298

Prokaryotes
They’re Everywhere!
299
The Structure and Function of Prokaryotes
300
The Ecological Impact of Prokaryotes
303
The Two Main Branches of Prokaryotic Evolution: Bacteria and Archaea
304

THE PROCESS OF SCIENCE
Are Intestinal Microbiota to Blame for Obesity?
306

Protists
Protozoans
307
Slime Molds
309
Unicellular and Colonial Algae
310
Seaweeds
310

EVOLUTION CONNECTION
The Sweet Life of Streptococcus mutans
311
Unit 4 Ecology

Chapter 18

An Introduction to Ecology and the Biosphere

- **Biology and Society**: Penguins, Polar Bears, and People in Peril
- **An Overview of Ecology**
 - Ecology and Environmentalism
 - A Hierarchy of Interactions
- **Living in Earth’s Diverse Environments**
 - Abiotic Factors of the Biosphere
 - The Evolutionary Adaptations of Organisms
 - Adjusting to Environmental Variability
- **Biomes**
 - Freshwater Biomes
 - Marine Biomes
 - How Climate Affects Terrestrial Biome Distribution
 - Terrestrial Biomes
 - The Water Cycle
 - Human Impact on Biomes
- **Climate Change**
 - The Greenhouse Effect and Global Warming
 - The Accumulation of Greenhouse Gases
 - Effects of Climate Change on Ecosystems
- **The Process of Science**: How Does Climate Change Affect Species Distribution?
- **Looking to Our Future**
- **Evolution Connection**: Climate Change as an Agent of Natural Selection

Chapter 19

Population Ecology

- **Biography and Society**: Invasion of the Lionfish
- **An Overview of Population Ecology**
 - Population Density
 - Population Age Structure
 - Life Tables and Survivorship Curves
 - Life History Traits as Adaptations
- **Population Growth Models**
 - The Exponential Population Growth Model: The Ideal of an Unlimited Environment
 - The Logistic Population Growth Model: The Reality of a Limited Environment
 - Regulation of Population Growth
- **Applications of Population Ecology**
 - Conservation of Endangered Species
 - Sustainable Resource Management
 - Invasive Species
 - Biological Control of Pests
- **The Process of Science**: Can Fences Stop Cane Toads?
 - Integrated Pest Management
- **Human Population Growth**
 - The History of Human Population Growth
 - Age Structures
 - Our Ecological Footprint
- **Evolution Connection**: Humans as an Invasive Species
Communities and Ecosystems 424

CHAPTER THREAD
Importance of Biodiversity 425

BIOLOGY AND SOCIETY
Why Biodiversity Matters 425

Biodiversity 426
Genetic Diversity 426
Species Diversity 426
Ecosystem Diversity 427
Causes of Declining Biodiversity 427

Community Ecology 428
Interspecific Interactions 428
Trophic Structure 432
Species Diversity in Communities 435
Disturbances and Succession in Communities 436
Ecological Succession 436

Ecosystem Ecology 437
Energy Flow in Ecosystems 438
Chemical Cycling in Ecosystems 440

Conservation and Restoration Biology 444
Biodiversity “Hot Spots” 444
Conservation at the Ecosystem Level 445

THE PROCESS OF SCIENCE
Does Biodiversity Protect
Human Health? 446

Restoring Ecosystems 447
The Goal of Sustainable Development 448

EVOLUTION CONNECTION
Saving the Hot Spots 449

Appendices
A Metric Conversion Table
B The Periodic Table
C Credits
D Selected Answers

Glossary

Index