Thinking About Biology is designed for a one-semester, general biology course for nonmajors. The topics and exercises are general enough to be compatible with any introductory level human and general biology text. The activities demonstrate that basic biological concepts can be applied to a wide variety of plants, animals, and microorganisms.

The basis of scientific work is asking questions and answering them by making observations and conducting experiments. Therefore, we strongly believe that the most important goal of an introductory course in the life sciences is to achieve some understanding of the processes of investigation that are basic to science and how scientists work to solve problems.

However, in today’s society, we get information from a variety of sources. This can lead to some confusion about how to determine whether information you hear or read is trustworthy as opposed to “fake news.” Critical thinking is a key skill for making that determination. But as with any skill, expertise comes with practice.

Thinking About Biology has many activities that will help you develop your critical thinking skills. You’ll find them marked with this icon in both the Table of Contents and within the exercises themselves.

This book is unique not because of the specific topics covered, but because of the approach to these topics. The laboratory exercises are planned to help you

- gain practical experience that will help you understand lecture concepts
- acquire the basic knowledge needed to make informed decisions about biological questions that arise in everyday life
- develop the problem-solving skills that will lead to success in college and in a competitive job market
- learn to work effectively and productively as a member of a team
Preface

We hope that working through these laboratory exercises will be an exciting experience for both students and instructors, and one that will leave you better prepared to meet the demands of our increasingly scientific society.

Wishing you an enjoyable and successful semester.

Mimi Bres, Ph.D.
Professor of Biological Sciences
Prince George’s Community College
Largo, Maryland

Arnold Weisshaar, M.S. Physiology
Professor Emeritus of Biological Sciences
Prince George’s Community College
Largo, Maryland

NEW FOR THE SIXTH EDITION

New and revised activities are based on feedback from students and faculty. Among the key features, you’ll find

- a new exercise: biodiversity and conservation
- more than 50 activities that emphasize the development of critical thinking and problem solving skills (identified by icons in the Table of Contents and within the exercises themselves)
- emphasis in the Self Tests of each chapter on questions that require higher order thinking skills
- new activities on stem cells and ecology
- expanded and updated evolution activities
- added photos and diagrams
- exercises are broken into activities that are related to a particular topic—you can break up each exercise into blocks that fit your specific lab period

SPECIAL FEATURES FOR STUDENTS

Informal Style

- The text is written simply with easy-to-understand language. Key terms and important definitions are highlighted with bold print for easy recognition. Large spaces are provided throughout the manual for you to record and fully explain your answers.
Active Learning Experience

- Every exercise gives you an opportunity to be an investigator using the scientific method. You’ll form hypotheses, set up experiments, collect data, record your data in graphs and charts, and draw conclusions from your experimental results.

Team-Building Opportunities

- Most laboratory activities emphasize a team approach. Group work is encouraged and often required. In the real-world job market, you’ll be expected to interact with others to solve problems and complete projects. This approach provides opportunities for you to work together, share ideas, and function effectively in groups to accomplish tasks.

Real-Life Connections

- Lab activities are designed to stimulate interest in topics that can help you make decisions regarding your own health and nutrition, understand current topics in the news, and become informed about how your personal actions affect the environment.

Tools for Success

The following components of each exercise will help you succeed.

- **Instructional Objectives.** The objectives are listed first in each exercise so that you’ll be able to focus your attention on the main concepts of each activity.
- **Content Focus.** Each exercise includes a brief discussion of the background information that you’ll need to understand the subject of the exercise and to prepare you to complete the activities that follow.
- **Notes, Hints, and Cautions.** Note boxes provide helpful hints for solving problems and accomplishing laboratory tasks. Pay special attention to caution boxes that provide important safety information.
- **Comprehension Checks.** Stop and complete the Comprehension Check questions to get immediate feedback on your understanding of the basic principles covered in each activity. These questions also provide a chance for you to apply what you’ve learned to situations outside the classroom.
- **Check-off Boxes.** These boxes allow your instructor to check your progress and make sure you’ve understood the important concepts in each activity. This will help you focus your study time and be more successful in the course.
- **Self Tests.** Answer these questions after completing the laboratory exercise. The Self Test questions allow you to assess your comprehension and apply your knowledge. You can find the answers to the Self Test questions in Appendix 2 at the back of the book.
ACKNOWLEDGMENTS

A project of this size and scope can’t be completed without support and cooperation from many people. We would like to express our deep appreciation for their contributions.

Thanks to
Cassandra Moore-Crawford, Professor, Department of Biological Sciences, Prince George’s Community College, for enabling us to think “outside the box” when developing these lab activities.

Michael Garvey, Director, Office of Forensic Science, Philadelphia Police Department, for providing your time and technical expertise in the area of forensic molecular genetics.

Kenneth Thomulka, Assistant Professor of Biology, University of the Sciences in Philadelphia, for allowing us to adapt an imaginative and unique application of biotechnology to the education arena.

John Kasmer, Ph.D., Associate Professor of Biology, Northeastern Illinois University, for the development of the methods and procedures for the brine shrimp “mark and recapture” activity.

The Biology 1010 faculty at Prince George’s Community College. Your many helpful suggestions have contributed substantially to the effectiveness of these laboratory exercises.

The Biology 1010 students for classroom-testing our laboratory exercises and offering suggestions for improvements.

Cynthia Rae Abbott, Content Producer, Science, and Cady Owens, Sponsoring Editor, Biology and Environmental Science, Pearson Education, for their technical help and expertise.

REVIEWERS

We wish to express special thanks to the dedicated reviewers who shared their time and expertise to help make this edition the best it could be.