To Patty, for her sacrifices, encouragement, and support for more than 35 years of being a textbook author widow. To my students and colleagues, for being receptive and critical and for challenging me to be a better teacher.

—J.A.H.

To Gayathri, for her sacrifices and patience these past 25 years. To my parents, for letting me make the journey abroad, and to my cat, Raju, who was a part of our family for more than 20 years.

—V.R.

To Anne-Louise, for her loving support, encouragement, and patience. To Leila and Saara, whose laughter and joy of life continue to teach me about what is truly important. To my teachers, colleagues, and students, from whom I continue to learn every day.

—H.T.
BRIEF CONTENTS

Part I  The Context of Database Management  1
Chapter 1  The Database Environment and Development Process  3

Part II  Database Analysis and Logical Design  53
Chapter 2  Modeling Data in the Organization  55
Chapter 3  The Enhanced E-R Model  115
Chapter 4  Logical Database Design and the Relational Model  153

Part III  Database Implementation and Use  205
Chapter 5  Introduction to SQL  207
Chapter 6  Advanced SQL  251
Chapter 7  Databases in Applications  297
Chapter 8  Physical Database Design and Database Infrastructure  333

Part IV  Advanced Database Topics  385
Chapter 9  Data Warehousing and Data Integration  387
Chapter 10  Big Data Technologies  444
Chapter 11  Analytics and Its Implications  474
Chapter 12  Data and Database Administration with Focus on Data Quality  503
Glossary of Acronyms  529
Glossary of Terms  531
Index  539

Available Online at www.pearsonhighered.com/hoffer
Chapter 13  Distributed Databases  13-1
Chapter 14  Object-Oriented Data Modeling  14-1

Appendices
Appendix A  Data Modeling Tools and Notation  A-1
Appendix B  Advanced Normal Forms  B-1
Appendix C  Data Structures  C-1
# CONTENTS

Preface xxv

## Part I The Context of Database Management 1

### Chapter 1 The Database Environment and Development Process 3

#### Learning Objectives 3
Data Matter! 4
Introduction 5

#### Basic Concepts and Definitions 6
Data 6
Data versus Information 7
Metadata 8

#### Traditional File Processing Systems 9
File Processing Systems at Pine Valley Furniture Company 9
Disadvantages of File Processing Systems 10

- Program-Data Dependence 10
- Duplication of Data 10
- Limited Data Sharing 10
- Lengthy Development Times 10
- Excessive Program Maintenance 11

#### The Database Approach 11

- Data Models 11
  - Entities 11
  - Relationships 11
- Relational Databases 12
- Database Management Systems 13
- Advantages of the Database Approach 13
  - Program-Data Independence 13
  - Planned Data Redundancy 14
  - Improved Data Consistency 14
  - Improved Data Sharing 14
  - Increased Productivity of Application Development 14
  - Enforcement of Standards 15
  - Improved Data Quality 15
  - Improved Data Accessibility and Responsiveness 15
  - Reduced Program Maintenance 16
  - Improved Decision Support 16
  - Cautions about Database Benefits 16
  - Costs and Risks of the Database Approach 16
  - New, Specialized Personnel 16
  - Installation and Management Cost and Complexity 17
  - Conversion Costs 17
  - Need for Explicit Backup and Recovery 17
  - Organizational Conflict 17

- Integrated Data Management Framework 17
- Components of the Database Environment 18
Chapter 3  The Enhanced E-R Model  115
Learning Objectives  115
Introduction  115
Representing Supertypes and Subtypes  116
   Basic Concepts and Notation  117
      AN EXAMPLE OF A SUPERTYPE/SUBTYPE RELATIONSHIP  118
      ATTRIBUTE INHERITANCE  119
      WHEN TO USE SUPERTYPE/SUBTYPE RELATIONSHIPS  119
Representing Specialization and Generalization  120
   GENERALIZATION  120
   SPECIALIZATION  121
      COMBINING SPECIALIZATION AND GENERALIZATION  122
Specifying Constraints in Supertype/Subtype Relationships  123
   Specifying Completeness Constraints  123
      TOTAL SPECIALIZATION RULE  123
      PARTIAL SPECIALIZATION RULE  123
   Specifying Disjointness Constraints  124
      DISJOINT RULE  124
      OVERLAP RULE  125
Defining Subtype Discriminators  125
   DISJOINT SUBTYPES  125
   OVERLAPPING SUBTYPES  126
Defining Supertype/Subtype Hierarchies  127
   AN EXAMPLE OF A SUPERTYPE/SUBTYPE HIERARCHY  128
   SUMMARY OF SUPERTYPE/SUBTYPE HIERARCHIES  128
EER Modeling Example: Pine Valley Furniture Company  128
Entity Clustering  132
Packaged Data Models  135
   A Revised Data Modeling Process with Packaged Data Models  137
Packaged Data Model Examples  139
   Summary  144  •  Key Terms  145  •  Review Questions  145  •
   Problems and Exercises  146  •  Field Exercises  149  •
   References  149  •  Further Reading  150  •  Web Resources  150
   ▶ CASE: Forondo Artist Management Excellence Inc.  151

Chapter 4  Logical Database Design and the Relational Model  153
Learning Objectives  153
Introduction  153
The Relational Data Model  154
   Basic Definitions  154
      RELATIONAL DATA STRUCTURE  155
      RELATIONAL KEYS  155
      PROPERTIES OF RELATIONS  156
      REMOVING MULTIVALENT ATTRIBUTES FROM TABLES  156
Sample Database  157
Integrity Constraints  158
   Domain Constraints  158
   Entity Integrity  158
   Referential Integrity  160
Creating Relational Tables 161
Well-Structured Relations 162
Transforming EER Diagrams into Relations 163
Step 1: Map Regular Entities 164
  COMPOSITE ATTRIBUTES 164
  MULTIVALUED ATTRIBUTES 165
Step 2: Map Weak Entities 165
  WHEN TO CREATE A SURROGATE KEY 166
Step 3: Map Binary Relationships 167
  MAP BINARY ONE-TO-MANY RELATIONSHIPS 167
  MAP BINARY MANY-TO-MANY RELATIONSHIPS 168
  MAP BINARY ONE-TO-ONE RELATIONSHIPS 168
Step 4: Map Associative Entities 169
  IDENTIFIER NOT ASSIGNED 169
  IDENTIFIER ASSIGNED 170
Step 5: Map Unary Relationships 171
  UNARY ONE-TO-MANY RELATIONSHIPS 171
  UNARY MANY-TO-MANY RELATIONSHIPS 172
Step 6: Map Ternary (and n-ary) Relationships 173
Step 7: Map Supertype/Subtype Relationships 174
Summary of EER-to-Relational Transformations 176
Introduction to Normalization 176
Steps in Normalization 177
Functional Dependencies and Keys 177
  DETERMINANTS 179
  CANDIDATE KEYS 179
Normalization Example: Pine Valley Furniture Company 180
Step 0: Represent the View in Tabular Form 180
Step 1: Convert to First Normal Form 181
  REMOVE REPEATING GROUPS 181
  SELECT THE PRIMARY KEY 182
  ANOMALIES IN 1NF 182
Step 2: Convert to Second Normal Form 183
Step 3: Convert to Third Normal Form 184
  REMOVING TRANSITIVE DEPENDENCIES 184
Determinants and Normalization 185
Step 4: Further Normalization 185
Merging Relations 186
An Example 186
View Integration Problems 186
  SYNONYMS 187
  HOMONYMS 187
  TRANSITIVE DEPENDENCIES 187
  SUPERTYPE/SUBTYPE RELATIONSHIPS 188
A Final Step for Defining Relational Keys 188
  SUMMARY 191 • KEY TERMS 191 • REVIEW QUESTIONS 191 • PROBLEMS AND EXERCISES 192 • FIELD EXERCISES 201 • REFERENCES 202 • FURTHER READING 202 • WEB RESOURCES 202
  • CASE: Forondo Artist Management Excellence Inc. 203
**Part III  Database Implementation and Use  **  205

An Overview of Part III  205

**Chapter 5  Introduction to SQL  **  207

Learning Objectives  207

Introduction  207
Origins of the SQL Standard  209
The SQL Environment  211
SQL Data Types  213
Defining A Database in SQL  216
Generating SQL Database Definitions  216
Creating Tables  217
Creating Data Integrity Controls  220
Changing Table Definitions  221
Removing Tables  221
Inserting, Updating, and Deleting Data  222
Batch Input  223
Deleting Database Contents  223
Updating Database Contents  224
Internal Schema Definition in RDBMSs  225
Creating Indexes  225
Processing Single Tables  226
Clauses of the SELECT Statement  226
Using Expressions  228
Using Functions  229
Using Wildcards  232
Using Comparison Operators  232
Using Null Values  233
Using Boolean Operators  233
Using Ranges for Qualification  236
Using Distinct Values  236
Using IN and NOT IN with Lists  238
Sorting Results: The ORDER BY Clause  239
Categorizing Results: The GROUP BY Clause  240
Qualifying Results by Categories: The HAVING Clause  241

**Summary  **  243  •  **Key Terms  **  243  •  **Review Questions  **  243  •  **Problems and Exercises  **  244  •  **Field Exercises  **  248  •  **References  **  248  •  **Further Reading  **  249  •  **Web Resources  **  249

► CASE: Forondo Artist Management Excellence Inc.  250

**Chapter 6  Advanced SQL  **  251

Learning Objectives  251
Introduction  251
Processing Multiple Tables  252
Equi-Join  253
Natural Join  254
Outer Join  255
Sample Join Involving Four Tables  257
### Contents

- Self-Join 258
- Subqueries 260
- Correlated Subqueries 265
- Using Derived Tables 267
- Combinings Queries 267
- Conditional Expressions 269
- More Complicated SQL Queries 270
- Tips for Developing Queries 272
  - Guidelines for Better Query Design 274
- Using and Defining Views 275
  - Materialized Views 279
- Triggers and Routines 279
  - Triggers 280
  - Routines and Other Programming Extensions 282
  - Example Routine in Oracle’s PL/SQL 284
- Data Dictionary Facilities 285
- Recent Enhancements and Extensions to SQL 287
  - Analytical and OLAP Functions 287
  - New Temporal Features in SQL 288
- Other Enhancements 288

**Summary** 289 • Key Terms 290 • Review Questions 290 • Problems and Exercises 291 • Field Exercises 294 • References 294 • Further Reading 295 • Web Resources 295

► CASE: Forondo Artist Management Excellence Inc. 296

### Chapter 7 Databases in Applications 297

- Learning Objectives 297
- Location, Location, Location! 297
- Introduction 298
- Client/Server Architectures 298
- Databases in Three-Tier Applications 302
  - A Java Web Application 303
  - A Python Web Application 307
- Key Considerations in Three-Tier Applications 313
  - Stored Procedures 313
  - Transactions 313
  - Database Connections 315
- Key Benefits of Three-Tier Applications 315
- Transaction Integrity 316
- Controlling Concurrent Access 318
  - The Problem of Lost Updates 318
  - Serializability 319
  - Locking Mechanisms 319
    - Locking Level 319
    - Types of Locks 320
    - Deadlock 321
    - Managing Deadlock 321
- Versioning 322
Managing Data Security in an Application Context 324
Threats to Data Security 324
Establishing Client/Server Security 325
  SERVER SECURITY 326
  NETWORK SECURITY 326
Application Security Issues in Three-Tier Client/Server Environments 326
  DATA PRIVACY 327
  Summary 329 • Key Terms 329 • Review Questions 329 • Problems and Exercises 330 • Field Exercises 331 • References 331 • Further Reading 331 • Web Resources 331
  CASE: Forondo Artist Management Excellence Inc. 332

Chapter 8 Physical Database Design and Database Infrastructure 333
Learning Objectives 333
Introduction 334
The Physical Database Design Process 335
  Who Is Responsible for Physical Database Design? 335
  Physical Database Design as a Basis for Regulatory Compliance 336
SOX and Databases 337
  IT CHANGE MANAGEMENT 337
  LOGICAL ACCESS TO DATA 337
  IT OPERATIONS 338
Data Volume and Usage Analysis 338
Designing Fields 340
  Choosing Data Types 340
    CODING TECHNIQUES 341
    CONTROLLING DATA INTEGRITY 342
    HANDLING MISSING DATA 343
Denormalizing and Partitioning Data 343
  Denormalization 343
    OPPORTUNITIES FOR AND TYPES OF DENORMALIZATION 344
    DENORMALIZE WITH CAUTION 345
  Partitioning 347
Designing Physical Database Files 348
  File Organizations 350
    HEAP FILE ORGANIZATION 350
    SEQUENTIAL FILE ORGANIZATIONS 350
    INDEXED FILE ORGANIZATIONS 352
    HASHED FILE ORGANIZATIONS 353
  Clustering Files 353
Designing Controls for Files 354
Using and Selecting Indexes 354
  Creating a Unique Key Index 354
  Creating a Secondary (Nonunique) Key Index 355
  When to Use Indexes 355
Designing a Database for Optimal Query Performance 356
  Parallel Query Processing 357
  Overriding Automatic Query Optimization 358
Data Dictionaries and Repositories 358
Part IV Advanced Database Topics 385

Chapter 9 Data Warehousing and Data Integration 387

Learning Objectives 387

Introduction 387

Basic Concepts of Data Warehousing 390

A Brief History of Data Warehousing 390

The Need for Data Warehousing 390

Data Warehouse Architectures 393
Independent Data Mart Data Warehousing Environment 394
Dependent Data Mart and Operational Data Store Architecture: A Three-Level Approach 395
Logical Data Mart and Real-Time Data Warehouse Architecture 397
Three-Layer Data Architecture 400
  ROLE OF THE ENTERPRISE DATA MODEL 400
  ROLE OF METADATA 400
Some Characteristics of Data Warehouse Data 401
  Status versus Event Data 401
  Transient versus Periodic Data 402
  An Example of Transient and Periodic Data 402
    TRANSIENT DATA 404
    PERIODIC DATA 404
    OTHER DATA WAREHOUSE CHANGES 404
The Derived Data Layer 405
  Characteristics of Derived Data 405
The Star Schema 406
  FACT TABLES AND DIMENSION TABLES 406
  EXAMPLE STAR SCHEMA 407
  SURROGATE KEY 408
  GRAIN OF THE FACT TABLE 409
  DURATION OF THE DATABASE 410
  SIZE OF THE FACT TABLE 410
  MODELING DATE AND TIME 411
Variations of the Star Schema 412
  MULTIPLE FACT TABLES 412
  FACTLESS FACT TABLES 413
Normalizing Dimension Tables 414
  MULTIVALUED DIMENSIONS 414
  HIERARCHIES 415
Slowly Changing Dimensions 417
Determining Dimensions and Facts 420
Data Integration: An Overview 422
  General Approaches to Data Integration 422
    DATA FEDERATION 423
    DATA PROPAGATION 423
Data Integration for Data Warehousing: The Reconciled Data Layer 424
  Characteristics of Data after ETL 424
The ETL Process 425
  MAPPING AND METADATA MANAGEMENT 425
  EXTRACT 426
  CLEANSE 427
  LOAD AND INDEX 429
Data Transformation 430
  Data Transformation Functions 431
    RECORD-LEVEL FUNCTIONS 431
    FIELD-LEVEL FUNCTIONS 432
Data Warehouse Administration 434
The Future of Data Warehousing: Integration with Other Forms of Data Management and Analytics 434

Speed of Processing 435

Moving the Data Warehouse into the Cloud 435

Dealing with Unstructured Data 436

Summary 436

Key Terms 437

Review Questions 437

Problems and Exercises 438

Field Exercises 442

References 442

Further Reading 443

Web Resources 443

Chapter 10 Big Data Technologies 444

Learning Objectives 444

Introduction 444

Moving Beyond Transactional and Data Warehousing Databases 446

Big Data 446

NoSQL 448

Classification of NoSQL DBMSs 450

KEY-VALUE STORES 450

DOCUMENT STORES 451

WIDE-COLUMN STORES 451

GRAPH-ORIENTED DATABASES 451

NoSQL Examples 451

REDIS 451

MONGODB 452

APACHE CASSANDRA 452

NEO4J 452

A NoSQL Example: MONGODB 452

DOCUMENTS 452

COLLECTIONS 454

RELATIONSHIPS 454

QUERYING MONGODB 455

Impact of NoSQL on Database Professionals 456

Hadoop 458

Components of Hadoop 459

THE HADOOP DISTRIBUTED FILE SYSTEM (HDFS) 459

MAPREDUCE 459

PIG 461

HIVE 461

HBASE 462

A Practical Introduction to PIG 462

LOADING DATA 462

TRANSFORMING DATA 463

A Practical Introduction to Hive 465

CREATING A TABLE 465

LOADING DATA INTO THE TABLE 465

PROCESSING THE DATA 466

Integrated Analytics and Data Science Platforms 466

HP HAVEN 466

TERADATA ASTER 467

IBM BIG DATA PLATFORM 469
Chapter 11 Analytics and Its Implications 474
Learning Objectives 474
Introduction 474
Analytics 475
Types of Analytics 475
Use of Descriptive Analytics 477
SQL OLAP QUERYING 478
OLAP TOOLS 480
DATA VISUALIZATION 482
BUSINESS PERFORMANCE MANAGEMENT AND DASHBOARDS 483
Use of Predictive Analytics 484
DATA MINING TOOLS 485
EXAMPLES OF PREDICTIVE ANALYTICS 486
Use of Prescriptive Analytics 487
Key User Tools for Analytics 488
ANALYTICAL AND OLAP FUNCTIONS 489
R 490
PYTHON 491
APACHE SPARK 492
Data Management Infrastructure for Analytics 493
Impact of Big Data and Analytics 495
Applications of Big Data and Analytics 495
BUSINESS 496
E-GOVERNMENT AND POLITICS 496
SCIENCE AND TECHNOLOGY 496
SMART HEALTH AND WELL-BEING 497
SECURITY AND PUBLIC SAFETY 497
Implications of Big Data Analytics and Decision Making 497
PERSONAL PRIVACY VERSUS COLLECTIVE BENEFITS 498
OWNERSHIP AND ACCESS 498
QUALITY AND REUSE OF DATA AND ALGORITHMS 498
TRANSPARENCY AND VALIDATION 498
CHANGING NATURE OF WORK 499
DEMANDS FOR WORKFORCE CAPABILITIES AND EDUCATION 499
Summary 499 • Key Terms 500 • Review Questions 500 • Problems and Exercises 500 • References 501 • Further Reading 502

Chapter 12 Data and Database Administration with Focus on Data Quality 503
Learning Objectives 503
Introduction 503
Overview of Data and Database Administration 505
Data Administration 505
Database Administration 506
ONLINE CHAPTERS

Chapter 13  Distributed Databases  13-1
Learning Objectives  13-1
Introduction  13-1
Objectives and Trade-Offs  13-4
Options for Distributing a Database  13-6
Data Replication  13-6
  Snapshot Replication  13-7
  Near-Real-Time Replication  13-8
  Pull Replication  13-8
  Database Integrity with Replication  13-8
  When to Use Replication  13-9
Horizontal Partitioning  13-9
Vertical Partitioning  13-10
Combinations of Operations  13-11
Selecting the Right Data Distribution Strategy  13-12
Distributed DBMS  13-13
  Location Transparency  13-15
  Replication Transparency  13-16
  Failure Transparency  13-17
  Commit Protocol  13-17
  Concurrency Transparency  13-18
    Time Stamping  13-19
Query Optimization  13-19
Evolution of Distributed DBMSs  13-22
  Remote Unit of Work  13-22
  Distributed Unit of Work  13-22
  Distributed Request  13-23
Summary  13-23 • Key Terms  13-24 • Review Questions  13-24 •
  Problems and Exercises  13-25 • Field Exercises  13-27 •
  References  13-27 • Further Reading  13-27 •
  Web Resources  13-27

Chapter 14  Object-Oriented Data Modeling  14-1
Learning Objectives  14-1
Introduction  14-1
Unified Modeling Language  14-3
Object-Oriented Data Modeling  14-4
  Representing Objects and Classes  14-4
  Types of Operations  14-7
  Representing Associations  14-7
  Representing Association Classes  14-11
  Representing Derived Attributes, Derived Associations,
    and Derived Roles  14-12
  Representing Generalization  14-13
  Interpreting Inheritance and Overriding  14-18
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representing Multiple Inheritance</td>
<td>14-19</td>
</tr>
<tr>
<td>Representing Aggregation</td>
<td>14-19</td>
</tr>
<tr>
<td>Business Rules</td>
<td>14-22</td>
</tr>
<tr>
<td>Object Modeling Example: Pine Valley Furniture Company</td>
<td>14-23</td>
</tr>
<tr>
<td>Summary</td>
<td>14-25</td>
</tr>
<tr>
<td>Key Terms</td>
<td>14-26</td>
</tr>
<tr>
<td>Review Questions</td>
<td>14-26</td>
</tr>
<tr>
<td>Problems and Exercises</td>
<td>14-30</td>
</tr>
<tr>
<td>Field Exercises</td>
<td>14-37</td>
</tr>
<tr>
<td>References</td>
<td>14-37</td>
</tr>
<tr>
<td>Further Reading</td>
<td>14-38</td>
</tr>
<tr>
<td>Web Resources</td>
<td>14-38</td>
</tr>
</tbody>
</table>

**Appendix A** Data Modeling Tools and Notation  A-1

Comparing E-R Modeling Conventions  A-1

- Visio Professional 2016 Notation  A-1
  - Entitie A-5
  - Relationships A-5
- CA ERwin Data Modeler 9.7 Notation  A-5
  - Entitie A-5
  - Relationships A-5
- SAP Sybase PowerDesigner 16.6 Notation  A-7
  - Entitie A-8
  - Relationships A-8
- Oracle Designer Notation  A-8
  - Entitie A-8
  - Relationships A-8

Comparison of Tool Interfaces and E-R Diagrams  A-8

**Appendix B** Advanced Normal Forms  B-1

- Boyce-Codd Normal Form  B-1
  - Anomalies in Student Advisor  B-1
    - Definition of Boyce-Codd Normal Form (BCNF)  B-2
    - Converting a Relation to BCNF  B-2
- Fourth Normal Form  B-3
  - Multivalued Dependencies  B-5
- Higher Normal Forms  B-5
  - Key Terms  B-6
  - References  B-6
  - Web Resources  B-6

**Appendix C** Data Structures  C-1

- Pointers  C-1
- Data Structure Building Blocks  C-2
- Linear Data Structures  C-4
  - Stacks  C-5
  - Queues  C-5
  - Sorted Lists  C-6
- Multilists  C-8
- Hazards of Chain Structures  C-8
- Trees  C-9
  - Balanced Trees  C-9

References  C-12
PREFACE

This text is designed for introductory courses in database management. Such a course is usually required as part of an information systems curriculum in business schools, computer technology programs, and applied computer science departments. The Association for Information Systems (AIS), the Association for Computing Machinery (ACM), and the International Federation of Information Processing Societies (IFIPS) curriculum guidelines (e.g., IS 2010 and MSIS 2016) all outline this type of database management course or the competencies a student completing the course is expected to have. Previous editions of this text have been used successfully for more than 35 years at both the undergraduate and graduate levels as well as in management and professional development programs.

WHAT’S NEW IN THIS EDITION?

This 13th edition of *Modern Database Management* updates and expands materials in areas undergoing rapid change as a result of improved managerial practices, database design tools and methodologies, and database technology. Later, we detail changes to each chapter. The themes of this 13th edition reflect the major trends in the information systems field and the skills required of modern information systems graduates. The most important changes are as follows:

- The book has been restructured in several important ways. Chapter 7 on databases in applications now also includes segments on transaction integrity, designing multi-user solutions, and application level security, bringing these important perspectives together with their context. The revised chapter on physical database design and database infrastructure (new Chapter 8) includes also coverage of database security, backup and recovery, cloud-based database solutions, and other essential database infrastructure topics. This new comprehensive structure on physical design and infrastructure is now placed after the SQL chapters. The new version of Chapter 9 integrates material on data warehousing and data integrity in a conceptually natural pairing. Recognizing the way in which analytics capabilities rely on all types of data management solutions, Chapter 11, on analytics and implications, is now separate from Chapter 10, on big data. Finally, Chapter 12 brings together data and database administration with data quality, emphasizing the essential connections between the three.

- The part structure of the book has been redesigned to be fully aligned with the new chapter structure.

- We have introduced a new overarching framework (Figure 1-5), which gives our readers a clearer overview of structure of the book and its core topic areas. The framework communicates clearly the increasing importance of informational systems (divided into Analytics–Data Warehousing and Analytics–Big Data) in addition to this book’s traditional strength of transactional systems.

- Given the continued and still increasing interest in big data and analytics, we have continued to expand content in this area. The book has now separate chapters on big data technologies (Chapter 10) and analytics (Chapter 11). In addition to general coverage of NoSQL and Hadoop technologies, Chapter 10 provides also detailed examples of MongoDB, Pig, and Hive. Chapter 11 includes extended coverage of R, Python, and Apache Spark—all essential technologies for analytics professionals that allow a link between analytics and data management architectures.

- We emphasize the increasing importance of cloud-based database solutions, mobile technologies, and agile development throughout the book.

- Chapter 1 now better recognizes the broad range of enterprise level applications data management solutions enable and support, including enterprise systems, data warehouses, and data lakes.
• Chapter 7 on databases in applications now includes an extensive example demonstrating the use of Python in the context of database-driven applications.
• The instructor’s manual will have more material to support the case Forondo Artist Management Excellence that was introduced in the 12th edition.

In addition to the new topics covered, specific improvements to the textbook have been made in the following areas:

• Every chapter went through significant edits to streamline coverage to ensure relevance with current technologies and eliminate redundancies.
• The entire book has been edited so that its language clearly reflects its focus on the readers as learners instead of authors as teachers
• End-of-chapter material (review questions, problems and exercises, and/or field exercises) in every chapter has been revised with new and modified questions and exercises.
• We continued to update the figures in several chapters to reflect the changing landscape of technologies that are being used in modern organizations.
• The Web Resources section in each chapter was updated to ensure that students have information on the latest database trends and expanded background details on important topics covered in the text.
• The book continues to be available through VitalSource, an innovative e-book delivery system, and as an electronic book in the Kindle format.

Also, we continue to provide on the student Companion Web site several custom-developed short videos that address key concepts and skills from different sections of the book. These videos, produced by the textbook authors, help students learn difficult material by using both the printed text and a mini-lecture or tutorial. Videos have been developed to support Chapters 1 (introduction to database), 2 and 3 (conceptual data modeling), 4 (normalization), and 6 and 7 (SQL). Look for special icons on the opening page of these chapters to call attention to these videos, and go to www.pearsonhighered.com/hoffer to find these videos.

FOR THOSE NEW TO MODERN DATABASE MANAGEMENT

Modern Database Management has been a leading text since its first edition in 1983. In spite of this market leadership position, some instructors have used other good database management texts. Why might you want to switch at this time? There are several good reasons:

• One of our goals, in every edition, has been to lead other books in coverage of the latest principles, concepts, and technologies. See what we have added for the 13th edition in “What’s New in This Edition?” In the past, we have led in coverage of object-oriented data modeling and UML, Internet databases, data warehousing, and the use of CASE tools in support of data modeling. For the 13th edition, we continue this tradition by continuing to expand and improve coverage of big data and analytics, focusing on what every database student needs to understand about these topics.
• While remaining current, this text focuses on what leading practitioners say is most important for database developers. We work with many practitioners, including the professionals of the Data Management Association (DAMA) and The Data Warehousing Institute (TDWI), leading consultants, technology leaders, and authors of articles in the most widely read professional publications. We draw on these experts to ensure that what the book includes is important and covers not only important entry-level knowledge and skills but also those fundamentals and mind-sets that lead to long-term career success.
• In the 13th edition of this highly successful book, material is presented in a way that has been viewed as very accessible to students. Our methods have been refined through continuous market feedback for more than 35 years as well as through our own teaching. Overall, the pedagogy of the book is sound, and we believe that the new framework that we introduced in Chapter 1 will further strengthen our students’
understanding of the big picture of data management. We use many illustrations that help make important concepts and techniques clear. We use the most modern notations. The organization of the book is flexible, so you can use chapters in whatever sequence makes sense for your students. We supplement the book with data sets to facilitate hands-on, practical learning and with new media resources to make some of the more challenging topics more engaging.

• Our text can accommodate structural flexibility. For example, you may have particular interest in introducing SQL early in your course. Our text makes this possible. First, we cover SQL in depth, devoting two full chapters to this core technology of the database field. Second, we include many SQL examples in early chapters. Third, many instructors have successfully used the two SQL chapters early in their course. Although logically appearing in the life cycle of systems development as Chapters 5 and 6, part of the implementation section of the text, many instructors have used these chapters immediately after Chapter 1 or in parallel with other early chapters. Finally, we use SQL throughout the book, for example, to illustrate Web application connections to relational databases in Chapter 7 and online analytical processing in Chapter 11.

• We have the latest in supplements and Web site support for the text. See the supplement package for details on all the resources available to you and your students.

• This text is written to be part of a modern information systems curriculum with a strong business systems development focus. Topics are included and addressed so as to reinforce principles from other typical courses, such as systems analysis and design, networking, Web site design and development, MIS principles, and application development. Emphasis is on the development of the database component of modern information systems and on the management of the data resource. Thus, the text is practical, supports projects and other hands-on class activities, and encourages linking database concepts to concepts being learned throughout the curriculum the student is taking.

SUMMARY OF ENHANCEMENTS TO EACH CHAPTER

The following sections present a chapter-by-chapter description of the major changes in this edition. Each chapter description presents a statement of the purpose of that chapter, followed by a description of the changes and revisions that have been made for the 13th edition. Each paragraph concludes with a description of the strengths that have been retained from prior editions.

PART I: THE CONTEXT OF DATABASE MANAGEMENT

Chapter 1: The Database Environment and Development Process

This chapter discusses the role of databases in organizations and previews the major topics in the remainder of the text. The primary change to this chapter has been the introduction of a new integrated data management framework (Figure 1-5) and supporting text accompanying it. This framework recognizes the increasing importance of the informational systems in addition to the traditional focus of this book on transactional systems. After presenting a brief introduction to the basic terminology associated with storing and retrieving data, the chapter presents a well-organized comparison of traditional file processing systems and modern database technology. The chapter then introduces the core components of a database environment. It then goes on to explain the process of database development in the context of structured life cycle, prototyping, and agile methodologies. The chapter also discusses important issues in database development, including management of the diverse group of people involved in database development and frameworks for understanding database architectures and technologies (e.g., the three-schema architecture). Reviewers frequently note the compatibility of this chapter with what students learn in systems analysis and design classes. A brief history of the evolution of database technology, from pre-database files to modern object-relational technologies, is presented. The chapter also provides
an overview of the range of database applications that are currently in use within organizations—personal, multi-tier, and enterprise applications. The explanation of enterprise databases includes databases that are part of enterprise resource planning systems and data warehouses. The chapter concludes with a description of the process of developing a database in a fictitious company, Pine Valley Furniture. This description closely mirrors the steps in database development described earlier in the chapter. The first chapter provides an introduction to the FAME case, which then continues through the book until Chapter 8.

PART II: DATABASE ANALYSIS AND LOGICAL DESIGN

Chapter 2: Modeling Data in the Organization

This chapter presents a thorough introduction to conceptual data modeling with the entity-relationship (E-R) model. The chapter title emphasizes the reason for the E-R model: to unambiguously document the rules of the business that influence database design. Specific subsections explain in detail how to name and define elements of a data model, which are essential in developing an unambiguous E-R diagram. The chapter continues to proceed from simple to more complex examples, and it concludes with a comprehensive E-R diagram for the Pine Valley Furniture Company. In the 13th edition, we have provided six new problems and exercises; these new exercises present some more modern situations, such as Internet of Things applications for databases. A variety of other problems and exercises as well as review questions have been changed to emphasize important topics of the chapter. Appendix A provides information on different data modeling tools and notations.

Chapter 3: The Enhanced E-R Model

This chapter presents a discussion of several advanced E-R data model constructs, primarily supertype/subtype relationships. As in Chapter 2, problems and exercises have been revised, with three new exercises and several building on or extending the new exercises from Chapter 2. The third part of the new FAME case is presented in this chapter. The chapter continues to present thorough coverage of supertype/subtype relationships and includes a comprehensive example of an extended E-R data model for the Pine Valley Furniture Company.

Chapter 4: Logical Database Design and the Relational Model

This chapter describes the process of converting a conceptual data model to the relational data model, as well as how to merge new relations into an existing normalized database. It provides a conceptually sound and practically relevant introduction to normalization, emphasizing the importance of the use of functional dependencies and determinants as the basis for normalization. Concepts of normalization and normal forms are extended in Appendix B. The chapter features a discussion of the characteristics of foreign keys and introduces the important concept of a nonintelligent enterprise key. Enterprise keys (also called surrogate keys for data warehouses) are emphasized as some concepts of object-orientation have migrated into the relational technology world. New problems and exercises are included that draw upon the new problems and exercises from Chapters 2 and 3 for relational modeling and normalization. The chapter continues to emphasize the basic concepts of the relational data model and the role of the database designer in the logical design process.

PART III: DATABASE IMPLEMENTATION AND USE

Chapter 5: Introduction to SQL

This chapter (Chapter 6 in 12th edition) presents a thorough introduction to the SQL used by most DBMSs (SQL:1999) and introduces the changes that are included in the latest standards (SQL: 2011 and SQL:2016). This edition adds coverage of the new features of SQL:2016, including row pattern recognition, JSON support, and extended analytical
capabilities. The new edition also clarifies coverage of SQL data types and, overall, makes it easier to move from relational design in Chapter 4 directly to database implementation without the material on physical database design (now in Chapter 8). The coverage of SQL is extensive and divided between this chapter and Chapter 6. This chapter includes examples of SQL code, using mostly SQL:1999 and SQL:2016 syntax, as well as some Oracle 12c and Microsoft SQL Server syntax. Some unique features of MySQL are mentioned. In this edition, coverage of views has been moved to Chapter 6. Chapter 5 explains the SQL commands needed to create and maintain a database and to program single-table queries. Five review questions and 13 problems and exercises have been added to the chapter or modified extensively. The chapter continues to use the Pine Valley Furniture Company case to illustrate a wide variety of practical queries and query results.

Chapter 6: Advanced SQL

This chapter (Chapter 7 in 12th edition) continues the description of SQL, with a careful explanation of multiple-table queries, transaction integrity, data dictionaries, dynamic and materialized views, triggers and stored procedures (the differences between them are now more clearly explained), and embedding SQL in other programming language programs. All forms of the OUTER JOIN command are covered. Standard SQL (with an updated focus on SQL:2016) is also used. The revised version of the chapter includes now thorough coverage of views and the purposes for which they are used, including their role in enabling security and privacy solutions. This chapter illustrates how to store the results of a query in a derived table, the CAST command to convert data between different data types, and the CASE command for doing conditional processing in SQL. Emphasis continues on the set-processing style of SQL compared with the record processing of programming languages with which the student may be familiar. The section on routines has been revised to provide clarified, expanded, and more current coverage of this topic. The material of transaction integrity, has, however been moved to Chapter 7, where it most naturally belongs. The chapter continues to contain a clear explanation of subqueries and correlated subqueries, two of the most complex and powerful constructs in SQL. At the end, the chapter discusses material that is new to this chapter: data dictionary facilities (in practice, using SQL to understand the structure of the database) and recent extensions and enhancements to SQL. Chapter review material has been updated with 13 new problems and exercises and three new review questions.

Chapter 7: Databases in Applications

This chapter (Chapter 8 in 12th edition) provides a modern discussion of the concepts of client/server architecture and applications, middleware, and database access in contemporary database environments. The chapter has been structurally significantly modified to provide additional clarity, including the integration of material on a two-tiered architecture into the section on three-tiered architecture. In addition to a revised example of writing a Java web application, there is an entire new section—including an extensive and detailed example—on writing Web applications with Python, a widely used general purpose programming language that has become very popular in analytics. Sections on transaction integrity, concurrent access, and application level data security have been revised and moved to this chapter to provide additional conceptual clarity. Material on cloud computing has been moved to Chapter 8 on database infrastructure. Review questions and problems and exercises have been updated.

Chapter 8: Physical Database Design and Database Infrastructure

This chapter (Chapter 5 in the 12th edition) describes the steps that are essential in achieving an efficient database design, with a strong focus on those aspects of database design and implementation that are typically within the control of a database professional in a modern database environment. In addition, several new topics on database infrastructure have been integrated into this chapter to improve the structural clarity of the book, including data dictionaries and repositories, general database software security features, and database backup and recovery. A revised and extended section on cloud-based database infrastructure completes the chapter. Overall, the chapter emphasizes ways to
improve database performance, with references to specific techniques available in Oracle and other DBMSs to achieve this goal. The discussion of indexes includes descriptions of the types of indexes that are widely available in database technologies as techniques to improve query processing speed. Appendix C provides excellent background on fundamental data structures for programs of study that need coverage of this topic. The chapter continues to emphasize the physical design process and the goals of that process. Review questions and problems and exercises have been updated and extended based on the new structure and content of the chapter.

**PART IV: ADVANCED DATABASE TOPICS**

**Chapter 9: Data Warehousing and Data Integration**

This chapter describes the basic concepts of data warehousing, the reasons data warehousing is regarded as critical to competitive advantage in many organizations, and the database design activities and structures unique to data warehousing. The most important change of this chapter is the integration of material on data integration (formerly in Chapter 10 in the 12th edition) into it. This change strengthens the readers’ ability to understand the essential role of data integration in data warehousing (particularly in ETL and other aspects of data preparation), and it clarifies the structure of the book. Topics covered in this chapter include alternative data warehouse architectures and the dimensional data model (or star schema) for data warehouses. In this edition, additional attention is given to cloud-based implementation of data warehouses. Throughout the chapter, several details have been updated to ensure technical correctness. Operational data store and independent, dependent, and logical data marts are defined. The chapter includes multiple new and revised review questions and problems and exercises.

**Chapter 10: Big Data Technologies**

This chapter incorporates big data infrastructure material from Chapter 11 in the 12th edition, significantly expanding it and making it more directly applicable with substantial detailed descriptive examples of MongoDB (the most popular NoSQL database) and Pig (scripting language and task automation environment for Hadoop) and Hive (an SQL-like declarative language for querying data stored in Hadoop). This new version of the material gives the students a much more practical, hands-on sense of the purposes for which these well-known tools can be used and how they can serve the goals of big data management. The chapter also includes several new problems and exercises based on these environments. Overall, the chapter helps the readers understand how big data technologies have expanded the possibilities for analytics-driven innovation through advanced informational systems that are pushing boundaries further in terms of volume, velocity, and variety of data while paying continuous attention to value and veracity of big data.

**Chapter 11: Analytics and its Implications**

Chapter 11 offers integrated coverage of analytics, including descriptive, predictive, and prescriptive analytics. It is based on material on analytics in the big data and analytics chapter in the 12th edition, expanding it with comprehensive new sections on R, Python, and Apache Spark and bringing in material on analytical functions in SQL. The discussion on analytics is linked not only to the coverage of big data but also the material on data warehousing in Chapter 9 and the general discussion on data management in Chapter 1 (as indicated in the new framework in Chapter 1). The chapter also covers approaches and technologies used by analytics professionals, such as on-line analytical processing, data visualization, business performance management and dashboards, data mining, and text mining. Finally, the chapter integrates the coverage of big data and analytics technologies to the individual, organizational, and societal implications of these capabilities. Review questions on the new material have been added.
Chapter 12: Data and Database Administration with Focus on Data Quality

This chapter presents a thorough discussion of the importance and roles of data and database administration and describes a number of the key issues that arise when these functions are performed. This chapter emphasizes the changing roles and approaches of data and database administration, with a renewed and strengthened emphasis on data quality. The chapter both discusses essential characteristics of high-quality data and the mechanisms that organizations need to put in place to enable data quality improvement. Data governance, data availability, and master data management are also covered. The chapter continues to emphasize the critical importance of data and database management in managing data as a corporate asset.

Chapter 13: Distributed Databases

This chapter—available on the book’s Web site—reviews the role, technologies, and unique database design opportunities of distributed databases. The objectives and trade-offs for distributed databases, data replication alternatives, factors in selecting a data distribution strategy, and distributed database vendors and products are covered. This chapter provides thorough coverage of database concurrency access controls. Many reviewers have indicated that they are seldom able to cover this chapter in an introductory course, but having the material available is critical for advanced students or special topics.

Chapter 14: Object-Oriented Data Modeling

This chapter presents an introduction to object-oriented modeling using Object Management Group’s Unified Modeling Language (UML). This chapter has been carefully reviewed to ensure consistency with the latest UML notation and best industry practices. UML provides an industry-standard notation for representing classes and objects. The chapter continues to emphasize basic object-oriented concepts, such as inheritance, encapsulation, composition, and polymorphism. As with Chapter 13, Chapter 14 is available on the textbook’s Web site.

APPENDICES

In the 13th edition three appendices are available on the book’s Web site and are intended for those who wish to explore certain topics in greater depth.

Appendix A: Data Modeling Tools and Notation

This appendix addresses a need raised by many readers—how to translate the E-R notation in the text into the form used by the CASE tool or the DBMS used in class. Specifically, this appendix compares the notations of CA ERwin Data Modeler 9.7, Oracle SQL Data Modeler 4.2, SAP Sybase PowerDesigner 16.6, and Microsoft Visio Professional 2016. Tables and illustrations show the notations used for the same constructs in each of these popular software packages.

Appendix B: Advanced Normal Forms

This appendix presents a description (with examples) of Boyce-Codd and fourth normal forms, including an example of BCNF to show how to handle overlapping candidate keys. Other normal forms are briefly introduced. The Web Resources section includes a reference for information on many advanced normal form topics.

Appendix C: Data Structures

This appendix describes several data structures that often underlie database implementations. Topics include the use of pointers, stacks, queues, sorted lists, inverted lists, and trees.
PEDAGOGY

A number of additions and improvements have been made to end-of-chapter materials to provide a wider and richer range of choices for the user. The most important of these improvements are the following:

1. **Review Questions** Questions have been updated to support new and enhanced chapter material.

2. **Problems and Exercises** This section has been reviewed in every chapter, and many chapters contain new problems and exercises to support updated chapter material. Of special interest are questions in many chapters that give students opportunities to use the data sets provided for the text. Problems and exercises are presented in roughly increasing order of difficulty, which should help instructors and students find exercises appropriate for what they want to accomplish.

3. **Field Exercises** This section provides a set of “hands-on” mini-cases that can be assigned to individual students or to small teams of students. Field exercises range from directed field trips to Internet searches and other types of research exercises.

4. **Case** The 13th edition of this book includes the same mini-case that was introduced in the 12th edition: Forondo Artist Management Excellence Inc. (FAME). In the first three chapters, the case begins with a description provided in the “voice” of one or more stakeholders, revealing a new dimension of requirements to the reader. Each chapter has project assignments intended to provide guidance on the types of deliverables instructors could expect from students, some of which tie together issues and activities across chapters. These project assignments can be completed by individual students or by small project teams. This case provides an excellent means for students to gain hands-on experience with the concepts and tools they have studied. The instructor’s manual will include new materials to support the use of the case.

5. **Web Resources** Each chapter contains a list of updated and validated URLs for Web sites that contain information that supplements the chapter. These Web sites cover online publication archives, vendors, electronic publications, industry standards organizations, and many other sources. These sites allow students and instructors to find updated product information, innovations that have appeared since the printing of the book, background information to explore topics in greater depth, and resources for writing research papers.

We continue to provide several pedagogical features that help make the 13th edition widely accessible to instructors and students. These features include the following:

1. **Learning objectives** appear at the beginning of each chapter, as a preview of the major concepts and skills students will learn from that chapter. The learning objectives—carefully updated to be aligned with the new chapter structure—also provide a great study review aid for students as they prepare for assignments and examinations.

2. **Chapter introductions and summaries** both encapsulate the main concepts of each chapter and link material to related chapters, providing students with a comprehensive conceptual framework for the course.

3. **The chapter review** includes the Review Questions, Problems and Exercises, and Field Exercises discussed earlier and also contains a Key Terms list to test the student’s grasp of important concepts, basic facts, and significant issues.

4. **A running glossary** defines key terms in the page margins as they are discussed in the text. These terms are also defined at the end of the text, in the Glossary of Terms. Also included is the end-of-book Glossary of Acronyms for abbreviations commonly used in database management.

ORGANIZATION

We encourage instructors to customize their use of this book to meet the needs of both their curriculum and student career paths. The modular nature of the text, its broad coverage, its extensive illustrations, and its inclusion of advanced topics and emerging issues make customization easy. The many references to current publications and Web sites
can help instructors develop supplemental reading lists or expand classroom discussion beyond material presented in the text. The use of appendices for several advanced topics allows instructors to easily include or omit these topics.

The modular nature of the text allows the instructor to omit certain chapters or to cover chapters in a different sequence. For example, an instructor who wishes to emphasize data modeling may cover Chapter 14 (available on the book’s Web site) on object-oriented data modeling along with or instead of Chapters 2 and 3. An instructor who wishes to cover only basic entity-relationship concepts (but not the enhanced E-R model) may skip Chapter 3 or cover it after Chapter 4 on the relational model.

We have contacted many adopters of Modern Database Management and asked them to share with us their syllabi. Most adopters cover the chapters in sequence, but several alternative sequences have also been successful. These alternatives include the following:

- Some instructors cover Chapter 12 on data and database administration immediately after Chapter 8 on physical database design and the relational model.
- To introduce SQL as early as possible, many instructors have effectively covered 12th edition Chapters 6 and 7 (SQL) immediately after Chapter 4; therefore, we have now placed them as Chapters 5 and 6. Some have even covered the new Chapter 5 immediately after Chapter 1, which the book makes possible.
- Many instructors have students read appendices along with chapters, such as reading Appendix on data modeling notations with Chapter 2 or Chapter 3 on E-R modeling, Appendix B on advanced normal forms with Chapter 4 on the relational model, and Appendix C on data structures with Chapter 8.

THE SUPPLEMENT PACKAGE:
WWW.PEARSONHIGHERED.COM/HOFFER

A comprehensive and flexible technology support package is available to enhance the teaching and learning experience. All instructor and student supplements are available on the text Web site: www.pearsonhighered.com/hoffer.

For Students
The following online resources are available to students:

- Complete chapters on distributed databases and object-oriented data modeling as well as appendices focusing on data modeling notations, advanced normal forms, and data structures allow you to learn in depth about topics that are not covered in the textbook.
- Accompanying databases are also provided. Two versions of the Pine Valley Furniture Company case have been created and populated for the 13th edition. One version is scoped to match the textbook examples. A second version is fleshed out with more data and tables. This version is not complete, however, so that students can create missing tables and additional forms, reports, and modules. Databases are provided in several formats (ASCII tables, Oracle script, and Microsoft Access), but formats vary for the two versions. Some documentation of the databases is also provided. Both versions of the PVFC database are also provided on Teradata University Network.
- Several custom-developed short videos that address key concepts and skills from different sections of the book help students learn material that may be more difficult to understand by using both the printed text and a mini lecture.

For Instructors
The following online resources are available to instructors:

The Instructor’s Resource Manual is available for download on the instructor area of the text’s Web site.

- The Test Bank and TestGen, by John Russo, Wentworth Institute of Technology, includes a comprehensive set of test questions in multiple-choice, true/false, and short-answer format, ranked according to level of difficulty and referenced with page numbers and topic headings from the text. The Test Bank is available in Microsoft Word and as the computerized TestGen. TestGen is a comprehensive suite of tools for testing and assessment. It allows instructors to easily create and distribute tests for their courses, either by printing and distributing through traditional methods or by online delivery via a local area network (LAN) server. Test Manager features Screen Wizards to assist you as you move through the program, and the software is backed with full technical support.

- PowerPoint presentation slides, by Michel Mitri, James Madison University, feature lecture notes that highlight key terms and concepts. Instructors can customize the presentation by adding their own slides or editing existing ones.

- The Image Library is a collection of the text art organized by chapter. It includes all figures, tables, and screenshots (as permission allows) and can be used to enhance class lectures and PowerPoint slides.

- Accompanying databases are also provided. Two versions of the Pine Valley Furniture Company case have been created and populated for the 13th edition. One version is scoped to match the textbook examples. A second version is fleshed out with more data and tables. This version is not complete, however, so that students can create missing tables and additional forms, reports, and modules. Databases are provided in several formats (ASCII tables, Oracle script, and Microsoft Access), but formats vary for the two versions. Some documentation of the databases is also provided. Both versions of the PVFC database are also available on Teradata University Network.

VITALSOURCE eTEXTBOOK

VitalSource eTextbooks were developed for students looking to save on required or recommended textbooks. Students simply select their eText by title or author and purchase immediate access to the content for the duration of the course using any major credit card. With a VitalSource eText, students can search for specific key words or page numbers, take notes online, print out reading assignments that incorporate lecture notes, and bookmark important passages for later review. For more information or to purchase a VitalSource eTextbook, visit [www.vitalsource.com](http://www.vitalsource.com).

ACKNOWLEDGMENTS

We are grateful to numerous individuals who contributed to the preparation of Modern Database Management, 13th edition. First, we wish to thank our reviewers for their detailed suggestions and insights, characteristic of their thoughtful teaching style. As always, analysis of topics and depth of coverage provided by the reviewers were crucial. Our reviewers and others who gave us many useful comments to improve the text include Tamara Babaian, Bentley University; Subhajyoti Bandyopadhyay, University of Florida; Gary Baram, Temple University; Bijoy Bordoloi, Southern Illinois University, Edwardsville; Timothy Bridges, University of Central Oklahoma; Traci Carte, University of Oklahoma; Laurie Crawford, Franklin University; Wingyan Chung, Santa Clara University; Jagdish Gangolly, State University of New York at Albany; Jon Gant, Syracuse University; Jinzhu Gao, University of the Pacific; Monica Garfield, Bentley University; Rick Gibson, American University; Joy Godin, Georgia College & State University; Jian Guan, University of Louisville; Chengqi Guo, James Madison University; Connie Hecker, Missouri Western State University; William H. Hochstettler III, Franklin University; Dinakar Jayarajan, Illinois Institute of Technology; Michael Johnson, Christopher Newport University; Weiling Ke, Clarkson University; Dongwon Lee, Pennsylvania State University; Ingyu Lee, Troy University; Linda
LeSage, Davenport University; Chang-Yang Lin, Eastern Kentucky University; Brian Mennecke, Iowa State University; Kazuo Nakatani, Florida Gulf Coast University; Dat-Dao Nguyen, California State University, Northridge; Fred Niederman, Saint Louis University; Selwyn Piramuthu, University of Florida; Lara Preiser-Houy, California State Polytechnic University, Pomona; John Russo, Wentworth Institute of Technology; Becky Rutherfoord, Kennesaw State University; Ioulia Rytikova, George Mason University; Richard Segall, Arkansas State University; Sharlene Smith, Gaston College; John Snyder, Colorado Mesa University; Josephine Stanley-Brown, Norfolk State University; Chelley Vician, University of St. Thomas; Ruth Weldon, University of St. Francis; and Daniel S. Weaver, Messiah College; Zuopeng Zhang, State University of New York Plattsburgh; Dana Zhu, Iowa State University; Songhua Zu, New Jersey Institute of Technology.

We received excellent input from experts in industry, including Steve Williams (President, DecisionPath Consulting), Tom Victory (DecisionPath Consulting), Todd Walter, Carrie Ballinger, Rob Armstrong, and David Schoeff (all of Teradata Corp); Chad Gronbach and Philip DesAutels (Microsoft Corp.); Peter Gauvin (Ball Aerospace); and Michael Alexander (Open Access Technology, International).

We are very thankful to Ge Yan, Indiana University, for his contributions to some of the technical material in Chapter 7. We also want to thank Heikki Topi, Bentley University, for his role as author of the Instructor’s Resource Manual. In addition to his duties as author, Heikki took on this additional task and has been diligent in preparing the Instructor’s Resource Manual; in the process he has helped us clarify and fix various parts of the text. We also want to recognize the important role played by Chelley Vician of the University of St. Thomas, the author of several previous editions of the Instructor’s Resource Manual; her work added great value to this book. We also thank Sven Aelterman, Troy University, for his many excellent suggestions for improvements and clarifications throughout the text.

We are also grateful to the staff and associates of Pearson for their support and guidance throughout this project. In particular, we wish to thank Senior Portfolio Manager Samantha Lewis for her support through this revision process; Program Monitor Danica Monzor (SPi Global), and Associate Project Manager Neha Bhargava (Cenveo), who kept us on track and made sure everything was complete; and Associate Content Producer Stephany Harrington.

While finalizing this edition of Modern Database Management, we pause to remember with deep gratitude the contributions of Dr. Fred McFadden and Dr. Mary Prescott, coauthors of previous editions of this text. Fred and Mary are not with us anymore, but their contributions to MDBM, both content and spirit, continue to be directly and indirectly included in this book.

Finally, we give immeasurable thanks to our spouses, who endured many evenings and weekends of solitude for the thrill of seeing a book cover hang on a den wall. In particular, we marvel at the commitment of Patty Hoffer, who has lived the lonely life of a textbook author’s spouse through 13 editions over more than 35 years of late-night and weekend writing. We also want to sincerely thank Anne-Louise Klaus for being willing to continue her wholehearted support for Heikki’s involvement in the project. Although the book project was no longer new for Gayathri Mani, her continued support and understanding are very much appreciated. Much of the value of this text is due to their patience, encouragement, and love, but we alone bear the responsibility for any errors or omissions between the covers.

Jeffrey A. Hoffer
V. Ramesh
Heikki Topi