Intermediate Algebra: A STEM Approach
First Edition

George Woodbury
College of the Sequoias

Director, Portfolio Management: Michael Hirsch
Senior Portfolio Manager: Rachel Ross
Portfolio Assistant: Shannon Bushee
Content Producer: Lauren Morse
Managing Producer: Scott Disanno
Producer: Erin Carreiro
Manager, Courseware QA: Mary Durnwald
Associate Content Producer: Rajinder Singh
Manager, Content Development: Robert Carroll
Product Marketing Manager: Alicia Frankel
Field Marketing Manager: Jennifer Crum and Lauren Schur
Marketing Assistants: Hanna Lafferty and Brooke Imbornone
Senior Author Support/Technology Specialist: Joe Vetere
Manager, Rights and Permissions: Gina Cheselka
Manufacturing Buyer: Carol Melville, LSC Communications
Production Coordination, Composition, and Illustrations: SPI Global
Text and Cover Design: Studio Montage
Cover Image: (Butterfly card) Matej Kotula/Shutterstock; (Transmission gear) Zhao Jian Kang/Shutterstock

PEARSON, ALWAYS LEARNING, and MyLab™ Math are exclusive trademarks in the U.S. and/or other countries owned by Pearson Education, Inc. or its affiliates.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data
Title: Intermediate algebra : prep for STEM paths / George Woodbury, College of the Sequoias.
Identifiers: LCCN 2017052170 | ISBN 9780134758978
Subjects: LCSH: Algebra—Textbooks.
Classification: LCC QA154.3 .W67 2019 | DDC 512.9—dc23
LC record available at https://lccn.loc.gov/2017052170

Copyright © 2019 Pearson Education, Inc. or its affiliates. All Rights Reserved.

Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

SE ISBN-10: 0-13-475897-8
Contents

Preface ix

R

Review of Real Numbers 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.1 Integers, Opposites, and Absolute Value</td>
<td>2</td>
</tr>
<tr>
<td>R.2 Exponents and Order of Operations</td>
<td>18</td>
</tr>
</tbody>
</table>

1

Linear and Absolute Value Equations and Inequalities 26

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction to Algebra</td>
<td>27</td>
</tr>
<tr>
<td>1.2 Linear Equations</td>
<td>42</td>
</tr>
<tr>
<td>1.3 Problem Solving: Applications of Linear Equations</td>
<td>60</td>
</tr>
<tr>
<td>1.4 Proportions and Dimensional Analysis</td>
<td>79</td>
</tr>
<tr>
<td>1.5 Absolute Value Equations</td>
<td>94</td>
</tr>
<tr>
<td>1.6 Linear Inequalities</td>
<td>103</td>
</tr>
<tr>
<td>1.7 Absolute Value Inequalities</td>
<td>118</td>
</tr>
</tbody>
</table>

2

Graphing Linear Equations 140

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 The Rectangular Coordinate System; Equations in Two Variables</td>
<td>143</td>
</tr>
<tr>
<td>2.2 Slope of a Line</td>
<td>168</td>
</tr>
<tr>
<td>2.3 Equations of Lines</td>
<td>192</td>
</tr>
<tr>
<td>2.4 Linear Inequalities</td>
<td>211</td>
</tr>
<tr>
<td>2.5 Linear Functions</td>
<td>227</td>
</tr>
<tr>
<td>2.6 Absolute Value Functions</td>
<td>247</td>
</tr>
</tbody>
</table>

3

Systems of Equations 270

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Systems of Two Equations in Two Unknowns</td>
<td>275</td>
</tr>
<tr>
<td>3.2 Applications of Systems of Equations</td>
<td>301</td>
</tr>
<tr>
<td>3.3 Systems of Linear Inequalities</td>
<td>322</td>
</tr>
<tr>
<td>3.4 Systems of Three Equations in Three Unknowns</td>
<td>338</td>
</tr>
<tr>
<td>3.5 Using Matrices to Solve Systems of Equations</td>
<td>357</td>
</tr>
<tr>
<td>3.6 Determinants and Cramer’s Rule</td>
<td>373</td>
</tr>
</tbody>
</table>

4

Exponents, Polynomials, and Factoring Polynomials 396

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Exponents</td>
<td>398</td>
</tr>
<tr>
<td>4.2 Negative Exponents; Scientific Notation</td>
<td>414</td>
</tr>
<tr>
<td>4.3 Polynomials; Addition, Subtraction, and Multiplication of Polynomials</td>
<td>431</td>
</tr>
<tr>
<td>4.4 Polynomial Division</td>
<td>453</td>
</tr>
<tr>
<td>4.5 An Introduction to Factoring: The Greatest Common Factor; Factoring by Grouping</td>
<td>467</td>
</tr>
<tr>
<td>4.6 Factoring Trinomials of Degree 2</td>
<td>478</td>
</tr>
<tr>
<td>4.7 Factoring Special Binomials</td>
<td>496</td>
</tr>
<tr>
<td>4.8 Factoring Polynomials: A General Strategy</td>
<td>508</td>
</tr>
<tr>
<td>4.9 Solving Quadratic Equations By Factoring</td>
<td>519</td>
</tr>
</tbody>
</table>

Chapters 1–4 Cumulative Review 543
5 Rational Expressions and Equations 548
 5.1 Rational Expressions and Functions 552
 5.2 Multiplication and Division of Rational Expressions 568
 5.3 Addition and Subtraction of Rational Expressions 580
 5.4 Complex Fractions 598
 5.5 Rational Equations 612
 5.6 Applications of Rational Equations 625

6 Radical Expressions and Equations 654
 6.1 Square Roots; Radical Notation 657
 6.2 Rational Exponents 675
 6.3 Simplifying, Adding, and Subtracting Radical Expressions 686
 6.4 Multiplying and Dividing Radical Expressions 698
 6.5 Radical Equations and Applications of Radical Equations 717
 6.6 The Complex Numbers 739

7 Quadratic Equations 764
 7.1 Solving Quadratic Equations by Extracting Square Roots; Completing the Square 767
 7.2 The Quadratic Formula 787
 7.3 Equations That Are Quadratic in Form 807
 7.4 Graphing Quadratic Equations and Quadratic Functions 820
 7.5 Applications Using Quadratic Equations 849
 7.6 Quadratic and Rational Inequalities 869
 7.7 Other Functions and Their Graphs 889

Chapters 5–7 Cumulative Review 911

8 Logarithmic and Exponential Functions 918
 8.1 The Algebra of Functions 921
 8.2 Inverse Functions 938
 8.3 Exponential Functions 958
 8.4 Logarithmic Functions 975
 8.5 Properties of Logarithms 992
 8.6 Exponential and Logarithmic Equations 1007
 8.7 Applications of Exponential and Logarithmic Functions 1027
 8.8 Graphing Exponential and Logarithmic Functions 1047

9 Conic Sections 1080
 9.1 Parabolas 1085
 9.2 Circles 1107
 9.3 Ellipses 1124
 9.4 Hyperbolas 1142
 9.5 Nonlinear Systems of Equations 1159

10 Sequences, Series, and the Binomial Theorem 1180
 10.1 Sequences and Series 1182
 10.2 Arithmetic Sequences and Series 1199
 10.3 Geometric Sequences and Series 1213
 10.4 The Binomial Theorem 1228

Chapters 8–10 Cumulative Review 1240
Chapter 1
Build variable expressions 1.3, 1.6
Evaluate variable expressions 1.2
Find the absolute value of an integer 1.5, 1.7
Find the least common multiple (LCM) of two natural numbers 1.2
Graph integers on a number line 1.6
Identify linear equations with no solution 1.5
Multiply fractions 1.4
Perform arithmetic operations with integers 1.2
Present the solutions of an inequality on a number line and using interval notation 1.7
Simplify a fraction to lowest terms 1.2, 1.4
Simplify variable expressions 1.2
Solve compound linear inequalities 1.7
Solve linear equations using the five-step general strategy 1.3, 1.5, 1.6
Solve linear equations using the multiplication property of equality 1.4
Solve linear inequalities 1.7

Chapter 2
Determine whether a value is a solution of an equation 2.1
Determine whether an ordered pair is a solution of an equation in two variables 2.4
Determine whether two lines are parallel 2.3
Determine whether two lines are perpendicular 2.3
Evaluate variable expressions 2.5
Find the absolute value of an integer 2.6
Find the slope of a line passing through two points using the slope formula 2.3
Graph a line using its slope and y-intercept 2.4, 2.5
Graph horizontal lines and vertical lines 2.4
Graph integers on a number line 2.1
Graph linear equations using their intercepts 2.4
Graph linear functions 2.6
Interpret the slope and y-intercept in real-world applications 2.5
Plot ordered pairs on a rectangular coordinate plane 2.2
Simplify a fraction to lowest terms 2.2
Solve linear equations using the five-step general strategy 2.1
Solve literal equations for a specified variable 2.2, 2.3
Subtract integers 2.2
Chapter 3

- Build variable expressions 3.2
- Complete ordered pairs for a linear equation in two variables 3.1, 3.5
- Create an augmented matrix for a system of three equations in three unknowns 3.6
- Create an augmented matrix for a system of two equations in two unknowns 3.6
- Determine if an ordered pair is a solution of an equation 3.1
- Determine if an ordered pair is a solution to a system of equations 3.4
- Graph a line using its slope and y-intercept 3.3
- Graph a line using the most efficient strategy 3.1
- Graph a linear inequality in two variables 3.3
- Graph linear equations using their intercepts 3.3
- Identify linear equations that are contradictions or identities 3.1
- Solve linear equations containing fractions 3.1
- Solve linear equations using the five-step general strategy 3.1
- Solve systems of linear equations by using the addition method 3.2
- Solve systems of linear equations by using the substitution method 3.2
- Solve systems of linear equations using the addition method 3.4, 3.5
- Solve systems of three linear equations in three unknowns 3.5

Chapter 4

- Evaluate functions 4.1
- Factor a difference of squares 4.8
- Factor a difference or sum of cubes 4.8
- Factor a polynomial by grouping 4.6, 4.8
- Factor a trinomial of the form $ax^2 + bx + c$ 4.8
- Factor a trinomial of the form $x^2 + bx + c$ 4.8
- Factor the GCF out of each term of a polynomial 4.6, 4.7, 4.8
- Find special products 4.7
- Find the prime factorization of a natural number 4.5
- Multiply a monomial by a polynomial 4.4, 4.5
- Multiply polynomials 4.4, 4.5, 4.6
- Perform arithmetic operations with decimals 4.2
- Simplify a fraction to lowest terms 4.1
- Simplify exponents 4.1
- Simplify variable expressions 4.3
- Solve linear equations containing fractions 4.9
- Solve linear equations using the five-step general strategy 4.9
- Solve problems involving consecutive integers 4.9
- Subtract integers 4.2
- Understand the strategy for factoring a general polynomial 4.9
- Use the distributive property of real numbers 4.3
- Use the product rule for exponents 4.3
- Use the quotient rule for exponents 4.2, 4.4
- Use unit factors for dimensional analysis 4.2

Chapter 5

- Add and subtract fractions with the same denominator 5.3
- Add and subtract fractions with unlike denominators 5.3
- Add and subtract polynomials 5.3
Integrated Review Topics

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divide fractions</td>
<td>5.2</td>
</tr>
<tr>
<td>Evaluate algebraic expressions</td>
<td>5.1</td>
</tr>
<tr>
<td>Evaluate functions</td>
<td>5.1</td>
</tr>
<tr>
<td>Factor polynomials</td>
<td>5.1</td>
</tr>
<tr>
<td>Find the least common denominator (LCD) of two or more rational expressions</td>
<td>5.4</td>
</tr>
<tr>
<td>Find the least common multiple (LCM) of two natural numbers</td>
<td>5.4</td>
</tr>
<tr>
<td>Identify factors that are opposites of each other</td>
<td>5.2</td>
</tr>
<tr>
<td>Multiply fractions</td>
<td>5.2</td>
</tr>
<tr>
<td>Simplify a fraction to lowest terms</td>
<td>5.1</td>
</tr>
<tr>
<td>Simplify rational expressions to lowest terms</td>
<td>5.2, 5.3, 5.4</td>
</tr>
<tr>
<td>Solve a quadratic equation by factoring</td>
<td>5.1, 5.5</td>
</tr>
<tr>
<td>Solve linear equations containing fractions</td>
<td>5.5</td>
</tr>
<tr>
<td>Solve literal equations for a specified variable</td>
<td>5.5</td>
</tr>
<tr>
<td>Solve linear equations using the five-step general strategy</td>
<td>5.1, 5.5</td>
</tr>
<tr>
<td>Solve problems involving motion</td>
<td>5.6</td>
</tr>
<tr>
<td>Solve rational equations</td>
<td>5.6</td>
</tr>
<tr>
<td>Understand the six steps for solving applied problems</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Chapter 6

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate functions</td>
<td>6.1</td>
</tr>
<tr>
<td>Find nth roots</td>
<td>6.2, 6.3</td>
</tr>
<tr>
<td>Find the prime factorization of a number</td>
<td>6.1, 6.3</td>
</tr>
<tr>
<td>Find the square root of a number</td>
<td>6.2, 6.3, 6.6</td>
</tr>
<tr>
<td>Multiply polynomials</td>
<td>6.4, 6.5, 6.6</td>
</tr>
<tr>
<td>Multiply radical expressions</td>
<td>6.4</td>
</tr>
<tr>
<td>Rationalize a denominator with one term</td>
<td>6.6</td>
</tr>
<tr>
<td>Rationalize a denominator with two terms</td>
<td>6.6</td>
</tr>
<tr>
<td>Simplify variable expressions</td>
<td>6.3, 6.4, 6.6</td>
</tr>
<tr>
<td>Simplify expressions using the rules of exponents</td>
<td>6.2</td>
</tr>
<tr>
<td>Solve a quadratic equation by factoring</td>
<td>6.5</td>
</tr>
<tr>
<td>Solve linear equations</td>
<td>6.5</td>
</tr>
<tr>
<td>Solve linear inequalities</td>
<td>6.1</td>
</tr>
<tr>
<td>Use the power rule for exponents</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Chapter 7

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine the domain and range of a function from its graph</td>
<td>7.7</td>
</tr>
<tr>
<td>Factor trinomials of degree 2</td>
<td>7.1</td>
</tr>
<tr>
<td>Find the square root of a number</td>
<td>7.1, 7.2, 7.5</td>
</tr>
<tr>
<td>Find the x- and y-intercepts of a line from its equation</td>
<td>7.4</td>
</tr>
<tr>
<td>Graph absolute value functions by shifting</td>
<td>7.4, 7.7</td>
</tr>
<tr>
<td>Graph quadratic functions of the form $f(x) = a(x - h)^2 + k$ by shifting</td>
<td>7.7</td>
</tr>
<tr>
<td>Present the solutions of an inequality on a number line and using interval notation</td>
<td>7.6</td>
</tr>
<tr>
<td>Solve a quadratic equation by factoring</td>
<td>7.1, 7.2</td>
</tr>
<tr>
<td>Solve applied geometry problems</td>
<td>7.5</td>
</tr>
<tr>
<td>Solve applied work-rate problems</td>
<td>7.3</td>
</tr>
<tr>
<td>Solve radical equations</td>
<td>7.3</td>
</tr>
<tr>
<td>Solve rational equations</td>
<td>7.3</td>
</tr>
<tr>
<td>Solve quadratic equations by completing the square</td>
<td>7.2, 7.4</td>
</tr>
<tr>
<td>Solve quadratic equations by factoring or by using the quadratic formula</td>
<td>7.4, 7.5, 7.6</td>
</tr>
<tr>
<td>Solve quadratic equations by using the quadratic formula</td>
<td>7.3</td>
</tr>
</tbody>
</table>
Integrated Review Topics

Chapter 8

Add and subtract polynomials 8.1
Convert an equation from logarithmic form to exponential form 8.6
Evaluate exponential functions 8.4
Evaluate functions 8.1, 8.3
Evaluate logarithms and logarithmic functions 8.5
Find the composite function of two functions \(f(x) \) and \(g(x) \) 8.2
Find the inverse of a one-to-one function 8.6
Graph exponential functions 8.4, 8.8
Graph linear functions 8.3
Graph logarithmic functions 8.8
Interpret graphs of functions 8.3
Multiply polynomials 8.1
Simplify expressions with exponents 8.4
Simplify rational expressions to lowest terms 8.1
Solve a logarithmic equation by converting it to exponential form 8.7
Solve an exponential equation by using logarithms 8.7
Solve linear equations 8.6
Solve literal equations for a specified variable 8.2
Solve quadratic equations by factoring 8.6
Use the product and quotient rules for logarithms 8.6
Use the product rule for exponents 8.5
Use the quotient rule for exponents 8.5

Chapter 9

Find a vertex by completing the square 9.2
Find the center of a circle and its radius by completing the square 9.3
Find the center of an ellipse and the lengths of its axes by completing the square 9.4
Find the square root of a number 9.2, 9.3
Graph circles centered at a point \((h, k)\) 9.3
Graph ellipses centered at a point \((h, k)\) 9.4
Graph equations of the form \(y = a(x - h)^2 + k \). 9.2
Graph quadratic equations in standard form 9.1
Graph quadratic functions of the form \(f(x) = (x - h)^2 + k \) by shifting. 9.1
Solve a quadratic equation by factoring 9.1
Solve quadratic equations by completing the square 9.1
Solve quadratic equations by extracting square roots 9.1
Solve quadratic equations by using the quadratic formula 9.1
Solve systems of linear equations by using the addition method 9.5
Solve systems of linear equations by using the substitution method 9.5

Chapter 10

Add, subtract, multiply, and divide integers 10.1
Evaluate functions 10.1
Find partial sums of a sequence 10.2
Find partial sums of an arithmetic sequence 10.3
Find special products 10.4
Find the general term of a sequence 10.2
Find the general term of an arithmetic sequence 10.3
Multiply polynomials 10.4
Preface

George Woodbury’s primary goal as a teacher, and author, has always been to empower students to succeed in algebra and beyond. He learned early on that to teach algebra foundations successfully, instructors must find a way to achieve two equally important goals: 1) fully prepare students for collegiate-level mathematics, and 2) build students’ confidence in their mathematical abilities.

He could not be a better-equipped teacher and author to publish this first edition textbook, *Intermediate Algebra: A STEM Approach*, which also incorporates extensive integrated review.

Some of the ways George prepares students for College Algebra is by:

- Introducing the fundamental concepts of graphing and functions early. He then consistently and frequently incorporates these concepts throughout.
- He provides strong exercise sets that provide volume and variety and incorporate not only a substantial amount of skill and drill, but also plenty of writing exercises to encourage critical thinking and creativity.
- He incorporates a focus on STEM, and uses a Discover, Engage, Reflect teaching method that will well serve future STEM and non-STEM students, time and time again.
- He also knows the key to success for students is often not just about math—it’s about making sure students understand how to study and prepare for a math class. To help give students the confidence they require to succeed, George integrates study strategies in the new Guided Notebook. He also incorporates student success materials and tips instructors can use with students in his Instructor’s Resource Manual + George Woodbury’s Guide to MyLab Math.

With the text, supplements, and technology available with *Intermediate Algebra: A STEM Approach*, George strives to help students not simply “make it through” to College Algebra or Precalculus, but to help them truly gain the skills and conceptual understanding necessary for further success in those courses and potential future STEM paths.
Woodbury Hallmarks That Empower Student Success

Early-and-Often Approach to Graphing and Functions

The approach concerning functions in this text is “Early and Often.” Functions are first introduced in Chapter 2 (Sections 2.5 and 2.6). The overall goal from Chapter 2 through Chapter 7 is to help students to be comfortable with functions before reaching the difficult material in Chapter 8 (composition of functions, inverse functions, exponential functions, and logarithmic functions). The approach focuses on helping students to be comfortable with evaluating functions, graphing functions, interpreting the graphs of functions, understanding domain and range of functions, and performing algebra with functions.

Discover, Engage, Reflect—And Practice, Practice, Practice Makes Perfect!

For each section, and throughout all of his material, George integrates a three-step teaching approach that he refers to as The Cycles of Learning—Discover, Engage, Reflect. He developed this approach through his own teaching philosophy. He believes that when it comes to learning mathematics, watching and discovering, participating and engaging, and reflecting will lead students to a greater conceptual understanding.

This Discover, Engage, Reflect approach is found in . . .

The Beginning of Sections: The Cycles of Learning approach has been integrated throughout the entire program. Each section kicks off with an integrated review of previous concepts, encouraging students to reflect upon the path that has brought them there.

The Example and Quick Check Videos that drive the teaching of each section:

• DISCOVER: Through Conceptual, Example, and Quick Check Videos, students can begin learning each objective with videos that guide them through the discovery of concepts, asking Socratic questions and explaining the “why” behind a particular problem solving method.

• ENGAGE: The Quick Check A Videos engage students by asking questions and prompting them to think about the next step in solving a problem, reinforcing the problem solving method and procedure.

• REFLECT: The Quick Check B Videos encourage students to solve the problem on their own while reflecting on what they have learned. George points out the differences and commonalities between the previous concepts to help students develop a true understanding of the material.

pearson.com/mylab/math
End of Section Exercises: George’s text provides more exercises than most other texts, allowing students ample opportunity to develop their skills and increase their understanding. The exercise sets are filled with both traditional skill- and drill-type exercises, as well as unique exercise types that require thoughtful and creative responses.

- The Engage and Reflect pedagogy is worked into the exercise sets as well, including designated Engage and Reflect exercise sets.
- Vocabulary Exercises kick off each exercise set to help check students’ understanding of the vocabulary covered in the preceding section.
- Mixed Practice exercises are provided as appropriate throughout the text to give students an opportunity to practice multiple types of problems in one setting. These interweaving exercises require students to focus on determining the correct method to use to solve the problem and reduce their tendency to simply memorize steps to solving the problems for each objective.
- Writing in Mathematics Exercises ask students to explain their answer in written form to lead to a higher level of understanding as acknowledged by the AMATYC Standards.

- Solutions Manual Exercises require students to solve a problem completely with step-by-step explanations as if they were writing their own solutions manual.
- Newsletter Exercises encourage students to be creative in their mathematical writing, and ask students to explain a mathematical topic. The explanation should be in the form of a short, visually appealing article that might be published in a newsletter read by people who are interested in learning mathematics.

A STEM Approach

George Woodbury is passionate about empowering STEM (Science, Technology, Engineering, and Math) students with the mathematical skills necessary to be successful in their math courses and their ultimate field of study, and promoting the study and pursuit of well-rounded educations, including a broad understanding of STEM disciplines. The features in the text and MyLab Math course are tailored to prepare students for their next math course—often College Algebra—who have decided to major in STEM—or, for students who are undecided about their major, but have an interest in STEM, and are also likely College Algebra bound.

Features that foster the STEM Approach include

Applying Skills and Problem Solving

Problem solving is a skill that is required daily in the real world, in mathematics, and definitely in STEM fields. Based on George Polya’s 1945 publication, How to Solve It, which helped shape the mathematical problem solving methods used today, George Woodbury presents a six-step problem-solving strategy in Chapter 1 that lays the foundation for solving applied problems. He then expands on this problem-solving strategy throughout the text by incorporating hundreds of applied problems on topics such as motion, geometry, and mixture problems. Interesting themes in the applied problems include many STEM topics, and also other topics such as investing and saving money, understanding sports statistics, landscaping, home ownership, and cell phone usage.

Heading Toward College Algebra

Most STEM-bound majors will move from this course into College Algebra or Precalculus. To motivate and inspire students to continue forward in mathematics, where applicable, George makes connections between topics that students are learning in Intermediate Algebra, and how those topics will be particularly relevant or taken further in their future math courses like College Algebra and Calculus. Instructors can
pick and choose from topics they enjoy, that they feel would also motivate their students. Many of these topics can be found in Heading Toward College Algebra, and George also provides a list in his Instructor’s Resource Manual + George Woodbury’s Guide to MyLab Math.

STEM-Labeled Material
Specific STEM applications and topics are called out with a STEM icon. This allows students to know exactly why they are learning the material and how it will be applied in future classes. Some sections have more than one STEM question set, showing the variety of uses in a similar problem. Again, instructors can pick and choose the topics they enjoy, that they feel would also motivate students. For specifics, check out Section 1.7—How Statistics is used in STEM—, Section 2.1—Using Data and Modeling—, and Section 3.4—Balancing Chemical Equations.

STEM Exercises and Applications
Homework exercises include STEM applications to show students that the mathematical topics they are learning in their math course will be highly relevant in future STEM courses.

STEM-Driven Topics
While many of George’s exercises bring in STEM-oriented applications, others focus on particular mathematical skills that are necessary for future STEM courses, such as Chemistry. George talked to many STEM instructors to land on the most relevant and necessary topics to include. In some cases, this means a special emphasis is placed on a topic, whereas in other cases, topics have actually been pulled into this course that you might not typically experience in Intermediate Algebra.

Motivate Students with STEM Careers and Industries
STEM Discipline & Career Spotlights
Each chapter highlights a specific STEM field, with a teaser about the field at the start of the chapter, and end-of-chapter infographics that highlight the field. This end-of-chapter feature includes discipline and career advice from experts in the field, with information about the STEM discipline and interesting facts about the field to motivate students and pique their interest. The experts provide advice and encourage students to persist and follow their path.

STEM
Gregor Mendel, an Austrian monk who came to be known as the father of modern genetics, found the same pattern as brown and blue eyes among the color of pea pods. Green alleles (G) are dominant to yellow alleles (g), and a plant can only have yellow pods if it is homozygous yellow (yy). When two heterozygous pea plants (Gg) are crossed, we would expect 3 out of every 4 offspring to have green pods.

47. If 200 plants are created by crossing two heterozygous pea plants, how many of them would we expect to have green pods? 150

48. If 168 plants are created by crossing two heterozygous pea plants, how many of them would we expect to have yellow pods? 42

STEM
In chemistry Avogadro’s number \(6.02 \times 10^{23}\) tells us how many atoms of an element are in 1 mole (mol) of that element, as well as how many molecules of a compound are in 1 mole of that compound.

Avogadro’s Number

There are \(6.02 \times 10^{23}\) atoms of an element in 1 mole of that element.

There are \(6.02 \times 10^{23}\) molecules of a compound in 1 mole of that compound.

This number can be used, along with molar mass (the mass of 1 mole), to convert from grams of an element or a compound to a number of atoms or molecules, or to convert a number of atoms (element) or molecules (compound) to a mass in grams. We will use a process like the one we used with dimensional analysis in Section 1.4.
STEM Spotlight videos in the MyLab Math course expand upon the in-text feature, and provide more insight into the disciplines and careers featured in the book, as well as captivate students’ interest with fun and interesting facts displayed in a dynamic way. Follow-up STEM Video Assessment Questions are available in MyLab Math so that instructors can easily assign a follow-up homework assignment to assess students completion and comprehension of the material and video. Additionally STEM Activities are available to assign in the student Guided Notebook for more involved projects and/or group work.

4.1 Integrated Review

1. Simplify a fraction to lowest terms.

In this section you need to be able to simplify a fraction to lowest terms when simplifying a fraction that also contains variable factors. To simplify a fraction to lowest terms, divide the numerator and denominator by their greatest common factor (GCF).

EXAMPLE

Simplify $\frac{21}{56}$ to lowest terms.

The GCF of 21 and 56 is 7, so divide the numerator and denominator by 7.

\[
\frac{21}{56} = \frac{21 \div 7}{56 \div 7} = \frac{3}{8}
\]

Review Exercises

Simplify to lowest terms.

1. $\frac{40}{120}$
2. $\frac{108}{156}$
3. $\frac{24}{8}$

2. Simplify exponents. (Section R.2)

In addition to understanding the meaning of an exponent, many of the problems in this section require that you are able to raise a numerical base to a given power. The exponent tells us how many times to use the base as a factor.

Address Under-Preparedness

Integrated Review

Because many institutions are trying to teach an accelerated STEM track and cover all “principles of algebra topics” in one course, and because many students often enter Intermediate Algebra needing a refresher of prerequisite skills, George has pulled in worked-out examples and practice exercises on key prerequisite skills for each section. The Integrated Review is featured in the text preceding each section where relevant, and also expanded upon in the MyLab Math course and the Guided Notebook. It provides students and instructors with resources to help students review and re-learn topics needed for particular sections and chapters.

[Contact Information]

pearson.com/mylab/math
Resources for Success

Get the Most Out of MyLab Math for *Intermediate Algebra: A STEM Approach* by George Woodbury

When it comes to developmental math, one size does not fit all. George Woodbury’s new Intermediate Algebra STEM-focused text offers market-leading content written by an author-educator, tightly integrated with the #1 choice in digital learning--MyLab Math. MyLab Math courses can be tailored to the needs of instructors and students, while weaving the author’s voice and unique approach into all elements of the course.

George Woodbury believes in empowering potential future STEM students with the mathematical skills necessary to be successful in both College Algebra and their ultimate field of study. With the resources available in George’s text and MyLab Math course, students are exposed to a variety of STEM fields and the growing demand for them, encouraged to succeed in math in order to pursue a STEM program, and motivated to believe that any student can achieve a successful career in STEM.

Take advantage of the following resources to get the most out of your MyLab Math course.

Motivate Students through STEM

STEM Spotlight videos
The STEM Spotlights from the text are brought to life in these videos, which showcase the variety of careers that STEM programs of study open up for students. Each Spotlight video features industry- and discipline-specific professionals who explain their career path, provide advice and encouragement, and demonstrate how success in math allowed them to pursue their field, and above all conveys that students of any background can and should pursue STEM fields.

STEM Video Assessment Questions
George has also created follow-up questions to the videos so that instructors can easily assign a follow-up homework assignment to assess students completion and comprehension of the material and video.

[pearson.com/mylab/math]
Support Conceptual and Skill Development

Instructional videos throughout the course and eText—including more than 3,000 Conceptual, Example, and Quick Check videos—bring George Woodbury’s teaching methods directly to the student, no matter where they are. All videos are created by George for a consistent tone and approach as they walk students step-by-step through examples and concepts from every section in the text, and incorporate George’s Discover, Engage, Reflect pedagogy. Videos can be played on any device and offer a modern interface with intuitive navigation.

Personalize Learning

Skill Builder exercises offer just-in-time additional adaptive practice. The adaptive engine tracks student performance and delivers questions to each individual that adapt to his or her level of understanding. This new feature allows instructors to assign fewer questions for homework, allowing students to complete as many or as few questions needed.

Create Your Course More Easily

Enhanced Sample Assignments make course set-up easier by giving instructors a starting point for each section and chapter. Homework assignments have been carefully curated for this specific text, and includes a thoughtful mix of question types. Find these sample assignments in the Assignment Manager, under Copy and Assign Sample Assignments.

pearson.com/mylab/math
Resources for Success

Instructor Resources

The following instructor resources are available to download from the Instructor Resource Center at www.pearson.com, or in your MyLab Math course.

This is a two part instructor’s supplement. The first part contains instructor resources to accompany the text, including practice chapter tests and final exams with answers, and teaching notes for each section of the text. The second part includes George Woodbury’s Guide to MyLab Math, where George shares implementation tips for setting up homework in MLM, ideas for incorporating videos, ideas for using the Discover, Engage, Reflect pedagogy, and much more!

Instructor’s Solutions Manual

This manual includes complete solutions to the even-numbered exercises in the homework sections of the text.

PowerPoints

These fully editable lecture slides include definitions, key concepts, and examples for use in a lecture setting and are available for each section of the text.

TestGen

TestGen® (www.pearsoned.com/testgen) enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text. TestGen is algorithmically based, allowing instructors to create multiple but equivalent versions of the same question or test with the click of a button. Instructors can also modify test bank questions or add new questions. The software and test bank are available for download from Pearson’s Instructor Resource Center.

Student Resources

Guided Notebook with STEM Activities and Integrated Review

For each section of the text the Guided Notebook is available to point students to useful videos associated with the section objectives, to provide extra practice problems, and to give students a place to take notes and stay organized throughout the course. Additionally, there are STEM activities that can be used in conjunction with the STEM Discipline & Career Spotlight videos and text, and additional review practice problems to expound on the integrated review that is incorporated in the text.

Student’s Solutions Manual

This manual contains the complete solutions to the odd-numbered section-level exercises in the text.

pearson.com/mylab/math
Acknowledgments

Writing a textbook is truly a team effort, and I owe a debt of gratitude to my team. My editor Rachel Ross first approached me with the idea for a textbook to help students who are on a STEM track, and it was a great idea! She is a great advocate for student learning, and I appreciate all the support that she, Chris Hoag, and Michael Hirsch have given me. My project manager, Lauren Morse, and Julie Kidd from SPI Global did their best to keep me organized and I could not have navigated this maze without them. Lauren was one of the first people I met at Pearson fifteen years ago, and I have a great deal of respect for her and all she has done for me throughout the years. Alicia Frankel provided valuable advice on the Integrated Review and STEM Spotlights, and I appreciate all of her help. Shannon Bushee and Hanna Lafferty were very supportive when it came time to brainstorm about the STEM Spotlights, helped to track down people to interview, and proofread my rough manuscript pages. The STEM Spotlight feature is definitely better because of their help. Finally, I am so thankful to Erin Carreiro, Media Producer, for all her help with finding the best format for the STEM Spotlight videos. I know that students will enjoy watching them.

A big thank you to Mark Tom and Jennifer Blue for their help with accuracy checking the book. They are the best at what they do, and a joy to work with!

I want to thank Jenny Crum (who took a chance on me at the very beginning of my author career) and Lauren Schur for their unwavering support, and for all of the information they passed along to me as we put this book together. Thanks also to Michelle Renda for all she has done for me—your confidence in me is inspiring! (I am the storm, Michelle.)

I also want to acknowledge all of the students who are working toward their educational goals and are striving to make the world a better place, as well as the instructors who put in all of the time and effort to help them reach their goals. I appreciate, and admire, all that you do.

Finally, I could not have written this book without the love and support of my wife, Tina, and our two children, Dylan and Alycia. They make everything possible and worthwhile. You may have noticed their names in problems throughout the book, and that is because they are always on my mind.

I want to dedicate this book to the memory of my late cousin Beth. She packed so much living into her life, which ended far too soon. We all love and miss her so much, and do our best to keep her spirit alive in our thoughts and actions.