SEVENTH EDITION

Using Multivariate Statistics

Barbara G. Tabachnick
California State University, Northridge

Linda S. Fidell
California State University, Northridge

Pearson

330 Hudson Street, NY NY 10013
Acknowledgments of third party content appear on pages within the text, which constitutes an extension of this copyright page.

Copyright © 2019, 2013, 2007 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

PEARSON and ALWAYS LEARNING are exclusive trademarks owned by Pearson Education, Inc. or its affiliates, in the U.S., and/or other countries.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson’s products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
Title: Using multivariate statistics/Barbara G. Tabachnick, California State University, Northridge, Linda S. Fidell, California State University, Northridge.
Classification: LCC QA278 .T3 2019 | DDC 519.5/35—dc23
LC record available at https://lccn.loc.gov/2017040173
5 Multiple Regression

5.1 General Purpose and Description 99
5.2 Kinds of Research Questions 101
 5.2.1 Degree of Relationship 101
 5.2.2 Importance of IVs 102
 5.2.3 Adding IVs 102
 5.2.4 Changing IVs 102
 5.2.5 Contingencies Among IVs 102
 5.2.6 Comparing Sets of IVs 102
 5.2.7 Predicting DV Scores for Members of a New Sample 103
 5.2.8 Parameter Estimates 103
5.3 Limitations to Regression Analyses 103
 5.3.1 Theoretical Issues 103
 5.3.2 Practical Issues 104
 5.3.2.1 Ratio of Cases to IVs 105
 5.3.2.2 Absence of Outliers Among the IVs and on the DV 105
 5.3.2.3 Absence of Multicollinearity and Singularity 106
 5.3.2.4 Normality, Linearity, and Homoscedasticity of Residuals 106
 5.3.2.5 Independence of Errors 108
 5.3.2.6 Absence of Outliers in the Solution 109
5.4 Fundamental Equations for Multiple Regression 109
 5.4.1 General Linear Equations 110
 5.4.2 Matrix Equations 111
 5.4.3 Computer Analyses of Small-Sample Example 113
5.5 Major Types of Multiple Regression 115
 5.5.1 Standard Multiple Regression 115
 5.5.2 Sequential Multiple Regression 116
 5.5.3 Statistical (Stepwise) Regression 117
 5.5.4 Choosing Among Regression Strategies 121
5.6 Some Important Issues 121
 5.6.1 Importance of IVs 121
 5.6.1.1 Standard Multiple Regression 122
 5.6.1.2 Sequential or Statistical Regression 123
 5.6.1.3 Commonality Analysis 123
 5.6.1.4 Relative Importance Analysis 125
 5.6.2 Statistical Inference 128
 5.6.2.1 Test for Multiple R 128
 5.6.2.2 Test of Regression Components 129
 5.6.2.3 Test of Added Subset of IVs 130
 5.6.2.4 Confidence Limits 130
 5.6.2.5 Comparing Two Sets of Predictors 131
 5.6.3 Adjustment of \(R^2 \) 132
 5.6.4 Suppressor Variables 133
 5.6.5 Regression Approach to ANOVA 134
 5.6.6 Centering When Interactions and Powers of IVs Are Included 135
 5.6.7 Mediation in IVs 137
6 Analysis of Covariance 167
6.1 General Purpose and Description 167
6.2 Kinds of Research Questions 170
6.3 Limitations to Analysis of Covariance 171
6.4 Fundamental Equations for Analysis of Covariance 174
6.5 Some Important Issues 179
6.6 Complete Example of Analysis of Covariance 189
6.7 Comparison of Programs 200
6.8 Comparison of Programs 162
6.8.1 IBM SPSS Package 163
6.8.2 SAS System 165
6.8.3 SYSTAT System 166
7 Multivariate Analysis of Variance and Covariance 203
7.1 General Purpose and Description 203
7.2 Kinds of Research Questions 206
7.3 Limitations to Multivariate Analysis of Variance and Covariance 208
7.4 Fundamental Equations for Multivariate Analysis of Covariance and Variance 212
10 Logistic Regression 346
 10.1 General Purpose and Description 346
 10.2 Kinds of Research Questions 348
 10.2.1 Prediction of Group Membership or Outcome 348
 10.2.2 Importance of Predictors 348
 10.2.3 Interactions Among Predictors 349
 10.2.4 Parameter Estimates 349
 10.2.5 Classification of Cases 349
 10.2.6 Significance of Prediction with Covariates 349
 10.2.7 Effect Size 349
 10.3 Limitations to Logistic Regression Analysis 350
 10.3.1 Theoretical Issues 350
 10.3.2 Practical Issues 350
 10.3.2.1 Ratio of Cases to Variables 350
 10.3.2.2 Adequacy of Expected Frequencies and Power 351
 10.3.2.3 Linearity in the Logit 351
 10.3.2.4 Absence of Multicollinearity 351
 10.3.2.5 Absence of Outliers in the Solution 351
 10.3.2.6 Independence of Errors 352
 10.4 Fundamental Equations for Logistic Regression 352
 10.4.1 Testing and Interpreting Coefficients 353
 10.4.2 Goodness of Fit 354
 10.4.3 Comparing Models 355
 10.4.4 Interpretation and Analysis of Residuals 355
 10.4.5 Computer Analyses of Small-Sample Example 356
 10.5 Types of Logistic Regression 360
 10.5.1 Direct Logistic Regression 360
 10.5.2 Sequential Logistic Regression 360
 10.5.3 Statistical (Stepwise) Logistic Regression 362
 10.5.4 Probit and Other Analyses 362
 10.6 Some Important Issues 363
 10.6.1 Statistical Inference 363
 10.6.1.1 Assessing Goodness of Fit of Models 363
 10.6.1.2 Tests of Individual Predictors 365
 10.6.2 Effect Sizes 365
 10.6.2.1 Effect Size for a Model 365
 10.6.2.2 Effect Sizes for Predictors 366
 10.6.3 Interpretation of Coefficients Using Odds 367
 10.6.4 Coding Outcome and Predictor Categories 368
 10.6.5 Number and Type of Outcome Categories 369
 10.6.6 Classification of Cases 372
 10.6.7 Hierarchical and Nonhierarchical Analysis 372
10.6.8 Importance of Predictors 373
10.6.9 Logistic Regression for Matched Groups 374
10.7 Complete Examples of Logistic Regression 374
10.7.1 Evaluation of Limitations 374
10.7.1.1 Ratio of Cases to Variables and Missing Data 374
10.7.1.2 Multicollinearity 376
10.7.1.3 Outliers in the Solution 376
10.7.2 Direct Logistic Regression with Two-Category Outcome and Continuous Predictors 377
10.7.2.1 Limitation: Linearity in the Logit 377
10.7.2.2 Direct Logistic Regression with Two-Category Outcome 377
10.7.3 Sequential Logistic Regression with Three Categories of Outcome 384
10.7.3.1 Limitations of Multinomial Logistic Regression 384
10.7.3.2 Sequential Multinomial Logistic Regression 387
10.8 Comparison of Programs 396
10.8.1 IBM SPSS Package 396
10.8.2 SAS System 399
10.8.3 SYSTAT System 400

11 Survival/Failure Analysis 401
11.1 General Purpose and Description 401
11.2 Kinds of Research Questions 403
11.2.1 Proportions Surviving at Various Times 403
11.2.2 Group Differences in Survival 403
11.2.3 Survival Time with Covariates 403
11.2.3.1 Treatment Effects 403
11.2.3.2 Importance of Covariates 403
11.2.3.3 Parameter Estimates 404
11.2.3.4 Contingencies Among Covariates 404
11.2.3.5 Effect Size and Power 404
11.3 Limitations to Survival Analysis 404
11.3.1 Theoretical Issues 404
11.3.2 Practical Issues 404
11.3.2.1 Sample Size and Missing Data 404
11.3.2.2 Normality of Sampling Distributions, Linearity, and Homoscedasticity 405
11.3.2.3 Absence of Outliers 405
11.3.2.4 Differences Between Withdrawn and Remaining Cases 405
11.3.2.5 Change in Survival Conditions over Time 405
11.3.2.6 Proportionality of Hazards 405
11.3.2.7 Absence of Multicollinearity 405
11.4 Fundamental Equations for Survival Analysis 405
11.4.1 Life Tables 406
11.4.2 Standard Error of Cumulative Proportion Surviving 408
11.4.3 Hazard and Density Functions 408
11.4.4 Plot of Life Tables 409
11.4.5 Test for Group Differences 410
11.4.6 Computer Analyses of Small-Sample Example 411
11.5 Types of Survival Analyses 415
11.5.1 Actuarial and Product-Limit Life Tables and Survivor Functions 415
11.5.2 Prediction of Group Survival Times from Covariates 417
11.5.2.1 Direct, Sequential, and Statistical Analysis 417
11.5.2.2 Cox Proportional-Hazards Model 417
11.5.2.3 Accelerated Failure-Time Models 419
11.5.2.4 Choosing a Method 423
11.6 Some Important Issues 423
11.6.1 Proportionality of Hazards 423
11.6.2 Censored Data 424
11.6.2.1 Right-Censored Data 425
11.6.2.2 Other Forms of Censoring 425
11.6.3 Effect Size and Power 425
11.6.4 Statistical Criteria 426
11.6.4.1 Test Statistics for Group Differences in Survival Functions 426
11.6.4.2 Test Statistics for Prediction from Covariates 427
11.6.5 Predicting Survival Rate 427
11.6.5.1 Regression Coefficients (Parameter Estimates) 427
11.6.5.2 Hazard Ratios 427
11.6.5.3 Expected Survival Rates 428
11.7 Complete Example of Survival Analysis 429
11.7.1 Evaluation of Assumptions 430
11.7.1.1 Accuracy of Input, Adequacy of Sample Size, Missing Data, and Distributions 430
11.7.1.2 Outliers 430
11.7.1.3 Differences Between Withdrawn and Remaining Cases 433
11.7.1.4 Change in Survival Experience over Time 433
11.7.1.5 Proportionality of Hazards 433
11.7.1.6 Multicollinearity 434
11.7.2 Cox Regression Survival Analysis 436
11.7.2.1 Effect of Drug Treatment 436
11.7.2.2 Evaluation of Other Covariates 436
11.8 Comparison of Programs 440
11.8.1 SAS System 444
11.8.2 IBM SPSS Package 445
11.8.3 SYSTAT System 445

12 Canonical Correlation 446
12.1 General Purpose and Description 446
12.2 Kinds of Research Questions 448
12.2.1 Number of Canonical Variate Pairs 448
12.2.2 Interpretation of Canonical Variates 448
12.2.3 Importance of Canonical Variates and Predictors 448
12.2.4 Canonical Variate Scores 449

12.3 Limitations 449
12.3.1 Theoretical Limitations 449
12.3.2 Practical Issues 450
12.3.2.1 Ratio of Cases to IVs 450
12.3.2.2 Normality, Linearity, and Homoscedasticity 450
12.3.2.3 Missing Data 451
12.3.2.4 Absence of Outliers 451
12.3.2.5 Absence of Multicollinearity and Singularity 451

12.4 Fundamental Equations for Canonical Correlation 451
12.4.1 Eigenvalues and Eigenvectors 452
12.4.2 Matrix Equations 454
12.4.3 Proportions of Variance Extracted 457
12.4.4 Computer Analyses of Small-Sample Example 458

12.5 Some Important Issues 462
12.5.1 Importance of Canonical Variates 462
12.5.2 Interpretation of Canonical Variates 463

12.6 Complete Example of Canonical Correlation 463
12.6.1 Evaluation of Assumptions 463
12.6.1.1 Missing Data 463
12.6.1.2 Normality, Linearity, and Homoscedasticity 463
12.6.1.3 Outliers 466
12.6.1.4 Multicollinearity and Singularity 467
12.6.2 Canonical Correlation 467

12.7 Comparison of Programs 473
12.7.1 SAS System 473
12.7.2 IBM SPSS Package 474
12.7.3 SYSTAT System 475

13 Principal Components and Factor Analysis 476
13.1 General Purpose and Description 476
13.2 Kinds of Research Questions 479
13.2.1 Number of Factors 479
13.2.2 Nature of Factors 479
13.2.3 Importance of Solutions and Factors 480
13.2.4 Testing Theory in FA 480
13.2.5 Estimating Scores on Factors 480

13.3 Limitations 480
13.3.1 Theoretical Issues 480
13.3.2 Practical Issues 481
13.3.2.1 Sample Size and Missing Data 481
13.3.2.2 Normality 482
13.3.2.3 Linearity 482
13.3.2.4 Absence of Outliers Among Cases 482
13.3.2.5 Absence of Multicollinearity and Singularity 482
13.3.2.6 Factorability of R 482
13.3.2.7 Absence of Outliers Among Variables 483

13.4 Fundamental Equations for Factor Analysis 483
13.4.1 Extraction 485
13.4.2 Orthogonal Rotation 487
13.4.3 Communalities, Variance, and Covariance 488
13.4.4 Factor Scores 489
13.4.5 Oblique Rotation 491
13.4.6 Computer Analyses of Small-Sample Example 493

13.5 Major Types of Factor Analyses 496
13.5.1 Factor Extraction Techniques 496
13.5.1.1 PCA Versus FA 496
13.5.1.2 Principal Components 498
13.5.1.3 Principal Factors 498
13.5.1.4 Image Factor Extraction 498
13.5.1.5 Maximum Likelihood Factor Extraction 499
13.5.1.6 Unweighted Least Squares Factoring 499
13.5.1.7 Generalized (Weighted) Least Squares Factoring 499
13.5.1.8 Alpha Factoring 499
13.5.2 Rotation 500
13.5.2.1 Orthogonal Rotation 500
13.5.2.2 Oblique Rotation 501
13.5.2.3 Geometric Interpretation 502
13.5.3 Some Practical Recommendations 503

13.6 Some Important Issues 504
13.6.1 Estimates of Communals 504
13.6.2 Adequacy of Extraction and Number of Factors 504
13.6.3 Adequacy of Rotation and Simple Structure 507
13.6.4 Importance and Internal Consistency of Factors 508
13.6.5 Interpretation of Factors 509
13.6.6 Factor Scores 510
13.6.7 Comparisons Among Solutions and Groups 511

13.7 Complete Example of FA 511
13.7.1 Evaluation of Limitations 511
13.7.1.1 Sample Size and Missing Data 512
13.7.1.2 Normality 512
13.7.1.3 Linearity 512
13.7.1.4 Outliers 513
13.7.1.5 Multicollinearity and Singularity 514
13.7.1.6 Factorability of R 514
13.7.1.7 Outliers Among Variables 515
13.7.2 Principal Factors Extraction with Varimax Rotation 515
14 Structural Equation Modeling by Jodie B. Ullman 528

14.1 General Purpose and Description 528
14.2 Kinds of Research Questions 531
14.2.1 Adequacy of the Model 531
14.2.2 Testing Theory 531
14.2.3 Amount of Variance in the Variables Accounted for by the Factors 532
14.2.4 Reliability of the Indicators 532
14.2.5 Parameter Estimates 532
14.2.6 Intervening Variables 532
14.2.7 Group Differences 532
14.2.8 Longitudinal Differences 532
14.2.9 Multilevel Modeling 533
14.2.10 Latent Class Analysis 533
14.3 Limitations to Structural Equation Modeling 533
14.3.1 Theoretical Issues 533
14.3.2 Practical Issues 534
14.3.2.1 Sample Size and Missing Data 534
14.3.2.2 Multivariate Normality and Outliers 534
14.3.2.3 Linearity 534
14.3.2.4 Absence of Multicollinearity and Singularity 535
14.3.2.5 Residuals 535
14.4 Fundamental Equations for Structural Equations Modeling 535
14.4.1 Covariance Algebra 535
14.4.2 Model Hypotheses 537
14.4.3 Model Specification 538
14.4.4 Model Estimation 540
14.4.5 Model Evaluation 543
14.4.6 Computer Analysis of Small-Sample Example 545
14.5 Some Important Issues 555
14.5.1 Model Identification 555
14.5.2 Estimation Techniques 557
14.5.2.1 Estimation Methods and Sample Size 559
14.5.2.2 Estimation Methods and Nonnormality 559
14.5.2.3 Estimation Methods and Dependence 559
14.5.2.4 Some Recommendations for Choice of Estimation Method 560
14.5.3 Assessing the Fit of the Model 560
14.5.3.1 Comparative Fit Indices 560
14.5.3.2 Absolute Fit Index 562
14.5.3.3 Indices of Proportion of Variance Accounted 562
14.5.3.4 Degree of Parsimony Fit Indices 563
14.5.3.5 Residual-Based Fit Indices 563
14.5.3.6 Choosing Among Fit Indices 564
14.5.4 Model Modification 564
14.5.4.1 Chi-Square Difference Test 564
14.5.4.2 Lagrange Multiplier (LM) Test 565
14.5.4.3 Wald Test 569
14.5.4.4 Some Caveats and Hints on Model Modification 570
14.5.5 Reliability and Proportion of Variance 570
14.5.6 Discrete and Ordinal Data 571
14.5.7 Multiple Group Models 572
14.5.8 Mean and Covariance Structure Models 573
14.6 Complete Examples of Structural Equation Modeling Analysis 574
14.6.1 Confirmatory Factor Analysis of the WISC 574
14.6.1.1 Model Specification for CFA 574
14.6.1.2 Evaluation of Assumptions for CFA 574
14.6.1.3 CFA Model Estimation and Preliminary Evaluation 576
14.6.1.4 Model Modification 583
14.6.2 SEM of Health Data 589
14.6.2.1 SEM Model Specification 589
14.6.2.2 Evaluation of Assumptions for SEM 591
14.6.2.3 SEM Model Estimation and Preliminary Evaluation 593
14.6.2.4 Model Modification 596
14.7 Comparison of Programs 607
14.7.1 EQS 607
14.7.2 LISREL 607
14.7.3 AMOS 612
14.7.4 SAS System 612

15 Multilevel Linear Modeling 613

15.1 General Purpose and Description 613
15.2 Kinds of Research Questions 616
15.2.1 Group Differences in Means 616
15.2.2 Group Differences in Slopes 616
15.2.3 Cross-Level Interactions 616
15.2.4 Meta-Analysis 616
15.2.5 Relative Strength of Predictors at Various Levels 617
15.2.6 Individual and Group Structure 617
15.2.7 Effect Size 617
15.2.8 Path Analysis at Individual and Group Levels 617
15.2.9 Analysis of Longitudinal Data 617
15.2.10 Multilevel Logistic Regression 618
15.2.11 Multiple Response Analysis 618
15.3 Limitations to Multilevel Linear Modeling 618
 15.3.1 Theoretical Issues 618
 15.3.2 Practical Issues 618
 15.3.2.1 Sample Size, Unequal-n, and Missing Data 619
 15.3.2.2 Independence of Errors 619
 15.3.2.3 Absence of Multicollinearity and Singularity 620

15.4 Fundamental Equations 620
 15.4.1 Intercepts-Only Model 623
 15.4.1.1 The Intercepts-Only Model: Level-1 Equation 623
 15.4.1.2 The Intercepts-Only Model: Level-2 Equation 623
 15.4.1.3 Computer Analyses of Intercepts-Only Model 624
 15.4.2 Model with a First-Level Predictor 627
 15.4.2.1 Level-1 Equation for a Model with a Level-1 Predictor 627
 15.4.2.2 Level-2 Equations for a Model with a Level-1 Predictor 628
 15.4.2.3 Computer Analysis of a Model with a Level-1 Predictor 630
 15.4.3 Model with Predictors at First and Second Levels 633
 15.4.3.1 Level-1 Equation for a Model with Predictors at Both Levels 633
 15.4.3.2 Level-2 Equations for a Model with Predictors at Both Levels 633
 15.4.3.3 Computer Analyses of Model with Predictors at First and Second Levels 634

15.5 Types of MLM 638
 15.5.1 Repeated Measures 638
 15.5.2 Higher-Order MLM 642
 15.5.3 Latent Variables 642
 15.5.4 Nonnormal Outcome Variables 643
 15.5.5 Multiple Response Models 644

15.6 Some Important Issues 644
 15.6.1 Intraclass Correlation 644
 15.6.2 Centering Predictors and Changes in Their Interpretations 646
 15.6.3 Interactions 648
 15.6.4 Random and Fixed Intercepts and Slopes 648
 15.6.5 Statistical Inference 651
 15.6.5.1 Assessing Models 651
 15.6.5.2 Tests of Individual Effects 652
 15.6.6 Effect Size 653
 15.6.7 Estimation Techniques and Convergence Problems 653
 15.6.8 Exploratory Model Building 654

15.7 Complete Example of MLM 655
 15.7.1 Evaluation of Assumptions 656
 15.7.1.1 Sample Sizes, Missing Data, and Distributions 656
 15.7.1.2 Outliers 659
 15.7.1.3 Multicollinearity and Singularity 659
 15.7.1.4 Independence of Errors: Intraclass Correlations 659
 15.7.2 Multilevel Modeling 661

15.8 Comparison of Programs 668
 15.8.1 SAS System 668
 15.8.2 IBM SPSS Package 670
 15.8.3 HLM Program 671
 15.8.4 MLwiN Program 671
 15.8.5 SYSTAT System 671

16 Multiway Frequency Analysis 672
 16.1 General Purpose and Description 672
 16.2 Kinds of Research Questions 673
 16.2.1 Associations Among Variables 673
 16.2.2 Effect on a Dependent Variable 674
 16.2.3 Parameter Estimates 674
 16.2.4 Importance of Effects 674
 16.2.5 Effect Size 674
 16.2.6 Specific Comparisons and Trend Analysis 674
 16.3 Limitations to Multiway Frequency Analysis 675
 16.3.1 Theoretical Issues 675
 16.3.2 Practical Issues 675
 16.3.2.1 Independence 675
 16.3.2.2 Ratio of Cases to Variables 675
 16.3.2.3 Adequacy of Expected Frequencies 675
 16.3.2.4 Absence of Outliers in the Solution 676
 16.4 Fundamental Equations for Multiway Frequency Analysis 676
 16.4.1 Screening for Effects 678
 16.4.1.1 Total Effect 678
 16.4.1.2 First-Order Effects 679
 16.4.1.3 Second-Order Effects 679
 16.4.1.4 Third-Order Effect 683
 16.4.2 Modeling 683
 16.4.3 Evaluation and Interpretation 685
 16.4.3.1 Residuals 685
 16.4.3.2 Parameter Estimates 686
 16.4.4 Computer Analyses of Small-Sample Example 690
 16.5 Some Important Issues 695
 16.5.1 Hierarchical and Nonhierarchical Models 695
 16.5.2 Statistical Criteria 696
 16.5.2.1 Tests of Models 696
 16.5.2.2 Tests of Individual Effects 696
 16.5.3 Strategies for Choosing a Model 696
 16.5.3.1 IBM SPSS HILOGLINEAR (Hierarchical) 697
16.5.3.2 IBM SPSS GENLOG (General Log-Linear) 697
16.5.3.3 SAS CATMOD and IBM SPSS LOGLINEAR (General Log-Linear) 697

16.6 Complete Example of Multiway Frequency Analysis 698
16.6.1 Evaluation of Assumptions: Adequacy of Expected Frequencies 698
16.6.2 Hierarchical Log-Linear Analysis 700
16.6.2.1 Preliminary Model Screening 700
16.6.2.2 Stepwise Model Selection 702
16.6.2.3 Adequacy of Fit 702
16.6.2.4 Interpretation of the Selected Model 705

16.7 Comparison of Programs 710
16.7.1 IBM SPSS Package 710
16.7.2 SAS System 712
16.7.3 SYSTAT System 713

17 Time-Series Analysis 714
17.1 General Purpose and Description 714

17.2 Kinds of Research Questions 716
17.2.1 Pattern of Autocorrelation 717
17.2.2 Seasonal Cycles and Trends 717
17.2.3 Forecasting 717
17.2.4 Effect of an Intervention 718
17.2.5 Comparing Time Series 718
17.2.6 Time Series with Covariates 718
17.2.7 Effect Size and Power 718

17.3 Assumptions of Time-Series Analysis 718
17.3.1 Theoretical Issues 718
17.3.2 Practical Issues 718
17.3.2.1 Normality of Distributions of Residuals 719
17.3.2.2 Homogeneity of Variance and Zero Mean of Residuals 719
17.3.2.3 Independence of Residuals 719
17.3.2.4 Absence of Outliers 719
17.3.2.5 Sample Size and Missing Data 719

17.4 Fundamental Equations for Time-Series ARIMA Models 720
17.4.1 Identification of ARIMA \((p,d,q)\) Models 720
17.4.1.1 Trend Components, \(d\): Making the Process Stationary 721
17.4.1.2 Auto-Regressive Components 722
17.4.1.3 Moving Average Components 724
17.4.1.4 Mixed Models 724
17.4.1.5 ACFs and PACFs 724
17.4.2 Estimating Model Parameters 729
17.4.3 Diagnosing a Model 729
17.4.4 Computer Analysis of Small-Sample Time-Series Example 734

17.5 Types of Time-Series Analyses 737
17.5.1 Models with Seasonal Components 737
17.5.2 Models with Interventions 738
17.5.2.1 Abrupt, Permanent Effects 741
17.5.2.2 Abrupt, Temporary Effects 742
17.5.2.3 Gradual, Permanent Effects 745
17.5.2.4 Models with Multiple Interventions 746
17.5.3 Adding Continuous Variables 747

17.6 Some Important Issues 748
17.6.1 Patterns of ACFs and PACFs 748
17.6.2 Effect Size 751
17.6.3 Forecasting 752
17.6.4 Statistical Methods for Comparing Two Models 752

17.7 Complete Examples of Time-Series Analysis 753
17.7.1 Time-Series Analysis of Introduction of Seat Belt Law 753
17.7.1.1 Evaluation of Assumptions 754
17.7.1.2 Baseline Model Identification and Estimation 755
17.7.1.3 Baseline Model Diagnosis 758
17.7.1.4 Intervention Analysis 758
17.7.2 Time-Series Analysis of Introduction of a Dashboard to an Educational Computer Game 762
17.7.2.1 Evaluation of Assumptions 763
17.7.2.2 Baseline Model Identification and Diagnosis 765
17.7.2.3 Intervention Analysis 766

17.8 Comparison of Programs 771
17.8.1 IBM SPSS Package 771
17.8.2 SAS System 774
17.8.3 SYSTAT System 774

18 An Overview of the General Linear Model 775
18.1 Linearity and the General Linear Model 775
18.2 Bivariate to Multivariate Statistics and Overview of Techniques 775
18.2.1 Bivariate Form 775
18.2.2 Simple Multivariate Form 777
18.2.3 Full Multivariate Form 778
18.3 Alternative Research Strategies 782

Appendix A
A Skimpy Introduction to Matrix Algebra 783
A.1 The Trace of a Matrix 784
A.2 Addition or Subtraction of a Constant to a Matrix 784
A.3 Multiplication or Division of a Matrix by a Constant 784
A.4 Addition and Subtraction of Two Matrices 785
A.5 Multiplication, Transposes, and Square Roots of Matrix 785
Appendix B
Research Designs for Complete Examples

B.1 Women’s Health and Drug Study 791
B.2 Sexual Attraction Study 793
B.3 Learning Disabilities Data Bank 794
B.4 Reaction Time to Identify Figures 794
B.5 Field Studies of Noise-Induced Sleep Disturbance 795
B.6 Clinical Trial for Primary Biliary Cirrhosis 795

Appendix C
Statistical Tables

C.1 Normal Curve Areas 798
C.2 Critical Values of the t Distribution for $\alpha = .05$ and .01, Two-Tailed Test 799
C.3 Critical Values of the F Distribution 800
C.4 Critical Values of Chi Square (χ^2) 804
C.5 Critical Values for Squares Multiple Correlation (R^2) in Forward Stepwise Selection: $\alpha = .05$ 805
C.6 Critical Values for $F_{\text{MAX}} (S_{\text{MAX}}^2 / S_{\text{MIN}}^2)$ Distribution for $\alpha = .05$ and .01 807

References 808
Index 815
Preface

Some good things seem to go on forever: friendship and updating this book. It is difficult to believe that the first edition manuscript was typewritten, with real cutting and pasting. The publisher required a paper manuscript with numbered pages—that was almost our downfall. We could write a book on multivariate statistics, but we couldn’t get the same number of pages (about 1200, double-spaced) twice in a row. SPSS was in release 9.0, and the other program we demonstrated was BMDP. There were a mere 11 chapters, of which 6 of them were describing techniques. Multilevel and structural equation modeling were not yet ready for prime time. Logistic regression and survival analysis were not yet popular.

Material new to this edition includes a redo of all SAS examples, with a pretty new output format and replacement of interactive analyses that are no longer available. We’ve also re-run the IBM SPSS examples to show the new output format. We’ve tried to update the references in all chapters, including only classic citations if they date prior to 2000. New work on relative importance has been incorporated in multiple regression, canonical correlation, and logistic regression analysis—complete with demonstrations. Multiple imputation procedures for dealing with missing data have been updated, and we’ve added a new time-series example, taking advantage of an IBM SPSS expert modeler that replaces previous tea-leaf reading aspects of the analysis.

Our goals in writing the book remain the same as in all previous editions—to present complex statistical procedures in a way that is maximally useful and accessible to researchers who are not necessarily statisticians. We strive to be short on theory but long on conceptual understanding. The statistical packages have become increasingly easy to use, making it all the more critical to make sure that they are applied with a good understanding of what they can and cannot do. But above all else—what does it all mean?

We have not changed the basic format underlying all of the technique chapters, now 14 of them. We start with an overview of the technique, followed by the types of research questions the techniques are designed to answer. We then provide the cautionary tale—what you need to worry about and how to deal with those worries. Then come the fundamental equations underlying the technique, which some readers truly enjoy working through (we know because they helpfully point out any errors and/or inconsistencies they find); but other readers discover they can skim (or skip) the section without any loss to their ability to conduct meaningful analysis of their research. The fundamental equations are in the context of a small, made-up, usually silly data set for which computer analyses are provided—usually IBM SPSS and SAS. Next, we delve into issues surrounding the technique (such as different types of the analysis, follow-up procedures to the main analysis, and effect size, if it is not amply covered elsewhere). Finally, we provide one or two full-bore analyses of an actual real-life data set together with a Results section appropriate for a journal. Data sets for these examples are available at www.pearsonhighered.com in IBM SPSS, SAS, and ASCII formats. We end each technique chapter with a comparison of features available in IBM SPSS, SAS, SYSTAT and sometimes other specialized programs. SYSTAT is a statistical package that we reluctantly had to drop a few editions ago for lack of space.

We apologize in advance for the heft of the book; it is not our intention to line the coffers of chiropractors, physical therapists, acupuncturists, and the like, but there’s really just so much to say. As to our friendship, it’s still going strong despite living in different cities. Art has taken the place of creating belly dance costumes for both of us, but we remain silly in outlook, although serious in our analysis of research.

The lineup of people to thank grows with each edition, far too extensive to list: students, reviewers, editors, and readers who send us corrections and point out areas of confusion. As always, we take full responsibility for remaining errors and lack of clarity.

Barbara G. Tabachnick
Linda S. Fidell