Starting Out with

Programming
Logic &
Design

Tony Gaddis
Haywood Community College

Pearson

Fifth Edition

330 Hudson Street, NY 10013
Brief Contents

Preface xiii
Acknowledgments xxi
About the Author xxiii

Chapter 1 Introduction to Computers and Programming 1
Chapter 2 Input, Processing, and Output 27
Chapter 3 Modules 103
Chapter 4 Decision Structures and Boolean Logic 157
Chapter 5 Repetition Structures 217
Chapter 6 Functions 283
Chapter 7 Input Validation 333
Chapter 8 Arrays 351
Chapter 9 Sorting and Searching Arrays 419
Chapter 10 Files 469
Chapter 11 Menu-Driven Programs 543
Chapter 12 Text Processing 595
Chapter 13 Recursion 623
Chapter 14 Object-Oriented Programming 649
Chapter 15 GUI Applications and Event-Driven Programming 715

Appendix A ASCII/Unicode Characters 747
Appendix B Flowchart Symbols 749
Appendix C Pseudocode Reference 751
Appendix D Converting Decimal Numbers to Binary 765
Appendix E Answers to Checkpoint Questions 767
Index 783
Contents

Preface xiii
Acknowledgments xxii
About the Author xxvii

Chapter 1
Introduction to Computers and Programming
1. Introduction. .. 1
1.2 Hardware. .. 2
1.3 How Computers Store Data. 7
1.4 How a Program Works 12
1.5 Types of Software .. 20
Review Questions ... 21

Chapter 2
Input, Processing, and Output 27
2.1 Designing a Program .. 27
2.2 Output, Input, and Variables. 34
2.3 Variable Assignment and Calculations 43
IN THE SPOTLIGHT: Calculating Cell Phone Overage Fees 47
IN THE SPOTLIGHT: Calculating a Percentage 49
IN THE SPOTLIGHT: Calculating an Average 52
IN THE SPOTLIGHT: Converting a Math Formula to a Programming Statement ... 55
2.4 Variable Declarations and Data Types 57
2.5 Named Constants .. 62
2.6 Hand Tracing a Program 64
2.7 Documenting a Program 65
IN THE SPOTLIGHT: Using Named Constants, Style Conventions, and Comments 66
2.8 Designing Your First Program. 68
2.9 Focus on Languages: Java, Python, and C++ 72
Review Questions ... 92
Debugging Exercises ... 97
Programming Exercises 98
Chapter 3 Modules 103

3.1 Introduction to Modules .. 103
3.2 Defining and Calling a Module ... 106
IN THE SPOTLIGHT: Defining and Calling Modules 112
3.3 Local Variables .. 117
3.4 Passing Arguments to Modules .. 120
IN THE SPOTLIGHT: Passing an Argument to a Module 124
IN THE SPOTLIGHT: Passing an Argument by Reference 130
3.5 Global Variables and Global Constants 133
IN THE SPOTLIGHT: Using Global Constants 134
3.6 Focus on Languages: Java, Python, and C++ 138
Review Questions .. 149
Debugging Exercises ... 153
Programming Exercises ... 154

Chapter 4 Decision Structures and Boolean Logic 157

4.1 Introduction to Decision Structures 157
IN THE SPOTLIGHT: Using the If-Then Statement 164
4.2 Dual Alternative Decision Structures 167
IN THE SPOTLIGHT: Using the If-Then-Else Statement 168
4.3 Comparing Strings ... 173
4.4 Nested Decision Structures ... 177
IN THE SPOTLIGHT: Multiple Nested Decision Structures 180
4.5 The Case Structure .. 184
IN THE SPOTLIGHT: Using a Case Structure 187
4.6 Logical Operators ... 189
4.7 Boolean Variables ... 196
4.8 Focus on Languages: Java, Python, and C++ 197
Review Questions .. 209
Debugging Exercises ... 213
Programming Exercises ... 213

Chapter 5 Repetition Structures 217

5.1 Introduction to Repetition Structures 217
5.2 Condition-Controlled Loops: While, Do-While, and Do-Until 218
IN THE SPOTLIGHT: Designing a While Loop 223
IN THE SPOTLIGHT: Designing a Do-While Loop 232
5.3 Count-Controlled Loops and the For Statement 237
IN THE SPOTLIGHT: Designing a Count-Controlled Loop with the For Statement ... 245
5.4 Calculating a Running Total ... 255
5.5 Sentinels ... 259
IN THE SPOTLIGHT: Using a Sentinel 260
5.6 Nested Loops ... 263
5.7 Focus on Languages: Java, Python, and C++ 266
Review Questions ... 275
Debugging Exercises .. 278
Programming Exercises .. 279

Chapter 6 Functions 283
6.1 Introduction to Functions: Generating Random Numbers 283
IN THE SPOTLIGHT: Using Random Numbers 287
IN THE SPOTLIGHT: Using Random Numbers to Represent Other Values 290
6.2 Writing Your Own Functions 292
IN THE SPOTLIGHT: Modularizing with Functions 298
6.3 More Library Functions ... 307
6.4 Focus on Languages: Java, Python, and C++ 317
Review Questions ... 324
Debugging Exercises .. 327
Programming Exercises .. 328

Chapter 7 Input Validation 333
7.1 Garbage In, Garbage Out 333
7.2 The Input Validation Loop 334
IN THE SPOTLIGHT: Designing an Input Validation Loop 336
7.3 Defensive Programming 341
7.4 Focus on Languages: Java, Python, and C++ 342
Review Questions ... 346
Debugging Exercises .. 348
Programming Exercises .. 349

Chapter 8 Arrays 351
8.1 Array Basics .. 351
IN THE SPOTLIGHT: Using Array Elements in a Math Expression 358
8.2 Sequentially Searching an Array 365
8.3 Processing the Contents of an Array 371
IN THE SPOTLIGHT: Processing an Array 378
8.4 Parallel Arrays .. 385
IN THE SPOTLIGHT: Using Parallel Arrays 386
8.5 Two-Dimensional Arrays 390
IN THE SPOTLIGHT: Using a Two-Dimensional Array 393
8.6 Arrays of Three or More Dimensions 398
Chapter 9 Sorting and Searching Arrays 419

9.1 The Bubble Sort Algorithm .. 419
IN THE SPOTLIGHT: Using the Bubble Sort Algorithm 426
9.2 The Selection Sort Algorithm 433
9.3 The Insertion Sort Algorithm 439
9.4 The Binary Search Algorithm 445
IN THE SPOTLIGHT: Using the Binary Search Algorithm 449
9.5 Focus on Languages: Java, Python, and C++ 451
Review Questions .. 464
Debugging Exercises ... 467
Programming Exercises ... 467

Chapter 10 Files 469

10.1 Introduction to File Input and Output 469
10.2 Using Loops to Process Files 481
IN THE SPOTLIGHT: Working with Files 486
10.3 Using Files and Arrays .. 490
10.4 Processing Records .. 491
IN THE SPOTLIGHT: Adding and Displaying Records 496
IN THE SPOTLIGHT: Searching for a Record 500
IN THE SPOTLIGHT: Modifying Records 502
IN THE SPOTLIGHT: Deleting Records 506
10.5 Control Break Logic ... 509
IN THE SPOTLIGHT: Using Control Break Logic 510
10.6 Focus on Languages: Java, Python, and C++ 516
Review Questions .. 536
Debugging Exercises ... 539
Programming Exercises ... 540

Chapter 11 Menu-Driven Programs 543

11.1 Introduction to Menu-Driven Programs 543
11.2 Modularizing a Menu-Driven Program 554
11.3 Using a Loop to Repeat the Menu 559
IN THE SPOTLIGHT: Designing a Menu-Driven Program 564
11.4 Multiple-Level Menus ... 578
11.5 Focus on Languages: Java, Python, and C++ 584
Chapter 12 **Text Processing** 595

12.1 Introduction 595
12.2 Character-by-Character Text Processing 597

IN THE SPOTLIGHT: Validating a Password .. 600
IN THE SPOTLIGHT: Formatting and Unformatting Telephone Numbers 606
12.3 Focus on Languages: Java, Python, and C++ 611
Review Questions .. 617
Debugging Exercises ... 619
Programming Exercises .. 620

Chapter 13 **Recursion** 623

13.1 Introduction to Recursion .. 623
13.2 Problem Solving with Recursion .. 626
13.3 Examples of Recursive Algorithms ... 630
13.4 Focus on Languages: Java, Python, and C++ 640
Review Questions .. 645
Programming Exercises .. 647

Chapter 14 **Object-Oriented Programming** 649

14.1 Procedural and Object-Oriented Programming 649
14.2 Classes .. 653
14.3 Using the Unified Modeling Language to Design Classes 664
14.4 Finding the Classes and Their Responsibilities in a Problem 667

IN THE SPOTLIGHT: Finding the Classes in a Problem 667
IN THE SPOTLIGHT: Determining Class Responsibilities 671
14.5 Inheritance .. 677
14.6 Polymorphism ... 685
14.7 Focus on Languages: Java, Python, and C++ 689
Review Questions .. 707
Programming Exercises .. 710

Chapter 15 **GUI Applications and Event-Driven Programming** 715

15.1 Graphical User Interfaces ... 715
15.2 Designing the User Interface for a GUI Program 718

IN THE SPOTLIGHT: Designing a Window 723
15.3 Writing Event Handlers ... 725
IN THE SPOTLIGHT: Designing an Event Handler 728
15.4 Designing Apps for Mobile Devices 731
15.5 Focus on Languages: Java, Python, and C++ 740
Review Questions ... 741
Programming Exercises .. 744

Appendix A ASCII/Unicode Characters 747
Appendix B Flowchart Symbols 749
Appendix C Pseudocode Reference 751
Appendix D Converting Decimal Numbers to Binary 765
Appendix E Answers to Checkpoint Questions 767

Index 783
Preface

Welcome to Starting Out with Programming Logic and Design, Fifth Edition. This book uses a language-independent approach to teach programming concepts and problem-solving skills, without assuming any previous programming experience. By using easy-to-understand pseudocode, flowcharts, and other tools, the student learns how to design the logic of programs without the complication of language syntax.

Fundamental topics such as data types, variables, input, output, control structures, modules, functions, arrays, and files are covered as well as object-oriented concepts, GUI development, and event-driven programming. As with all the books in the Starting Out With . . . series, this text is written in clear, easy-to-understand language that students find friendly and inviting.

Each chapter presents a multitude of program design examples. Short examples that highlight specific programming topics are provided, as well as more involved examples that focus on problem solving. Each chapter includes at least one In the Spotlight section that provides step-by-step analysis of a specific problem and demonstrates a solution to that problem.

This book is ideal for a programming logic course that is taught as a precursor to a language-specific introductory programming course, or for the first part of an introductory programming course in which a specific language is taught.

Changes in the Fifth Edition

This book’s pedagogy, organization, and clear writing style remain the same as in the previous edition. Many improvements have been made, which are summarized here:

- A new section titled Focus on Languages: Java, Python, and C++ appears at the end of Chapters 2–15. This section discusses how the chapter’s main topics are implemented in the Java, Python, and C++ programming languages. This section gives code snippet examples and complete programs in each of these languages. It is a valuable tool that students can use to learn the concepts of each chapter in one or more of these programming languages.
- A new section on the Init() module has been added to Chapter 15. This module is a startup module in a GUI application, similar to the start method in a JavaFX application, or the Form_Load handler in a Windows Forms application.
- A new section titled Designing Apps for Mobile Devices has been added to Chapter 15. This new section discusses some of the common issues developers face when designing apps for mobile devices. The student is also introduced to coding concepts related to a mobile device’s special hardware capabilities, such as sending and receiving text messages, making and receiving phone calls, and detecting the device’s location. Several pseudocode examples are given for a simulated smartphone.
New motivational programming exercises have been added to several chapters.
- The book’s Language Reference Guides have been updated. All of the book’s Language Reference Guides are available on the book’s resource site at: www.pearson.com/cs-resources.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming
This chapter begins by giving a concise and easy-to-understand explanation of how computers work, how data is stored and manipulated, and why we write programs in high-level languages.

Chapter 2: Input, Processing, and Output
This chapter introduces the program development cycle, data types, variables, and sequence structures. The student learns to use pseudocode and flowcharts to design simple programs that read input, perform mathematical operations, and produce screen output.

Chapter 3: Modules
This chapter demonstrates the benefits of modularizing programs and using the top-down design approach. The student learns to define and call modules, pass arguments to modules, and use local variables. Hierarchy charts are introduced as a design tool.

Chapter 4: Decision Structures and Boolean Logic
In this chapter students explore relational operators and Boolean expressions and are shown how to control the flow of a program with decision structures. The If-Then, If-Then-Else, and If-Then-Else If statements are covered. Nested decision structures, logical operators, and the case structure are also discussed.

Chapter 5: Repetition Structures
This chapter shows the student how to use loops to create repetition structures. The While, Do-While, Do-Until, and For loops are presented. Counters, accumulators, running totals, and sentinels are also discussed.

Chapter 6: Functions
This chapter begins by discussing common library functions, such as those for generating random numbers. After learning how to call library functions and how to use values returned by functions, the student learns how to define and call his or her own functions.

Chapter 7: Input Validation
This chapter discusses the importance of validating user input. The student learns to write input validation loops that serve as error traps. Defensive programming and the importance of anticipating obvious as well as unobvious errors is discussed.
Chapter 8: Arrays
In this chapter the student learns to create and work with one- and two-dimensional arrays. Many examples of array processing are provided including examples illustrating how to find the sum, average, and highest and lowest values in an array, and how to sum the rows, columns, and all elements of a two-dimensional array. Programming techniques using parallel arrays are also demonstrated.

Chapter 9: Sorting and Searching Arrays
In this chapter the student learns the basics of sorting arrays and searching for data stored in them. The chapter covers the bubble sort, selection sort, insertion sort, and binary search algorithms.

Chapter 10: Files
This chapter introduces sequential file input and output. The student learns to read and write large sets of data, store data as fields and records, and design programs that work with both files and arrays. The chapter concludes by discussing control break processing.

Chapter 11: Menu-Driven Programs
In this chapter the student learns to design programs that display menus and execute tasks according to the user’s menu selection. The importance of modularizing a menu-driven program is also discussed.

Chapter 12: Text Processing
This chapter discusses text processing at a detailed level. Algorithms that step through the individual characters in a string are discussed, and several common library functions for character and text processing are introduced.

Chapter 13: Recursion
This chapter discusses recursion and its use in problem solving. A visual trace of recursive calls is provided, and recursive applications are discussed. Recursive algorithms for many tasks are presented, such as finding factorials, finding a greatest common denominator (GCD), summing a range of values in an array, and performing a binary search. The classic Towers of Hanoi example is also presented.

Chapter 14: Object-Oriented Programming
This chapter compares procedural and object-oriented programming practices. It covers the fundamental concepts of classes and objects. Fields, methods, access specification, constructors, accessors, and mutators are discussed. The student learns how to model classes with UML and how to find the classes in a particular problem.

Chapter 15: GUI Applications and Event-Driven Programming
This chapter discusses the basic aspects of designing a GUI application. Building graphical user interfaces with visual design tools (such as Visual Studio® or NetBeans™) is discussed. The student learns how events work in a GUI application and how to write event handlers.
Appendix A: ASCII/Unicode Characters
This appendix lists the ASCII character set, which is the same as the first 127 Unicode character codes.

Appendix B: Flowchart Symbols
This appendix shows the flowchart symbols that are used in this book.

Appendix C: Pseudocode Reference
This appendix provides a quick reference for the pseudocode language that is used in the book.

Appendix D: Converting Decimal Numbers to Binary
This appendix uses a simple tutorial to demonstrate how to convert a decimal number to binary.

Appendix E: Answers to Checkpoint Questions
This appendix provides answers to the Checkpoint questions that appear throughout the text.

Organization of the Text
The text teaches programming logic and design in a step-by-step manner. Each chapter covers a major set of topics and builds knowledge as students progress through the book. Although the chapters can be easily taught in their existing sequence, there is some flexibility. Figure P-1 shows chapter dependencies. Each box represents a chapter or a group of chapters. A chapter to which an arrow points must be covered before the chapter from which the arrow originates. The dotted line indicates that only a portion of Chapter 10 depends on information presented in Chapter 8.

Features of the Text
- **Concept Statements.** Each major section of the text starts with a concept statement. This statement concisely summarizes the main point of the section.

- **Example Programs.** Each chapter has an abundant number of complete and partial example programs, each designed to highlight the current topic. Pseudocode, flowcharts, and other design tools are used in the example programs.

- **In the Spotlight.** Each chapter has one or more In the Spotlight case studies that provide detailed, step-by-step analysis of problems, and show the student how to solve them.
VideoNotes. A series of online videos, developed specifically for this book, are available for viewing at www.pearson.com/cs-resources. Icons appear throughout the text alerting the student to videos about specific topics.

NOTE: Notes appear at several places throughout the text. They are short explanations of interesting or often misunderstood points relevant to the topic at hand.

TIP: Tips advise the student on the best techniques for approaching different programming or animation problems.

WARNING! Warnings caution students about programming techniques or practices that can lead to malfunctioning programs or lost data.
Programming Language Companions. Many of the pseudocode programs shown in this book have also been written in Java, Python, and Visual Basic. These programs appear in the programming language companions that are available at www.pearson.com/cs-resources. Icons appear next to each pseudocode program that also appears in the language companions.

Checkpoints. Checkpoints are questions placed at intervals throughout each chapter. They are designed to query the student’s knowledge quickly after learning a new topic.

Review Questions. Each chapter presents a thorough and diverse set of Review Questions and exercises. They include Multiple Choice, True/False, Short Answer, and Algorithm Workbench.

Debugging Exercises. Most chapters provide a set of debugging exercises in which the student examines a set of pseudocode algorithms and identifies logical errors.

Programming Exercises. Each chapter offers a pool of Programming Exercises designed to solidify the student’s knowledge of the topics currently being studied.

Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The following items are available on the Gaddis Series resource page at www.pearson.com/cs-resources:

- Access to the book’s companion VideoNotes
 An extensive series of online VideoNotes have been developed to accompany this text. Throughout the book, VideoNote icons alert the student to videos covering specific topics. Additionally, one programming exercise at the end of each chapter has an accompanying VideoNote explaining how to develop the problem’s solution.

- Access to the Language Companions for Python, Java, Visual Basic, and C++
 Programming language companions specifically designed to accompany the Fourth Edition of this textbook are available for download. The companions introduce the Java™, Python®, Visual Basic®, and C++ programming languages, and correspond on a chapter-by-chapter basis with the textbook. Many of the pseudocode programs that appear in the textbook also appear in the companions, implemented in a specific programming language.

- A link to download the Flowgorithm flowcharting application
 Flowgorithm is a free application, developed by Devin Cook at Sacramento State University, which allows you to create programs using simple flowcharts. It supports the flowcharting conventions used in this textbook, as well as several other standard conventions. When you create a flowchart with Flowgorithm, you can execute the program and generate Gaddis Pseudocode. You can also generate source code in Java, Python, Visual Basic, C#, Ruby, JavaScript, and several other languages. For more information, see www.flowgorithm.org.
- **A link to download the RAPTOR flowcharting environment**

 RAPTOR is a flowchart-based programming environment developed by the US Air Force Academy Department of Computer Science.

Instructor Resources

The following supplements are available to qualified instructors only:

- Answers to all of the Review Questions
- Solutions for the Programming Exercises
- PowerPoint® presentation slides for each chapter
- Test bank

Visit the Pearson Instructor Resource Center www.pearson.com for information on how to access them.
Acknowledgments

There have been many helping hands in the development and publication of this text. I would like to thank the following faculty reviewers:

Reviewers for This Edition

Tony Cantrell
Georgia Northwestern Technical College

Keith Hallmark
Calhoun Community College

Vai Kumar
Pensacola State College

Reviewers of Previous Editions

Reni Abraham
Houston Community College

Alan Anderson
Gwinnett Technical College

Cherie Aukland
Thomas Nelson Community College

Steve Browning
Freed Hardeman University

John P. Buerck
Saint Louis University

Jill Canine
Ivy Tech Community College of Indiana

Steven D. Carver
Ivy Tech Community College

Stephen Robert Cheskiewicz
Keystone College and Wilkes University

Katie Danko
Grand Rapids Community College

Richard J. Davison
College of the Albemarle

Sameer Dutta
Grambling State University

Norman P. Hahn
Thomas Nelson Community College
I also want to thank everyone at Pearson for making the *Starting Out With...* series so successful. I have worked so closely with the team at Pearson that I consider them among my closest friends. I am extremely fortunate to have Matt Goldstein as my editor, and Meghan Jacoby as Editorial Assistant. They have guided me through the process of revising this, and many other books. I am also fortunate to have Demetrius Hall as my marketing manager. His hard work is truly inspiring, and he does a great job getting my books out to the academic community. The production team, led by Carole Snyder, worked tirelessly to make this book a reality. Thanks to you all!
About the Author

Tony Gaddis is the principal author of the *Starting Out With* . . . series of textbooks. Tony has twenty years of experience teaching computer science courses, primarily at Haywood Community College. He is a highly acclaimed instructor who was previously selected as the North Carolina Community College “Teacher of the Year” and has received the Teaching Excellence award from the National Institute for Staff and Organizational Development. The *Starting Out With* . . . series includes introductory books covering Programming Logic and Design, C++, Java, Microsoft® Visual Basic, C#®, Python, App Inventor, and Alice, all published by Pearson.
Starting Out with

Programming
Logic &
Design