Brief Contents

PART 1 • Getting Started

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Structured Query Language</td>
<td>38</td>
</tr>
</tbody>
</table>

PART 2 • Database Design

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>The Relational Model and Normalization</td>
<td>146</td>
</tr>
<tr>
<td>4</td>
<td>Database Design Using Normalization</td>
<td>191</td>
</tr>
<tr>
<td>5</td>
<td>Data Modeling with the Entity-Relationship Model</td>
<td>212</td>
</tr>
<tr>
<td>6</td>
<td>Transforming Data Models into Database Designs</td>
<td>267</td>
</tr>
</tbody>
</table>

PART 3 • Database Implementation

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>SQL for Database Construction and Application Processing</td>
<td>324</td>
</tr>
<tr>
<td>8</td>
<td>Database Redesign</td>
<td>424</td>
</tr>
</tbody>
</table>

PART 4 • Multiuser Database Processing

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Managing Multiuser Databases</td>
<td>454</td>
</tr>
<tr>
<td>10</td>
<td>Managing Databases with Microsoft SQL Server 2017, Oracle Database, and MySQL 5.7</td>
<td>490</td>
</tr>
<tr>
<td>10A</td>
<td>Online Chapter: See page 495 for Instructions</td>
<td></td>
</tr>
<tr>
<td>10B</td>
<td>Managing Databases with Oracle Database</td>
<td></td>
</tr>
<tr>
<td>10C</td>
<td>Online Chapter: See page 495 for Instructions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Online Chapter: See page 495 for Instructions</td>
<td></td>
</tr>
</tbody>
</table>

PART 5 • Database Access Standards

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>The Web Server Environment</td>
<td>498</td>
</tr>
<tr>
<td>12</td>
<td>Data Warehouses, Business Intelligence Systems, and Big Data</td>
<td>569</td>
</tr>
</tbody>
</table>

Online Appendices: See page 620 for Instructions

- Appendix A: Getting Started with Microsoft Access 2016
- Appendix B: Getting Started with Systems Analysis and Design
- Appendix C: E-R Diagrams and the IDEFIX and UML Standards
- Appendix D: Getting Started with Microsoft Visio 2016
- Appendix E: Getting Started with the MySQL Workbench Data Modeling Tools
- Appendix F: The Semantic Object Model
- Appendix G: Physical Database Design and Data Structures for Database Processing
- Appendix H: Getting Started with Web Servers, PHP, and the NetBeans IDE
- Appendix I: XML
- Appendix J: Business Intelligence Systems
- Appendix K: Big Data
- Appendix L: JSON and Document Databases
PART 1 ■ Getting Started 1

Chapter 1: Introduction 2
Chapter Objectives 2
The Importance of Databases in the Internet and Smartphone World 3
The Characteristics of Databases 5
• A Note on Naming Conventions 7 • A Database Has Data and Relationships 7
• Databases Create Information 9
Database Examples 10
• Single User Database Applications 10 • Multiuser Database Applications 10
• E-Commerce Database Applications 11 • Reporting and Data Mining Database Applications 11
The Components of a Database System 11
• Database Applications and SQL 12 • The DBMS 15 • The Database 16
Personal Versus Enterprise-Class Database Systems 18
Database Design 21
• Database Design from Existing Data 21 • Database Design for New Systems Development 23
• Database Redesign 23
What You Need to Learn 24
A Brief History of Database Processing 25
• The Early Years 25 • The Emergence and Dominance of the Relational Model 27
• Postrelational Developments 28
Summary 30 • Key Terms 31 • Review Questions 32 • Exercises 34

Chapter 2: Introduction to Structured Query Language 38
Chapter Objectives 38
Cape Codd Outdoor Sports 39
Business Intelligence Systems and Data Warehouses 40
• The Cape Codd Outdoor Sports Extracted Retail Sales Data Database 41 • The RETAIL.ORDER Table 44
• The ORDER_ITEM Table 44 • The SKU_DATA Table 45
• The BUYER Table 45 • The CATALOGSKU_20## Tables 46 • The Complete Cape Codd Data Extract Schema 46
• Data Extracts Are Common 47
SQL Background 47
The SQL SELECT/FROM/WHERE Framework 49
• Reading Specified Columns from a Single Table 49 • Specifying Column Order in SQL Queries from a Single Table 51
Submitting SQL Statements to the DBMS 52
• Using SQL in Microsoft Access 2016 52 • Using SQL in Microsoft SQL Server 2017 58
• Using SQL in Oracle Database 61 • Using SQL in Oracle MySQL 5.7 63
Contents

SQL Enhancements for Querying a Single Table 66
 Reading Specified Rows from a Single Table 66 • Reading Specified Columns and Rows from a
 Single Table 70 • Sorting the SQL Query Results 70 • SQL WHERE Clause Options 73
Performing Calculations in SQL Queries 80
 Using SQL Built-in Aggregate Functions 81 • SQL Expressions in SQL SELECT Statements 85
Grouping Rows in SQL SELECT Statements 88
Querying Two or More Tables with SQL 93
 Querying Multiple Tables with Subqueries 93 • Querying Multiple Tables with Joins 96
 • Comparing Subqueries and Joins 102 • The SQL JOIN ON Syntax 102 • SQL Queries
 on Recursive Relationships 106 • Outer Joins 107 • Using SQL Set Operators 111
Summary 115 • Key Terms 116 • Review Questions 117 • Exercises 124
 • Case Questions 129 • The Queen Anne Curiosity Shop Project Questions 133
 • Morgan Importing Project Questions 140

PART 2 ■ Database Design 145

Chapter 3: The Relational Model and Normalization 146
Chapter Objectives 146
Relational Model Terminology 148
 Relations 148 • Characteristics of Relations 149 • Alternative Terminology 151
 • To Key, or Not to Key—That Is the Question! 152 • Functional Dependencies 152
 • Finding Functional Dependencies 154 • Keys 157
Normal Forms 161
 Modification Anomalies 161 • A Short History of Normal Forms 162 • Normalization
 Categories 163 • From First Normal Form to Boyce-Codd Normal Form Step by Step 164
 • Eliminating Anomalies from Functional Dependencies with BCNF 167 • Eliminating
 Anomalies from Multivalued Dependencies 177 • Fifth Normal Form 181 • Domain/Key
 Normal Form 181
Summary 181 • Key Terms 182 • Review Questions 183 • Exercises 185
 • Case Questions 186 • The Queen Anne Curiosity Shop Project Questions 187
 • Morgan Importing Project Questions 189

Chapter 4: Database Design Using Normalization 191
Chapter Objectives 191
Assess Table Structure 192
Designing Updatable Databases 193
 Advantages and Disadvantages of Normalization 193 • Functional Dependencies 194
 • Normalizing with SQL 194 • Choosing Not to Use BCNF 196 • Multivalued
 Dependencies 196
Designing Read-Only Databases 197
 Denormalization 197 • Customized Duplicated Tables 198
Common Design Problems 200
 The Multivalued Multicolumn Problem 200 • Inconsistent Values 202 • Missing
 Values 203 • The General-Purpose Remarks Column 204
Summary 205 • Key Terms 206 • Review Questions 206 • Exercises 208
 • Case Questions 209 • The Queen Anne Curiosity Shop Project Questions 209
 • Morgan Importing Project Questions 210

Chapter 5: Data Modeling with the Entity-Relationship Model 212
Chapter Objectives 212
The Purpose of a Data Model 213
The Entity-Relationship Model 213

- Entities 214
- Attributes 214
- Identifiers 214
- Relationships 215
- Maximum Cardinality 217
- Minimum Cardinality 218
- Entity-Relationship Diagrams and Their Versions 219
- Variations of the E-R Model 219
- E-R Diagrams Using the IE Crow’s Foot Model 220
- Strong Entities and Weak Entities 222
- ID-Dependent Entities 222
- Non-ID-Dependent Weak Entities 223
- The Ambiguity of the Weak Entity 224
- Subtype Entities 225

Patterns in Forms, Reports, and E-R Models 227

- Strong Entity Relationship Patterns 228
- ID-Dependent Relationship Patterns 231
- Mixed Identifying and Nonidentifying Relationship Patterns 238
- The For-Use-By Subtype Pattern 241
- Recursive Relationship Patterns 242

The Data Modeling Process 245

- The College Report 246
- The Department Report 247
- The Department/Major Report 249
- The Student Acceptance Letter 249

Chapter 6: Transforming Data Models into Database Designs 267

Chapter Objectives 267

The Purpose of a Database Design 268

- Create a Table for Each Entity 268
 - Selecting the Primary Key 268
 - Specifying Alternate Keys 271
 - Specifying Column Properties 271
 - Verify Normalization 278

Create Relationships 279

- Relationships Between Strong Entities 279
- Relationships Using ID-Dependent Entities 283
- Relationships with a Weak Non-ID-Dependent Entity 287
- Relationships in Mixed Entity Designs 288
- Relationships Between Supertype and Subtype Entities 289
- Recursive Relationships 290
- Representing Ternary and Higher-Order Relationships 292
- Relational Representation of the Highline University Data Model 295

Design for Minimum Cardinality 296

- Actions when the Parent Is Required 297
- Actions when the Child Is Required 299
- Implementing Actions for M-O Relationships 300
- Implementing Actions for O-M Relationships 304
- Implementing Actions for M-M Relationships 301
- Designing Special Case M-M Relationships 302
- Documenting the Minimum Cardinality Design 302
- An Additional Complication 304
- Summary of Minimum Cardinality Design 304

The View Ridge Gallery Database 305

- View Ridge Gallery Database Summary of Requirements 305
- The View Ridge Data Model 306
- Database Design with Data Keys 307
- Minimum Cardinality Enforcement for Required Parents 308
- Minimum Cardinality Enforcement for the Required Child 310
- Column Properties for the View Ridge Database Design Tables 311

Summary 313

- Key Terms 316
- Review Questions 316
- Exercises 318
- Case Questions 319
- Morgan Importing Project Questions 321

PART 3 Database Implementation 323

Chapter 7: SQL for Database Construction and Application Processing 324

Chapter Objectives 324

The Importance of Working with an Installed DBMS Product 325
The View Ridge Gallery Database 325
SQL DDL and DML 325
Managing Table Structure with SQL DDL 327
Creating the VRG Database 327 • Using SQL Scripts 327 • Using the SQL CREATE TABLE Statement 328 • Variations in SQL Data Types and SQL/PSM 329 • Creating the VRG Database ARTIST Table 329 • Creating the VRG Database WORK Table and the 1:N ARTIST-to-WORK Relationship 332 • Implementing Required Parent Rows 333 • Implementing 1:1 Relationships 334 • Casual Relationships 334 • Creating Default Values and Data Constraints with SQL 335 • Creating the VRG Database Tables 336 • The SQL ALTER TABLE Statement 340 • The SQL DROP TABLE Statement 340 • The SQL TRUNCATE TABLE Statement 341 • The SQL CREATE INDEX Statement 341
SQL DML Statements 342
The SQL INSERT Statement 342 • Populating the VRG Database Tables 343 • The SQL UPDATE Statement 349 • The SQL MERGE Statement 350 • The SQL DELETE Statement 351
Using SQL Views 352
Using SQL Views to Hide Columns and Rows 355 • Using SQL Views to Display Results of Computed Columns 356 • Using SQL Views to Hide Complicated SQL Syntax 357 • Layering Built-in Functions 358 • Using SQL Views for Isolation, Multiple Permissions, and Multiple Triggers 360 • Updating SQL Views 361
Embedding SQL in Program Code 362
SQL/Persistent Stored Modules (SQL/PSM) 364 • Using SQL User-Defined Functions 364 • Using SQL Triggers 367 • Using Stored Procedures 373 • Comparing User-Defined Functions, Triggers, and Stored Procedures 376
Summary 378 • Key Terms 380 • Review Questions 381 • Exercises 391 • Case Questions 395 • The Queen Anne Curiosity Shop Project Questions 409 • Morgan Importing Project Questions 416

Chapter 8: Database Redesign 424
Chapter Objectives 424
The Need for Database Redesign 425
SQL Statements for Checking Functional Dependencies 425 • What Is a Correlated Subquery? 426
How Do I Analyze an Existing Database? 431
Reverse Engineering 432 • Dependency Graphs 433 • Database Backup and Test Databases 433
Changing Table Names and Table Columns 434
Changing Table Names 434 • Adding and Dropping Columns 436 • Changing a Column Data Type or Column Constraints 437 • Adding and Dropping Constraints 438
Changing Relationship Cardinalities 438 • Changing Minimum Cardinalities 438 • Changing Maximum Cardinalities 439
Adding and Deleting Tables and Relationships 442
Forward Engineering 443
Summary 443 • Key Terms 445 • Review Questions 445 • Exercises 447 • Case Questions 448 • The Queen Anne Curiosity Shop Project Questions 449 • Morgan Importing Project Questions 450

PART 4 ■ Multiuser Database Processing 453

Chapter 9: Managing Multiuser Databases 454
Chapter Objectives 454
The Importance of Working with an Installed DBMS Product 455
Database Administration 455 • Managing the Database Structure 456
Concurreny Control 457
- The Need for Atomic Transactions 458
- Resource Locking 461
- Optimistic Versus Pessimistic Locking 463
- SQL Transaction Control Language and Declaring Lock Characteristics 464
- Implicit and Explicit COMMIT TRANSACTION 466
- Consistent Transactions 466
- Transaction Isolation Level 467
- SQL Cursors 468

Database Security 470
- Processing Rights and Responsibilities 470
- DBMS Security 471
- DBMS Security Guidelines 472
- Application Security 474
- The SQL Injection Attack 475

Database Backup and Recovery 475
- Recovery via Reprocessing 476
- Recovery via Rollback/Rollforward 476

Managing the DBMS 479
- Maintaining the Data Repository 480

Summary 481
- Key Terms 482
- Review Questions 483
- Exercises 484
- Case Questions 485
- The Queen Anne Curiosity Shop Project Questions 486
- Morgan Importing Project Questions 488

Chapter 10: Managing Databases with Microsoft SQL Server 2017, Oracle Database, and MySQL 5.7 490

Chapter Objectives 490
- Installing the DBMS 491
- Using the DBMS Database Administration and Database Development Utilities 492
- Creating a Database 492
- Creating and Running SQL Scripts 492
- Reviewing the Database Structure in the DBMS GUI Utility 493
- Creating and Populating the View Ridge Gallery VRG Database Tables 493
- Creating SQL Views for the View Ridge Gallery VRG Database 493
- Importing Microsoft Excel Data into a Database Table 493
- Database Application Logic and SQL/Persistent Stored Modules (SQL/PSM) 493
- DBMS Concurrency Control 494
- DBMS Security 494
- DBMS Database Backup and Recovery 494
- Other DBMS Topics Not Discussed 494
- Choose Your DBMS Product(s)! 495

Summary 495
- Key Terms 496
- Exercises 496

ONLINE CHAPTER: SEE PAGE 495 FOR INSTRUCTIONS

Chapter 10A: Managing Databases with Microsoft SQL Server 2017

Chapter Objectives
- The Microsoft SQL Server 2017 DBMS
- Installing Microsoft SQL Server 2017
 - Installing Microsoft SQL Server 2017 Required Software
 - Installing the Microsoft SQL Server 2017 DBMS
 - Installing Microsoft SQL Server 2017 Reporting Services
- Microsoft SQL Server 2017 Utilities
 - SQL CMD and Microsoft PowerShell
 - Microsoft SQL CLR
 - The Microsoft SQL Server Management Studio
- Using Microsoft SQL Server 2017
- Creating a Microsoft SQL Server 2017 Database
- Microsoft SQL Server 2017 SQL Statements and SQL Scripts
 - Using Existing SQL Scripts
 - Using a Single SQL Script to Store Multiple SQL Commands
- Implementing the View Ridge Gallery VRG Database in Microsoft SQL Server 2017
Contents

Using SQL Scripts to Create and Populate Database Tables • Creating the View Ridge Gallery VRG Database Table Structure • Reviewing Database Structures in the SQL Server GUI Display • Indexes • Populating the VRG Database Tables with Data • Creating SQL Views

Importing Microsoft Excel Data into a Microsoft SQL Server Database Table

Microsoft SQL Server 2017 Application Logic

Transact-SQL • User-Defined Functions • Stored Procedures • Triggers

Microsoft SQL Server 2017 Concurrency Control

Transaction Isolation Level • Cursor Concurrency • Locking Hints

Microsoft SQL Server 2017 Security

SQL Server 2017 Database Security Settings

Microsoft SQL Server 2017 Backup and Recovery

Backing Up a Database • SQL Server Recovery Models • Restoring a Database

• Database Maintenance Plans

Topics Not Discussed in This Chapter

Summary • Key Terms • Review Questions • Exercises • Case Questions

• The Queen Anne Curiosity Shop Project Questions • Morgan Importing Project Questions

ONLINE CHAPTER: SEE PAGE 495 FOR INSTRUCTIONS

Chapter 10B: Managing Databases with Oracle Database

Chapter Objectives

The Oracle Corporation Oracle Database DBMS

Installing Oracle Database

Installing a Loopback Adapter • Oracle Database, Java, JavaScript, and the Adobe Flash Player • Oracle Database 12c Release 2 Documentation • Downloading Oracle Database • Installing Oracle Database 12c Release 2 with the Oracle Universal Installer (OUI) • Installing Oracle Database Express Edition 11g Release 2 (Oracle Database XE)

Oracle Database Administration and Development Tools

The Oracle Database 12c Release 2 Configuration Assistant • The Oracle Enterprise Manager Database Express 12c Database Administration Utility • The Oracle Database XE 11.2 Database Administration Utility

Oracle Database Tablespaces

Oracle Database Security

User Privileges • Creating a User Account • Creating a Role

Oracle Database Application Development Tools

Oracle SQL*Plus • Oracle SQL Developer • Creating a Workspace for the SQL Developer Files • Oracle Database Schemas

Creating and Using an Oracle Database Database

Creating a Database in Oracle Database • Oracle Database SQL Statements and SQL Scripts • Using Existing SQL Scripts • Using a Single SQL Script to Store Multiple SQL Commands

Implementing the View Ridge Gallery VRG Database in Oracle Database

Using SQL Scripts to Create and Populate Database Tables • Creating the View Ridge Gallery VRG Database Table Structure • Transaction COMMIT in Oracle Database

• Reviewing Database Structures in the SQL Developer GUI Display • Indexes

• Populating the VRG Tables • Creating SQL Views

Importing Microsoft Excel Data into an Oracle Database Table

Oracle Database Application Logic

Oracle Database PL/SQL • User-Defined Functions • Stored Procedures

• Triggers
PART 5 ■ Database Access Standards

Chapter 11: The Web Server Environment 498

Chapter Objectives 498
A Web Database Application for the View Ridge Gallery 500
The Web Database Processing Environment 501
Database Server Access Standards 502
The ODBC Standard 503
• ODBC Architecture 504 • Conformance Levels 505 • Creating an ODBC Data Source Name 506

Oracle Database Concurrency Control
• Read-Committed Transaction Isolation Level • Serializable Transaction Isolation Level
• Read-Only Transaction Isolation • Additional Locking Comments
Oracle Database Backup and Recovery
• Oracle Database Recovery Facilities • Types of Failure

Topics Not Discussed in This Chapter

Summary • Key Terms • Review Questions • Exercises • Case Questions
• The Queen Anne Curiosity Shop Project Questions • Morgan Importing Project Questions

ONLINE CHAPTER: SEE PAGE 495 FOR INSTRUCTIONS

Chapter 10C: Managing Databases with MySQL 5.7

Chapter Objectives
The MySQL 5.7 DBMS
Installing MySQL Community Server 5.7
• The MySQL Installer • MySQL Storage Engines
The MySQL Utilities
• The MySQL Command-Line Client • The MySQL Workbench GUI Utility • Creating a Workspace for the MySQL Workbench Files
Creating and Using a MySQL Database
• Creating a Database in MySQL • Setting the Active Database in MySQL • MySQL SQL Statements and SQL Scripts • Using Existing SQL Scripts • Using a Single SQL Script to Store Multiple SQL Commands
Implementing the View Ridge Gallery VRG Database in MySQL 5.7
• Creating the VRG Database • Using SQL Scripts to Create and Populate Database Tables
• Creating the View Ridge Database Table Structure • Reviewing Database Structures in the MySQL GUI Display • Indexes • Populating the VRG Tables with Data • Transaction COMMIT in MySQL • Creating SQL Views
Importing Microsoft Excel Data into a MySQL 5.7 Database Table
MySQL Application Logic
• MySQL SQL/PSM Procedural Statements • User-Defined Functions • Stored Procedures • Triggers • A Last Word on MySQL Stored Procedures and Triggers
Concurrency Control
MySQL 5.7 Security
• Creating a New User • MySQL Database Security Settings
MySQL 5.7 DBMS Backup and Recovery
• Backing Up a MySQL Database • Restoring a MySQL Database

Topics Not Discussed in This Chapter

Summary • Key Terms • Review Questions • Exercises • Case Questions
• The Queen Anne Curiosity Shop Project Questions • Morgan Importing Project Questions
The Microsoft .NET Framework and ADO.NET 512
OLE DB 514 • ADO and ADO.NET 518 • The ADO.NET Object Model 518
The Java Platform 523
JDBC 523 • Java Server Pages (JSP) and Servlets 525 • Apache Tomcat 525
Web Database Processing with PHP 527
Web Database Processing with PHP and the NetBeans IDE 527 • Getting Started with HTML Web Pages 530 • The index.html Web Page 530 • Creating the index.html Web Page 530 • Using PHP 533
Web Page Examples with PHP 540
Example 1: Updating a Table 541 • Example 2: Using PHP Data Objects (PDO) 545 • Example 3: Invoking a Stored Procedure 546 • Challenges for Web Database Processing 553 • SQL Injection Attacks 554
Extensible Markup Language (XML) 555
The Importance of XML 555 • XML as a Markup Language 556
Creating XML Documents from Database Data 557
Using the SQL SELECT ... FOR XML Statement 557
Summary 559 • Key Terms 561 • Review Questions 562 • Exercises 565 • Case Questions 567 • The Queen Anne Curiosity Shop Project Questions 567 • Morgan Importing Project Questions 568

Chapter 12: Data Warehouses, Business Intelligence Systems, and Big Data 569
Chapter Objectives 569
Business Intelligence Systems 571
The Relationship Between Operational and BI Systems 571
Reporting Systems and Data Mining Applications 571
Reporting Systems 572 • Data Mining Applications 573
Data Warehouses and Data Marts 573
Components of a Data Warehouse 573 • Data Warehouses Versus Data Marts 577 • Dimensional Databases 578
Reporting Systems 586
RFM Analysis 586 • OLAP 588
Data Mining 597
Distributed Database Processing 599
Types of Distributed Databases 599 • Challenges of Distributed Databases 600
Object-Relational Databases 601
Virtualization 602
Cloud Computing 603
Big Data and the Not Only SQL Movement 607
Column Family Databases 608 • MapReduce 610 • Hadoop 610
Summary 611 • Key Terms 613 • Review Questions 614 • Exercises 616 • Case Questions 617 • The Queen Anne Curiosity Shop Project Questions 618 • Morgan Importing Project Questions 619

Appendices

ONLINE APPENDICES: SEE PAGE 620 FOR INSTRUCTIONS

Appendix A: Getting Started with Microsoft Access 2016
Chapter Objectives
What is the Purpose of This Appendix?
Why Should I Learn to Use Microsoft Access 2016?
What Will This Appendix Teach Me?
What is a Table Key?
What are Relationships?
How Do I Create a New Microsoft Access 2016 Database?
What is the Microsoft Office Fluent User Interface?
 The Ribbon and Command Tabs • Contextual Command Tabs • Modifying the Quick Access Toolbar • Database Objects and the Navigation Pane
How Do I Close a Database and Exit Microsoft Access 2016?
How Do I Open an Existing Microsoft Access 2016 Database?
How Do I Create Microsoft Access 2016 Database Tables?
How Do I Insert Data into Tables Using the Datasheet View?
 Modifying and Deleting Data in Tables in the Datasheet View
How Do I Create Relationships Between Tables?
How Do I Create and Run Microsoft Access 2016 Queries?
How Do I Create Microsoft Access 2016 Forms and Reports?
How Do I Close a Newly-Created Database and Exit Microsoft Access 2016?

Key Terms • Review Questions • Exercises

Appendix B: Getting Started with Systems Analysis and Design

Chapter Objectives
What Is the Purpose of This Appendix?
What Is Information?
What Is an Information System?
What Is a Competitive Strategy?
How Does a Company Organize Itself Based on Its Competitive Strategy?
What Is a Business Process?
How Do Information Systems Support Business Processes?
Do Information Systems Include Processes?
Do We Have to Understand Business Processes in Order to Create Information Systems?
What Is Systems Analysis and Design?
What Are the Steps in the SDLC?
 The System Definition Step • The Requirements Analysis Step • The Component Design Step
 The Implementation Step • The System Maintenance Step
What SDLC Details Do We Need to Know?
What Is Business Process Modeling Notation?
What Is Project Scope?
How Do I Gather Data and Information About System Requirements?
How Do Use Cases Provide Data and Information About System Requirements?
The Highline University Database
 The College Report • The Department Report • The Department/Major Report
 The Student Acceptance Letter
What Are Business Rules?
What Is a User Requirements Document (URD)?
What Is a Statement of Work (SOW)?

Key Terms • Review Questions • Exercises

Appendix C: E-R Diagrams and the IDEF1X and UML Standards

Chapter Objectives
What Is the Purpose of This Appendix?
Why Should I Learn to Use IDEF1X or UML?
What Will This Appendix Teach Me?
What are IDEF1X Entities?
What are IDEF1X Relationships?
 Nonidentifying Connection Relationships • Identifying Connection Relationships • Nonspecific Relationships • Categorization Relationships
What are Domains?
 Domains Reduce Ambiguity • Domains Are Useful • Base Domains and Typed Domains
Contents

How Does UML Represent Entities and Relationships?

Representation of Strong Entities • Representation of Weak Entities • Representation of Subtypes
What OOP Constructs Are Introduced by UML?
What is the Role of UML in Database Processing Today?

Key Terms • Review Questions

Appendix D: Getting Started with Microsoft Visio 2016

Chapter Objectives
What Is the Purpose of This Appendix?
Why Should I Learn to Use Microsoft Visio 2016?
What Will This Appendix Teach Me?
What Won’t This Appendix Teach Me?
How Do I Start Microsoft Visio 2016?
How Do I Create a Database Model Diagram in Microsoft Visio 2016?
How Do I Name and Save a Database Model Diagram in Microsoft Visio 2016?
How Do I Create Entities in a Database Model Diagram in Microsoft Visio 2016?
How Do I Create Relationships Between Entities in a Database Model Diagram in Microsoft Visio 2016?
How Do I Create Data Models in Microsoft Visio 2016?
How Do I Create Database Designs in Microsoft Visio 2016?

Key Terms • Review Questions • Exercises

Appendix E: Getting Started with the MySQL Workbench Data Modeling Tools

Chapter Objectives
What Is the Purpose of This Appendix?
Why Should I Learn to Use the MySQL Workbench Data Modeling Tools?
What Will This Appendix Teach Me?
What Won’t This Appendix Teach Me?
How Do I Start the MySQL Workbench?
How Do I Create a Workspace for the MySQL Workbench Files?
How Do I Create Database Designs in the MySQL Workbench?
How Do I Create a Database Model and E-R Diagram in the MySQL Workbench?

Key Terms • Review Questions • Exercises

Appendix F: The Semantic Object Model

Chapter Objectives
What Is the Purpose of This Appendix?
Why Should I Learn to Use the Semantic Object Model?
What Will This Appendix Teach Me?
What Are Semantic Objects?
What Semantic Objects Are Used in the Semantic Object Model?
What Are Semantic Object Attributes? • Attribute Cardinality • What Are Object Identifiers? • What Are Attribute Domains? • What Are Semantic Object Views?
What Types of Objects Are Used in the Semantic Object Model?
What Are Simple Objects? • What Are Composite Objects? • What Are Compound Objects?
How Do We Represent One-to-One Compound Objects as Relational Structures? • How Do We Represent One-to-Many and Many-to-One Relationships as Relational Structures? • How Do We Represent Many-to-Many Relationship Objects as Relational Structures? • What Are Hybrid Objects? • How Do We Represent Hybrid Relationships in Relational Structures? • What Are Association Objects? • What Are Parent/Subtype Objects? • What Are Archetype/Version Objects?
Comparing the Semantic Object and the E-R Models

Key Terms • Review Questions
Appendix G: Physical Database Design and Data Structures for Database Processing

Chapter Objectives
What Is the Purpose of This Appendix?
What Will This Appendix Teach Me?
Introduction to Physical Database Design
What Are Flat Files?
Processing Flat Files in Multiple Orders • A Note on Record Addressing • How Can Linked Lists Be Used to Maintain Logical Record Order? • How Can Indexes Be Used to Maintain Logical Record Order? • B-Trees • Summary of Data Structures
How Can We Represent Binary Relationships?
A Review of Record Relationships • How Can We Represent Trees? • How Can We Represent Simple Networks? • How Can We Represent Complex Networks? • Summary of Relationship Representations
How Can We Represent Secondary Keys?
How Can We Represent Secondary Keys with Linked Lists? • How Can We Represent Secondary Keys with Indexes?
Multicolumn Indexes
Clustering
Decomposition
Vertical Decomposition • Horizontal Decomposition

Key Terms • Review Questions

Appendix H: Getting Started with Web Servers, PHP, and the NetBeans IDE

Chapter Objectives
What Is the Purpose of This Appendix?
Which Operating System are we Discussing?
How Do I Install a Web Server?
How Do I Set Up IIS in Windows 10?
How Do I Manage IIS in Windows 10?
How Is a Web Site Structured?
How Do I View a Web Page from the IIS Web Server?
How Is Web Site Security Managed?
What Is Java?
What Is the NetBeans IDE?
How Do I Install the Java Development Kit (JDK) and the NetBeans IDE?
What Is PHP?
How Do I Install PHP?
How Do I Check PHP to Make sure it is Running Correctly?
How Do I Create a Web Page Using the NetBeans IDE?
How Do I Manage the PHP Configuration?

Key Terms • Review Questions • Exercises

Appendix I: XML

Chapter Objectives
What Is the Purpose of This Appendix?
Extensible Markup Language (XML)
XML as a Markup Language • Materializing XML Documents with XSLT
XML Schema versus Document Type Declarations
XML Schema Validation • Elements and Attributes • Flat Versus Structured Schemas
• Global Elements
Creating XML Documents from Database Data
Using the SQL SELECT … FOR XML Statement • Multi-table SELECT with FOR XML
• An XML Schema for All CUSTOMER Purchases • A Schema with Two Multivalued Paths
Appendix J: Business Intelligence Systems

Chapter Objectives

What Is the Purpose of This Appendix?

Business Intelligence Systems

Reporting Systems and Data Mining Applications

- Reporting Systems
- Data Mining Applications

The Components of a Data Warehouse

- Data Warehouses and Data Marts
- Data Warehouses and Dimensional Databases

Reporting Systems

- OLAP
- RFM Analysis
- Reporting System Components
- Reporting System Functions

Data Mining

- Unsupervised versus Supervised Data Mining
- Four Popular Data Mining Techniques
- Market Basket Analysis
- Decision Trees

Summary • Key Terms • Review Questions • Exercises

Appendix K: Big Data

Chapter Objectives

What Is the Purpose of This Appendix?

What Is Big Data?

- The Three Vs and the "Wanna Vs"
- Big Data and NoSQL Systems
- The CAP Theorem

Non-Relational Database Management Systems

- Key-Value Databases
- Document Databases
- Column Family Databases
- Graph Databases

Using a Cloud Database Management System

- Migrating an Existing Local Database to Microsoft Azure Cosmos DB
- Using SQL to Create a New Database on Microsoft Azure Cosmos DB

Big Data, NoSQL Systems, and the Future

Summary • Key Terms • Review Questions • Exercises

Appendix L: JSON and Document Databases

Chapter Objectives

What Is the Purpose of This Appendix?

Document Database Basics

JSON Data Structuring

Introducing ArangoDB

Downloading and Installing ArangoDB

Creating Data in ArangoDB

- Simple Document Examples
- Complex Document Examples
- Logical Design Choices

Querying Data in ArangoDB

- Using HTTP
- Using a Programming Language
- Using ArangoDB Query Language (AQL)

Physical Design Choices in ArangoDB

- Indexing
- Data Distribution

Document Databases in the Cloud

- Creating a Document Database in Microsoft Azure Cosmos DB
- Querying a Document Database in Microsoft Azure Cosmos DB

Summary • Key Terms • Review Questions • Exercises
Foreword to the 40th Anniversary Edition

We Didn't Know What We Were Doing

Database processing technology originated in the period 1970 to 1975, though not necessarily by that name. At the time, the U.S. government used the term data bank. Others used data base as well as database. I liked the latter and used it when I began work on this text in 1975.

In 1971, I was an officer in the U.S. Air Force, assigned to a Pentagon team that was building and using a simulation of World War III. It was the height of the Cold War, and the Department of Defense wanted a means to assess the efficacy of current and proposed weapons systems.

By a stroke of good luck, I was assigned to work on the data manager portion of that simulation (the term Database Management System [DBMS] was not yet in use). The logical data model of that data manager was similar to that of the set-based system that Bachmann had developed at General Electric (then a mainframe manufacturer) and that later became the CODASYL DBTG standard.1

Our simulation was slow and long-running: a typical run would take 10 to 12 hours. We were constrained more by input and output of data than by CPU time, and I developed low-level, re-entrant, assembly language routines for getting and putting data to and from main memory on parallel channels.

In addition to our project and Bachmann’s, IBM was developing a manufacturing-oriented data manager in concert with North American Aviation. That project eventually became IBM’s product IMS.2 Another government project of that era resulted in the data manager named Total.

In retrospect, I’d say the one thing we had in common was that none of us knew what we were doing. We didn’t have any data models, best practices, or design principles. We didn’t even know how to program. This was long before GoTo–less programming, which led to structured programming, and eventually to object-oriented programming. We did know that life was easier if we developed some sort of a logic chart before we began, but that was about it. We’d pick up our coding pads (everything was done via punched cards) and start to work.

There were no debugging tools. When a job would fail, we’d receive a hexadecimal printout of the CPU registers and the contents of main memory (the printout would be 12 to 18 inches thick). There were no hexadecimal calculators, so we’d manually add and subtract

David Kroenke

The publisher has asked me to write a short history of this text for this, the 40th anniversary edition. The details of each edition and how they changed are instructive, but this text and the discipline of database processing grew up together, and the story of how that happened might be more helpful to students who will work in disciplines, such as Big Data, that are emerging today.

1 CODASYL, the Committee on Data Systems Languages, was the committee, chaired by Grace Hopper (see https://en.wikipedia.org/wiki/Grace_Hopper), that developed the COBOL language standard. DBTG, the database task group, was a subcommittee tasked with developing a data modeling standard. The DBTG model was popular for a short while, but was replaced by the relational model by the 1980s.

2 IBM IMS is still a functional DBMS product—see www-01.ibm.com/software/data/ims/index.html.
hexadecimal numbers to navigate our way around the printout, sticking rulers in the listing as place markers. Stiff, wooden rulers were the best.

Again, though, we were just trying to solve a problem. We didn’t have any idea that the technology we were developing would become an important part of the emerging world. Imagine Amazon or your college without database processing. But all of that was in the future. We were just trying to get the “darn thing” to run and somehow solve the particular problem that we’d been assigned.

For example, an important function of those early systems was to manage relationships. In our simulation, we had bombers and tankers and opposing radar sites and opposing air-to-air missiles. We needed to keep track of which of those was assigned or related to which. We just wrote programs to do that. A decade or two later someone discovered in surprise, “Hey, there’s as much information in the relationships as there is in the data.”

We made stuff up as we went along. The first edition of this text included no definition of database. When a reviewer pointed that out, I made one up for the second edition. “A self-describing collection of integrated records.” Completely fabricated, but it’s worked now for 35 years, so it must have been serviceable.

Situations like that were common in those early projects. We made stuff up that would help us solve our problem. Progress was slow, mistakes were frequent, failures were common. Millions of dollars and labor hours were wasted. But gradually, over time, database technology emerged.

Origin of This Text

In 1973 I completed my military commitment and following John Denver’s song “Rocky Mountain High” moved my family from Washington, D.C., to Colorado State University. The business school hired me as an instructor while I attended graduate school in statistics and engineering across the street. To my delight, I was assigned to teach a course entitled File Management, the predecessor of today’s Database Processing course (see Figure FM-1).

As with any young instructor, I wanted to teach what I knew and that was the rudiments of database processing. So, I began to formulate a database course and by the spring of 1975, was looking for a textbook. I asked the book reps if they had such a book and none did. The sales rep for SRA, however, asked, “No, but we’re looking for one. Why don’t you write it?” My department chair, Bob Rademacher, encouraged me to do so, and on June 29, 1975, I signed the contract.

FIGURE FM-1
David Kroenke Loses Control of Students Excited by Database Technology
The draft and all the diagrams were written in number 2 pencil on the back of old coding sheets, as shown in Figure FM-02. The text would go to a typist, who'd do the best she could to decipher my writing. I'd proof the typing and she'd produce another typed manuscript (long before word processing—pages had to be retyped to remove errors). Those pages would then go to a copy editor and I would redo them again, back to the typist for a round or two. Eventually, the final typed manuscript would go to a compositor who would produce long gray sheets (called galleys) of text to be proofed. After that, the text would be glued (I'm not kidding) to make up pages, integrating the art which had been following a similar pathway, and then those pages would be photographed and sent to a printer.

The final draft of the first edition was completed in January 1976, and the text was published in January 1977. We were proud that it only took a year.

Contents of the First Edition

Database Processing was the first such textbook aimed at the information systems market. C. J. Date had produced Database Systems prior to this text, but his book was aimed at computer science students. No one knew what should be in an information systems database book. I made it up, we sent drafts to reviewers, and they approved it. (They didn't know either.)

3 C. J. Date's book *An Introduction to Database Systems* is currently in its eighth edition.
The first edition (see Figure FM-3) had chapters on file management and data structures. It also had chapters on hierarchical, network, and relational data models. By the way, E. F. Codd, the creator of the relational data model, was relatively unknown at that point and he was happy to review the relational chapter. The text also featured a description of the features and functions of five DBMS products: ADABAS, System 2000, Total, IDMS, and IMS. (To my knowledge, only IMS is still in use today.) It wrapped up with a chapter on database administration.

When writing that last chapter, I thought it would be a good idea to talk with an auditor to learn what auditors looked for when auditing database systems. Accordingly, I drove to Denver and met with one of the top auditors at one of the then-Big-Eight firms. I didn’t learn much, just some high-level hyperbole about using commonly accepted auditing standards. The next day, the phone rang in my office and an executive in New York City invited me out to that firm for a job interview for a position to develop and teach database auditing standards to their staff. None of us knew what we were doing!

I had no idea of how incredibly fortunate I was. To stumble into a discipline that would become one of the most important in the information systems field, to have experience and knowledge to put into a text, to have a supportive department, and, finally, to have what was at that time a superb publisher with an outstanding sales and marketing team (see Figure FM-4). Because it was all I had known, I thought it was normal. Ah, youth.

Lessons Learned

At age 71, I’m not quite consigned to watching the daytime weather channel but have reached the stage when people start listing lessons learned. I’ll try to keep it brief. Here are my five lessons learned, developed both as a database technology bystander and participant:
Don't Confuse Luck with Exceptional Ability

According to an independent study at the time, the second edition of this text had 91 percent of the market. It was the first, and it had a great publisher with a superb sales force. That success was due, truly, to lucky timing and good fortune. At that point I should have doubled down and made sure that the 91 percent were satisfied while sending Thanksgiving turkeys to the 9 percent not in the fold.

Instead, what did I do? Ignored the book and joined Microrim to help develop the R:Base products. Five years later when I returned to the book, numerous competitors had emerged and the book lost half of its market. I'd thought I could jump back in and regain that early success, but the market had a hard lesson for me.

I mention this because I've seen it elsewhere as well. Microsoft was built and managed by superior business professionals like Bill Gates, Steve Ballmer, Jon Shirley, Steve Okey, and, in the database domain, David Kaplan. Between 1985 and 2000, hundreds of employees joined the firm and were issued stock options. They were largely competent professionals, but no different from the same level of professionals one would have found at 3M, Procter and Gamble, Boeing, etc. The difference was that during that interval, their Microsoft stock split seven times.

Many of those competent professionals understood that they had been very, very lucky to get on the Microsoft bus when they did. They took their stock proceeds and re-invested in index funds or something else safe and have been enjoying life on the golf course with their

families ever since. However, some of the just-competent professionals confused their good luck with exceptional personal ability and founded their own companies or started venture capital firms. Most lost their money. They were good, but they weren’t of the same caliber as Gates et al.

Joseph Conrad said it, “It is the mark of an inexperienced man not to believe in luck.”

Marketing Trumps Technology

If you have a chance to invest in an average technology with superb marketing or superb technology with average marketing, take the former. Marketing is far more important than technology.

IBM’s IMS uses a hierarchical data model. Representing many-to-many relationships with hierarchies is a pain. With IMS the database developer is forced to write all sorts of design and coding machinations that should have been done by the DBMS or avoided by using a different DBMS. In the early days, I watched an IBM technical sales representative present those machinations as a skill that every good database developer must already have. “Surely you know how to do the XYZ?” (I don’t remember the name they’d given that dance). Because none of us in the audience knew any better, we all assumed that we were deficient if we didn’t know how to do the XYZ. The deficiency was in the product, not us, but we were duped by good marketing.

Developed by Wayne Ratcliff, Ashton-Tate’s dBase was the most successful relational microcomputer DBMS product until Microsoft entered the picture with Microsoft Access. In fact, dBase was neither a DBMS nor was it relational—it was a file management system. However, Ashton-Tate’s marketing convinced Osborne to place a free copy of dBase on every one of its Osborne II computers. The Osborne II was the micro or personal computer (PC) of choice for a new cadre of application developers, and they wrote millions of lines of dBase code. They used what they had and thought it was fine. When better products came along, there was no way that any small developer was going to rewrite existing code or learn new products. The new graphical user interface in Microsoft Windows, the Microsoft Office package, and cheap Microsoft Access pricing was the only force strong enough to push Ashton-Tate off its leading position.

Salsa, a product that I helped Wall Data develop, implemented the semantic object model (which we discuss in Appendix F), and was selected as the runner-up to Netscape Navigator for product of the year in 1996 (the other runner-up was Internet Explorer). Salsa failed—not because of the technology, but because of the marketing. We tried to sell it as an end-user product and it was a developer product. It was as if we’d invented Gore-tex and we were out trying to sell it to people standing in the rain. We should have sold it to the clothing manufacturers. Marketing 101. I still have nightmares about the superior technology that washed down that drain.

Christensen’s Model Informs

I don’t know anyone who made substantial money in mainframes that did well in the microcomputer industry. Accustomed to the features and power of mainframes, we viewed microcomputers as toys. We termed the TRS 80 micro the Trash-80. I bought an early Apple and it crashed on me and I thought to myself, “This will never amount to anything.”

This phenomenon is addressed by Clayton Christensen is his disruptive innovation model. His thesis is that when a disruptive technology comes along, companies that have success in the disrupted technology are unable to capitalize on the opportunities of the new technology. Kodak could not adapt to digital photography; Swiss watch makers could not adapt to digital watches. Textbook publishers could not adapt to book rentals and used books sales by Amazon. Microsoft lost its way when it achieved its goal of “A computer on every desk and in every home.” It struggled to adapt to the Internet.

5 dBase is still a functional DBMS product—see http://www.dbase.com

Don’t look for the market leaders in big data or robotics to come from existing, large vendors. They will come from smaller companies that can position themselves to thrive in the new environment. If you haven’t learned Christensen’s model, you should.

Good-enough Fashion Will Do

For the most part, the relational model supplanted all the other data models. Because of Codd’s insights on the use of functional dependencies for relational design, it provided sound design principles. Also, fixed-length records (as, in practice, they were at first) fit nicely with existing file management capabilities. It worked. Thousands of papers were written on the topic.

However, today’s technology readily supports the storage and searching of multiple fields in un-normalized documents. In 1980, technology constraints required designers to take a document like a sales order and break it up into its pieces: Invoice, Salesperson, Customer, Line-item, Product. They would then store those pieces and then put them all back together with SQL (Structured Query Language) when someone wanted the original sales order. That makes no sense today. It’s like driving your car into a parking garage and having staff pull off your front tires and put them in the pile of front tires, your steering wheel into a pile of steering wheels, etc. Then, when you come back, put it all back together. Even though it’s unnecessary, it’s happening right now in zillions of data centers.

So why is the relational model still in use? Because it’s good enough and still in fashion. Fashion is important. Consider normalization theory. Codd’s first paper addressed normalization through third normal form. However, in later papers, he and others showed that this wasn’t enough. Relations in third normal form still had anomalies, which led to fourth and fifth and then Boyce-Codd (BCNF) Normal Forms. Despite this, one still hears people talk about third normal form as the be-all, end-all of relational design. Third normal form is good enough and still in fashion. It was as if progress stopped at third normal form (not in this text, though, where all of these forms are taught).

I suspect that someday soon, the whole relational mess will no longer be good enough and we’ll move to XML or JSON or some other form of document storage (as we discuss in Chapter 12, Appendix I, and Appendix L). I’ve been saying that for 10 years, though, and it hasn’t happened yet.

Another example of good enough and fashion is the entity-relationship (ER) model. The ER model is nothing more than a thin cover over the relational model. Entities are essentially logical relations, and relationships are a slim version of foreign keys. ER operates at too low a level of abstraction. Other models like the semantic object model and other object-oriented models are better. None succeeded. The ER model was in fashion and good enough.

When It’s Over, It’s Over

By the turn of the century, I’d been writing and revising this text for 25 years. Although I was exceedingly grateful to the thousands of professors and students who had used this book over those years, I also knew I was done. Partly, I said to myself, because it had settled down, the early crazy days were long gone, and partly because 25 years is a long time to work on a textbook.

To my great good fortune, I found David Auer, who agreed to take over the revisions of this text. I am most grateful to David for his hard work and for his fidelity to the underlying goals and philosophy of this text. The rest of this story is his.

David Auer

I was introduced to David Kroenke while working on the Instructor’s Manual for the ninth edition of Database Processing. Because we were both living and teaching in western Washington State, we could get together for meals and discussions. This led to my working on the companion textbook, Database Concepts, being a technical reader for the 10th edition of Database Processing, and then being asked to become a coauthor for the 11th edition of Database Processing.
I am very fortunate to be able to work with David on these projects. If you have read his portion of this foreword, you will have gotten a brief glimpse into the mind of a very creative and articulate person. He was also in the right place at the right time to be part of the creation of the computer-driven world that we live in and work in today. He has made many important contributions over his career, and the book you are reading is certainly one of them—the first textbook on database systems for management information systems classes and still one of the leading textbooks in the field!

David constantly revised and expanded Database Processing as new topics became relevant. My main contributions to the 11th and following editions were making MySQL a DBMS discussed on the same level as Microsoft SQL Server and Oracle Database; formalizing the treatment of Web database applications; and introducing new current topics such as non-relational databases, Big Data, and cloud computing. I have also revised and updated our treatment of Structured Query Language, while maintaining the practical and “immediately usable on your own computer” presentation that has always been a hallmark of this book.

The main challenge now is to keep the book current with the changing technology and techniques in our app-driven, Internet and cloud computing world of today, where databases are used ubiquitously to support applications such as Facebook, Twitter, and Instagram. To this end, we have brought two new coauthors on board for this edition: Scott Vandenberg and Robert Yoder, who are researching and teaching these topics.

Although this 15th edition of Database Processing marks the 40th anniversary of the book, we look forward to providing you with many more years of current, accurate, and usable knowledge about the world of databases and how they are used.
The 15th edition of *Database Processing: Fundamentals, Design, and Implementation* refines the organization and content of this classic textbook to reflect a new teaching and professional workplace environment. Students and other readers of this book will benefit from new content and features in this edition.

New to This Edition

Content and features new to the 15th edition of *Database Processing: Fundamentals, Design, and Implementation* include the following:

- The reorganization of SQL topics in Chapter 2 has been kept and a section on SQL queries on recursive relationships has been added.
- The material on Big Data and the evolving NoSQL movement is summarized in Chapter 12 and then expanded upon in restructured Appendix J, “Business Intelligence Systems,” Appendix K, "Big Data,” and a new Appendix L, "JSON and Document Databases.” This is an important topic that is constantly developing and changing, and the new appendix structure provides room for an extended discussion of the topic. Material on virtualization and cloud computing is expanded and updated in Chapter 12. The chapter has also been revised to tie together the various topics of the chapter and give a more complete, contextualized treatment of Big Data and its various facets and relationships to the other topics.
- Online chapters on Microsoft SQL Server 2017 (Chapter 10A), Oracle Database (Chapter 10B), and MySQL 5.7 (Chapter 10C) now have a section on importing data from Microsoft Excel 2016 worksheets.
- The book has been updated to reflect the use of Microsoft SQL Server 2017, the current version of Microsoft SQL Server. Microsoft has made SQL Server Developer Edition (a one-user version of SQL Server Enterprise Edition) available for download at no cost, and therefore we use this Developer Edition instead of the Express Edition as the basis for our work with SQL Server in the book. Although most of the topics covered are backward compatible with Microsoft SQL Server 2016 and earlier versions, all material in the book now uses SQL Server 2017 in conjunction with Microsoft Office 2016 exclusively.
- Oracle's Oracle Database is now updated to Oracle Database 12c Release 2, and Oracle Database Express Edition 11g Release 2 (Oracle Database XE) is introduced as the preferred Oracle Database product for use on personal computers. In addition, a complete set of instructions for downloading, installing, and configuring Oracle Database 12c Release 2 (Enterprise or Personal Edition) has been added. The current version of the Oracle SQL Developer GUI tool provides a common interface to both versions of Oracle Database, and we provide detailed examples of how to use it.
- Online Chapter 10C, "Managing Databases with MySQL,” has been streamlined and updated to MySQL 5.7.
- Microsoft Windows Server 2016 is the server operating system, and Windows 10 is the workstation operating system generally discussed and illustrated in the text. These are the current Microsoft server and workstation operating systems.
We have updated online Appendix H, "Getting Started with Web Servers, PHP and the NetBeans IDE" to cover current versions of the software. We are now using the NetBeans IDE instead of the Eclipse PDT IDE. This provides a better development environment with a much simpler set of product installations because the Java JDK and NetBeans are installed in one combined installation. This new material provides a simplified (but still detailed) introduction to the installation and use of the Microsoft IIS Web server, PHP, the Java JDK, and the NetBeans in Appendix H. All of these tools are then used for Web database-application development as discussed in Chapter 11.

More topics related to physical database design are now covered in Appendix G, which has been retitled "Physical Database Design and Data Structures for Database Processing." Specifically, coverage of multicolon index creation and use, clustering, and decomposition have been added to accompany the existing topics of file organizations and single-column indexes.

The old Appendix J, "Business Intelligence Systems," and K, "Big Data," expanded on some of the topics in Chapter 12. All that material remains, but it has been added to and reorganized. Appendix J, "Business Intelligence Systems," now includes coverage and examples of decision trees. The old Appendix K, "Big Data," has been split into three appendices: Appendix K, "Big Data," introduces Big Data technologies. It now includes a section on creating and using a relational cloud database and provides context for Appendix I, "XML," and Appendix L, "JSON and Document Databases." Appendix L describes the JSON document model in detail and covers the installation and use (creation and retrieval of data) of a document DBMS (ArangoDB), as well as use of a cloud-based document DBMS (Microsoft Cosmos DB, formerly called Microsoft Azure DocumentDB).

Fundamentals, Design, and Implementation

With today’s technology, it is impossible to utilize a DBMS successfully without first learning fundamental concepts. After years of developing databases with business users, we have developed what we believe to be a set of essential database concepts. These are augmented by the concepts necessitated by the increasing use of the Internet, the World Wide Web, and commonly available analysis tools. Thus, the organization and topic selection of the 15th edition are designed to:

- Present an early introduction to SQL queries.
- Use a “spiral approach” to database design.
- Use a consistent, generic Information Engineering (IE) Crow’s Foot E-R diagram notation for data modeling and database design.
- Provide a detailed discussion of specific normal forms within a discussion of normalization that focuses on pragmatic normalization techniques.
- Use current DBMS technology: Microsoft Access 2016, Microsoft SQL Server 2017, Oracle Database 12c Release 2 (and alternatively Oracle Database Express Edition 11g Release 2), and MySQL 5.7.
- Create Web database applications based on widely used Web development technology.
- Provide an introduction to business intelligence (BI) systems.
- Discuss the dimensional database concepts used in database designs for data warehouses and online analytical processing (OLAP).
- Discuss the emerging and important topics of server virtualization, cloud computing, Big Data, and the NoSQL (Not only SQL) movement.

These changes have been made because it has become obvious that the basic structure of the earlier editions (up to and including the 9th edition—the 10th edition introduced many of the changes we used in the 11th, 12th, 13th, and 14th editions and retain in the 15th edition) was designed for a teaching environment that no longer exists. The structural changes to the book were made for several reasons:
Unlike the early years of database processing, today’s students have ready access to data modeling and DBMS products.

Today’s students are too impatient to start a class with lengthy conceptual discussions on data modeling and database design. They want to do something, see a result, and obtain feedback.

In the current economy, students need to reassure themselves that they are learning marketable skills.

Early Introduction of SQL DML

Given these changes in the classroom environment, this book provides an early introduction to SQL data manipulation language (DML) SELECT statements. The discussion of SQL data definition language (DDL) and additional DML statements occurs in Chapters 7 and 8. By encountering SQL SELECT statements in Chapter 2, students learn early in the class how to query data and obtain results, seeing firsthand some of the ways that database technology will be useful to them.

The text assumes that students will work through the SQL statements and examples with a DBMS product. This is practical today because nearly every student has access to Microsoft Access. Therefore, Chapters 1 and 2 and Appendix A—Getting Started with Microsoft Access 2016, are written to support an early introduction of Microsoft Access 2016 and the use of Microsoft Access 2016 for SQL queries (Microsoft Access 2016 QBE query techniques are also covered).

If a non–Microsoft Access–based approach is desired, versions of Microsoft SQL Server 2017, Oracle Database, and MySQL 5.7 are readily available for use. Free versions of the three major DBMS products covered in this book (SQL Server 2017 Developer Edition; Oracle Database Express Edition 11g Release 2 [Oracle Database XE], and MySQL 5.7 Community Edition) are available for download. Thus, students can actively use a DBMS product by the end of the first week of class.

A Spiral Approach to the Database Design Process

Today, databases arise from three sources: (1) from the need to integrate existing data from spreadsheets, data files, and database extracts; (2) from the need to develop new information systems projects; and (3) from the need to redesign an existing database to adapt to changing requirements. We believe that the fact that these three sources exist presents instructors with a significant pedagogical opportunity. Rather than teach database design just once from data models, why not teach database design three times, once for each of these sources? In practice, this idea has turned out to be even more successful than expected.

Database Design Iteration 1: Databases from Existing Data

Considering the design of databases from existing data, if someone were to email us a set of tables and say, "Create a database from them," how would we proceed? We would examine the tables in light of normalization criteria and then determine whether the new database was for a production system that allows new data to be inserted for each new transaction, or for a business
intelligence (BI) data warehouse that allow users to only query data for use in reports and data analysis. Depending on the answer, we would normalize the data, pulling them apart (for the production transaction processing system), or denormalize the data, joining them together (for the BI system data warehouse). All of this is important for students to know and understand.

Therefore, the first iteration of database design gives instructors a rich opportunity to teach normalization, not as a set of theoretical concepts, but rather as a useful toolkit for making design decisions for databases created from existing data. Additionally, the construction of databases from existing data is an increasingly common task that is often assigned to junior staff members. Learning how to apply normalization to the design of databases from existing data not only provides an interesting way of teaching normalization, it is also common and useful!

We prefer to teach and use a pragmatic approach to normalization and present this approach in Chapter 3. However, we are aware that many instructors like to teach normalization in the context of a step-by-step normal form presentation (1NF, 2NF, 3NF, then BCNF), and Chapter 3 now includes additional material to provide more support for this approach as well.

In today’s workplace, large organizations are increasingly licensing standardized software from vendors such as SAP, Oracle, and Siebel. Such software already has a database design. But with every organization running the same software, many are learning that they can gain a competitive advantage only if they make better use of the data in those pre-designed databases. Hence, students who know how to extract data and create read-only databases for reporting and data mining have obtained marketable skills in the world of ERP and other packaged software solutions.

Database Design Iteration 2: Data Modeling and Database Design

The second source of databases is from new systems development. Although not as common as in the past, many databases are still created from scratch. Thus, students still need to learn data modeling, and they still need to learn how to transform data models into database designs that are then implemented in a DBMS product.

The IE Crow’s Foot Model as a Design Standard

This edition uses a generic, standard IE Crow’s Foot notation. Your students should have no trouble understanding the symbols and using the data modeling or database design tool of your choice.

IDEFIX (which was used as the preferred E-R diagram notation in the ninth edition of this text) is explained in Appendix C, "E-R Diagrams and the IDEFIX and UML Standards,” in case your students will graduate into an environment where it is used or if you prefer to use it in your classes. UML is also explained in this appendix in case you prefer to use UML in your classes.

The choice of a data modeling tool is somewhat problematic. Of the two most readily available tools, Microsoft Visio 2016 has been rewritten as a very rudimentary database design tool, whereas Oracle’s MySQL Workbench is a database design tool, not a data modeling tool. MySQL Workbench cannot produce an N:M relationship as such (as a data model requires) but has to immediately break it into two 1:N relationships (as database design does). Therefore, the intersection table must be constructed and modeled. This confounds data modeling with database design in just the way that we are attempting to teach students to avoid.

To be fair to Microsoft Visio 2016, it is true that data models with N:M relationships can be drawn using the standard Microsoft Visio 2016 drawing tools. Unfortunately, Microsoft has chosen to remove many of the best database design tools that were in Microsoft Visio 2010, and Microsoft Visio 2016 lacks the tools that made it a favorite of Microsoft Access and Microsoft SQL Server users. For a full discussion of these tools, see Appendix D, “Getting Started with Microsoft Visio 2016,” and Appendix E, “Getting Started with the MySQL Workbench Data Modeling Tools”.

Good data modeling tools are available, but they tend to be more complex and expensive. Two examples are Visible Systems’ Visible Analyst and erwin Inc.’s erwin Data Modeler. Visible Analyst is available in a student edition (at a modest price), and a free trial period is available for erwin Data Modeler.
Database Design from E-R Data Models

As we discuss in Chapter 6, designing a database from data models consists of three tasks: representing entities and attributes with tables and columns; representing maximum cardinality by creating and placing foreign keys; and representing minimum cardinality via constraints, triggers, and application logic.

The first two tasks are straightforward. However, designs for minimum cardinality are more difficult. Required parents are easily enforced using NOT NULL foreign keys and referential integrity constraints. Required children are more problematic. In this book, however, we simplify the discussion of this topic by limiting the use of referential integrity actions and by supplementing those actions with design documentation. See the discussion around Figure 6-29.

Although the design for required children is complicated, it is important for students to learn. It also provides a reason for students to learn about triggers as well. In any case, the discussion of these topics is much simpler than it was in prior editions because of the use of the IE Crow’s Foot model and ancillary design documentation.

Database Implementation from Database Designs

Of course, to complete the process, a database design must be implemented in a DBMS product. This is discussed in Chapter 7, where we introduce SQL DDL for creating tables and SQL DML for populating the tables with data.

By the Way

David Kroenke is the creator of the semantic object model (SOM). The SOM is presented in Appendix F, “The Semantic Object Model.” The E-R data model is used everywhere else in the text.

Database Design Iteration 3: Database Redesign

Database redesign, the third iteration of database design, is both common and difficult. As stated in Chapter 8, information systems cause organizational change. New information systems give users new behaviors, and as users behave in new ways, they require changes in their information systems.

Database redesign is, by nature, complex. Depending on your students, you may wish to skip it, and you can do so without loss of continuity. Database redesign is presented after the discussion of SQL DDL and DML in Chapter 7 because it requires the use of advanced SQL. It also provides a practical reason to teach correlated subqueries and EXISTS/NOT EXISTS statements.

Active Use of a DBMS Product

We assume that students will actively use a DBMS product. The only real question becomes “which one?” Realistically, most of us have four alternatives to consider: Microsoft Access, Microsoft SQL Server, Oracle Database, and MySQL. You can use any of those products with this text, and tutorials for each of them are presented for Microsoft Access 2016 (Appendix A), SQL Server 2017 (Chapter 10A), Oracle Database 12c Release 2 and Oracle Database XE (Chapter 10B), and MySQL 5.7 (Chapter 10C). Given the limitations of class time, it is probably necessary to pick and use just one of these products. You can often devote a portion of a lecture to discussing the characteristics of each, but it is usually best to limit student work to one of them. The possible exception to this is starting the course with Microsoft Access and then switching to a more robust DBMS product later in the course.

Using Microsoft Access 2016

The primary advantage of Microsoft Access is accessibility. Most students already have a copy, and, if not, copies are easily obtained. Many students will have used Microsoft Access in their introductory or other classes. Appendix A, “Getting Started with Microsoft Access 2016,” is a tutorial on Microsoft Access 2016 for students who have not used it but who wish to use it with this book.
However, Microsoft Access has several disadvantages. First, as explained in Chapter 1, Microsoft Access is a combination application generator and DBMS. Microsoft Access confuses students because it confounds database processing with application development. Also, Microsoft Access 2016 hides SQL behind its query processor and makes SQL appear as an afterthought rather than a foundation. Furthermore, as discussed in Chapter 2, Microsoft Access 2016 does not correctly process some of the basic SQL-92 standard statements in its default setup. Finally, Microsoft Access 2016 does not support triggers. You can simulate triggers by trapping Windows events, but that technique is nonstandard and does not effectively communicate the nature of trigger processing.

Using Microsoft SQL Server 2017, Oracle Database, or MySQL 5.7

Choosing which of these products to use depends on your local situation. Oracle Database 12c Release 2, a superb enterprise-class DBMS product, is difficult to install and administer. However, if you have local staff to support your students, it can be an excellent choice. Fortunately, Oracle Database Express Edition 11g Release 2, commonly referred to as Oracle Database XE, is easy to install, easy to use, and freely downloadable. If you want your students to be able to install Oracle Database on their own computers, use Oracle Database XE. As shown in Chapter 10B, Oracle's SQL Developer GUI tool (or SQL*Plus if you are dedicated to this beloved command line tool) is a handy tool for learning SQL, triggers, and stored procedures.

Microsoft SQL Server 2017, although probably not as robust as Oracle Database, is easy to install on Windows machines, and it provides the capabilities of an enterprise-class DBMS product. The standard database administrator tool is the Microsoft SQL Server Management Studio GUI tool. As shown in Chapter 10A, SQL Server 2017 can be used to learn SQL, triggers, and stored procedures.

MySQL 5.7, discussed in Chapter 10C, is an open source DBMS product that is receiving increased attention and market share. The capabilities of MySQL are continually being upgraded, and MySQL 5.7 supports stored procedures and triggers. MySQL also has excellent GUI tools in the MySQL Workbench and an excellent command-line tool (the MySQL Command Line Client). It is the easiest of the three products for students to install on their own computers. It also works with the Linux operating system and is popular as part of the AMP (Apache–MySQL–PHP) package (known as WAMP on Windows and LAMP on Linux).

BY THE WAY

Because we only present currently available software products in this book, we cover MySQL 5.7. However, MySQL 8.0 is currently in development status, which means that it will be generally available in the near future.

BY THE WAY

If the DBMS you use is not driven by local circumstances and you do have a choice, we recommend using Microsoft SQL Server 2017. It has all of the features of an enterprise-class DBMS product, and it is easy to install and use. Another option is to start with Microsoft Access 2016 if it is available and switch to SQL Server 2017 at Chapter 7. Chapters 1 and 2 and Appendix A are written specifically to support this approach. A variant is to use Microsoft Access 2016 as the development tool for forms and reports running against an SQL Server 2017 database.

If you prefer a different DBMS product, you can still start with Microsoft Access 2016 and switch later in the course. See the detailed discussion of the available DBMS products in Chapter 10 for a good review of your options.

Focus on Database Application Processing

In this edition, we clearly draw the line between application development per se and database application processing. Specifically, we have:

- Focused on specific database-dependent applications:
- Web-based, database-driven applications
XML-based data processing
Business intelligence (BI) systems applications
Emphasized the use of commonly available, multiple-OS-compatible application development languages.
Limited the use of specialized vendor-specific tools and programming languages as much as possible.

There is simply not enough room in this book to provide even a basic introduction to programming languages used for application development such as the Microsoft .NET languages and Java. Therefore, rather than attempting to introduce these languages, we leave them for other classes where they can be covered at an appropriate depth. Instead, we focus on basic tools that are relatively straightforward to learn and immediately applicable to database-driven applications. We use PHP as our Web development language, and we use the readily available NetBeans integrated development environment (IDE) as our development tool. The result is a very focused final section of the book, where we deal specifically with the interface between databases and the applications that use them.

BY THE WAY Although we try to use widely available software as much as possible, there are, of course, exceptions where we must use vendor-specific tools.

For BI applications, for example, we draw on Microsoft Excel’s PivotTable capabilities and the Microsoft PowerPivot for Microsoft Excel 2016 add-in. However, either alternatives to these tools are available (OpenOffice.org DataPilot capabilities, the Palo OLAP Server) or the tools are generally available for download.

Business Intelligence Systems and Dimensional Databases

This edition maintains coverage of business intelligence (BI) systems (Chapter 12 and Appendix J). The chapter includes a discussion of dimensional databases, which are the underlying structure for data warehouses, data marts, and OLAP servers. It still covers data management for data warehouses and data marts and also describes reporting and data mining applications, including OLAP.

Appendix J includes in-depth coverage of three applications that should be particularly interesting to students. The first is RFM analysis, a reporting application frequently used by mail order and e-commerce companies. The complete RFM analysis is accomplished in Appendix J through the use of standard SQL statements. The second, market basket analysis, is used by organizations to find patterns in purchase (or similar) data. Decision trees, the third topic covered in depth in Appendix J, are used to automatically categorize records based on past experience (e.g., is a customer a high or low risk for insurance coverage?). Appendix J can be assigned at any point after Chapter 8 and could be used as a motivator to illustrate the practical applications of SQL midcourse. Finally, Appendix K and Appendix L provide additional material on Big Data and NoSQL databases to supplement and support Chapter 12.

Overview of the Chapters in the 15th Edition

Chapter 1 sets the stage by introducing database processing, describing basic components of database systems, and summarizing the history of database processing. If students are using Microsoft Access 2016 for the first time (or need a good review), they will also need to study Appendix A, “Getting Started with Microsoft Access 2016” at this point. Chapter 2 presents SQL SELECT statements. It also includes sections on how to submit SQL statements to Microsoft Access 2016, SQL Server 2017, Oracle Database, and MySQL 5.7.

The next four chapters, Chapters 3 through 6, present the first two iterations of database design. Chapter 3 presents the principles of normalization to Boyce-Codd Normal Form (BCNF). It describes the problems of multivalued dependencies and explains how to eliminate them. This foundation in normalization is applied in Chapter 4 to the design of databases from existing data.
Chapters 5 and 6 describe the design of new databases. Chapter 5 presents the E-R data model. Traditional ER symbols are explained, but the majority of the chapter uses IE Crow’s Foot notation. Chapter 5 provides a taxonomy of entity types, including strong, ID-dependent, weak but not ID-dependent, supertype/subtype, and recursive. The chapter concludes with a simple modeling example for a university database.

Chapter 6 describes the transformation of data models into database designs by converting entities and attributes to tables and columns; by representing maximum cardinality by creating and placing foreign keys; and by representing minimum cardinality via carefully designed DBMS constraints, triggers, and application code. The primary section of this chapter parallels the entity taxonomy in Chapter 5.

Chapter 7 presents SQL DDL, DML, and SQL/Persistent Stored Modules (SQL/PSM). SQL DDL is used to implement the design of an example introduced in Chapter 6. INSERT, UPDATE, MERGE, and DELETE statements are discussed, as are SQL views. Additionally, the principles of embedding SQL in program code are presented. SQL/PSM is discussed, and triggers and stored procedures are explained.

Database redesign, the third iteration of database design, is described in Chapter 8. This chapter presents SQL statements using correlated subqueries and the SQL EXIST and NOT EXISTS operators, and uses these statements in the redesign process. Reverse engineering is described, and basic redesign patterns are illustrated and discussed.

Chapters 9, 10, 10A, 10B, and 10C consider the management of multiuser organizational databases. Chapter 9 describes database administration tasks, including concurrency, security, and backup and recovery. Chapter 10 is a general introduction to the online Chapters 10A, 10B, and 10C, which describe SQL Server 2017, Oracle Database (both Oracle Database 12c Release 2 and Oracle Database XE), and MySQL 5.7, respectively. These chapters show how to use these specific products to create database structures and process SQL statements. They also explain concurrency, security, and backup and recovery with each product. The discussion in Chapters 10A, 10B, and 10C parallels the order of discussion in Chapter 9 as much as possible, though rearrangements of some topics are made, as needed, to support the discussion of a specific DBMS product.

BY THE WAY

We have maintained or extended our coverage of Microsoft Access, Microsoft SQL Server, Oracle Database, and MySQL (introduced in *Database Processing: Fundamentals, Design, and Implementation*, 11th edition) in this book. In order to keep the bound book to a reasonable length and to keep the cost of the book down, we have chosen to provide some material by download from our Web site at www.pearsonhighered.com/kroenke. There you will find:

- Chapter 10A—Managing Databases with Microsoft SQL Server 2017
- Chapter 10B—Managing Databases with Oracle Database
- Chapter 10C—Managing Databases with MySQL 5.7
- Appendix A—Getting Started with Microsoft Access 2016
- Appendix B—Getting Started with Systems Analysis and Design
- Appendix C—E-R Diagrams and the IDEF1X and UML Standards
- Appendix D—Getting Started with Microsoft Visio 2016
- Appendix E—Getting Started with the MySQL Workbench Data Modeling Tools
- Appendix F—The Semantic Object Model
- Appendix G—Physical Database Design and Data Structures for Database Processing
- Appendix H—Getting Started with Web Servers, PHP, and the NetBeans IDE
- Appendix I—XML
- Appendix J—Business Intelligence Systems
- Appendix K—Big Data
- Appendix L—JSON and Document Databases
Chapters 11 and 12 address standards for accessing databases. Chapter 11 presents ODBC, OLE DB, ADO.NET, ASP.NET, JDBC, and JavaServer Pages (JSP). It then introduces PHP (and the NetBeans IDE) and illustrates the use of PHP for the publication of databases via Web pages. This is followed by a description of the integration of XML and database technology. The chapter begins with a primer on XML and then shows how to use the FOR XML SQL statement in SQL Server.

Chapter 12 concludes the text with a discussion of BI systems, dimensional data models, data warehouses, data marts, server virtualization, cloud computing, Big Data, structured storage, and the Not only SQL movement.

Supplements

This text is accompanied by a wide variety of supplements. Please visit the text's Web site at www.pearsonhighered.com/kroenke to access the instructor and student supplements described next. Please contact your Pearson sales representative for more details. All supplements were written by David Auer, Scott Vandenberg, Bob Yoder, and Harold Wise.

For Students

Many of the sample databases used in this text are available online in Microsoft Access, Microsoft SQL Server 2017, Oracle Database, and MySQL 5.7 formats.

For Instructors

At the Instructor Resource Center, www.pearsonhighered.com/irc, instructors can access a variety of print, digital, and presentation resources available with this text in downloadable format. Registration is simple and gives instructors immediate access to new titles and new editions. As a registered faculty member, you can download resource files and receive immediate access to and instructions for installing course management content on your campus server. In case you ever need assistance, our dedicated technical support team is ready to help with the media supplements that accompany this text. Visit http://247.pearsoned.com for answers to frequently asked questions and toll-free user support phone numbers.

The following supplements are available for download to adopting instructors:

- Instructor’s Manual (including database files and solutions)
- Test Bank
- TestGen Computerized Test Bank
- PowerPoint Presentations

Acknowledgments

We are grateful for the support of many people in the development of this 15th edition and previous editions. Kraig Pencil of Western Washington University helped us refine the use of the book in the classroom. Recently David Auer and Xiaofeng Chen team-taught a database class together at Western Washington University, and our interaction and discussions with Professor Chen resulted in several modifications and improvements in this book. Professor Chen also graciously allowed us to adopt some of his classroom examples for use in the books. Thanks are also due to Barry Flachsbart of Missouri University of Science and Technology and Don Malzahn of Harper College for their comments and SQL code checking. Finally, thanks to Donna Auer for giving us permission to use her painting waterfall as the cover art for this book.

In addition, we wish to thank the reviewers of this edition:

- **Brian Bender**, Northern Illinois University
- **Larry Booth**, Clayton State University
- **Richard Chrisman**, Northeast Community College
- **Vance Cooney**, Eastern Washington University
Finally, we would like to thank Samantha Lewis, our Portfolio Manager; Stephany Harrington, our Content Producer; Revathi Viswanathan, our Project Manager; and Mirasol Dante, our Production Liaison; for their professionalism, insight, support, and assistance in the development of this project. We would also like to thank Harold Wise of East Carolina University for his detailed comments on the final manuscript—this book would not be what it is without their extensive input. Finally, David Kroenke would like to thank his wife, Lynda; David Auer would like to thank his wife, Donna; Scott Vandenberg would like to thank his wife, Kristin; and Robert Yoder would like to thank Diane, Rachael, and Harrison for their love, encouragement, and patience while this project was being completed. David Kroenke would further like to thank David Auer for keeping this book going, and Scott Vandenberg and Robert Yoder for their contributions as the new members of the team!

David Kroenke
Whidbey Island, Washington

David Auer
Bellingham, Washington

Scott Vandenberg
Loudonville, New York

Robert Yoder
Loudonville, New York
David M. Kroenke

Work Experience

David M. Kroenke has more than 50 years of experience in the computer industry. He began as a computer programmer for the U.S. Air Force, working both in Los Angeles and at the Pentagon, where he developed one of the world's first DBMS products while part of a team that created a computer simulation of World War III. That simulation served a key role for strategic weapons studies during a 10-year period of the Cold War.

From 1973 to 1978, Kroenke taught in the College of Business at Colorado State University. In 1977 he published the first edition of *Database Processing*, a significant and successful textbook that, more than 40 years later, you now are reading in its 15th edition. In 1978, he left Colorado State and joined Boeing Computer Services, where he managed the team that designed database management components of the IPAD project. After that, he joined with Steve Mitchell to form Mitchell Publishing and worked as an editor and author, developing texts, videos, and other educational products and seminars. Mitchell Publishing was acquired by Random House in 1986. During those years, he also worked as an independent consultant, primarily as a database disaster repairman helping companies recover from failed database projects.

In 1982, Kroenke was one of the founding directors of the Microrim Corporation. From 1984 to 1987, he served as the Vice President of Product Marketing and Development and managed the team that created and marketed the DBMS product RBASE 5000 as well as other related products.

For the next five years, Kroenke worked independently while he developed a new data modeling language called the *semantic object model*. He licensed this technology to the Wall Data Corporation in 1992 and then served as the Chief Technologist for Wall Data’s Salsa line of products. He was awarded three software patents on this technology.

Consulting

Kroenke has consulted with numerous organizations during his career. In 1978, he worked for Fred Brooks, consulting with IBM on a project that became the DBMS product DB2. In 1989, he consulted for the Microsoft Corporation on a project that became Microsoft Access. In the 1990s, he worked with Computer Sciences Corporation and with General Research Corporation for the development of technology and products that were used to model all of the U.S. Army’s logistical data as part of the CALS project. Additionally, he has consulted for Boeing Computer Services, the U.S. Air Force Academy, Logicon Corporation, and other smaller organizations.

Publications

XXXV
About the Authors

- Using MIS, Pearson Prentice Hall, ten editions, 2006–present (coauthor with Randall J. Boyle, 8th, 9th, and 10th edition)
- MIS Essentials, Pearson Prentice Hall, four editions, 2009–present
- Managing Information for Microcomputers, Microrim Corporation, 1984 (coauthor with Donald Nilson)
- Database Processing for Microcomputers, Science Research Associates, 1985 (coauthor with Donald Nilson)

Teaching
Kroenke taught in the College of Business at Colorado State University from 1973 to 1978. He also has taught part time in the Software Engineering program at Seattle University. From 1990 to 1991, he served as the Hanson Professor of Management Science at the University of Washington. Most recently, he taught at the University of Washington from 2002 to 2008. During his career, he has been a frequent speaker at conferences and seminars for computer educators. In 1991, the International Association of Information Systems named him Computer Educator of the Year.

Education
B.S., Economics, U.S. Air Force Academy, 1968
M.S., Quantitative Business Analysis, University of Southern California, 1971
Ph.D., Engineering, Colorado State University, 1977

Personal
Kroenke is married, lives in Seattle, and has two grown children and three grandchildren. He enjoys skiing, sailing, and building small boats. His wife tells him he enjoys gardening as well.

David J. Auer

Work Experience
David J. Auer has more than 30 years of experience teaching college-level business and information systems courses and for the past 20 years has worked professionally in the field of information technology. He served as a commissioned officer in the U.S. Air Force, with assignments to NORAD and the Alaskan Air Command in air defense operations. He later taught both business administration and music classes at Whatcom Community College and business courses for the Chapman College Residence Education Center at Whidbey Island Naval Air Station. He was a founder of the Puget Sound Guitar Workshop (now in its 41st year of operations). He worked as a psychotherapist and organizational development consultant for the Whatcom Counseling and Psychiatric Clinic’s Employee Assistance Program and provided training for the Washington State Department of Social and Health
Services. He taught for Western Washington University’s College of Business and Economics from 1981 to June 2015 and served as the college’s Director of Information Systems and Technology Services from 1994 to 2014. Now a Senior Instructor Emeritus at Western Washington University, he continues his writing projects.

Publications

- Network Administrator: NetWare 4.1, Course Technology, 1997 (coauthor with Ted Simpson and Mark Ciampa)
- New Perspectives on Corel Quattro Pro 70 for Windows 95, Course Technology, 1997 (coauthor with June Jamrich Parsons, Dan Oja, and John Leschke)
- New Perspectives on Microsoft Excel 7 for Windows 95—Comprehensive, Course Technology, 1996 (coauthor with June Jamrich Parsons and Dan Oja)
- New Perspectives on Microsoft Office Professional for Windows 95—Intermediate, Course Technology, 1996 (coauthor with June Jamrich Parsons and Dan Oja)
- Microsoft Excel 5 for Windows—New Perspectives Comprehensive, Course Technology, 1995 (coauthor with June Jamrich Parsons and Dan Oja)
- Introductory Quattro Pro 6.0 for Windows, Course Technology, 1995 (coauthor with June Jamrich Parsons and Dan Oja)
- Introductory Quattro Pro 5.0 for Windows, Course Technology, 1994 (coauthor with June Jamrich Parsons and Dan Oja)

Teaching

Education

B.A., English Literature, University of Washington, 1969
B.S., Mathematics and Economics, Western Washington University, 1978
M.A., Economics, Western Washington University, 1980
M.S., Counseling Psychology, Western Washington University, 1991

Personal

Auer is married, lives in Bellingham, Washington, and has two grown children and four grandchildren. He is active in his community, where he has been president of his neighborhood association and served on the City of Bellingham Planning and Development Commission. He enjoys music, playing acoustic and electric guitar, five-string banjo, and a bit of mandolin.
Scott L. Vandenberg has over 25 years’ experience teaching computer science to college students in computer science and business. Before completing his PhD, he worked for brief periods at Standard Oil Research, Procter & Gamble headquarters, and IBM Research. He taught for two years at the University of Massachusetts-Amherst before joining the faculty at Siena College in 1993. His main teaching interests are in the areas of database management systems and introductory computer science, with research, consulting, and publications focused on those areas as well. Some of his earlier scholarly work included development of data models, query languages, and algebras for object-oriented databases and databases involving sequential and tree-structured data. More recent research has involved applying database technology to help solve data science problems in the areas of biology and epidemiology. He has also published several papers relating to introductory computer science curricula and is currently a co-principal investigator on a multiyear NSF grant to develop methods to broaden participation and increase retention in computer science. Vandenberg has published over 20 papers related to his scholarly activity.

Publications

Teaching

Vandenberg has been on the Computer Science faculty at Siena College since 1993, where he regularly teaches three different database courses at several levels to both Computer Science majors and Business majors. Prior to arriving at Siena, he taught undergraduate and graduate courses in database systems at the University of Massachusetts-Amherst. Since arriving at Siena, he also has taught graduate and undergraduate database courses at the University of Washington in Seattle. He has developed five different database courses over this time. His other teaching experience includes introductory computer science, introductory programming, data structures, management information systems, and three years teaching Siena’s interdisciplinary freshman writing course.

Education

B.A., Computer Science and Mathematics, Cornell University, 1986
M.S., Computer Science, University of Wisconsin-Madison, 1987
Ph.D., Computer Science, University of Wisconsin-Madison, 1993

Personal

Vandenberg is married; lives in Averill Park, New York; and has two children. When not playing with databases, he enjoys playing ice hockey and studying medieval history.

Robert C. Yoder

Robert C. Yoder began his professional career at the University at Albany as a systems programmer managing Unisys and IBM mainframes, along with Unix servers. He became the Assistant Director of Systems Programming, gaining over 25 years’ experience as a programmer and technical manager.

Bob took a two-year break from systems programming to work as a senior systems analyst at Phoenix Data Systems in Albany, New York. He assisted a team to develop an innovative 3-D solid modeling system using a data structure called octree encoding that can
represent the interior properties of objects. This work became the inspiration for his PhD dissertation on 3-D geographic information systems.

Publications

Teaching

Teaching is Bob’s second career. He started teaching computer science courses as an adjunct at the University of Albany (SUNY) and Siena College, and then accepted full-time employment at Siena College’s Computer Science Department in 2001. Bob teaches data structures, business database, operating systems, Java programming, geographic information systems, and management information systems. Bob has published several academic papers relating to management information systems, globalization, data structures, and computer science education.

Education

B.S., Computer Science and Applied Mathematics, University at Albany, 1977
M.S., Computer Science, University at Albany, 1979
Ph.D., Information Science, University at Albany, 1999

Personal

Bob lives in Niskayuna, New York, with his wife Diane and has two children. He enjoys traveling, hiking, and walking his dog. Bob would like to dedicate his portion of the textbook to the memory of loved ones who passed away recently: Dorothy Yoder, Laurie Gorski, and canine companion Robbie.