Welcome to the sixth edition of General, Organic, and Biological Chemistry, Structures of Life. This chemistry text was written and designed to help you prepare for a career in a health-related profession, such as nursing, dietetics, respiratory therapy, and environmental and agricultural science. This text assumes no prior knowledge of chemistry. My main objective in writing this text is to make the study of chemistry an engaging and positive experience for you by relating the structure and behavior of matter to its role in health and the environment. This new edition introduces more problem-solving strategies, more problem-solving guides, new Analyze the Problem with Connect features, new Try It First and Engage features, conceptual and challenge problems, and new sets of combined problems.

It is my goal to help you become a critical thinker by understanding scientific concepts that will form a basis for making important decisions about issues concerning health and the environment. Thus, I have utilized materials that

- help you to learn and enjoy chemistry
- relate chemistry to careers that may interest you
- develop problem-solving skills that lead to your success in chemistry
- promote learning and success in chemistry

New for the Sixth Edition

New and updated features have been added throughout this sixth edition, including the following:

- **NEW AND UPDATED!** Chapter Openers provide engaging clinical stories in the health profession and introduce the chemical concepts in each chapter.
- **NEW!** Clinical Updates added at the end of each chapter continue the story of the Chapter Opener and describe the follow-up treatment.
- **NEW!** Engage feature in the margin asks students to think about the paragraph they are reading and to test their understanding by answering the Engage question.
- **NEW!** Try It First precedes the Solution section of each Sample Problem to encourage the student to work on the problem before reading the given Solution.
- **NEW!** Connect feature added to Analyze the Problem boxes indicates the relationships between Given and Need.
- **NEW!** Clinical Applications added to Practice Problems show the relevance between the chemistry content and medicine and health.
- **NEW!** Strategies for Learning Chemistry are added that describe successful ways to study and learn chemistry.

- **NEW!** Expanded Study Checks in Sample Problems now contain multiple questions to give students additional self-testing practice.
- **NEW!** The names and symbols for the newest elements 113, Nihonium, Nh, 115, Moscovium, Mc, 117, Tennessine, Ts, and 118, Oganesson, Og.
- **NEW!** The Steps in the Sample Problems include a worked-out Solution plan for solving the problem.
- **NEW!** Table Design now has cells that highlight and organize related data.
- **NEW!** Test feature added in the margin encourages students to solve related Practice Problems to practice retrieval of content for exams.
- **NEW!** Interactive Videos give students the experience of step-by-step problem solving for problems from the text.
- **NEW!** Review topics are now placed in the margin at the beginning of a Section, listing the Key Math Skills and Core Chemistry Skills from the previous chapters, which provide the foundation for learning new chemistry principles in the current chapter.
- **UPDATED!** Key Math Skills review basic math relevant to the chemistry the students are learning throughout the text. A Key Math Skill Review at the end of each chapter summarizes and gives additional examples.
- **UPDATED!** Core Chemistry Skills identify the key chemical principles in each chapter that are required for successfully learning chemistry. A Core Chemistry Skill Review at the end of each chapter helps reinforce the material and gives additional examples.
- **UPDATED!** Analyze the Problem features included in the Solutions of the Sample Problems strengthen critical-thinking skills and illustrate the breakdown of a word problem into the components required to solve it.
- **UPDATED!** Practice Problems, Sample Problems, and Art demonstrate the connection between the chemistry being discussed and how these skills will be needed in professional experience.
- **UPDATED!** Combining Ideas features offer sets of integrated problems that test students’ understanding and develop critical thinking by integrating topics from two or more previous chapters.
- **UPDATED!** New zoom design highlights macro-to-micro art and captions are now on a gray screen to emphasize the art and text content.
- **UPDATED!** Concept Maps are updated with new design that shows a clearer path linking concept to concept.
- **UPDATED!** Biochemistry chapters 15, 17, and 19 to 24 have been rewritten to strengthen connections between sections, and include new Study Checks and new Chemistry Links to Health.
Chapter Organization of the Sixth Edition

In each textbook I write, I consider it essential to relate every chemical concept to real-life issues. Because a chemistry course may be taught in different time frames, it may be difficult to cover all the chapters in this text. However, each chapter is a complete package, which allows some chapters to be skipped or the order of presentation to be changed.

Chapter 1, Chemistry in Our Lives, discusses the Scientific Method in everyday terms, guides students in developing a study plan for learning chemistry, with a section of Key Math Skills that reviews the basic math, including scientific notation, needed in chemistry calculations.

- The Chapter Opener tells the story of two murders and features the work and career of forensic scientists.
- A new Clinical Update feature describes the forensic evidence that helps to solve the murders and includes Clinical Applications.
- Scientific Method: Thinking Like a Scientist is expanded to include law and theory.
- An updated Section 1.3 Studying and Learning Chemistry expands the discussion of strategies that improve learning and understanding of content.
- New Section 1.5 Writing Numbers in Scientific Notation is added.
- Key Math Skills are: Identifying Place Values, Using Positive and Negative Numbers in Calculations, Calculating Percentages, Solving Equations, Interpreting Graphs, and Writing Numbers in Scientific Notation.

Chapter 2, Chemistry and Measurements, looks at measurement and emphasizes the need to understand numerical relationships of the metric system. Significant figures are discussed in the determination of final answers. Prefixes from the metric system are used to write equalities and conversion factors for problem-solving strategies. Density is discussed and used as a conversion factor.

- The Chapter Opener tells the story of a patient with high blood pressure and features the work and career of a registered nurse.
- The Clinical Update describes the patient’s status and follow-up visit with his doctor.
- Sample Problems relate problem solving to health-related topics such as the measurements of blood volume, omega-3 fatty acids, radiological imaging, body fat, cholesterol, and medication orders.
- Clinical Applications feature questions about measurements, daily values for minerals and vitamins, and equalities and conversion factors for medications.
- The Key Math Skill is: Rounding Off.
- Core Chemistry Skills are: Counting Significant Figures, Using Significant Figures in Calculations, Using Prefixes, Writing Conversion Factors from Equalities, Using Conversion Factors, and Using Density as a Conversion Factor.

Chapter 3, Matter and Energy, classifies matter and states of matter, describes temperature measurement, and discusses energy, specific heat, energy in nutrition, and changes of state. Physical and chemical properties and physical and chemical changes are discussed.

- The Chapter Opener describes diet and exercise for an overweight adolescent at risk for type 2 diabetes and features the work and career of a dietitian.
- The Clinical Update describes the diet prepared with a dietitian for weight loss.
- Practice Problems and Sample Problems include high temperatures used in cancer treatment, the energy produced by a high-energy shock output of a defibrillator, body temperature lowering using a cooling cap, ice bag therapy for muscle injury, dental implants, and energy values for food.
- Core Chemistry Skills are: Identifying Physical and Chemical Changes, Converting Between Temperature Scales, Using Energy Units, Using the Heat Equation, and Calculating Heat for Change of State.
- The interchapter problem set, Combining Ideas from Chapters 1 to 3, completes the chapter.

Chapter 4, Atoms and Elements, introduces elements and atoms and the periodic table. The names and symbols for the newest elements 113, Nihonium, Nh, 115, Moscovium, Mc, 117, Tennessine, Ts, and 118, Oganesson, Og, are added to the periodic table. Electron configurations are written for atoms and the trends in periodic properties are described. Atomic numbers and mass numbers are determined for isotopes. The most abundant isotope of an element is determined by its atomic mass. Atomic mass is calculated using the masses of the naturally occurring isotopes and their abundances. Electron arrangements are written using orbital diagrams, electron configurations, and abbreviated electron configurations.

- The Chapter Opener and Clinical Update feature the improvement in crop production by a farmer.
- Atomic number and mass number are used to calculate the number of protons and neutrons in an atom.
- The number of protons and neutrons are used to calculate the mass number and to write the atomic symbol for an isotope.
- The trends in periodic properties are described for valence electrons, atomic size, ionization energy, and metallic character.
- Core Chemistry Skills are: Counting Protons and Neutrons, Writing Atomic Symbols for Isotopes, Writing Electron Configurations, Using the Periodic Table to Write Electron Configurations, Identifying Trends in Periodic Properties, and Drawing Lewis Symbols.

Chapter 5, Nuclear Chemistry, looks at the types of radiation emitted from the nuclei of radioactive atoms. Nuclear equations are written and balanced for both naturally occurring radioactivity and artificially produced radioactivity. The half-lives of radioisotopes are discussed, and the amount of time for a sample to decay is calculated. Radioisotopes important in the...
field of nuclear medicine are described. Fission and fusion and their role in energy production are discussed.

- The Chapter Opener describes a patient with possible coronary heart disease who undergoes a nuclear stress test and features the work and career of a radiation technologist.
- The Clinical Update discusses the results of cardiac imaging using the radioisotope Tl-201.
- Sample Problems and Practice Problems use nursing and medical examples, including phosphorus-32 for the treatment of leukemia, titanium seeds containing a radioactive isotope implanted in the body to treat cancer, yttrium-90 injections for arthritis pain, and millicuries in a dose of phosphorus-32.
- New art includes the illustration of the organs of the body where medical radioisotopes are used for diagnosis and treatment.
- Core Chemistry Skills are: Writing Nuclear Equations and Using Half-Lives.

Chapter 6, Ionic and Molecular Compounds, describes the formation of ionic and covalent bonds. Chemical formulas are written, and ionic compounds—including those with polyatomic ions—and molecular compounds are named.

- The Chapter Opener describes the chemistry of aspirin and features the work and career of a pharmacy technician.
- The Clinical Update describes several types of compounds at a pharmacy and includes Clinical Applications.
- Section 6.6 is now titled Lewis Structures for Molecules and Polyatomic Ions, and 6.9 is now titled Intermolecular Forces in Compounds.
- New material on polyatomic ions compares the names of ate ions and ite ions, the charge of sulfate and sulfite, phosphate and phosphite, carbonate and hydrogen carbonate, and the formulas and charges of halogen polyatomic ions with oxygen.
- Core Chemistry Skills are: Writing Positive and Negative Ions, Writing Ionic Formulas, Naming Ionic Compounds, Writing the Names and Formulas for Molecular Compounds, Drawing Lewis Structures, Using Electronegativity, Predicting Shape, Identifying Polarity of Molecules, and Identifying Intermolecular Forces.
- The interchapter problem set, Combining Ideas from Chapters 4 to 6, completes the chapter.

Chapter 7, Chemical Reactions and Quantities, shows students how to balance chemical equations and to recognize the types of chemical reactions: combination, decomposition, single replacement, double replacement, and combustion. Students are introduced to moles and molar masses of compounds, which are used in calculations to determine the mass or number of particles in a given quantity as well as limiting reactants and percent yield. The chapter concludes with a discussion of energy in reactions.

- The Chapter Opener describes the symptoms of heart and pulmonary disease and discusses the career of an exercise physiologist.
- A new Clinical Update, Improving Natalie’s Overall Fitness, discusses her test results and suggests exercise to improve oxygen intake.
- New Sample Problems are: Oxidation and Reduction, and Exothermic and Endothermic Reactions.
- New expanded art shows visible evidence of several types of chemical reactions.

Chapter 8, Gases, discusses the properties of gases and calculates changes in gases using the gas laws: Boyle’s, Charles’s, Gay-Lussac’s, Avogadro’s, Dalton’s, and the Ideal Gas Law. Problem-solving strategies enhance the discussion and calculations with the ideal gas laws.

- The Chapter Opener features the work and career of a respiratory therapist who uses oxygen to treat a patient with asthma.
- The Clinical Update describes exercise to manage exercise-induced asthma. Clinical Applications are related to lung volume and gas laws.
- Sample Problems and Challenge Problems use nursing and medical examples, including, calculating the volume of oxygen gas delivered through a face mask during oxygen therapy, preparing a heliox breathing mixture for a scuba diver, and home oxygen tanks.
- Core Chemistry Skills are: Using the Gas Laws, Using the Ideal Gas Law, Calculating Mass or Volume of a Gas in a Chemical Reaction, and Calculating Partial Pressure.
- The interchapter problem set, Combining Ideas from Chapters 7 and 8, completes the chapter.

Chapter 9, Solutions, describes solutions, electrolytes, saturation and solubility, insoluble salts, concentrations, and osmosis. The concentrations of solutions are used to determine volume or mass of solute. The volumes and molarities of solutions are used in calculations of dilutions and titrations. Properties of solutions, freezing and boiling points, osmosis in the body, and dialysis are discussed.

- The Chapter Opener describes a patient with kidney failure and dialysis treatment and features the work and career of a dialysis nurse.
- The Clinical Update explains dialysis treatment and electrolyte levels in dialysate fluid.
Chapter 10, Reaction Rates and Chemical Equilibrium, looks at the rates of reactions and the equilibrium condition when forward and reverse rates for a reaction become equal. Equilibrium expressions for reactions are written and equilibrium constants are calculated. Le Châtelier’s principle is used to evaluate the impact on concentrations when stress is placed on the system.

Chapter 11, Acids and Bases, discusses acids and bases and their strengths, and conjugate acid–base pairs. The dissociation of strong and weak acids and bases is related to their strengths as acids or bases. The dissociation of water leads to the water dissociation expression, $K_w$, the pH scale, and the calculation of pH. Chemical equations for acids in reactions are balanced and titration of an acid is illustrated. Buffers are discussed along with their role in the blood. The pH of a buffer is calculated.

Chapter 12, Introduction to Organic Chemistry: Hydrocarbons, compares inorganic and organic compounds, and describes the structures and naming of alkanes, alkenes, and aromatic compounds.

Chapter 13, Alcohols, Phenols, Thiols, and Ethers, describes the functional groups and names of alcohols, phenols, thiols, and ethers.

Chapter 14, Aldehydes and Ketones, discusses the nomenclature, structures, and oxidation and reduction of aldehydes and ketones. The chapter discusses the formation of hemiacetals and acetals.

A new example of suspensions used to purify water in treatment plants is added.

New art illustrates the freezing point decrease and boiling point increase for aqueous solutions with increasing number of moles of solute in one kilogram of water.

Core Chemistry Skills are: Using Solubility Rules, Calculating Concentration, Using Concentration as a Conversion Factor, Calculating the Quantity of a Reactant or Product for a Chemical Reaction in Solution, and Calculating the Boiling Point/Freezing Point of a Solution.

The Chapter Opener describes a fire victim and the search for traces of accelerants and fuel at the arson scene and features the work and career of a firefighter/emergency medical technician.

The Clinical Update describes the treatment of burns in the hospital and the types of fuels identified in the fire.

Subsections in 12.4 Solubility and Density and 12.5 Identifying Alkenes and Alkynes are revised for clarity.

More line-angle formulas for organic structures in Practice Problems have been added.

Core Chemistry Skills are: Naming and Drawing Alkanes and Writing Equations for Hydrogenation, Hydration, and Polymerization.

Chapter 10, Reaction Rates and Chemical Equilibrium, looks at the rates of reactions and the equilibrium condition when forward and reverse rates for a reaction become equal. Equilibrium expressions for reactions are written and equilibrium constants are calculated. Le Châtelier’s principle is used to evaluate the impact on concentrations when stress is placed on the system.

The Chapter Opener describes the symptoms of infant respiratory distress syndrome (IRDS) and discusses the career of a neonatal nurse.

The Clinical Update describes a child with anemia, hemoglobin–oxygen equilibrium, and a diet that is high in iron-containing foods.

Core Chemistry Skills are: Writing the Equilibrium Expression, Calculating an Equilibrium Constant, Calculating Equilibrium Concentrations, and Using Le Châtelier’s Principle.

Chapter 11, Acids and Bases, discusses acids and bases and their strengths, and conjugate acid–base pairs. The dissociation of strong and weak acids and bases is related to their strengths as acids or bases. The dissociation of water leads to the water dissociation expression, $K_w$, the pH scale, and the calculation of pH. Chemical equations for acids in reactions are balanced and titration of an acid is illustrated. Buffers are discussed along with their role in the blood. The pH of a buffer is calculated.

The Chapter Opener describes a blood sample for an emergency room patient sent to the clinical laboratory for analysis of blood pH and CO2 gas and features the work and career of a clinical laboratory technician.

The Clinical Update describes the symptoms and treatment for acid reflux disease (GERD).

Key Math Skills are: Calculating pH from $[H_2O^-]$ and Calculating $[H_2O^-]$ from pH.

Core Chemistry Skills are: Identifying Conjugate Acid–Base Pairs, Calculating $[H_2O^-]$ and $[OH^-]$ in Solutions, Writing Equations for Reactions of Acids and Bases, Calculating Molarity or Volume of an Acid or Base in a Titration, and Calculating the pH of a Buffer.

The interchapter problem set, Combining Ideas from Chapters 9 to 11, completes the chapter.

Chapter 12, Introduction to Organic Chemistry: Hydrocarbons, compares inorganic and organic compounds, and describes the structures and naming of alkanes, alkenes, and aromatic compounds.

The Chapter Opener describes a fire victim and the search for traces of accelerants and fuel at the arson scene and features the work and career of a firefighter/emergency medical technician.

The Clinical Update describes the treatment of burns in the hospital and the types of fuels identified in the fire.

Subsections in 12.4 Solubility and Density and 12.5 Identifying Alkenes and Alkynes are revised for clarity.

More line-angle formulas for organic structures in Practice Problems have been added.

Core Chemistry Skills are: Naming and Drawing Alkanes and Writing Equations for Hydrogenation, Hydration, and Polymerization.
Chapter 15, Carbohydrates, describes the carbohydrate molecules monosaccharides, disaccharides, and polysaccharides and their formation by photosynthesis. Monosaccharides are classified as aldo or keto pentoses or hexoses. Chiral molecules are discussed along with Fischer projections and d and l notations. The formation of glycosidic bonds in disaccharides and polysaccharides is described.

- The Chapter Opener describes a diabetes patient and her diet and features the work and career of a diabetes nurse.
- The Clinical Update describes a diet and exercise program to lower blood glucose.
- New art accompanies content on tooth decay and use of xylitol, the structures of amino sugars and uronic acids, and hyaluronic acid used as facial fillers.
- New Chemistry Links to Health are: Dental Cavities and Xylitol Gum, and Varied Biological Roles of Carbohydrate Polymers: The Case of Glycosaminoglycans.
- New Study Checks include penicillamine to treat rheumatoid arthritis, and ethambutol to treat tuberculosis.
- Section on Chirality is moved to Chapter 15.
- Core Chemistry Skills are: Identifying Chiral Molecules, Identifying d and l Fischer Projections for Carbohydrates, and Drawing Haworth Structures.

Chapter 16, Carboxylic Acids and Esters, discusses the functional groups and naming of carboxylic acids and esters. Chemical reactions include esterification and acid and base hydrolysis of esters.

- The Chapter Opener describes heart surgery and discusses the work and career of a surgical technician.
- The Clinical Update describes the chemistry and use of liquid bandages.
- More line-angle structures for carboxylic acids and esters have been added.
- New art of ester-containing fruit has been added.
- Core Chemistry Skills are: Naming Carboxylic Acids and Hydrolyzing Esters.

Chapter 17, Lipids, discusses fatty acids and the formation of ester bonds in triacylglycerols and glycerophospholipids. Chemical properties of fatty acids and their melting points along with the hydrogenation of unsaturated triacylglycerols are discussed. Steroids, such as cholesterol and bile salts, are described. The role of phospholipids in the lipid bilayer of cell membranes is discussed as well as the lipids that function as steroid hormones.

- The updated Chapter Opener describes a patient with symptoms of familial hypercholesterolemia and features the work and career of a clinical lipid specialist.
- The Clinical Update describes medications a program to and a diet to lower cholesterol.
- New art diagrams include glaucoma and its treatment with a prostaglandin, healthy and nonhealthy livers, and the steroid structure of spironolactone.
- Chemistry Links to Health are: Omega-3 Fatty Acids in Fish Oils and Infant Respiratory Distress Syndrome (IRDS).

- New Chemistry Links to Health are: A Prostaglandin-like Medication for Glaucoma That Also Thickens Eyelashes, and A Steroid Receptor Antagonist That Prevents the Development of Male Sexual Characteristics.
- Core Chemistry Skills are: Identifying Fatty Acids, Drawing Structures for Triacylglycerols, Drawing the Products for the Hydrogenation, Hydrolysis, and Saponification of a Triacylglycerol, and Identifying the Steroid Nucleus.

Chapter 18, Amines and Amides, emphasizes the nitrogen atom in their functional groups and their names. Properties of amines including classification, boiling point, solubility in water, and use as neurotransmitters are included. Alkaloids are discussed as the naturally occurring amines in plants. Chemical reactions include dissociation and neutralization of amines, amidation, and acid and base hydrolysis of amides.

- The Chapter Opener describes pesticides and pharmaceuticals used on a ranch and discusses the career of an environmental health practitioner.
- The Clinical Update describes the collection of soil and water samples for testing of insecticides and antibiotics.
- New line-angle formulas are drawn for amines, alkaloids, heterocyclic amines, and neurotransmitters.
- Introduction to Section 18.5, Amides is revised.
- Chemistry Link to Health Synthesizing Drugs and Opioids is revised.
- Clinical Applications include novocaine, lidocaine, ritalin, niacin, serotonin, histamine, acetylcholine, dose calculations of pesticides and antibiotics, enrofloxacin, and voltaren.
- Core Chemistry Skills are: Forming Amides and Hydrolyzing Amides.
- The interchapter problem set, Combining Ideas from Chapters 15 to 18, completes the chapter.

Chapter 19, Amino Acids and Proteins, discusses amino acids, formation of peptide bonds and the primary, secondary, tertiary, and quaternary structural levels of proteins. The ionized structures of amino acids are drawn at physiological pH.

- A new Chapter Opener discusses the symptoms of sickle-cell anemia in a child, the mutation in amino acids that causes the crescent shape of abnormal red blood cells, and the career of a hematology nurse.
- A new Clinical Update discusses the diagnosis of sickle-cell anemia using electrophoresis and its treatment.
- The protein structure sections are reorganized as: 19.2 Proteins; Primary Structure; 19.3 Proteins; Secondary Structure; and 19.4 Proteins; Tertiary and Quaternary Structures.
- New Chemistry Links to Health are: Cystinuria, and Keratoconus.
- New art includes normal cornea, cornea with keratoconus, collagen fibers in keratoconus, and insoluble fiber formation in sickle-cell anemia.
A01_TIMB0684_06_SE_FM.indd   23

otide sequences are altered in genetic diseases. Acids in a protein. Mutations describe ways in which the nucle- mRNA during protein synthesis. The role of RNA is discussed ing is discussed in both DNA replication and the formation of ecules that store and direct information for the synthesis of describes the nucleic acids and their importance as biomol- gens. Proteins change shape and lose function when subjected to pH changes and high temperatures. The important role of water-soluble vitamins as coenzymes is related to enzyme function.

The Chapter Opener discusses the symptoms of lactose intolerance and describes the career of a physician assistant.

The Clinical Update describes the hydrogen breath test to confirm lactose intolerance and a diet that is free of lactose and use of Lactaid.

Chemistry Link to Health is: Isoenzymes as Diagnostic Tools.

New Chemistry Links to Health are: Fabry Disease and Taking Advantage of Enzyme Inhibition to Treat Cancer: Imatinib.

New art includes the structure of galactosidase A and enzyme inhibition of imatinib used to treat myeloid leukemia.

Core Chemistry Skills are: Describing Enzyme Action, Classifying Enzymes, Identifying Factors Affecting Enzyme Activity, and Describing the Role of Cofactors.

Chapter 21, Nucleic Acids and Protein Synthesis, describes the nucleic acids and their importance as biomolecules that store and direct information for the synthesis of cellular components. The role of complementary base pairing is discussed in both DNA replication and the formation of mRNA during protein synthesis. The role of RNA is discussed in the relationship of the genetic code to the sequence of amino acids in a protein. Mutations describe ways in which the nucleotide sequences are altered in genetic diseases.

The Chapter Opener describes a patient’s diagnosis and treatment of breast cancer and discusses the work and career of a histology technician.

A Clinical Update describes estrogen-positive tumors, the impact of the altered genes BRCA1 and BRCA2 on the estrogen receptor, and medications to suppress tumor growth.

A new section discusses recombinant DNA, polymerase chain reaction, and DNA fingerprinting.

The Chemistry Link to Health Protein Sequencing was moved from Chapter 19 to Chapter 21.

New Chemistry Links to Health are: Cataracts and Ehlers–Danlos Syndrome.

Chapter 20, Enzymes and Vitamins, relates the importance of the three-dimensional shape of proteins to their function as enzymes. The shape of an enzyme and its substrate are factors in enzyme regulation. End products of an enzyme-catalyzed sequence can increase or decrease the rate of an enzyme-catalyzed reaction. Other regulatory processes include allosteric enzymes, covalent modification and phosphorylation, and zymogens. Proteins change shape and lose function when subjected to pH changes and high temperatures. The important role of water-soluble vitamins as coenzymes is related to enzyme function.

The Chapter Opener discusses the symptoms of lactose intolerance and describes the career of a physician assistant.

The Clinical Update describes the hydrogen breath test to confirm lactose intolerance and a diet that is free of lactose and use of Lactaid.

Chemistry Link to Health is: Isoenzymes as Diagnostic Tools.

New Chemistry Links to Health are: Fabry Disease and Taking Advantage of Enzyme Inhibition to Treat Cancer: Imatinib.

New art includes the structure of galactosidase A and enzyme inhibition of imatinib used to treat myeloid leukemia.

Core Chemistry Skills are: Describing Enzyme Action, Classifying Enzymes, Identifying Factors Affecting Enzyme Activity, and Describing the Role of Cofactors.

Chapter 22, Metabolic Pathways for Carbohydrates, describes the stages of metabolism and the digestion of carbohydrates, our most important fuel. The breakdown of glucose to pyruvate is described using glycolysis, which is followed under aerobic conditions by the decarboxylation of pyruvate to acetyl CoA. The synthesis of glycogen and the synthesis of glucose from noncarbohydrate sources are discussed.

The Chapter Opener discusses the symptoms of a glycogen storage disease and discusses the career of a hepatology nurse.

The Clinical Update describes medical treatment of frequent feedings of glucose for von Gierke’s disease, in which a child has a defective glucose-6-phosphatase and cannot break down glucose-6-phosphate to glucose.

Chemistry Link to Health is: Glycogen Storage Diseases (GSDs).

New Chemistry Links to Health are: Galactosemia and Glucocorticoids, and Steroid-Induced Diabetes.

Sections 22.4 “Glycolysis: Oxidation of Glucose”, 22.6 “Glycogen Synthesis and Degradation”, and 22.7 “Glucose Synthesis: Glucose Synthesis” are revised for clarity.

New art includes diagrams of normal lactose oxidation compared to galactosemia, and the impact of glucocorticoids on glucose metabolism.

Core Chemistry Skills are: Identifying Important Coenzymes in Metabolism, Identifying the Compounds in Glycolysis, and Identifying the Compounds and Enzymes in Glycogenesis and Glycogenolysis.

Chapter 23, Metabolism and Energy Production, looks at the entry of acetyl CoA into the citric acid cycle and the production of reduced coenzymes for electron transport, oxidative phosphorylation, and the synthesis of ATP. The malate–aspartate shuttle describes the transport of NADH from the cytosol into the mitochondrial matrix.

The new Chapter Opener discusses a child with mitochondrial myopathy and discusses the work and career of a physical therapist.

A new Clinical Update discusses treatment that helps increase a child’s functional capacity.

New Clinical Applications include problems about diseases associated with enzyme deficiencies.

New material discusses diseases of enzymes in the citric acid cycle such as fumarase deficiency that causes neurological impairment, developmental delay, and seizures.

Feedback Control, Covalent Modification, and Enzyme Inhibition subsections are expanded to enhance student understanding.
• A new subsection Diseases of the Citric Acid Cycle is added to Section 23.1.
• Section 23.2 Electron Transport and ATP is revised for clarity.
• Chemistry Links to Health are: Toxins: Inhibitors of Electron Transport, Uncouplers of ATP Synthase, and Efficiency of ATP Production.
• Core Chemistry Skills are: Describing the Reactions in the Citric Acid Cycle and Calculating the ATP Produced from Glucose.

Chapter 24, Metabolic Pathways for Lipids and Amino Acids, discusses the digestion of lipids and proteins and the metabolic pathways that convert fatty acids and amino acids into energy. Discussions include the conversion of excess carbohydrates to triacylglycerols in adipose tissue and how the intermediates of the citric acid cycle are converted to nonessential amino acids.

• The Chapter Opener describes a liver profile with elevated levels of liver enzymes for a patient with chronic hepatitis C infection and discusses the career of a public health nurse.
• The Clinical Update describes interferon and ribavirin therapy for hepatitis C.

Acknowledgments

The preparation of a new text is a continuous effort of many people. I am thankful for the support, encouragement, and dedication of many people who put in hours of tireless effort to produce a high-quality book that provides an outstanding learning package. I am thankful for the outstanding contributions of Professor MaryKay Orgill whose updates and clarifications enhanced the content of the biochemistry chapters 15, 17, and 19 to 24. The editorial team at Pearson has done an exceptional job. I want to thank Jeanne Zalesky, Director, Courseware Portfolio Management, and Scott Dustan, Courseware Portfolio Manager, who supported our vision of this sixth edition.

I appreciate all the wonderful work of Melanie Field, Content Producer, who skillfully brought together files, art, web site materials, and all the things it takes to prepare a book for production. I appreciate the work of Christian Arsenault at SPI Global, who brilliantly coordinated all phases of the manuscript to the final pages of a beautiful book. Thanks to Mark Quiro, manuscript and accuracy reviewer, and Karen Williams, who precisely analyzed and edited the manuscripts and pages to make sure the words and problems were correct to help students learn chemistry. Their keen eyes and thoughtful comments were extremely helpful in the development of this text.

Thanks to Kristen Flathman, Managing Producer, Coleen Morrison, Courseware Analyst, and Jennifer Hart, Courseware Director for their excellent review of pages and helpful suggestions.

I am especially proud of the art program in this text, which lends beauty and understanding to chemistry. I would like to thank Jay McElroy, Art Courseware Analyst and Stephanie Marquez, Photo and Illustration Project Manager; Maria Guglielmo Walsh, Design Manager, and Tamara Newnam, Cover and Interior Designer, whose creative ideas provided the outstanding design for the cover and pages of the book. I appreciate the tireless efforts of Clare Maxwell, Photo Researcher, and Matt Perry, Rights and Permissions Project Manager in researching and selecting vivid photos for the text so that students can see the beauty of chemistry. Thanks also to Bio-Rad Laboratories for their courtesy and use of KnowItAll ChemWindows, drawing software that helped us produce chemical structures for the manuscript. The macro-to-micro illustrations designed by Jay McElroy and Imagineering Art give students visual impressions of the atomic and molecular organization of everyday things and are a fantastic learning tool. I also appreciate all the hard work in the field put in by the marketing team and Elizabeth Ellsworth Bell, Marketing Manager.

I am extremely grateful to an incredible group of peers for their careful assessment of all the new ideas for the text; for their suggested additions, corrections, changes, and deletions; and for providing an incredible amount of feedback about improvements for the book. I admire and appreciate every one of you.

If you would like to share your experience with chemistry, or have questions and comments about this text, I would appreciate hearing from you.

Karen Timberlake
Email: khemist@aol.com