Learning Catalytics™ is a student response tool that helps you generate class discussion, customize your lecture, and promote peer-to-peer learning based on real-time analytics. Learning Catalytics uses students' smartphones, tablets, or laptops to engage them in more interactive tasks.

The Gradebook offers an easy way for you and your students to see their performance in your course. Item Analysis lets you quickly see trends by analyzing details like the number of students who answered correctly/incorrectly, time on task, and more. And because it’s correlated with the AACSB Standards, you can track students’ progress toward outcomes that the organization has deemed important in preparing students to be leaders.

Pearson eText enhances learning — both in and out of the classroom. Students can take notes, highlight, and bookmark important content, or engage with interactive lecture and example videos that bring learning to life anytime, anywhere via MyLab or the app.

Accessibility (ADA)—Pearson is working toward WCAG 2.0 Level AA and Section 508 standards, as expressed in the Pearson Guidelines for Accessible Educational Web Media. Moreover, our products support customers in meeting their obligation to comply with the Americans with Disabilities Act (ADA) by providing access to learning technology programs for users with disabilities. Please email our Accessibility Team at disability.support@pearson.com for the most up-to-date information.

With LMS Integration, you can link your MyLab course from Blackboard Learn™, Brightspace® by D2L®, Canvas™, or Moodle®.

http://www.pearsonmylabandmastering.com
PROCESSES, SYSTEMS, AND INFORMATION
An Introduction to MIS
Brief Contents

Part 1
Why MIS?
Chapter 1
The Importance of MIS
Chapter 2
Business Processes, Information Systems, and Information

Part 2
Information Technology
Chapter 3
Networks and the Cloud
Chapter 4
Database Processing
Chapter 5
Information Systems Security

Part 3
Structured Processes and Information Systems
Chapter 6
Using IS to Improve Processes
Chapter 7
Supporting Processes with ERP Systems
Chapter 8
Supporting the Procurement Process with SAP
Appendix 8
SAP Procurement Tutorial
Chapter 9
Supporting the Sales Process with SAP
Appendix 9
SAP Sales Tutorial

Part 4
Dynamic Processes and Information Systems
Chapter 10
Collaboration and IS
Chapter 11
Social Media and IS
Chapter 12
Business Intelligence and IS
Appendix 12
SAP Business Intelligence Tutorial
Extension 1
Information Systems Careers
Extension 2
Hardware and Software
Extension 3
Process Management and Information Systems Development
Extension 4
AI and Robots
Extension 5
Location-Based Data Information Systems: Mobile Devices and Geographic Information Systems

Appendix A
Application Exercises
Glossary
Index
Contents

Preface xix
About the Authors xxxi

Part 1 Why MIS? 1

Chapter 1 The Importance of MIS 2

Q1-1 Why Is Introduction to MIS the Most Important Class in the Business School? 4
How Can I Attain Job Security? 5
How Can Intro to MIS Help You Learn Employability Skills? 6
Jobs 8
What Is the Bottom Line? 8

Q1-2 What Is MIS? 9
Processes, Information Systems, and Information 9
Creating, Monitoring, and Adapting 9
Achieve Strategies 10

Q1-3 How Does MIS Relate to Organizational Strategy? 10

Q1-4 What Five Forces Determine Industry Structure? 11

Q1-5 What Is Competitive Strategy? 12

Q1-6 How Does Competitive Strategy Determine Value Chain Structure? 13
Primary Activities in the Value Chain 14
MIS INCLASS: Work Skills Exercise 15
Support Activities in the Value Chain 15
Value Chain Linkages 16

Q1-7 How Does Competitive Strategy Determine Business Processes and Information Systems? 16
ETHICS GUIDE: Ethics and Professional Responsibility 18
CASE STUDY: Tesla: Driving Competitive Strategy 21

Chapter 2 Business Processes, Information Systems, and Information 24

Q2-1 What Is a Business Process? 26
An Example Business Process 26
Why Do Organizations Standardize Business Processes? 28

Q2-2 What Is an Information System? 29
How Can I Use the Five-Component Model? 30

Q2-3 How Do Business Processes and Information Systems Relate? 31
The Role of Procedures 32

Q2-4 How Do Structured and Dynamic Processes Vary? 33
Characteristics of Structured Processes 33
Characteristics of Dynamic Processes 34

Q2-5 What Is Information? 35
Definitions Vary 35
Common Elements in the Definitions 36
How Can I Use These Ideas About Information? 37
Q2-6 What Are Necessary Data Characteristics? 38
 Accurate 38
 Timely 39
 Relevant 39
 Just Sufficient 39
 Worth Its Cost 39
 Summary 40

Q2-7 How Can I Use These Topics at Work? 40
 MIS INCLASS 2: A Beautiful Mind 41
 ETHICS GUIDE: Informing About Misinforming 43
 CASE STUDY 2: One IS, Many Cups of Coffee 46

Part 2 Information Technology 49

Chapter 3 Networks and the Cloud 50
 Q3-1 What Do Business Professionals Need to Know About Networks and the Internet? 52
 Types of Networks 52
 Wireless Options for Networks 52
 Connecting a LAN to the Internet 54
 Q3-2 How Does Data Move over a Network? 55
 Protocols 55
 Addressing 57
 Languages 57
 SOA 59
 Carriers 60
 Q3-3 How Does a Typical Web Server Move Data on a Network? 60
 Q3-4 Why Is the Cloud the Future for Most Organizations? 61
 The Cloud 61
 Why Is the Cloud Preferred to In-House Hosting? 63
 Why Now? 64
 Outsourcing 64
 Q3-5 What Are the Typical Cloud Options? 64
 Public Cloud Options 64
 Private Cloud 65
 MIS INCLASS 3: Peanut Butter and Jelly 65
 ETHICS GUIDE: Showrooming: The Consequences 66
 CASE STUDY 3: McDonald’s: New Options for that Burger 68

Chapter 4 Database Processing 70
 Q4-1 What Is the Purpose of a Database? 72
 Q4-2 What Are the Contents of a Database? 73
 What Are Relationships Among Rows? 74
 Metadata 75
 Q4-3 What Is a Database Management System (DBMS)? 76
 Creating the Database and Its Structures 77
 Processing the Database 77
 Administering the Database 78
Q4-4 What Are the Components of a Database Application? 79
.forms, Reports, Queries, and Application Programs 79
Database Application Programs 80
Multi-User Processing 80
Enterprise DBMS Versus Personal DBMS 81
MIS INCLASS 4: How Much Is a Database Worth? 82
Q4-5 How Do Data Models Facilitate Database Design? 83
What Is the Entity-Relationship Data Model? 83
Entities 83
Relationships 84
Q4-6 How Is a Data Model Transformed into a Database Design? 86
Normalization 86
Data Integrity Problems 87
Normalizing for Data Integrity 87
Summary of Normalization 88
Representing Relationships 88
What Is the User's Role in the Development of Databases? 91
Q4-7 How Do NoSQL DBMS Differ from Relational DBMS? 91
Q4-8 How Can the Hospital Improve Its Database? 92
ETHICS GUIDE: Querying Inequality? 94
CASE STUDY 4: Searching for Pianos... 100

Chapter 5 Information Systems Security 104
Q5-1 What Is Information Systems Security? 106
The IS Security Threat/Loss Scenario 106
Q5-2 What Are the Most Significant Threats and Potential Losses They Can Cause? 107
What Are the Types of Threats? 107
What Are the Types of Loss? 108
Challenges of Information Systems Security 110
Q5-3 How Should You Respond to Security Threats? 111
Q5-4 How Should Organizations Respond to Security Threats? 112
Q5-5 How Can Technical and Data Safeguards Protect Against Security Threats? 113
Identification and Authentication 114
Encryption 115
Firewalls 116
Malware Protection 117
Hardening, VPN, and Secure Design 118
Q5-5 How Can Data Safeguards Protect Against Security Threats? 118
Data Safeguards 118
Q5-6 How Can Human Safeguards Protect Against Security Threats? 119
Human Safeguards for Employees 119
Human Safeguards for Nonemployee Personnel 121
Account Administration 121
Backup and Recovery Procedures 121
Security Monitoring 122
Part 3: Structured Processes and Information Systems

Chapter 6: Using IS to Improve Processes
Q6-1 What Are the Important Characteristics of Processes in Organizations? 132
- Examples of Processes
- Scope of Processes
- Objectives of Processes
Q6-2 What Are Examples of Common Business Processes? 135
- Processes in the Value Chain
- Applying Process Concepts and Characteristics
Q6-3 How Can Management Improve Processes? 138
- Process Objectives
- Process Measures and KPIs
Q6-4 How Can Information Systems Be Used to Improve Processes? 139
- Improve an Activity
- Improve Data Flow Among Activities
- Improve Control of Activities
- Use Automation
- Improve Procedures
Q6-6 How Do Process Teams Diagram Process Improvement? 145
Q6-7 How Can an IS Hinder a Process? 147
- Why Information Silos Exist

Chapter 7: Supporting Processes with ERP Systems
Q7-1 What Problem Does an ERP System Solve? 158
- ERP Implementation: Before and After Examples
Q7-2 What Are the Elements of an ERP System? 162
- The Five Components of an ERP IS: Software, Hardware, Data, Procedures, and People
- Inherent Business Processes
- Implementing the ERP Components and Processes
Q7-3 What Are the Benefits of an ERP System? 167
- MIS INCLASS 7: Google Golf
Q7-4 What Are the Challenges of Implementing an ERP System? 169
- Decision-Making Challenges
- People Challenges
- ERP Upgrades
Q7-5 What Types of Organizations Use ERP? 173
- ERP by Industry
Table of Contents

<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Supporting the Procurement Process with SAP</th>
<th>184</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q8-1</td>
<td>What Are the Fundamentals of a Procurement Process?</td>
<td>186</td>
</tr>
<tr>
<td>Q8-2</td>
<td>How Did the Procurement Process at CBI Work Before SAP?</td>
<td>188</td>
</tr>
<tr>
<td>Q8-3</td>
<td>What Were the Problems with the Procurement Process Before SAP?</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Warehouse Problems</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Accounting Problems</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Purchasing Problems</td>
<td>191</td>
</tr>
<tr>
<td>Q8-4</td>
<td>How Does CBI Implement SAP?</td>
<td>191</td>
</tr>
<tr>
<td>Q8-5</td>
<td>How Does the Procurement Process Work at CBI After SAP?</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>Purchasing</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>Warehouse</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>Accounting</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>The Benefits of SAP for the CBI Procurement Process</td>
<td>197</td>
</tr>
<tr>
<td>Q8-6</td>
<td>How Can SAP Improve Supply Chain Processes at CBI?</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Supply Chain Processes</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Improving Supply Chain Processes by Data Sharing</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Improving Supply Chain Processes with Integration</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Improving CBI Processes Beyond the Supply Chain</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>MIS INCLASS 8: The Bicycle Supply Game</td>
<td>203</td>
</tr>
<tr>
<td>Q8-7</td>
<td>How Does the Use of SAP Change CBI?</td>
<td>204</td>
</tr>
<tr>
<td>Q8-8</td>
<td>What New IS Will Affect the Procurement Process in 2028?</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>ETHICS GUIDE: Estimation Ethics</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>ACTIVE CASE B: SAP Procurement Tutorial</td>
<td>212</td>
</tr>
</tbody>
</table>

| Appendix 8 | SAP Procurement Tutorial | 214 |

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Supporting the Sales Process with SAP</th>
<th>230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q9-1</td>
<td>What Are the Fundamentals of a Sales Process?</td>
<td>231</td>
</tr>
<tr>
<td>Q9-2</td>
<td>How Did the Sales Process at CBI Work Before SAP?</td>
<td>234</td>
</tr>
<tr>
<td>Q9-3</td>
<td>What Were the Problems with the Sales Process Before SAP?</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Sales Problems</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Warehouse Problems</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>Accounting Problems</td>
<td>236</td>
</tr>
<tr>
<td>Q9-4</td>
<td>How Does CBI Implement SAP?</td>
<td>236</td>
</tr>
<tr>
<td>Q9-5</td>
<td>How Does the Sales Process Work at CBI After SAP?</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Sales</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Warehouse</td>
<td>239</td>
</tr>
</tbody>
</table>
Chapter 11 Social Media and IS 306
Q11-1 What Is Social Media, and Why Is It Important to Business? 308
Q11-2 What Are the Objectives of the Social Media Process? 309
Effectiveness Objectives 309
Efficiency Objectives 310
Q11-3 What Are the Key Components of a Social Media IS? 311
The Five Components of a Social Media IS 311
Key Attributes of a Social Media IS 313
Q11-4 How Do Social Media IS Support Social Media Activities? 313
Creating 313
Sharing 315
Q11-5 How Can Social Media IS Support Business Processes? 316
The Promotion Process 316
The Customer Service Process 317
The Hiring Process 318
Supporting New Processes with Social Media IS 318
Tips for Conducting Social Media Promotions 319
Q11-6 How Can Social Media IS Support the Process of Building Social Capital? 319
MIS INCLASS 11: Using Twitter to Support the Class Discussion Process 320
Using Social Media IS to Increase the Number of Relationships 321
Using Social Media IS to Increase the Strength of Relationships 321
Using Social Media IS to Connect to Those with More Assets 322
Q11-7 How Do Businesses Manage the Risks of Social Media? 322
Management Risks 322
Employee Communication Risks 323
User-Generated Content Risks 324
Responding to User Content Problems 324
Q11-8 How Can IS Similar to Social Media Support Business Processes? 325
Q11-9 What Is the Sharing Economy? 326
Q11-10 2028? 327
ETHICS GUIDE: Ethics, Social Marketing, and Stretching the Truth 329
CASE STUDY 11: Airbnb 332

Chapter 12 Business Intelligence and IS 334
Q12-1 What Is Business Intelligence, and Why Is It Important to Business? 336
Examples of BI 337
Q12-2 What Are the Objectives of the BI Process? 337
Q12-3 What Are the Key Components of a Business Intelligence IS? 339
The Five Components of a BI Information System 339
Key Attributes of BI Information Systems 340
Q12-4 How Do BI Information Systems Support BI Activities? 340
Acquiring 341
Analyzing 342
Publishing 347
Supporting Existing Processes with BI Information Systems 350
Supporting New Processes with BI Information Systems 351
Q12-6 What Is a Big Data BI System, and How Is It Used? 352
NoSQL Databases 353
MapReduce 353
Hadoop 354
SAP HANA and In-Memory Database Systems 354
Processes Supported by Big Data BI IS 354
Q12-7 How Do Businesses Manage the Risks of Business Intelligence? 355
Data Problems 356
People Problems 357
MIS INCLASS 12: I Know That, I Think 358
Q12-8 How Does SAP Do BI? 359
Q12-9 2028? 360
Mobile BI 360
Easier-to-Use Analysis Software for Unstructured Data 360
Internet of Things 360
Privacy 361
ETHICS GUIDE: Unseen Cyberazzi 362
CASE STUDY 12: Pizza and Big Data 365

Appendix 12 SAP Business Intelligence Tutorial 368

Extension 1 Information Systems Careers 372
QE1-1 What Is the Employment Environment Like for IS Graduates? 372
QE1-2 What Are the Duties and Titles of IT Jobs? 373
QE1-3 What IS-Related Job Positions Exist? 375
QE1-4 What Do IT Professionals Like About Their Jobs? 377

Extension 2 Hardware and Software 380
QE2-1 How Do the Main Components of Computer Hardware Work? 380
QE2-2 What Are the Types of Computer Hardware and Their Capacities? 382
Types of Hardware 382
Computer Capacity: Data Storage Volume and Speed 382
QE2-3 What Is Operating System Software? 384
What Are the Major Operating Systems? 384
QE2-4 What Are the Types of Software Apps, and How Do Organizations Obtain Them? 385
Categories of Apps 386
Sources of Apps 386
Open Source 387
QE2-5 What Is Virtualization? 388
QE2-6 What Are Native and Web Apps, and How Are They Different? 389
 Native Apps 390
 Web Apps 390

Extension 3 Process Management and Information Systems Development 394
QE3-1 What Are the Activities of Business Process Management? 394
 The BPM Monitor Activity 395
 The BPM Model Activity 395
 The BPM Create Components Activity 396
 The BPM Implement Process Activity 396
QE3-2 What Are the Activities of the Systems Development Life Cycle (SDLC) Development Process? 396
 Define System 397
 Determine Requirements 398
 Design Components 400
 Implement 401
 Maintain the System 402
QE3-3 How Can Agile Development and the Scrum Process Overcome the Problems of the SDLC? 404
 Why Agile Development Is Needed 404
 What Are the Principles of Agile Development? 404
 What Is the Scrum Process? 405
 Challenges to Systems Development Both SDLC and Agile 407

Extension 4 AI and Robots 410
QE4-1 What Is the Intelligence Process? 410
QE4-2 What Is Artificial Intelligence? 411
 Three Common AI Techniques 411
 Expert Systems 411
 Content Management 412
 Neural Networks 413
 Five Common Components 414
 Broad AI Versus Narrow AI 414
QE4-3 What Business Processes Are Supported by AI? 415
 Process: Medical Diagnosis 415
 Process: Locating Expertise 415
 Process: Fraud Detection 415
 Process: Human Authentication 415
QE4-4 What Are the Challenges of AI? 416
QE4-5 How Are Robots Used in Business? 416
 Attributes 416
 Limited Here to Business 417
 Challenges for Robotics 417
 Impact on Your Career 418

Extension 5 Location-Based Data Information Systems: Mobile Devices and Geographic Information Systems 420
QE5-1 How Fast Is LBD Growing? 420
QE5-2 How Are Mobile Devices and GIS Different? 421
QE5-3 What Is a Location-Based Process? 422
QE5-4 How Do Mobile Devices Support the Location-Based Process? 423
 Capture 423
 Analyze 424
 Present 425
QE5-5 How Do GIS Support the Location-Based Process? 426
 Capture 426
 Analyze 426
 Present 428
QE5-6 What Business Processes Are Supported by LBD? 428
QE5-7 What Are the Limitations and Challenges of LBD? 429
 Technical 429
 People 430

Appendix A 432
Application Exercises 448
Glossary 466
Index 479
Preface

Since the emergence of ERP and EAI systems in the early 1990s, the MIS discipline has undergone a slow but persistent change. Whereas the early emphasis of MIS was on the management and use of information systems per se, emerging cross-functional systems began to place the focus on processes that utilize such systems. We believe that existing MIS textbooks, particularly those at the introductory level, do not sufficiently recognize this change in emphasis. Hence, we offer this textbook that provides a strong process orientation.

Why This Third Edition?

We have made a number of changes to this third edition; these are listed in Table 1. While Table 1 spells out the changes in detail, there are several significant changes that warrant a short explanation.

First, the technology landscape has changed rapidly from the time the second edition was written. At that time, Uber, Blockchain, Smartphone payments, group messaging, and the Internet of Things were not on the scene. Robotics, Big Data, and SAP HANA S/4 were just beginning. Further, security was not the priority it is now. These changes led to updates of many of the chapters. In addition, we decided to introduce Extensions in this third edition to provide more coverage of new topics without making existing chapters too long.

These Extensions include completely new discussions of technologies such as Location Based Data, AI, and Robots. They also include some topics that no longer fit in chapters such as hardware, software, and systems development. Finally the extensions include a discussion of IS careers.

We also wanted to expand the opportunity for students to gain more first-hand practice with SAP. We added a Production tutorial in Appendix A based on the same Chuck’s Bikes case used in the Procurement and Sales tutorials.

One of the biggest challenges to any SAP tutorial is ensuring students understand the underlying business processes, that they not blindly enter data into on-screen forms. To that end, Pearson has introduced a new app called MySAP Lab. This browser app runs independently from SAP but is synced to the tutorial so that as a student works through the tutorial this app periodically poses questions about the underlying process. It also provides the instructor an opportunity to passively observe assignment completion, notice where students encounter difficulty, and record student responses to questions.

Another significant change is our coverage of security. Security is becoming more essential for all business students. Often the only exposure business students get to security is in an MIS class. For this reason we greatly expanded our discussion of security, gave it its own chapter, and moved it earlier in the semester next to the other technical topics.

Another change is that MyLab MIS is now integrated with the 3rd Edition. At the end of each chapter students are directed to MyLab MIS for short answer questions as well as essay questions.

Many colleagues have told us they are “flipping” their class rooms and are using more student engagement activities during class meeting times. As a result, we updated half of the MIS InClass exercises and improved the instructions on the others.

At times introductory classes like MIS can devolve into a mastery of vocabulary lists. We’ve tried to counter this by helping the student see the value of using the vocabulary and the usefulness of the models presented in the text by consistently applying the course vocabulary to familiar domains such as a hospital, a bicycle company, and a university. We also ask students to self-inspect; we don’t ask them to memorize the definition of collaboration and experimentation—we ask them to evaluate themselves and find ways to improve. Just as important, we tried to identify key themes for entire chapters highlighting them in the introduction and returning to them at various points in the chapters. For example, the security chapter theme is that security is a tradeoff; a tradeoff between freedom and security and between cost and security. All these changes seek to make student engagement more natural and frequent.

Finally, to improve currency and readability all the chapters were updated, and many new figures added or repurposed. In addition, 8 opening vignettes, 10 end of chapter cases, and 7 application exercises were completely rewritten. We also tried to be more efficient with page use, reducing the length of chapter opening vignettes, cases, and ethical guides.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>New Figure on Data and Internet rapid expansion
New Figure on IS job history and growth
Updated and simplified the definition of MIS
New MIS InClass on student skills
New Tesla Case Study</td>
</tr>
<tr>
<td>2</td>
<td>6 new Figures
New chapter opening vignette highlights hospital process
Expanded discussion of importance of processes
Definitions of IS components more specific
Expanded discussion of the value of internal information
New MIS InClass on information
New concluding question applying book topics to work
New Coffee Shop Case Study</td>
</tr>
<tr>
<td>3</td>
<td>10 new Figures
New chapter opening vignette describes cloud issues
Hardware and Software updated and moved to Extension
Expanded discussion of Cloud, recent growth, most popular uses
MIS InClass moved here from Chapter 2
Key Terms and Concepts reduced
New vocabulary: PAN, handover, net neutrality, peering
New discussion of cellular networks
Three questions replace one on how networks work
A single continuous example of image upload to Snapchat
Added discussion of Tier 1 network providers
New McDonalds Case Study</td>
</tr>
<tr>
<td>4</td>
<td>New chapter opening vignette on database issues at a hospital
Updated discussion of NoSQL
New case study on personal DBMS
New discussion on how hospital database should be corrected</td>
</tr>
<tr>
<td>5</td>
<td>New Security chapter, previously half a chapter
9 new figures
New chapter opening vignette describes a security lapse
New end of chapter collaboration exercise
New MIS InClass
New WikiLeaks case
New vocabulary: APT, BYOD, brute force, CAPTCHA, forensics, hash, malware, overflow
New vocabulary: Ransomware, risk, audit, session hijacking, usurpation, VPN
Updated discussion of implications from IoT, cloud, mobile, and Big Data
Current security failures and scope of challenges updated
Emphasis on tradeoff expanded
Figure on Threat vs Loss updated and simplified
Suggestions for personal security updated and expanded
Expanded discussion on passwords, 2 factor, VPN and others</td>
</tr>
<tr>
<td>6</td>
<td>7 new figures
New chapter opening vignette describes poor hospital process
Expanded discussion of importance of processes to business
New end of chapter collaboration exercise
New ethics guide on the ethics of automation
New Electronic Dance Music case
Emphasis on KPI rather than measures for processes
New discussion of the importance of process feedback</td>
</tr>
<tr>
<td>Chapter</td>
<td>Change</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| 7 | 10 new figures
New chapter opening vignette on ERP cutover at CBI
Added personal examples to motivate students
New end of chapter collaboration exercise
New MIS InClass
New AF ERP Bonfire case describes implementation disaster
New emphasis on upgrades not initial implementation of ERP
Removed discussion of EAI
Discussion of new concepts—Fiori, SAP HANA S/4
Expanded discussion of ERP system challenges
Updated goals of Tier 1 ERP vendors |
| 8 | 11 new figures
Expanded discussion of supply chain early to provide procurement ERP context
Implications for student job skills added
New 2028—A/R, robots, 3-D printing, and Worldwide Internet |
| 9 | 14 new figures
Expanded discussion of marketing early to provide sales ERP context
A consideration of Salesforce discussion added
Implications for student job skills added
New 2028—Blockchain, Amazon buttons, darknet, and smartphone payment |
| 10 | New chapter opening vignette hospital collaboration
New end of chapter collaboration exercise on Kata
Updated descriptions of Google Drive and Microsoft OneDrive
New MIS InClass
New Miracle on the Hudson case
New 2028—collaboration with AI and robots
Expanded motivation to students to apply collaboration topics |
| 11 | 7 new figures
New chapter opening vignette examines negative social media posts
New Airbnb case
New section on the sharing economy and trust added
Added new section on group messaging apps and Reddit
New vocabulary: Reddit, sharing economy, unicorns, collaborative consumption
New vocabulary: click-through rate, conversion rate, Enterprise 2.0, privacy
Expanded discussion of common social media measures
Updated business uses of social media
New 2028—analysis of social media data and privacy
Impact of social media on hiring process added
Expanded discussion of challenge of measuring financial results |
| 12 | 9 new figures
New discussion of data marts, Excel PowerPivot, text mining
Expanded descriptions of prediction markets, urban applications
New Privacy case
New 2028—mobile BI, unstructured data, IoT, and privacy
New vocabulary: data marts, text mining, sentiment analysis, IoT, GDPR
Big Data section updated on NoSQL, MapReduce, Hadoop, SAP HANA
New discussion on skepticism of analysis added |
| New | Extensions
1 IS Careers
2 Software and Hardware
3 Process Management and IS Design
4 Robots and AI
5 Location Based Data Information Systems
Appendix A: SAP Production Tutorial |
Importance of MIS

Chapter 1 claims that MIS is the most important class in the business curriculum. That's a bold statement, and every year we ask whether it remains true. Is there any discipline having a greater impact on contemporary business and government than IS? We continue to doubt there is. Every year brings important new technology to organizations, and many of these organizations respond by creating innovative applications that increase productivity and otherwise help them accomplish their strategies. In the past year, Blockchain, IoT, and new security challenges are posing new opportunities and requirements on organizations. More sophisticated and demanding users push organizations into a rapidly changing future, one that requires continual adjustments in business planning. To participate, our graduates need to know how to apply emerging technologies to better achieve their organizations' strategies. Knowledge of MIS is critical to this application.

The effects of changing technology and new user demands fall on processes and information systems at all levels—workgroup, organizational, and inter-enterprise. The impact on the latter is especially dramatic because cloud-based hosting and mobile devices enable independent organizations to work together in ways previously unimaginable.

As stated, we continue to believe we can enter the classroom with the confidence that we are teaching the single most important course in the business school—an argument that relies on two observations. First, because of nearly free data storage and data communications, businesses are increasingly finding and, more important, increasingly required to find innovative applications for information systems. The incorporation of Facebook and Twitter into marketing systems is an obvious example, but this example is only the tip of the iceberg. For at least the next 10 years, every business professional will, at a minimum, need to assess the efficacy of proposed IS applications. To excel, business professionals will need to not only assess but define innovative IS applications. These applications will increasingly take advantage of advances in Big Data and analytical software.

Such skills will not be optional. Businesses that fail to create systems that take advantage of nearly free data storage and communication will fall prey to the competition that can create such systems. So, too, will business professionals.

The second premise for the singular importance of the MIS class relies on the work of Robert Reich, former Secretary of Labor for the Clinton administration. In *The Work of Nations*, Reich identifies four essential employability skills for knowledge workers in the 21st century:

- Abstract reasoning
- Systems thinking
- Collaboration
- Experimentation

For reasons set out in Chapter 1, beginning on page 2, we believe the MIS course is the single best course in the curriculum for learning these four key skills.

While most Introduction to MIS textbooks address technical innovation and nonroutine skills, *Processes, Systems, and Information, Third Edition*, uniquely enables the Intro course to also address business processes. The process view of business is the dominant view of business today; students need a consistent, extended opportunity to master the language and apply it. The Introduction to MIS class that uses this textbook can expose both IS and non-IS students to process concepts and appropriately place IS in its vital role of supporting and improving processes. With this process foundation, students are better able to understand the benefits and challenges of ERP systems.

Background on Processes and IS

The relationship between business processes and information systems is complex. They are not one and the same; a given process might use several different information systems, and, at the same time, a given information system might support many different processes. So, we cannot

say that a process encapsulates all of its information systems, nor can we say that an information system encapsulates all of its processes.

In part because of this complex relationship, we define MIS as creating, monitoring, and adapting processes, information systems, and information to help organizations achieve their strategy (Chapter 1). The fabric of this text is woven around and through these definitions.

Potential adopters of this textbook are departments that make business processes a key component or thread throughout their curricula. This group includes all of the universities that are part of the SAP University Alliance, those that are part of the Microsoft Dynamics Academic Alliance, and other institutions for which a business process orientation is important. Chapters 8 and 9 provide specific examples of the use of SAP, and the cases that conclude each of those chapters provide tutorial exercises that use the SAP University Alliance’s Global Bikes Inc. (GBI) case. This is the same case and client data used in University Alliance training, so it will be familiar to many instructors.

In our opinion, a text must go beyond the operational processes that comprise Chapters 8 and 9. Of course, operational processes are most important, and five chapters and an Appendix of our text include or are devoted to them. However, other dynamic processes, such as collaboration, project management, problem solving, business intelligence, and social networking, are also important. Hence, we believe that this text should include much more than SAP-oriented processes.

Text Features

A challenge of teaching the Introduction to MIS course from a process orientation is the lack of business knowledge and experience on the part of most students. Many universities offer the Introduction to MIS course at the sophomore and even freshman levels. Most of these students have completed few business courses. Even when this course is taught to higher-level students, however, few of them have significant business or process experience. They have been lifeguards or baristas. When we attempt to talk about, for example, the impact of process change on departmental power, that discussion goes over the heads of students. They may memorize the terms, but they often lose the essence of the discussion. The features of this text are designed, in part, to address this problem.

Question-Based Pedagogy

Research by Marilla Svinicki in the Psychology Department of the University of Texas indicates that today’s students need help managing their time. She asserts that we should never give homework assignments such as “read pages 75–95.” The problem, she says, is that students will fiddle with those pages for 30 minutes and not know when they’re done. Instead, she recommends that we give our students a list of questions and the assignment that they be able to answer those questions. When they can answer the questions, they’re done studying. We have used this approach in our classrooms, and we believe that it is most effective. Students like it as well. Hence, we have organized each chapter as a list of questions.

Opening Vignettes

Each chapter opens with a short vignette of a business situation and problem that necessitates knowledge of that chapter. We use two different fictitious organizational settings:

1. Wood Hospital, a local hospital
2. Chuck’s Bikes, Inc., a bicycle manufacturer that competes with Global Bikes

Each of these vignettes presents a situation that illustrates the use of the chapter’s contents in an applied setting. Most contain a problem that requires knowledge of the chapter to understand and solve.

MIS InClass Exercises

Every chapter includes a student group exercise that is intended to be completed during class. These exercises are designed for teachers who seek to use active learning exercises, also called flipping the classroom. The purpose of the exercise is to engage the student with knowledge
gained from the chapter. These exercises are part lab and part case study in nature. In our experience, some of them lead to spirited discussions, and we could have let them run on for two or three class periods, had we had that luxury.

SAP Tutorial Exercises

The appendices to Chapters 8 and 9 as well as Appendix A contain process exercises that involve the SAP Alliance’s Global Bike case. Professors at institutions that are members of the alliance can use these with their students. Because not every department that uses this book is a member of that alliance, we have made these exercises optional appendices. You can omit the exercises without any loss of continuity.

The exercises are, we hope, purposeful yet simple to do. Our goal is to make it possible for them to be conducted by teaching assistants and faculty who have not yet attended the SAP university training. To that end, we provide extensive instructor support materials. Instructors who have had training by the SAP University Alliance will immediately recognize that these tutorials use exactly the same data and screens they used during training.

Earl McKinney, the author of the tutorial exercises, has been teaching SAP for 12 years at Bowling Green State University. The tutorial exercises included in this book have been tested extensively with Introduction to MIS students in a BGSU lab setting. In addition to the exercises, Earl has written a detailed teaching guide on how to best use the exercises as well as tips and pointers about their use and his experience about where students are most likely to struggle.

A fourth tutorial is offered at the end of the Chapter 12 on Business Intelligence. This tutorial uses SAP’s Lumira to analyze Global Bike Inc. data. While a particular set of data is specified in the tutorial, students and instructors can also simply read the tutorial, learn how the operations like slicing and filtering are done, and use these skills on any dataset.

Over these years, Earl learned that when doing SAP exercises, it is far too easy for students to slip into “monkey-see, monkey-do” mode without any clear understanding of what they are doing or why. Based on this classroom experience, we believe that the setup to procurement and sales in Chapters 8 and 9, together with the exercises themselves, help students move beyond simple copy mode, in which they learn the SAP keystrokes, to learn the nature of process-oriented software and its role in organizations.

Like all who have used the GBI case, we are grateful to the SAP Alliance and to the case’s authors. In accordance with both the letter and spirit of the SAP Alliance community’s policy, we have placed these exercises on the SAP University Alliance Web site. We hope you will find sufficient value in this text to use it in your classroom, but please feel free to use these exercises even if you do not adopt this text.

By the way, the body of Chapters 8 and 9 uses the example of Chuck’s Bikes, Inc., rather than GBI. We made this change at the request of the SAP Alliance. The alliance prefers that authors not add new material to GBI, change any characters, make videos, and so forth. We created CBI so as to comply with that request while at the same time providing more detailed business scenarios that are compatible with GBI.

Ethics Guides

We believe that business ethics are a critically important component of the Introduction to MIS course and that the best way to teach ethics is in the context of case-like situations. We also believe that ethics ought not to be relegated to a single chapter or chapter section. Including ethics in one place leads to the inoculation theory of education: “We don’t need to discuss ethics, we’ve already done that.” Accordingly, each chapter contains one two-page spread called an Ethics Guide. They are shown in the table of contents; to sample just one of them, turn to page 20.

In recent years, we believe there has been a shift in students’ attitudes about ethics. Many students seem to be increasingly cynical and callous about ethical issues. As a result, when we try to raise interest with them about unethical behavior, we find ourselves interjecting and defending a particular set of values, a role that strikes many students as inappropriate. A common attitude seems to be, “We should think for ourselves, thank you anyway.”

In frustration about the situation, we turned to a good friend of many years, Dr. Chuck Yoos, emeritus professor from the U.S. Air Force Academy. We told him our goals for presenting
the Ethics Guides and asked him what criteria he would use with his students if he only had 20 minutes per guide. His response was that while there are many ways of addressing ethics in business, Kant’s categorical imperative and the utilitarianism of Bentham and Mill would be at the top of his list. We investigated both and decided to use them with this edition.

Our goal in doing so is to ask students, whose ethical standards may be immature, to learn and apply the categorical imperative and utilitarianism perspectives. By doing so, students are asked to “try on” those perspectives and in the process think more deeply about ethical principles than when we allow them simply to apply their personal ethical standards.

The Ethics Guide in Chapter 1 introduces the categorical imperative, whereas the Ethics Guide in Chapter 2 introduces utilitarianism. If you choose to use these perspectives, you will need to assign both of those guides.

Collaboration Exercises

As stated in Chapter 1, collaboration is a key skill for today’s business professionals. Accordingly, we believe that teaching collaboration, collaboration processes, and collaboration information systems is an important component of this course. To that end, each chapter includes a collaboration exercise to be accomplished by a student team. In our opinion, it is not possible for students to complete all of these in one term. Instead, we recommend using three or four of them throughout the term.

In doing these exercises, we recommend that students not meet face to face, at least not most of the time, but use modern collaboration tools for their meetings. Google Docs and related tools are one possibility. We prefer requiring students to use Microsoft OneDrive.

End-of-Chapter Cases

The chapter-opening vignettes are based on real-life experience, but the organizations they describe are fictitious. We use fictitious companies because we want students to learn from organizational mistakes and, at times, even organizational foolishness. We have not found many real companies that will allow us to share their laundry in this way, and, in any case, it seems unfair to ask for an organization’s cooperation and then turn around and publish its problems.

However, we do believe students need to see examples of the role of MIS in actual organizations to help them bridge the chapter content to the real world. Hence, each chapter concludes with a case that illustrates some aspect of the chapter’s contents in a real-world company.

Active Reviews

Each chapter includes an Active Review at the end. These reviews help students ensure that they have learned the most essential material. They also serve as a list of potential exam questions and thus help students prepare for exams.

Application Exercises

For courses that involve a Microsoft Office component, we have developed a set of Excel and Access exercises for all chapters. These exercises, which assume the student has beginner’s level expertise with these products, appear beginning on page 448. They are listed approximately in increasing order of difficulty.

What We Left Out

We chose to keep this book to the traditional 12-chapter length because we find that this number of chapters fits best into the number of class lessons of most courses. Because we are adding substantial process-oriented material, however, that meant we needed to remove some content from the typical Introduction to MIS text.

In this text, we have reduced and simplified the discussions of hardware, software, and data communications. Furthermore, we simplified and shortened the discussion of information systems development. Finally, you will find no mention of IS departmental management in this text. It is not that we believe the shortened and omitted content is unimportant; rather, we think the opportunity cost is the least for these topics.

This text includes some material that has been previously published in David Kroenke’s text *Using MIS*. The two texts differ in that *Using MIS* makes information systems primary, whereas
this text makes business processes primary. Both texts will continue to be published. Because of this difference, however, every sentence that was brought over was examined from the perspective of business processes and much of that content was changed in both minor and major ways. The discussion of collaboration, for example, is reframed into the context of dynamic business processes. That said, the majority of the material in this text is new.

Chapter Outline

This text is organized into four parts: Introduction, Technology, Structured Processes, and Dynamic Processes.

Introduction

Chapter 1 sets the stage by illustrating the need for this course and especially for the behaviors and skills that students gain in the course. It defines MIS and summarizes the means by which organizations obtain goals and objectives. Porter’s industry, five forces, and value chain models are presented.

Chapter 2 defines and illustrates processes, information systems, and information. It uses a common fast food restaurant to illustrate the relationship of processes and information systems. It also defines information using the Gregory Bateson definition that information is a difference that makes a difference.

Technology

Chapters 3, 4 and 5 address technology. Chapter 3 provides a quick summary of networks and the cloud. Chapter 4 discusses database processing. Security is the topic of Chapter 5. These chapters serve as a technology platform for the discussions in the remaining chapters.

Structured Processes

Chapters 6 through 9 discuss structured processes and related information systems and information. Chapter 6 provides an overview of the scope and objectives of business processes. It also discusses process adaptation and improvement and the use of process objectives and measures in making process changes. Chapter 7 is a survey of ERP information systems, their benefits, and their challenges.

Chapters 8 and 9 are “applied” chapters. They show how SAP is used in two representative processes: procurement and sales. Two processes were chosen so that students could begin to see what is common to all processes and what might differ between processes. These two processes, buying and selling, are fundamental to business and are widely used. Each chapter includes a student lab exercise appendix that uses the Global Bikes case from the SAP Alliance’s curriculum.

Dynamic Processes

Chapters 10 through 12 address what we term dynamic processes. Such processes are neither as structured nor as rigid as the more structured operational processes. We dislike the term unstructured processes because we believe that such processes do have structure, at least at a meta-level. Each of the three chapters follows a similar flow: The IS that supports each process is discussed first, followed by the activities in the process, and concluding with the business processes supported by the dynamic process.

Chapter 10 discusses collaboration processes for both project management and workflow applications. Chapter 11 addresses the use of social media in organizations. We discuss Lin’s theory of social capital, apply that theory to organizational use of social media systems, and survey the processes supported by social media systems. Chapter 12 considers business processes supported by business intelligence (BI) systems and discusses BI systems, data warehouses, data mining, and Big Data.
Extensions
We added 5 new Extensions to this edition of the textbook. These extensions discuss, in order, IS Careers, Software and Hardware, Process Management and IS Design, Robots and AI, and Location Based Data IS.

Appendix
With this edition we added a third structured process SAP tutorial. This tutorial takes a student through the SAP inputs required to accomplish the Production process.

Supplements
The following supplements are available at the Online Instructor Resource Center, accessible through www.pearsonhighered.com/kroenke.

Instructor’s Manual
The Instructor’s Manual, prepared by Hasan Bassam of the University of Toledo, includes a chapter outline, list of key terms, suggested answers to the MIS InClass questions, and answers to all end-of-chapter questions.

Test Item File
This Test Item File, prepared by Noreen Power of Bentley University, contains more than 1,500 questions, including multiple-choice, true/false, and essay questions. Each question is followed by the correct answer, the learning objective it ties to, page reference, AACSB category, and difficulty rating.

PowerPoint Presentations
The PowerPoints, prepared by Nancy Lamm of N. Lamm Consulting Associates, Ltd., highlight text learning objectives and key topics and serve as an excellent aid for classroom presentations and lectures.

Image Library
This collection of the figures and tables from the text offers another aid for classroom presentations and PowerPoint slides.

TestGen
Pearson Education’s test-generating software is available from www.pearsonhighered.com/irc. The software is PC/MAC compatible and preloaded with all of the Test Item File questions. You can manually or randomly view test questions and drag and drop to create a test. You can add or modify test bank questions as needed. Our TestGens are converted for use in BlackBoard, WebCT, Moodle, D2L, and Angel. These conversions can be found on the Instructor’s Resource Center. The TestGen is also available in Respondus and can be found on www.respondus.com.

CourseSmart
CourseSmart eTextbooks were developed for students looking to save on required or recommended textbooks. Students simply select their eText by title or author and purchase immediate access to the content for the duration of the course using any major credit card. With a CourseSmart eText, students can search for specific keywords or page numbers, take notes online, print out reading assignments that incorporate lecture notes, and bookmark important passages for later review. For more information or to purchase a CourseSmart eTextbook, visit www.coursesmart.com.
Acknowledgments

First, we thank the numerous fellow-traveler professors and professionals who encouraged the development of this text and who have helped us in many ways along our path. In particular, we thank:

- Yvonne Antonucci, Widener University
- Cynthia Barnes, Lamar University
- John Baxter, SAP
- William Cantor, Pennsylvania State University–York Campus
- Thomas Case, Georgia Southern University
- Gail Corbitt, SAP
- Darice Corey, Albertus Magnus College
- Mike Curry, Oregon State University
- Heather Czech, SAP
- Peter Daboul, Western New England University
- Janelle Daugherty, Microsoft Dynamics
- Peter DeVries, University of Houston, Downtown
- Lauren Eder, Rider University
- Kevin Elder, Georgia Southern University
- John Erickson, University of Nebraska at Omaha
- Donna Everett, Morehead State University
- David Firth, The University of Montana
- Jerry Flatto, University of Indianapolis
- Kent Foster, Microsoft
- Biswadip Ghosh, Metropolitan State College of Denver
- Bin Gu, University of Texas at Austin
- William Haseman, University of Wisconsin–Milwaukee
- Jun He, University of Michigan–Dearborn
- Mark Hwang, Central Michigan University
- Gerald Isaacs, Carroll University
- Stephen Klein, Ramapo University
- Ben Martz, University of Northern Kentucky
- William McMillan, Madonna University
- Natalie Nazarenko, SUNY College at Fredonia
- Timothy O’Keefe, University of North Dakota
- Tony Pittarese, East Tennessee State University
- Martin Ruddy, Bowling Green State University
- James Sager, California State University–Chico
- Narcissus Shambare, College of Saint Mary
- Robert Szymanski, Georgia Southern University
- Lou Thompson, University of Texas, Dallas
- Ming Wang, California State University
- Harold Webb, University of Tampa

We wish to thank the unique production team that helped us bring this book into existence. First and foremost, we thank Samantha Lewis, our editor, for her vision for a process-oriented introductory MIS text, for her untiring support throughout the process and her many excellent additions. Thanks, too, to Nancy Lamm, our developmental editor, whose direction, guidance,
and patient efforts brought these ideas to life. We thank Janelle Rogers, who helped us marshal this text and all its supplements through the Pearson production process and Katie Ostler of Cenveo for her management of the project as well.

We thank our friend and colleague, Chuck Yoos, of Fort Lewis College, for hours and hours and hours of conversation on the meaning of information, the role of information in organizations today, and how to address the instruction of business ethics. Chuck is responsible for the helpful distinction between perceiving data and conceiving information and many other insights that have shaped this text’s material. Chuck’s Bikes is named in honor of him.

Finally, we are most grateful to our families, who have lovingly supported us through these processes; to them we dedicate this book.

Earl McKinney Jr.
Bowling Green, Ohio
David Kroenke
Whidbey Island, Washington
About the Authors

Earl McKinney Jr. Teaching the introduction to MIS course has been Earl McKinney’s passion for 20 years. He first caught the bug at his alma mater, the U.S. Air Force Academy, and has continued his addiction during his tenure at Bowling Green State University. While teaching that class and other undergraduate and graduate classes, Earl has also introduced a half dozen new courses on security, social media, ERP, and information. He has been awarded a number of department and college teaching awards by students and fellow faculty. His interest in the broader context of the business curriculum is reflected in several of his publications and by the Decision Science Institute’s National Instructional Innovation Award.

Earl’s research in e-commerce, small team communication during a crisis, and theoretical work on the notion of information has been published in Behaviour and Information Technology, Human Factors, Information and Management, and MIS Quarterly. He consults with James Hall, the former head of the NTSB for British Petroleum, the U.S. Forest Service, and several Air Force agencies on human factors and aviation communication issues.

He holds an undergraduate economics degree from the Air Force Academy, a Master’s of Engineering from Cornell University, and a PhD in MIS from the University of Texas. A former Air Force fighter pilot, Earl lives in Bowling Green with his wife and has two grown sons.

David Kroenke David Kroenke has many years of teaching experience at Colorado State University, Seattle University, and the University of Washington. He has led dozens of seminars for college professors on the teaching of information systems and technology; in 1991 the International Association of Information Systems named him Computer Educator of the Year. In 2009, David was named Educator of the Year by the Association of Information Technology Professionals-Education Special Interest Group (AITP-EDSIG).

David worked for the U.S. Air Force and Boeing Computer Services. He was a principal in the start-up of three companies. He also was vice president of product marketing and development for the Microrim Corporation and was chief of technologies for the database division of Wall Data, Inc. He is the father of the semantic object data model. David’s consulting clients have included IBM, Microsoft, and Computer Sciences Corporations, as well as numerous smaller companies. Recently, David has focused on using information systems for collaboration in education and industry.

To Susan, James, and Daniel — Earl McKinney

To C.J., Carter, and Charlotte — David Kroenke