For Camille
 —T. F.

For Kristen
 —S. S.

For David and Joyce Wallin
 —C. W.

For my best friend, Mary
 —S. W.
About the Authors

S. Thomas Foster is the Donald Staheli Professor and department chair of marketing and global supply chain management at Brigham Young University’s Marriott School of Management. He is an internationally recognized expert in quality and global supply chain management and has experience in manufacturing, financial services, and international oil exploration. He has consulted for more than 30 organizations, including Eaton/Cutler Hammer, Hewlett-Packard, Heinz Frozen Foods, Hyundai Corporation, and the U.S. Department of Energy.

Foster has served on the editorial boards of the *Journal of Operation Management* and *Decision Sciences* and is Editor in Chief of the *Quality Management Journal*. He has published more than 80 articles in journals such as *Decision Sciences*, *Journal of Operations Management*, *International Journal of Production Research*, and *Quality Management Journal*. His book *Quality Management: Integrating the Supply Chain* is an international bestseller. He recently served on the Malcolm Baldrige Board of Overseers and was awarded the prestigious Instructional Innovation Award from the Decision Sciences Institute.

Scott Sampson is the Hazel S. Thorsell Professor of global supply chain management with the Marriott School of Management at Brigham Young University. He teaches MBA, executive MBA, and undergraduate courses in services management and customer relationship management.

Sampson is the author of the books *Understanding Service Businesses* and *Essentials of Service Design and Innovation*. His award-winning research involves service design paradigms, service quality measurement, and service supply chains. He has published research in leading academic journals, including *Management Science*, *Production and Operations Management*, *Operations Research*, *Decision Sciences*, and *Journal of Operations Management*. He received his MBA and PhD degrees from the University of Virginia and taught at Florida State University prior to joining the Brigham Young University faculty.

Cindy Wallin is an associate professor of global supply chain management at Brigham Young University’s Marriott School of Management. She earned her PhD in supply chain management from the W. P. Carey School of Business at Arizona State University. Wallin’s research focuses on buyer-supplier interfaces in the form of trust-based relationships, information sharing, collaboration, and collaborative inventory management approaches. Her research has been published in various journals, including *Decision Sciences Journal*, *Journal of Supply Chain Management*, *Quality Management Journal*, and *Journal of Business Logistics*.

Before pursuing her doctoral studies, Wallin was a commodity team manager for Intel Corporation. During her eight years at Intel, she also held the positions of senior buyer, purchasing manager, stores manager, and commodity manager. Before her graduate studies, Wallin also worked as an auditor for the Defense Contract Audit Agency.

Scott Webb is an associate professor of global supply chain management at Brigham Young University and specializes in logistics management. He received his PhD in logistics and operations management from the Eli Broad College of Business at Michigan State University. In addition to his PhD, he earned an MS degree in logistics management from the Air Force Institute of Technology and a BA in experimental psychology from the College of Idaho.

During his Air Force career, Webb worked on both base- and Pentagon-level assignments. He separated from active duty military service in 2008 at the rank of major and after earning both AF Commendation Medals and the AF Meritorious Service Medal.
<table>
<thead>
<tr>
<th>Brief Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Integrating Supply Chain and Operations Management 1</td>
</tr>
<tr>
<td>Chapter 1</td>
</tr>
<tr>
<td>Chapter 2</td>
</tr>
<tr>
<td>2 Innovating Supply Chain and Operations 47</td>
</tr>
<tr>
<td>Chapter 3</td>
</tr>
<tr>
<td>Chapter 4</td>
</tr>
<tr>
<td>Chapter 5</td>
</tr>
<tr>
<td>3 Impacting Supply Chain and Operations Performance 141</td>
</tr>
<tr>
<td>Chapter 6</td>
</tr>
<tr>
<td>Chapter 7</td>
</tr>
<tr>
<td>Chapter 8</td>
</tr>
<tr>
<td>Chapter 9</td>
</tr>
<tr>
<td>Chapter 10</td>
</tr>
<tr>
<td>Chapter 11</td>
</tr>
<tr>
<td>4 Improving Supply Chain and Operations Management Performance 339</td>
</tr>
<tr>
<td>Chapter 12</td>
</tr>
<tr>
<td>Chapter 13</td>
</tr>
<tr>
<td>Chapter 14</td>
</tr>
<tr>
<td>Chapter 15</td>
</tr>
</tbody>
</table>
Chapter 4 Service Design 92

1 Understand the Relationships between Services and Tangibles 93

2 Identify and Apply the Key Elements of Service Design 94
 Designing for Service Quality 95
 Designing for Service Recovery 96
 B2B versus B2C Services 96
 Customer-Interactive Processes 97
 Offerings and Experiences 97

3 Understand and Apply the Process Chain Network (PCN) Tool for Service Design 98
 Process Chain Networks 99
 Process Positioning 100
 Three Process Principles 101
 Steps in Developing a PCN Diagram 102
 SOLVED PROBLEM 4.1 > PCN Diagrams in Action 102

4 Describe and Use the Planning Service Capacity for Uncertain Demand 103
 Capacity Components 103
 Capacity Planning Tools 105
 SOLVED PROBLEM 4.2 > The Newsvendor Problem in Action 106

5 Apply Queuing Theory 107
 Queuing Psychology 107
 Queue Systems and Service Stations 107
 Wait Times 108
 SOLVED PROBLEM 4.3 > Model I in Action for a Single-Phase Queue with a Single Server and Exponential Service Times 110
 SOLVED PROBLEM 4.4 > Model II in Action for a Single-Phase Queue with a Single Server and Constant Service Times 110
 SOLVED PROBLEM 4.5 > Model III in Action for a Multiserver System with Exponential Service Times 111

Summary 113 • Key Terms 114 • Integrative Learning
Exercise 114 • Integrative Experiential Exercise 114 • Discussion
Questions 114 • Solved Problems 115 • Problems 116

Case: XLG Enterprises 118

Chapter 5 Customer Relationship Management 120

1 Understand and Apply Customer Relationships and Systems 121
 Customer Relationship Management Systems 122
 Customer Relationships 123
 CRM Processes 126
Chapter 7 Supplier Relationships: Constructive Communication and Integration 166

2 Make Informed Supplier Selection Decisions 171
 Identifying Supplier Requirements with Weighted-Factor Analysis 172
 SOLVED PROBLEM 7.1 > Creating a Weighted-Factor Analysis 174
 Searching for Potential Suppliers 175
 Supplier Evaluation 176
 SOLVED PROBLEM 7.2 > Supplier Evaluation Using Weighted-Factor Analysis 176
 Negotiating the Agreement 178

3 Create and Develop Constructive Supplier Relationships 179
 Identifying Suppliers to Develop 179
 Forming a Cross-Functional Team 180
 Involving Top Management 180
 Identifying Opportunities 180
 Defining Key Metrics and Cost Sharing 181
 Agreeing on Projects and Resources 181
 Monitoring Status and Modifying 181

4 Provide Constructive Supplier Feedback 183
 Designing and Implementing the Supplier Scorecard 183
 SOLVED PROBLEM 7.3 > Supplier Scorecard Design 184
 Delivery and Cost Assessment 186
 Supplier Awards 187

Summary 188
 Key Terms 189
 Integrative Learning
 Exercise 189
 Integrative Experiential Exercise 189
 Discussion
 Questions 189
 Solved Problems 190
 Problems 191

Case: Rockhurst Company 194

Chapter 8 Demand Management and Forecasting 195

1 Apply the Fundamentals of Demand Management 197

2 Understand and Apply Time Series Forecasting 200
 Components of a Time Series 200
 Forecasting and Bullwhips 201
 Types of Forecasting Models 202
 Judgmental or Experiential Forecasting 202

3 Understand and Apply Naive Forecasting Methods 205
 Simple Moving Average 205
 SOLVED PROBLEM 8.1 > Using the Moving Average 205
 Weighted Moving Average 206
 SOLVED PROBLEM 8.2 > Weighted Moving Average 206
 Single Exponential Smoothing 207
 SOLVED PROBLEM 8.3 > Single Exponential Smoothing 208
 Double Exponential Smoothing 209
 SOLVED PROBLEM 8.4 > Double Exponential Smoothing 209
 Measures of Forecasting Error 210
 SOLVED PROBLEM 8.5 > Measures of Forecasting Error 211

4 Understand and Apply Time Series Forecasting Using Regression 212
 Time Series Forecasts Using Simple Linear Regression 213
 SOLVED PROBLEM 8.6 > Using Simple Linear Regression 214
Chapter 9 Inventory Management Fundamentals and Independent Demand 242

1 Define the Roles and Types of Inventory 243
 The Role of Inventory 243
 Types of Inventory 245

2 Understand Important Inventory Concepts 247
 Inventory Velocity 247
 SOLVED PROBLEM 9.1 > Computing Inventory Turnover 247
 Consignment Inventory 248
 Vendor-Managed Inventory 249
 Inventory and Bullwhips 249

3 Understand, Perform, and Apply Demand Analysis 250
 Dependent versus Independent Demand 250
 ABC Analysis 250
 SOLVED PROBLEM 9.2 > Performing ABC Inventory Analysis 251
 Review Systems 254

4 Explain and Apply Inventory Models 256
 The Basic Economic Order Quantity Model 256
 SOLVED PROBLEM 9.3 > Total Annualized Inventory Costs 256
 SOLVED PROBLEM 9.4 > The Economic Order Quantity in Action 257
 Quantity Discounts 258
 SOLVED PROBLEM 9.5 > Using EOQ with Quantity Discounts 259
 Reorder Points 260
 SOLVED PROBLEM 9.6 > Computing a Reorder Point with Deterministic Lead Time 260
 SOLVED PROBLEM 9.7 > Reorder Point with Stochastic Demand during Lead Time 261
 Periodic Review Inventory Models 262
 A Finite Replenishment Rate Inventory Model 262
 SOLVED PROBLEM 9.8 > Using the Periodic Review Inventory Model 262
 A Finite Replenishment Rate Inventory Model 262
 SOLVED PROBLEM 9.9 > Using the Finite Replenishment Rate Model 263

Summary 264 • Key Terms 265 • Integrative Learning
Exercise 265 • Integrative Experiential Exercise 265 • Discussion
Questions 266 • Solved Problems 266 • Problems 269

Case: Managing Inventory at Nordstrom 272

Chapter 10 Sales and Operations Planning and Enterprise Resource Planning 273

1 Apply Sales and Operations Planning 274
 Production Planning 275
 Performing Sales and Operations Planning 277
Chapter 11 Logistics 305

1 Understand the Strategic Importance of Logistics 306
 Cost 307
 Flow 308
 Access 309
 Sustainability 310

2 Understand and Apply Fundamental Logistics Trade-Offs 312
 Cost-to-Cost Trade-Offs 312
 Modal Trade-Offs 312
 Cost-to-Service Trade-Offs 313
 Landed Cost 313

3 List and Apply the Five Logistics Processes 315
 Demand Processing 315
 Inventory Management 317
 Transportation 318
 Warehousing 320
 Warehousing Square Root Rule in Action 321
 Weighted Center of Gravity in Action 323
 Configuring Logistics 326
 Structural Network 329
 Reverse Logistics 329
Chapter 12 Project Management 340

1 Understand Project Management 341
 The Human Element in Projects 342
 Qualifying Projects 346
 Project Charters 348
 SOLVED PROBLEM 12.1 > Project Charters in Action 350

2 Utilize Project Planning Tools 350
 Estimating Task Completion Times 350
 SOLVED PROBLEM 12.2 > Computing Task Times 352
 SOLVED PROBLEM 12.3 > Computing Task Variance 352
 SOLVED PROBLEM 12.4 > Putting It Together: Task Times and Variances 353
 Managing Multiple Projects 354

3 Plan and Control Projects Using PERT/CPM 355
 SOLVED PROBLEM 12.5 > Drawing AON Networks 356
 Finding the Critical Path 356
 Computing Early Times 357
 Computing Late Times 358
 Computing Slack and the Critical Path 358
 SOLVED PROBLEM 12.6 > Finding the Critical Path 360
 Using PERT/CPM in Delegation Decisions 361
 Probabilistic PERT 361
 SOLVED PROBLEM 12.7 > Computing Required Project Completion Times 364
 SOLVED PROBLEM 12.8 > The Other Side of the Coin: Determining the Probability of Completing a Project in a Given Time 365

4 Learn How to Manage Costs of Projects through Gantt Charts 366
 Managing Costs and Expediting Projects 366
 Expediting or Crashing Tasks 368
 SOLVED PROBLEM 12.9 > Crashing Projects 369

Chapter 13 Supply Chain Quality Management 381

1 Understand the Importance of Product Quality Dimensions 382

2 Discuss the Basics of Quality Management as Espoused by Deming, Juran, Crosby, and Ishikawa 384
 W. Edwards Deming 384
 Joseph Juran 385
Chapter 14 Statistical Process Control 409

1 Articulate the Purposes of Statistical Quality Control and Statistical Thinking 410

2 Understand Process Stability 412
 Sampling and Inspection 413
 Types of Samples 413
 Inspection Methods 413
 SOLVED PROBLEM 14.1 > Computing Inspection Ratios 415

3 Explain and Use Variables and Attributes Process Control Charts 415
 Understanding Control Charts 416
 A Generalized Procedure for Developing Process Charts 418
 Variables Control Charts 418
 SOLVED PROBLEM 14.2 > Developing Charts 422
 SOLVED PROBLEM 14.3 > Using Excel to Develop X Control Charts 423
 SOLVED PROBLEM 14.4 > Developing R Charts 425
 SOLVED PROBLEM 14.5 > Developing R Charts in Excel 426
 Attributes Control Charts 428
 SOLVED PROBLEM 14.6 > Developing p Charts 430

4 Apply Control Charts 432
 Interpreting Control Charts 432
 SOLVED PROBLEM 14.7 > Interpreting Control Charts 433
 Corrective Action 434
 Tampering with the Process 434
 Control Charts and Services 434

5 Perform Process Capability Analysis 434
 SOLVED PROBLEM 14.8 > Capability Analysis 435

Summary 437 • Key Terms 437 • Integrative Learning
Exercise 438 • Integrative Experiential Exercise 438 • Discussion
Problems 444

Case: Meeting Standards in Software Quality 451
Chapter 15 Lean and Six Sigma Management and Leading Change 452

1 Define Six Sigma and Explain Its Various Roles 453
 Six Sigma Roles 455
 DMAIC 456
 Business Cases 456

2 Understand and Use Lean 459
 Lean Solutions 459
 Lean Viewpoints 460
 Lean Philosophy 460

3 Apply Lean Practices 461
 Practicing Lean Production 462
 SOLVED PROBLEM 15.1 > Determining the Number of Kanban Cards Needed 464
 Lean Workforce Practices 465
 Systemwide Solutions 467
 Lean Supply Chain Management 468

4 Familiarize Yourself with Change Management 468
 Summary 469 • Key Terms 470 • Integrative Learning
 Exercise 470 • Integrative Experiential Exercise 470 • Discussion
 Questions 470 • Solved Problem 471 • Problems 471
 Case: Automotive Resources 471

Appendix A-1
Glossary G-1
Name Index I-1
Subject Index I-3
Photo Credits C-1
New to This Edition

With this edition of Managing Supply Chain and Operations: An Integrative Approach, we wanted to up our game. Every new edition of a textbook must represent a step forward. We feel like we met that goal with this edition. At the same time, you will see that this edition maintains the strengths of the first edition with additional features.

• Cutting Edge Almost all of the vignettes and examples in the book have been updated. For example, the forecast section includes discussion of the work being done to use social media to forecast trends and preferences. New supply chain and operations vignettes are used to amplify and contextualize the techniques and tools taught in the book. More up-to-date information is provided on our Managing Supply Chain and Operations Facebook page, including all source articles for every vignette in the text.

• Analytics Emphasis We have added analytics to the core model in the book. We have also honed our focus on analytics. For every quantitative example in the text, we have added analytics icons to show students that they are learning tools they can use in their careers. We have also included discussion of the importance of analytics in the early parts of the book.

Is Big Data the Key to Better Forecasting?

As you will see in this chapter, a lot of forecasting requires the gathering of historical data, which can be time consuming to gather and to analyze. However, data is everywhere. It comes from social media, search engines, and online retailing. Can this data provide a key to predicting the future? Giselle Guzman thinks it can. She is the founder of Now-Cast Data Corp, a company that uses big data and crowdsourcing to help create financial forecasts and trends.

For example, Now-Cast has found that by scrubbing data on prices from online sources, it can predict inflation much more quickly than the U.S. government can. By monitoring searches on the word inflation, it can better gauge consumer expectations and worries relative to price increases.

Giselle has worked closely with eminent researchers in forecasting such as Nobel Laureates Joseph Stiglitz and Lawrence Klein. She believes that there is wisdom in crowds and that their data can be explored and analyzed on a moment-by-moment basis. Analytics can be used to monitor this data, but external variables, such as terrorism or natural disasters, can also be followed to adjust expectations. Next, machine learning can be used to improve forecasting.

While the jury is still out concerning the use of big data in forecasting, it is intriguing to think that this data may be useful in predicting trends like future spending and demand. In this chapter, we introduce you to forecasting methods that use data as a foundation for decision making in firms. We’ll return to Now-Cast at the chapter’s end.

Preface

Supply Chain and Operational Social Responsibility at Apple

As you will learn in this class, supply chain managers concern themselves daily with social responsibility. This involves being sensitive to the rights and dignity of individuals in the global supply chain and putting systems and reporting in place to ensure compliance with company standards in this area. Apple currently has more than 1.6 million people working its supply chain. To manage in a way that is responsive to the needs of all these people is a big job.

To help with managing supply chain and operations social responsibility, Apple has established a supplier code of conduct. The Apple supplier code of conduct addresses safety, working conditions, fair employee treatment, and environmental performance. This requires more than just satisfying local laws. It means meeting world-class requirements for global supply chain practices.

In this chapter, we will introduce supply chain and operations. As a supply chain and operations manager, you will have an opportunity to make the world a better place. We will revisit social responsibility at Apple later in the chapter.

- Increased Coverage of Sustainability and Social Responsibility
 We have made an effort to increase our discussion of these important topics that resonate with students. This will make your course more relevant for your students.

- Streamlined We have analyzed areas where the first edition could be simplified and have done so for this second edition. This has reduced the number of pages while still providing the same outstanding content coverage. We believe that students will find the text readable.

SOLVING TEACHING AND LEARNING CHALLENGES

The second edition of Managing Supply Chain and Operations is targeted toward undergraduate- and graduate-level operations management courses that link to supply chain management in an effective and meaningful way. When we implemented this approach at our own university, we saw a tenfold increase in student enrollment in our major. Students are responding to the global nature of business, which has led to a realization that firms do not act alone to produce products and services. Although it may sound like a cliché, supply chains do compete against other supply chains. This text benefits from the fact that the authors have taught at both research and teaching universities such as Brigham Young, Florida State, Boise State, and Georgia Southern.

This book takes a balanced approach and, although rigorous, is not solely focused on quantitative material. We approach the quantitative material from a managerial perspective,
CHAPTER OUTLINE AND LEARNING OBJECTIVES

1. Understand the Relationships between Services and Tangibles
 • Identify How Services and Nonservices Differ

2. Identify and Apply the Key Elements of Service Design
 • Describe how managers design for service quality.
 • Explain how managers and designers design products for service recovery.
 • Explain the differences between business-to-consumer (B2C) and business-to-business (B2B) services.
 • Describe customer interactive services and the components of the customer experience.

3. Understand and Apply the Process Chain Network (PCN) Tool for Service Design
 • Understand process chain networks.
 • Explain process positioning.
 • List the three process principles.
 • List and use the steps in developing a PCN diagram.

4. Describe and Use the Planning Service Capacity for Uncertain Demand
 • Understand the components of capacity planning.
 • Describe the tools that managers use to plan and manage capacity.

5. Apply Queuing Theory
 • Understand queuing psychology.
 • Apply analytic queuing models to improve service performance.

Each chapter has a defined set of Learning Objectives. Because AACSB is requiring faculty to identify learning objectives, we provide them as an aid for faculty and students.

Managing Across Majors boxes directly address how students in different majors and disciplines will use SC&O concepts upon graduation. Making a clear connection between the concepts and how students will use them reinforces the importance and relevance of these concepts.

Managing Across Majors 4.1 Marketing majors, remember that service operations need information from marketing to help identify and understand customer needs.
• Each chapter spotlights current events and ties them directly to the chapter’s concepts. Students see how managers apply the information they are learning in the field. Every chapter has multiple SC&O CURRENT EVENTS boxes that make the material relevant to the students.

Managing Flow for Fast Fashion

We discussed Zara from a strategic perspective in Chapter 2. We now discuss it from a logistics perspective. Zara, the Spanish fast-fashion retailer, uses logistics to ensure that the most recent fashion trends are on store shelves quickly. The secret to Zara’s business strategy is the quick turnover of product lines within retail stores. In fact, Zara frequently stocks its shelves with fashion apparel that was displayed on fashion runways only three weeks earlier.

So how does Zara accomplish this fast-fashion supply chain? Zara has created a very cohesive logistics strategy between its factory operations and its retail stores. Zara creates clothing using just-in-time manufacturing and small batch sizes. Zara then ships these batches to retail stores to see what customers prefer. When Zara is informed about what is selling, not selling, or not available at retail stores, the factory produces what customers value most. The factory then uses its excess capacity and agile capabilities to manufacture the most popular styles.

Zara’s commitment to a fast and steady tempo paced by order fulfillment to stores allows Zara to keep minimal inventory while still meeting customers’ needs. Logisticians for Zara know that it delivers twice weekly from the factories in Bangladesh to the central distribution center in Spain. The shipments are then broken up and delivered to stores, usually in less than 24 hours to European stores and 40 hours to U.S. stores. The logistics costs of rapidly shipping inventory to stores are much more expensive than traditional, slower fashion distribution systems.

• Opening Vignettes introduce a problem or scenario that an actual company has encountered. At the end of the chapter, we discuss how that company used concepts from the chapter to address its needs. End-of-Chapter Vignettes also require assessment and application. These exercises provide students with the skills they will need when they become managers.

Global Connections boxes focus on how SC&O management ties together supply chains across international boundaries. Learning how managers can use global supply chains and how international linkages benefit firms provides students an advantage once they enter the workforce.

SCOR at Ford

A good example of a company that used SCOR to become more effective is Ford Motor Company. The parts, supply, and logistics division of Ford used SCOR to improve its forecasting, inventory planning, electronic supplier communication, and management. Ford’s extremely complex supply chain contains thousands of parts, thousands of suppliers, and millions of end consumers. Although Ford’s functional areas within purchasing and logistics were individually effective, they were not structured to make integrated supply chain decisions. Ford identified the problems in its as-is state and then used SCOR to map and describe important inventory processes that flowed through the functional silos. Understanding how these processes affected each area of the company helped employees understand the holistic nature of their siloed decisions. Ford managers used SCOR to measure and benchmark these processes against others doing similar processes. Ford was then able to standardize processes and help each business area understand its responsibility for the entire process.

Ford has benefited substantially from using SCOR. Ford’s recurring inventory has been greatly reduced due to attention to variation in inventory policies. Focusing on customer requirements has led to a 20 percent reduction in back orders, improved customer satisfaction, and a 25 percent reduction in forecast inaccuracies. Because employees are focused on the total process rather than their own silos, Ford has reduced total inventory cycle time by 30 percent. Ford’s return on investment was calculated to be five times the cost of implementing the SCOR system.

At the beginning of this chapter, we discussed music-sharing services such as Spotify. After studying service design, you now understand that these companies have created a conducive environment where customers provide information and preferences. As you use the music-sharing service, you actually help to fine-tune the service the company provides to you.

There are also traditional quality dimensions to this service, such as performance, reliability, cost, and content. The social dimension takes the experience from being primarily technological to relational.

Customers of music-sharing services also prefer paid music. This eliminates commercials and makes the experience less cluttered. In addition, socially engaged listeners are much more satisfied than passive listeners. That is, as a listener, you join a community by sharing and borrowing. Also, exclusive content drives users to the service. For example, if one service has Taylor Swift and another doesn’t, her fans will flock to the service providing her music.

Data analysis and algorithms allow services to provide music that matches your moods. The social aspect creates an environment not unlike hanging around at a really awesome music shop with your friends. So the next time you chat with your friends about music sharing, explain about providing customer inputs to processes and coproduction.
A01_FOST9830_02_SE_FM.indd 20
10/11/17 2:50 PM
Problems

Planning Service Capacity for Uncertain Demand

SOLVED PROBLEM 4.3

1. A bookstore must decide how many copies of a popular thriller to order. The demand for the book is assumed to be normally distributed with a mean of 2,000 and a standard deviation of 1,000. The bookstore will sell the book for $25. It costs the bookstore $15 to stock each copy sold. There is no market for the book once the end book is sold, so the book is considered a loss leader for the bookstore. Each copy has a markup value to marginal cost ratio of 5. How many copies of the book should the bookstore stock in order to maximize its expected profit?

2. We then discussed the key elements of a service design. An important aspect of service design is that customers provide input to the process. This aspect is a major distinction between services and manufacturing. Both services and manufacturing involve customer interaction. A process domain is a segment of a process with a common set of activities. An example is the back office of a service. A process chain network (PCN) diagram shows the interactions between service providers and customers. Identify an organization, company, or business that provides a service. Use a process chain network (PCN) diagram to evaluate the interactions between service providers to determine how to solve model problems using the techniques presented in the chapter. An important aspect of service design is that customers provide input to the process. This aspect is a major distinction between services and manufacturing. Both services and manufacturing involve customer interaction. A process domain is a segment of a process with a common set of activities. An example is the back office of a service. A process chain network (PCN) diagram shows the interactions between service providers and customers. Identify an organization, company, or business that provides a service. Use a process chain network (PCN) diagram to evaluate the interactions between service providers to determine how to solve model problems using the techniques presented in the chapter.

Discussion Questions

1. Briefly describe service operations and service.
2. In what ways do services involve tangible elements?
9. How many customers does a PCN diagram provide a basis for process positioning, that is, determine how to solve model problems using the techniques presented in the chapter.

Problems

Planning Service Capacity for Uncertain Demand

SOLVED PROBLEM 4.3

1. A bookstore must decide how many copies of a popular thriller to order. The demand for the book is assumed to be normally distributed with a mean of 2,000 and a standard deviation of 1,000. The bookstore will sell the book for $25. It costs the bookstore $15 to stock each copy sold. There is no market for the book once the end book is sold, so the book is considered a loss leader for the bookstore. Each copy has a markup value to marginal cost ratio of 5. How many copies of the book should the bookstore stock in order to maximize its expected profit?

2. We then discussed the key elements of a service design. An important aspect of service design is that customers provide input to the process. This aspect is a major distinction between services and manufacturing. Both services and manufacturing involve customer interaction. A process domain is a segment of a process with a common set of activities. An example is the back office of a service. A process chain network (PCN) diagram shows the interactions between service providers and customers. Identify an organization, company, or business that provides a service. Use a process chain network (PCN) diagram to evaluate the interactions between service providers to determine how to solve model problems using the techniques presented in the chapter. An important aspect of service design is that customers provide input to the process. This aspect is a major distinction between services and manufacturing. Both services and manufacturing involve customer interaction. A process domain is a segment of a process with a common set of activities. An example is the back office of a service. A process chain network (PCN) diagram shows the interactions between service providers and customers. Identify an organization, company, or business that provides a service. Use a process chain network (PCN) diagram to evaluate the interactions between service providers to determine how to solve model problems using the techniques presented in the chapter.

Discussion Questions

1. Briefly describe service operations and service.
2. In what ways do services involve tangible elements?
9. How many customers does a PCN diagram provide a basis for process positioning, that is, determine how to solve model problems using the techniques presented in the chapter.

Problems

Planning Service Capacity for Uncertain Demand

SOLVED PROBLEM 4.3

1. A bookstore must decide how many copies of a popular thriller to order. The demand for the book is assumed to be normally distributed with a mean of 2,000 and a standard deviation of 1,000. The bookstore will sell the book for $25. It costs the bookstore $15 to stock each copy sold. There is no market for the book once the end book is sold, so the book is considered a loss leader for the bookstore. Each copy has a markup value to marginal cost ratio of 5. How many copies of the book should the bookstore stock in order to maximize its expected profit?

2. We then discussed the key elements of a service design. An important aspect of service design is that customers provide input to the process. This aspect is a major distinction between services and manufacturing. Both services and manufacturing involve customer interaction. A process domain is a segment of a process with a common set of activities. An example is the back office of a service. A process chain network (PCN) diagram shows the interactions between service providers and customers. Identify an organization, company, or business that provides a service. Use a process chain network (PCN) diagram to evaluate the interactions between service providers to determine how to solve model problems using the techniques presented in the chapter.

Discussion Questions

1. Briefly describe service operations and service.
2. In what ways do services involve tangible elements?
9. How many customers does a PCN diagram provide a basis for process positioning, that is, determine how to solve model problems using the techniques presented in the chapter.

Problems

Planning Service Capacity for Uncertain Demand

SOLVED PROBLEM 4.3

1. A bookstore must decide how many copies of a popular thriller to order. The demand for the book is assumed to be normally distributed with a mean of 2,000 and a standard deviation of 1,000. The bookstore will sell the book for $25. It costs the bookstore $15 to stock each copy sold. There is no market for the book once the end book is sold, so the book is considered a loss leader for the bookstore. Each copy has a markup value to marginal cost ratio of 5. How many copies of the book should the bookstore stock in order to maximize its expected profit?

2. We then discussed the key elements of a service design. An important aspect of service design is that customers provide input to the process. This aspect is a major distinction between services and manufacturing. Both services and manufacturing involve customer interaction. A process domain is a segment of a process with a common set of activities. An example is the back office of a service. A process chain network (PCN) diagram shows the interactions between service providers and customers. Identify an organization, company, or business that provides a service. Use a process chain network (PCN) diagram to evaluate the interactions between service providers to determine how to solve model problems using the techniques presented in the chapter.

Discussion Questions

1. Briefly describe service operations and service.
2. In what ways do services involve tangible elements?
9. How many customers does a PCN diagram provide a basis for process positioning, that is, determine how to solve model problems using the techniques presented in the chapter.

Problems

Planning Service Capacity for Uncertain Demand

SOLVED PROBLEM 4.3

1. A bookstore must decide how many copies of a popular thriller to order. The demand for the book is assumed to be normally distributed with a mean of 2,000 and a standard deviation of 1,000. The bookstore will sell the book for $25. It costs the bookstore $15 to stock each copy sold. There is no market for the book once the end book is sold, so the book is considered a loss leader for the bookstore. Each copy has a markup value to marginal cost ratio of 5. How many copies of the book should the bookstore stock in order to maximize its expected profit?
Reach Every Student by Pairing This Text with Mylab Operations Management

MyLab is the teaching and learning platform that empowers you to reach every student. By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Learn more about MyLab Operations Management at www.pearson.com/mylab/operations-management.

Deliver Trusted Content

You deserve teaching materials that meet your own high standards for your course. That’s why we partner with highly respected authors to develop interactive content and course-specific resources that you can trust—and that keep your students engaged.

This text is totally integrated with MyOMLab. Among the features that have proven popular are:

- **Over 80 videos.** Every solved example in the main body of every chapter has a video that shows step-by-step how to solve the problems. Students love this feature of the book. We believe that our videos are best-in-class. We used the talent of BYUtv to develop these videos.
• **Simulations** A series of simulations created by Pearson educational specialists are available for use in your SC&O course at various times. These make great team in-class activities that you can use to drive home key concepts and to make SC&O fun!

![Inventory Management Simulation](image1)

Inventory Management

You are the store manager at a local branch of Igloo, a large electronics retail chain. You have decided to monitor sales of your latest product: a new model of a popular consumer electronics device called the iScream. Your goal is to meet your company’s forecast of 1,000 units per week. Your job is to place orders at the proper time and to ensure that your forecast is met. You will need to evaluate three factors:

- **Your Goal:** Achieve unit sales goals
- **Your Forecast:** Achieve unit sales goals
- **Your Order:** Achieve unit sales goals

To start the simulation, review your documents and make an order decision.

![Quality Management Simulation](image2)

Quality Management

You are the manager of Zibbs, one of the least well-known chicken chains in the United States. Your job is to manage a full-service restaurant and work closely with the chef and the restaurant owner to improve the quality of the food served. In your job, you are responsible for ensuring that all quality procedures are followed and that the menu items are consistent with each other. You must also ensure that the food is prepared in a timely manner.

Dynamic Study Modules These are fantastic utilities that help tutor students on key SC&O concepts.

![Dynamic Study Modules](image3)

E-text Students can save money by utilizing the e-text and bypassing the need to have a paper text. Red Shelf and other tools are available to make this access very economical for the students. Just contact your Pearson rep to find out about this alternative. We do this at BYU and have saved our students a lot of money.
Empower Each Learner
Each student learns at a different pace. Personalized learning pinpoints the precise areas where each student needs practice, giving all students the support they need—when and where they need it—to be successful.

Teach Your Course Your Way
Your course is unique. Whether you’d like to build your own assignments, teach multiple sections, or set prerequisites, MyLab gives you the flexibility to easily create your course to fit your needs.

• You can create quizzes using prewritten editable questions from Tom Foster or you can create your own quizzes that students can complete either before, during, or after class.

Improve Student Results
When you teach with MyLab, student performance improves. That’s why instructors have chosen MyLab for over 15 years, touching the lives of over 50 million students.

EVELOPING EMPLOYABILITY SKILLS
This book is designed to provide a basic understanding of supply chain and operations management. For SC&O majors, this is a great platform for other, more advanced classes. For non-majors, in addition to other skills, they will be learning the basic concepts and important tools for managing:

• Logistics
• Purchasing
• Operations Management
• Inventory Management
• Project Management
• Process Management
• Process Improvement
• Six Sigma

This class will provide tools and concepts that you can use on the first day of your job. Pay attention. This is a growing field that is full of excitement and relevance for your future.

Integrative Experiential Exercise
Together with a student group, visit a business or organization that provides a service. Identify a process or process segment in the business or organization that can be analyzed using a PCN diagram. Identify the process level, the process entities, and the beginning and ending steps of the process.

Discussion Questions
1. Briefly describe service operations and service.
2. In what ways do services involve tangible elements?
3. Identify the customer input resources and the service provider outputs for the following service operations: accounting, education, computer repair, and healthcare.
4. What is meant by simultaneity in services? What is a major consequence of simultaneity?
5. What are some long-term responses for increasing and decreasing service capacity?
6. What is meant by the term time-perishable capacity as it relates to service operations? Provide an example.
7. Customers are generally involved in the service delivery process. What are some negative consequences associated with customer interaction in the service operation?
8. Briefly define and describe how a process chain network (PCN) diagram can be used in designing service delivery systems.
9. How can you shift the focus of your operations using a PCN diagram?
10. What trade-offs are generally made when making capacity decisions?
11. How do capacity choices vary in the near and long terms?
12. How can queuing theory be used to help evaluate capacity decisions for service providers?
13. Queuing psychology identifies ways that service operations managers can improve waits by improving the perception of those customers who do wait. What are some of the fundamental points related to queuing psychology?
14. In waiting lines, sometimes technological advances cannot make it easier to manage queues. How can psychology help with this problem?
15. How does the newsvendor model allow service firms to evaluate capacity decisions?

Expanding Your Career Skills or Building Your Career Skills
As educators and practitioners, we are aware of the changing landscape of the workplace and the needs of managers in various industries. This category of activities encourages students to research data, identify patterns and facts in data, take initiative, work in groups, and clearly communicate their findings to others.
This program comes with the following teaching resources.

<table>
<thead>
<tr>
<th>Supplements available to instructors at www.pearsonhighered.com</th>
<th>Features of the Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor’s Resource Manual, authored by Khurrum Bhutta from Ohio University</td>
<td>• Chapter-by-chapter summaries</td>
</tr>
<tr>
<td></td>
<td>• A sample syllabus and course outline</td>
</tr>
<tr>
<td></td>
<td>• Teaching tips</td>
</tr>
<tr>
<td></td>
<td>• Examples and activities not in the main book</td>
</tr>
<tr>
<td></td>
<td>• Class discussion questions</td>
</tr>
<tr>
<td></td>
<td>• Video suggestions</td>
</tr>
<tr>
<td>Solutions Manual, authored by Mahesh Srinivasan from The University of Akron</td>
<td>Solutions to all discussion questions, problems, and case questions</td>
</tr>
<tr>
<td>Test Bank, authored by Mahesh Srinivasan from The University of Akron</td>
<td>More than 1,000 multiple-choice, true/false, short-answer, and graphing questions with these annotations:</td>
</tr>
<tr>
<td></td>
<td>• Difficulty level (easy, moderate, difficult)</td>
</tr>
<tr>
<td></td>
<td>• Type (multiple-choice, true/false, short-answer, essay)</td>
</tr>
<tr>
<td></td>
<td>• Learning objective</td>
</tr>
<tr>
<td></td>
<td>• AACSB learning standard (Written and Oral Communication; Ethical Understanding and Reasoning; Analytical Thinking; Information Technology; Interpersonal Relations and Teamwork; Diverse and Multicultural Work; Reflective Thinking; Application of Knowledge)</td>
</tr>
<tr>
<td>Computerized TestGen</td>
<td>TestGen allows instructors to:</td>
</tr>
<tr>
<td></td>
<td>• Customize, save, and generate classroom tests</td>
</tr>
<tr>
<td></td>
<td>• Edit, add, or delete questions from the test item files</td>
</tr>
<tr>
<td></td>
<td>• Analyze test results</td>
</tr>
<tr>
<td></td>
<td>• Organize a database of tests and student results</td>
</tr>
<tr>
<td>PowerPoints, authored by Scott Webb from Brigham Young University</td>
<td>Slides include all the figures, tables, and equations in the textbook. PowerPoints meet accessibility standards for students with disabilities. Features include, but are not limited to:</td>
</tr>
<tr>
<td></td>
<td>• Keyboard and screen reader access</td>
</tr>
<tr>
<td></td>
<td>• Alternative text for images</td>
</tr>
<tr>
<td></td>
<td>• High color contrast between background and foreground colors</td>
</tr>
</tbody>
</table>

If assistance is needed, our dedicated technical support team is ready to help with the media supplements that accompany this text. Visit support.pearson.com/getsupport for answers to frequently asked questions and toll-free user support phone numbers.
ACKNOWLEDGMENTS

We acknowledge the contributions of many in making this book a success, including graduate assistant support from Erik Chaston, Scott Merrell, Aaron Hefner, Aaron Lund, Heidi Hunsaker, and Brian Andersen. We also wish to thank Phillip Fry for his contributions. Past and current editors have been essential in providing vision, including Chuck Synovec, Donna Battista, and Dan Tylman. Especially, Deepa Chungi has been a wonderful support to this project.

Many outside reviewers have contributed to the quality of this text and include the following:

Nezih Altay, DePaul University
Kwasi Amoako, University of North Carolina
Antonio Arreola-Risa, Texas A&M University
Cliff Asay, University of Wyoming
Dan Ball, Monmouth University
Pamela Barnes, Kansas State University
Hooshang Beheshti, Radford University
Ednilson Bernardes, University of West Virginia
Khurram Bhutta, Ohio University
Greg Bier, University of Missouri
Terrence Boardman, East Carolina University
Leland Buddress, Portland State University
Dan Bumblauskas, University of Missouri
John Burbridge, Elon University
Paul Choi, California State University
Rich Coleman, Elon University
John Connolly, Latter-Day Saints Business College
Gordon Corzine, University of Massachusetts
Michael Fathi, Georgia Southwestern State University
John Gardner, Brigham Young University
Ray Gehani, The University of Akron
Wooseung Jang, University of Missouri
Amit Kakkad, University of San Diego
Peter Kelle, Louisiana State University
George Kenyon, Lamar University
Gregg Macaluso, University of Colorado

Alan Mackelprang, Georgia Southern University
Bill Maligie, California State University
Hilda Martinez, Clarkson University
Anthony Narsing, Macon State College
Roger Nibler, Portland State University
Glenn Pace, Missouri State University
Gertrude Pannirselvam, Southern Illinois University
Ali Parlakturk, University of North Carolina
Patrick Penfield, Syracuse University
Fred Raafat, San Diego State University
Ana Rosado Feger, Ohio University
Brooke Saladin, Wake Forest University
Michael Santonino, Bethune Cookman University
Mahesh Srinivasan, The University of Akron
Larry Taube, University of North Carolina
Paul Vanderspek, Colorado State University
Jerry Wei, University of Notre Dame
Marek Wermus, Old Dominion University
Angela Wicks, Bryant University
Kaitlin Wowak, University of Notre Dame
John Wu, California State University
Xiaohui Xu, California State Polytechnic University
Helio Yang, San Diego State University
Zach Zacharia, Lehigh University
Wenge Zhu, California State Polytechnic University

Finally, we are thankful for our faith that keeps us continually improving and progressing.