ADVANCED ENGINE PERFORMANCE DIAGNOSIS

SEVENTH EDITION

James D. Halderman
Curt Ward

Pearson
BRIEF CONTENTS

chapter 1 The Diagnostic Process 1
chapter 2 Gasoline, Alternative Fuels, and Diesel Fuels 22
chapter 3 Circuit Testers and Digital Meters 47
chapter 4 Oscilloscopes and DSOs 66
chapter 5 Gasoline Engine Systems 79
chapter 6 In-Vehicle Engine Service 89
chapter 7 Valve Train and Variable Valve Timing Diagnosis 101
chapter 8 Engine and Misfire Diagnosis 117
chapter 9 CAN and Network Communications 137
chapter 10 On-Board Diagnosis 155
chapter 11 Global OBD II and Mode $06 166
chapter 12 Immobilizer Systems 175
chapter 13 Starting and Charging System Diagnosis 187
chapter 14 Ignition System Operation and Diagnosis 201
chapter 15 Temperature Sensors 230
chapter 16 Throttle Position Sensors 239
chapter 17 Manifold Absolute Pressure and Mass Airflow Sensors 245
chapter 18 Electronic Throttle Control System 259
chapter 19 Oxygen Sensors 269
chapter 20 Fuel Trim Diagnosis 287
chapter 21 Fuel Pumps, Lines, and Filters 298
chapter 22 Fuel-Injection Components and Operation 316
chapter 23 Gasoline Direct-Injection Systems 330
chapter 24 Fuel-Injection System Diagnosis and Service 340
chapter 25 Electronic Transmission Controls 360
chapter 26 Vehicle Emissions Standards, and Testing 373
<table>
<thead>
<tr>
<th>chapter 27</th>
<th>Emission Control Devices Operation and Diagnosis</th>
<th>384</th>
</tr>
</thead>
<tbody>
<tr>
<td>chapter 28</td>
<td>Module Reprogramming</td>
<td>413</td>
</tr>
<tr>
<td>chapter 29</td>
<td>Symptom-Based Diagnosis</td>
<td>424</td>
</tr>
<tr>
<td>appendix 1</td>
<td>Sample Advanced Engine Performance (L1) Certification-Type Test</td>
<td>439</td>
</tr>
<tr>
<td>appendix 2</td>
<td>2017 ASE Correlation Chart</td>
<td>444</td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>457</td>
</tr>
</tbody>
</table>
CONTENTS

chapter 1
THE DIAGNOSTIC PROCESS 1
■ Learning Objectives 1
■ Key Terms 1
■ The Eight-Step Diagnostic Procedure 2
■ Scan Tools 8
■ Retrieval of Diagnostic Information 9
■ Troubleshooting Using Diagnostic Trouble Codes 11
■ DLC Locations 12
■ OBD-II Diagnosis 12
■ OBD-II Active Tests 16
■ No-Code Diagnosis 17
■ Determining Root Cause of Repeated Component Failures 18
■ Manufacturer’s Diagnostic Routines 19
■ Verifying the Repair 19
■ Road Test (Drive cycle) 19
■ Diesel OBDII Monitor Readiness 20
SUMMARY 20
REVIEW QUESTIONS 21
CHAPTER QUIZ 21

chapter 2
GASOLINE, ALTERNATIVE FUELS, AND DIESEL FUELS 22
■ Learning Objectives 22
■ Key Terms 22
■ Introduction 23
■ Gasoline 23
■ Refining 23
■ Volatility 23
■ Air–Fuel Ratios 25
■ Normal and Abnormal Combustion 26
■ Octane Rating 26
■ Gasoline Additives 28
■ Gasoline Blending 28
■ Testing Gasoline for Alcohol Content 29
■ General Gasoline Recommendations 30
■ E85 32
■ Alternative Fuel Vehicles 33
■ Methanol 34
■ Propane 35
■ Compressed Natural Gas 35
■ Liquefied Natural Gas 38
■ P-Series Fuels 38
■ Synthetic Fuels 38
■ Safety Procedures When Working with Alternative Fuels 40
■ Diesel Fuel 40
■ Biodiesel 42
■ E-Diesel Fuel 43
SUMMARY 45
REVIEW QUESTIONS 45
CHAPTER QUIZ 45

chapter 3
CIRCUIT TESTERS AND DIGITAL METERS 47
■ Learning Objectives 47
■ Key Terms 47
■ Fused Jumper Wire 48
■ Test Lights 48
■ Logic Probe 49
■ Digital Multimeters 50
■ Inductive Ammeters 53
■ Diode Check, Duty Cycle, and Frequency 55
■ Electrical Unit Prefixes 55
■ How to Read Digital Meters 56
SUMMARY 65
REVIEW QUESTIONS 65
CHAPTER QUIZ 65

chapter 4
OSCILLOSCOPES AND DSOs 66
■ Learning Objectives 66
■ Key Terms 66
■ Types of Oscilloscopes 67
■ Scope Setup and Adjustment 68
■ DC and AC Coupling 69
■ Pulse Trains 69
■ Number of Channels 69
■ Triggers 70
chapter 19
OXYGEN SENSORS 269

- Learning Objectives 269
- Key Terms 269
- Oxygen Sensors 270
- Titania Oxygen Sensor 272
- PCM Uses of the Oxygen Sensor 273
- Oxygen Sensor Diagnosis 274
- Post-Catalytic Converter Oxygen Sensor Testing 278
- Wide-Band Oxygen Sensors 279
- Dual Cell Planar Wide-Band Sensor Operation 281
- Dual Cell Diagnosis 283
- Single Cell Wide-Band Oxygen Sensors 283
- Wide-Band Oxygen Pattern Failures 285
- Oxygen Sensor-Related Diagnostic Trouble Codes 285

SUMMARY 285
REVIEW QUESTIONS 286
CHAPTER QUIZ 286

chapter 20
FUEL TRIM DIAGNOSIS 287

- Learning Objectives 287
- Key Terms 287
- Fuel Trim 288
- Base Pulse Width 288
- Measuring Pulse Width 289
- Fuel Trim Operation 290
- Using Fuel Trim as a Diagnostic Aid 292
- Fuel Trim Cells 292
- Fuel Trim Cell Diagnosis 293
- Mass Air Flow Accuracy 293
- Volumetric Efficiency 295

SUMMARY 297
REVIEW QUESTIONS 297
CHAPTER QUIZ 297

chapter 21
FUEL PUMPS, LINES, AND FILTERS 298

- Learning Objectives 298
- Key Terms 298
- Fuel Delivery System 299
- Fuel Tanks 299
- Rollover Leakage Protection 301
- Fuel Lines 301
- Electric Fuel Pumps 303
- Fuel Filters 308
- Fuel-Pump Testing 308
- Fuel-Pump Current Draw Test 312
- Fuel-Pump Replacement 313

SUMMARY 314
REVIEW QUESTIONS 314
CHAPTER QUIZ 315

chapter 22
FUEL-INJECTION COMPONENTS AND OPERATION 316

- Learning Objectives 316
- Key Terms 316
- Electronic Fuel-Injection Operation 317
- Speed-Density Fuel-Injection Systems 318
- Mass Airflow Fuel-Injection Systems 319
- Throttle-Body Injection 319
- Port-Fuel Injection 320
- Fuel-Pump Injection 320
- Fuel-Pressure Regulator 321
- Vacuum-Biased Fuel-Pressure Regulator 323
- Electronic Returnless Fuel System 323
- Mechanical Returnless Fuel System 323
- Demand Delivery System (DDS) 323
- Fuel Injectors 324
- Central Port Injection 326
- Fuel-Injection Modes of Operation 326
- Idle Control 327

SUMMARY 329
REVIEW QUESTIONS 329
CHAPTER QUIZ 329

chapter 23
GASOLINE DIRECT-INJECTION SYSTEMS 330

- Learning Objectives 330
- Key Terms 330
- Direct Fuel Injection 331
- Direct-Injection Fuel Delivery System 331
- Gasoline Direct-Injection Fuel Injectors 334
- Port- and Direct-Injection Systems 334
chapter 26
VEHICLE EMISSIONS STANDARDS, AND TESTING 373

Learning Objectives 373
Key Terms 373
Normal Engine Combustion 374
Exhaust Analysis and Combustion Efficiency 375
Catalytic Converter 376
Exhaust Analysis as a Diagnostic Tool 376
Engine Fault Possibilities 377
Emission Standards 379
European Standards 381
Vehicle Emission Testing 381

summary 382
review questions 382
chapter quiz 383

chapter 27
EMISSION CONTROL DEVICES OPERATION AND DIAGNOSIS 384

Learning Objectives 384
Key Terms 384
Introduction 385
Smog 385
Exhaust Gas Recirculation Systems 385
OBD-II EGR Monitoring Strategies 388
Diagnosing a Defective EGR System 389
EGR-Related OBD-II Diagnostic Trouble Codes 391
Crankcase Ventilation 391
PCV System Diagnosis 393
PCV-Related Diagnostic Trouble Code 395
Secondary Air-Injection System 395
Secondary Air-Injection System Diagnosis 397
SAI-Related Diagnostic Trouble Code 397
Catalytic Converters 397
Diagnosing Catalytic Converters 400
Catalytic Converter Replacement Guidelines 402
Catalytic Converter-Related Diagnostic Trouble Code 403
Evaporative Emission Control System 403
Nonenhanced Evaporative Control Systems 405
Enhanced Evaporative Control System 405
Leak Detection Pump System 406

summary 382
review questions 382
chapter quiz 383

chapter 25
ELECTRONIC TRANSMISSION CONTROLS 360

Learning Objectives 360
Key Terms 360
Transmission Control Module 361
Sensors 362
Transmission Solenoids 365
How It All Works 368
Adaptive Strategies 369
Transmission Control Module Calibration 371

summary 371
review questions 372
chapter quiz 372

chapter 24
FUEL-INJECTION SYSTEM DIAGNOSIS AND SERVICE 340

Learning Objectives 340
Key Terms 340
Port Fuel-Injection Pressure Regulator Diagnosis 341
Diagnosing Electronic Fuel-Injection Problems Using Visual Inspection 341
Port Fuel-Injection System Diagnosis 343
Testing for an Injector Pulse 344
Checking Fuel-Injector Resistance 345
Pressure-Drop Balance Test 346
Injector Voltage-Drop Tests 347
Scope-Testing Fuel Injectors 348
Idle Air Speed Control Diagnosis 349
Fuel-Injection Service 351
Fuel-System Scan Tool Diagnostics 353

summary 359
review questions 359
chapter quiz 359

chapter 23
ENGINE PERFORMANCE AND FUEL ECONOMY 335

Modes of Operation 335
Piston Top Designs 335
Engine Start System 335
Gasoline Direct-Injection Issues 336
GDI Service 337

summary 338
review questions 338
chapter quiz 338

X CONTENTS
Advanced Engine Performance Diagnosis combines topics in engine performance (ASE A8) and the advanced engine performance (ASE L1) topics into one practical, comprehensive textbook that is easy for instructors to teach with, and an affordable option for students.

This hands-on introduction to the diagnosis and troubleshooting of automotive engine control systems serves students as a single source for information on digital storage, oscilloscopes, fuel injection and ignition system diagnoses, five-gas exhaust analysis, emission testing, and more.

The book is formatted to appeal to today’s technical trade students with a technical, but easy-to-read and understand presentation that uses helpful real-world tips and visuals to bring concepts to life and guide students through the procedures they’ll use on the job.

The following changes and updates have been made to the new seventh edition based on requests from instructors and reviewers from throughout North America:

- The content was reorganized to make it flow smoothly form beginning to the end.
- The chapters have been rewritten to be more concise.
- Over 75 new full color line drawings and photos have been added to the new edition to help bring the subject to life.
- Case studies have been added to many chapters that include the “three Cs” (Complaint, Cause, and Correction).
- Updated throughout and correlated to the latest ASE tasks.

- A new chapter title Oscilloscopes and DSOs (Chapter 4) has been greatly enhanced.
- The chapter Valve and Variable Valve Timing Diagnosis (Chapter 7) has been rewritten and updated to include Fiat-Chrysler Multiair systems and additional diagnosis procedures.
- Chapter 20, Fuel Trim Diagnosis, has been expanded and enhanced.
- The new Tier 3 emission standards have been added to Chapter 26 (Vehicle Emissions Standards and Testing).
- Module Programming (Chapter 28) has been added to the new edition.
After studying this chapter, the reader will be able to:

1. List the steps of the diagnostic process.
2. Discuss the type of scan tools that are used to assess vehicle components.
3. Describe how to retrieve diagnostic information from a vehicle.
4. Explain the troubleshooting procedures to follow if a diagnostic trouble code has been set.
5. Describe diagnostic trouble code retrieval, diagnosis, and testing for OBD-II vehicles.
6. Explain the troubleshooting procedures to follow if no diagnostic trouble code has been set.
7. List the steps in most manufacturers' diagnostic routines.
8. Describe how to verify the repair and conduct a universal drive cycle.
9. Describe how to run OBD-II monitors on a light duty diesel vehicle.

LEARNING OBJECTIVES

KEY TERMS

- Data link connector (DLC) 6
- Drive cycle 20
- Flash code retrieval 11
- Pending code 5
- Smoke machine 4
- TECH TIPS
- Technical service bulletin (TSB) 6
- Trip 16

TECH TIP

Smoke Machine Testing

Vacuum (air) leaks can cause a variety of driveability problems and are often difficult to locate. One good method is to use a machine that generates a stream of smoke. Connecting the outlet of the smoke machine to the hose that was removed from the vacuum brake booster allows smoke to enter the intake manifold. Any vacuum leaks will be spotted by observing smoke coming out of the leak. **SEE FIGURE 1–6.**

CASE STUDY

The Chevrolet Pickup Truck Story

The owner of a Chevrolet pickup truck complained that the engine ran terribly. It would hesitate and surge, yet there were no diagnostic trouble codes (DTCs). After hours of troubleshooting, the technician discovered while talking to the owner that the problem started after the transmission had been repaired. However, the transmission shop said that the problem was an engine problem and not related to the transmission.

A thorough visual inspection revealed that the front and rear oxygen sensor connectors had been reversed. The PCM was trying to compensate for an air–fuel mixture condition that did not exist. Reversing the O2S connectors restored proper operation of the truck.

Summary:

- **Complaint**—Vehicle owner complained that the pickup truck ran terribly.
- **Cause**—During a previous repair, the upstream and downstream oxygen sensor connectors were reversed.
- **Correction**—The connectors were moved to their correct locations which restored proper engine operation.

REAL WORLD FIXES

TECH TIPS feature real-world advice and “tricks of the trade” from ASE-certified master technicians.
FREQUENTLY ASKED QUESTIONS are based on the author’s own experience and provide answers to many of the most common questions asked by students and beginning service technicians.

NOTE: A cam-within-a-cam is used on the 2008 + Viper V-10 OHV engine. This design allows the exhaust lobes to be moved up to 36° to improve idle quality and reduction of exhaust emissions.

NOTES provide students with additional technical information to give them a greater understanding of a task or procedure.

CAUTION: Do not use more than three squirts oil from a hand-operated oil squirt can. Too much oil can cause a hydrostatic lock, which can damage or break pistons or connecting rods or even crack a cylinder head.

CAUTIONS alert students about potential to the vehicle that can occur during a specific task or service procedure.

WARNINGs alert students to potential dangers to themselves during a specific task or service procedure.

THE SUMMARY, REVIEW QUESTIONS, AND CHAPTER QUIZ at the end of each chapter help students review the material presented in the chapter and test themselves to see how much they’ve learned.
INSTRUCTOR RESOURCES

These resources are provided to help you teach your course, and can be found at pearsonhighered.com/automotive. Search for this title there.

RESOURCES IN PRINT AND ONLINE

Advanced Engine Performance Diagnosis

<table>
<thead>
<tr>
<th>NAME OF SUPPLEMENT</th>
<th>PRINT</th>
<th>ONLINE</th>
<th>AUDIENCE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor Resource Manual</td>
<td>✔</td>
<td></td>
<td>Instructors</td>
<td>NEW! The Ultimate teaching aid: Chapter summaries, key terms, chapter learning objectives, lecture resources, discuss/demonstrate classroom activities, and answers to the in text review and quiz questions.</td>
</tr>
<tr>
<td>TestGen</td>
<td>✔</td>
<td></td>
<td>Instructors</td>
<td>Test generation software and test bank for the text.</td>
</tr>
<tr>
<td>PowerPoint Presentation</td>
<td>✔</td>
<td></td>
<td>Instructors</td>
<td>Slides include chapter learning objectives, lecture outline of the text, and graphics from the book.</td>
</tr>
<tr>
<td>Image Bank</td>
<td>✔</td>
<td></td>
<td>Instructors</td>
<td>All of the images and graphs from the textbook to create customized lecture slides.</td>
</tr>
<tr>
<td>ASE Correlated Task Sheets – for instructors</td>
<td>✔</td>
<td></td>
<td>Instructors</td>
<td>Downloadable ASE task sheets for easy customization and development of unique task sheets.</td>
</tr>
<tr>
<td>ASE Correlated Task Sheets – for Students</td>
<td>✔</td>
<td></td>
<td>Students</td>
<td>Study activity manual that correlates ASE Automobile Standards to chapters and page numbers in the text. Available to students at a discounted price when packaged with the text.</td>
</tr>
<tr>
<td>VitalSource eBook</td>
<td>✔</td>
<td></td>
<td>Students</td>
<td>An alternative to purchasing the print textbook, students can subscribe to the same content online and save up to 50% off the suggested list price of the print text. Visit www.vitalsource.com</td>
</tr>
</tbody>
</table>

All online resources can be downloaded from the Instructor’s Resource Center: www.pearsonhighered.com/irc
ACKNOWLEDGMENTS

A large number of people and organizations have cooperated in providing the reference material and technical information used in this text. The author wishes to express sincere thanks to the following individuals for their special contributions:

- Randy Briggs, Car Quest Technical Institute
- Randy Dillman
- Rick Escalambre, Skyline College
- Bill Fulton, Ohio Automotive Technology
- Jim Linder, Linder Technical Services
- Scot Manna
- Dan Marinucci, Communiqué'
- Albin Moore
- Jim Morton, Automotive Training Center (ATC)
- Dr. Norman Nall
- Dave Scaler, Mechanic’s Education Association
- John Thornton, Autotrain
- Mark Warren

TECHNICAL AND CONTENT REVIEWERS

The following people reviewed the manuscript before production and checked it for technical accuracy and clarity of presentation. Their suggestions and recommendations were included in the final draft of the manuscript. Their input helped make this textbook clear and technically accurate while maintaining the easy-to-read style that has made other books from the same author so popular.

- Jim Anderson
 Greenville High School
- Victor Bridges
 Umpqua Community College
- Dr. Roger Donovan
 Illinois Central College
- A. C. Durdin
 Moraine Park Technical College
- Al Engledahl
 College of Dupage
- Larry Hagelberger
 Upper Valley Joint Vocational School
- Oldrick Hajzler
 Red River College
- Betsy Hoffman
 Vermont Technical College
- Richard Krieger
 Michigan Institute of Technology
- Steven T. Lee
 Lincoln Technical Institute
- Carlton H. Mabe, Sr.
 Virginia Western Community College
- Roy Marks
 Owens Community College
- Tony Martin
 University of Alaska Southeast
- Kerry Meier
 San Juan College
- Fritz Peacock
 Indiana Vocational Technical College
- Dennis Peter
 NAIT (Canada)
- Greg Pfahl
 Miami-Jacobs Career College
- Kenneth Redick
 Hudson Valley Community College
- Jeff Rehkopf
 Florida State College
- Mitchell Walker
 St. Louis Community College at Forest Park
- Jennifer Wise
 Sinclair Community College

SPECIAL THANKS

The author wishes to thank Chuck Taylor of Sinclair Community College in Dayton, Ohio, who helped with many of the photos. A special thanks to Tom Birch, and Jeff Rehkopf for their detailed and thorough review of the manuscript before publication. Most of all, I wish to thank Michelle Halderman for her assistance in all phases of manuscript preparation.

James D. Halderman
Curt Ward
JIM HALDERMAN brings a world of experience, knowledge, and talent to his work. His automotive service experience includes working as a flat-rate technician, a business owner, and a professor of automotive technology at a leading U.S. community college.

He has a Bachelor of Science degree from Ohio Northern University and a master’s degree from Miami University in Oxford, Ohio. Jim also holds a U.S. patent for an electronic transmission control device. He is an ASE certified Master Automotive Technician and is also Advanced Engine Performance (L1) ASE certified. Jim is the author of many automotive textbooks, all published by Pearson Education. Jim has presented numerous technical seminars to national audiences, including the California Automotive Teachers (CAT) and the Illinois College Automotive Instructor Association (ICAIA). He is also a member and presenter at the North American Council of Automotive Teachers (NACAT). Jim was also named Regional Teacher of the Year by General Motors Corporation and a member of the advisory committee for the department of technology at Ohio Northern University. Jim and his wife, Michelle, live in Dayton, Ohio. They have two children. You can reach Jim at jim@jameshalderman.com

CURT WARD Prior to his years at Chrysler, he has worked as a technician, shop foreman, and service manager in the retail sector of the automotive industry for 13 years. During this time, Curt became a Chrysler Master Technician. Curt has an Associates of Applied Science in Automotive Service Technology from Southern Illinois University. He has a Bachelor of Fine Arts in Organizational Communications from North Central College. He earned his master’s degree in Adult Education at the University of Phoenix.

Curt is an ASE Master Automotive Technician. Curt has presented technical seminars at numerous conferences around the country. He has presented for the Illinois College Automotive Instructor Association (ICAIA), the California Automotive Teachers (CAT), and the North American Council of Automotive Teachers (NACAT). Curt is an active member in the ICAIA and the NACAT. He has served as the secretary and president of the NACAT organization and was the conference host for the 2015 NACAT Conference. In 2015, Curt was named the NACAT MVP award winner for his outstanding contribution to the NACAT organization. Curt and his wife Tammy have five children and five grandchildren.

Together they enjoy traveling and exploring historical sites. In his spare time, Curt enjoys modeling 3-rail O-gauge railroads. You can reach Curt at: curt@curtward.net