Nivaldo Tro’s Chemistry: A Molecular Approach presents chemistry visually through multi-level images—macroscopic, molecular, and symbolic representations—to help students see the connections between the world they see around them, the atoms and molecules that compose the world, and the formulas they write down on paper. The 5th Edition pairs digital, pedagogical innovation with insights from learning design and educational research to create an active, integrated, and easy-to-use framework. The new edition introduces a fully integrated book and media package that streamlines course setup, actively engages students in becoming expert problem solvers, and makes it possible for professors to teach the general chemistry course easily and effectively.
Learn core concepts...

Key Concept Videos combine artwork from the textbook with 2D and 3D animations to create a dynamic on-screen viewing and learning experience. The 5th edition includes **16 new** videos, for a total of **74**.

These short videos include narration and brief live-action clips of author Nivaldo Tro explaining every key concept in general chemistry. All Key Concept Videos are available on mobile devices, embedded in Pearson eText, and are assignable in Mastering Chemistry.
Newly Interactive Conceptual Connections allow students to interact with all conceptual connections within the Pearson eText, so that they can study on their own and test their understanding in real time. Complete with answer-specific feedback written by the author himself, these interactives help students extinguish misconceptions and deepen their understanding of important topics, making reading an active experience.
Actively engage students...

With Learning Catalytics, you’ll hear from every student when it matters most. You pose a variety of questions that help students recall ideas, apply concepts, and develop critical-thinking skills. Your students respond using their own smartphones, tablets, or laptops.

You can monitor responses with real-time analytics and find out what your students do — and don’t — understand. Then, you can adjust your teaching accordingly, and even facilitate peer-to-peer learning, helping students stay motivated and engaged. Learning Catalytics includes prebuilt questions for every key topic in General Chemistry.
with in-class activities

QUESTIONS FOR GROUP WORK

Discuss these questions with the group and record your consensus answer.

139. Explain why 1-propanol (CH₃CH₂CH₂OH) is miscible in both water (H₂O) and hexane (C₆H₁₃) when hexane and water are barely soluble in each other.

140. Have each group member make a flashcard with one of the following on the front: ΔHsoln, ΔHlattice, ΔHsolvent, ΔHmix, and ΔHhydration. On the back of the card, each group member should describe (in words) the ΔH process his or her card lists and how that ΔH relates to other ΔH values mathematically. Each member presents his or her ΔH to the group. After everyone has presented, members should trade cards and quiz each other.

141. Complete the following table by adding increases, decreases, or no effect:

<table>
<thead>
<tr>
<th>Increasing Temperature</th>
<th>Increasing Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>solubility of a gas in water</td>
<td>solubility of a solid in water</td>
</tr>
</tbody>
</table>

142. When 13.62 g (about one tablespoon) of table sugar (sucrose, C₁₂H₂₂O₁₁) is dissolved in 241.5 mL of water (density 0.997 g/mL), the final volume is 250.0 mL (about one cup). Have each group member calculate one of the following for the solution and present his or her answer to the group:
 a. mass percent
 b. molarity
 c. molality

143. Calculate the expected boiling and freezing point for the solution in the previous problem. If you had to bring this syrup to the boiling point for a recipe, would you expect it to take much more time than it takes to boil the same amount of pure water? Why or why not? Would the syrup freeze in a typical freezer (-18 °C)? Why or why not?

p. 628

Numerous ideas for in-class activities can be found in the Ready-to-Go Teaching Modules in the Instructor Resources in Mastering Chemistry. There, instructors will find the most effective activities, problems, and questions from the text, Mastering, and Learning Catalytics, to use in class.

Questions for Group Work allow students to collaborate and apply problem-solving skills on questions covering multiple concepts. The questions can be used in or out of the classroom, and the goal is to foster collaborative learning and encourage students to work together as a team to solve problems. All questions for group work are pre-loaded into Learning Catalytics for ease of assignment.
Master problem-solving...

PROBLEMS BY TOPIC

Solution Concentration and Solution Stoichiometry

21. Calculate the molarity of each solution.
 - a. 5.25 mol of LiCl in 27.8 L solution
 - b. 28.3 g C6H12O6 in 1.28 L of solution
 - c. 32.4 mg NaCl in 122.4 mL of solution

22. Calculate the molarity of each solution.
 - a. 3.25 mol of LiCl in 2.78 L solution
 - b. 28.33 g C6H12O6 in 1.28 L of solution
 - c. 32.4 mg NaCl in 122.4 mL of solution

23. What is the molarity of NO3 in each solution?
 - a. 0.150 M KNO3
 - b. 0.150 M Ca(NO3)2
 - c. 0.150 M Al(NO3)3

24. What is the molarity of Cl in each solution?
 - a. 0.200 M NaCl
 - b. 0.150 M NaCl
 - c. 0.100 M AlCl3

25. How many moles of KCl are contained in each solution?
 - a. 0.556 L of a 2.3 M KCl solution
 - b. 1.8 L of a 0.85 M KCl solution
 - c. 114 mL of a 1.85 M KCl solution

26. What volume of 0.200 M ethanol solution contains each amount in moles of ethanol?
 - a. 0.45 mol ethanol
 - b. 1.22 mol ethanol
 - c. 1.2 x 10^-2 mol ethanol

27. A laboratory procedure calls for making 400.0 mL of a 1.1 M NaNO3 solution. What mass of NaNO3 (in g) is needed?

28. A chemist wants to make 5.5 L of a 0.300 M CaCl2 solution. What mass of CaCl2 (in g) should the chemist use?

29. If 123 mL of a 1.1 M glucose solution is diluted to 500.0 mL, what is the molarity of the diluted solution?

30. If 3.5 L of a 4.8 M NaCl solution is diluted to 45 L, what is the molarity of the diluted solution?

31. To what volume should you dilute 50.0 mL of a 12 M stock HNO3 solution to obtain a 0.100 M HNO3 solution?

32. To what volume should you dilute 25 mL of a 10.0 M H2SO4 solution to obtain a 0.150 M H2SO4 solution?

33. Consider the precipitation reaction:

 \[2 \text{Na}_2\text{PO}_4(\text{aq}) + 3 \text{CuCl}_2(\text{aq}) \rightarrow \text{Cu}_3(\text{PO}_4)_2(\text{s}) + 6 \text{NaCl}(\text{aq}) \]

 What volume of 0.175 M Na2PO4 solution is necessary to completely react with 95.4 mL of 0.102 M CuCl2?

34. Consider the reaction:

 \[\text{Li}_2\text{S}(\text{aq}) + \text{Co(NO}_3)_2(\text{aq}) \rightarrow 2 \text{LiNO}_3(\text{aq}) + \text{CoS}(\text{s}) \]

 What volume of 0.150 M Li2S solution is required to completely react with 125 mL of 0.150 M Co(NO3)2?

35. What is the minimum amount of 6.0 M H2SO4 necessary to produce 25.0 g of H2(g) according to the reaction between aluminum and sulfuric acid?

 \[2 \text{Al}(\text{s}) + 3 \text{H}_2\text{SO}_4(\text{aq}) \rightarrow \text{Al}_2(\text{SO}_4)_3(\text{aq}) + 3 \text{H}_2(\text{g}) \]

36. What is the molarity of ZnCl2 that forms when 25.0 g of zinc completely reacts with CuCl2 according to the following reaction?

 Assume a final volume of 275 mL.

 \[\text{Zn(s) + CuCl}_2(\text{aq}) \rightarrow \text{ZnCl}_2(\text{aq}) + \text{Cu(s)} \]

Interactive Worked Examples are digital versions of select worked examples from the text that instruct students how to break down problems using Tro’s “Sort, Strategize, Solve, and Check” technique. The Interactive Worked Examples pause in the middle and require the student to interact by completing a step in the example. Each example has a follow-up question that is assignable in Mastering Chemistry. There are 24 new Interactive Worked Examples for a total of 125.
with tools students can use after class

NEW! Ready-to-Go Practice Modules

in the Mastering Chemistry Study Area help students master the toughest topics (as identified by professors and fellow students completing homework and practicing for exams). Key Concept Videos, Interactive Worked Examples, and problem sets with answer-specific feedback are all in one easy to navigate place to keep students focused and give them the scaffolded support they need to succeed.

Newly Interactive Self-Assessment Quizzes, complete with answer-specific feedback, allow students to quiz themselves within the Pearson eText, so that they can study on their own and test their understanding in real time. The Self-Assessment Quizzes are also assignable in Mastering Chemistry. Professors can use questions from these quizzes to prepare a pretest on Mastering Chemistry. Research has shown that this kind of active exam preparation improves students' exam scores.
Teach with art based on learning design principles

Extensively updated art program better directs students’ attention to key elements in the art and promotes understanding of the processes depicted. Dozens of figures in the 5th Edition were reviewed by learning design specialists to ensure they are clearly navigable for students and now include more helpful annotations and labels to help readers focus on key concepts.

CHAPTER 5 Introduction to Solutions and Aqueous Reactions

Precipitation Reaction

\[
2 \text{KI(aq)} + \text{Pb(NO}_3\text{)}_2\text{(aq)} \rightarrow \text{PbI}_2\text{(s)} + 2 \text{KNO}_3\text{(aq)}
\]

When a potassium iodide solution is mixed with a lead(II) nitrate solution, a yellow lead(II) iodide precipitate forms.

Precipitation reactions do not always occur when two aqueous solutions are mixed. For example, if we combine solutions of KI(aq) and NaCl(aq), nothing happens (Figure 5.14):

\[
\text{KI(aq)} + \text{NaCl(aq)} \rightarrow \text{NO REACTION}
\]

The key to predicting precipitation reactions is to understand that **only insoluble compounds form precipitates**. In a precipitation reaction, two solutions containing soluble compounds combine and an insoluble compound precipitates. Consider the precipitation reaction described previously:

\[
2 \text{KI(aq)} + \text{Pb(NO}_3\text{)}_2\text{(aq)} \rightarrow \text{PbI}_2\text{(s)} + 2 \text{KNO}_3\text{(aq)}
\]

KI and Pb(NO\text{3})\text{2}\(\text{aq}\) are both soluble, but the precipitate, PbI\text{2}\, is insoluble. Before mixing, KI(aq) and Pb(NO\text{3})\text{2}\(\text{aq}\) are both dissociated in their respective solutions:
The instant that the solutions come into contact, all four ions are present:

KI(aq) and **Pb(NO₃)₂(aq)**

Now, new compounds—one or both of which might be insoluble—are possible. Specifically, the cation from either compound can pair with the anion from the other to form possibly insoluble products:

Original compounds: **K⁺**, **I⁻**, **Pb²⁺**, **NO₃⁻**

Possible products: **KNO₃**, **PbI₂**

If the possible products are both soluble, no reaction occurs and no precipitate forms. If one or both of the possible products are insoluble, a precipitation reaction occurs. In this case, **KNO₃** is soluble, but **PbI₂** is insoluble. Consequently, **PbI₂** precipitates.

To predict whether a precipitation reaction will occur when two solutions are mixed and to write an equation for the reaction, we use the procedure that follows. The steps are outlined in the left column, and two examples illustrating how to apply the procedure are shown in the center and right columns.

No Reaction

KI(aq) + **NaCl(aq)** → **No reaction**

When a potassium iodide solution is mixed with a sodium chloride solution, no reaction occurs.

Tro’s multipart images help students see the relationship between the formulas they write down on paper (symbolic), the world they see around them (macroscopic), and the atoms and molecules that compose the world (molecular).
Pearson eText is a simple-to-use, mobile-optimized, personalized reading experience available within Mastering. It allows students to easily highlight, take notes, and review key vocabulary all in one place—even when offline. Seamlessly integrated videos, rich media, and interactive self-assessment questions engage students and give them access to the help they need, when they need it. Pearson eText is available within Mastering when packaged with a new book; students can also purchase Mastering with Pearson eText online.
Improve learning with Dynamic Study Modules

Dynamic Study Modules in Mastering Chemistry help students study effectively—and at their own pace—by keeping them motivated and engaged. The assignable modules rely on the latest research in cognitive science, using methods—such as adaptivity, gamification, and intermittent rewards—to stimulate learning and improve retention.

Each module poses a series of questions about a course topic. These question sets adapt to each student’s performance and offer personalized, targeted feedback to help them master key concepts. With Dynamic Study Modules, students build the confidence they need to deepen their understanding, participate meaningfully, and perform better—in and out of class.
Instructor support you can rely on

Chemistry: A Molecular Approach includes a full suite of instructor support materials in the Instructor Resources area in Mastering Chemistry. Resources include new Ready-to-Go Teaching Modules; accessible PowerPoint lecture outlines; all images and worked examples from the text; all Key Concept Videos and Interactive Worked Examples; plus an instructor resource manual and test bank.

Ready-to-Go Study Tools provide organized material for every tough topic in General Chemistry. The modules – created for and by instructors – provide easy-to-use before and after class assignments, in-class activities with clicker questions, and questions in Learning Catalytics™. The modules are easily accessed via Mastering Chemistry.
To the Student

As you begin this course, I invite you to think about your reasons for enrolling in it. Why are you taking general chemistry? More generally, why are you pursuing a college education? If you are like most college students taking general chemistry, part of your answer is probably that this course is required for your major and that you are pursuing a college education so you can get a good job some day. Although these are good reasons, I would like to suggest a better one. I think the primary reason for your education is to prepare you to live a good life. You should understand chemistry—not for what it can get you—but for what it can do to you. Understanding chemistry, I believe, is an important source of happiness and fulfillment. Let me explain.

Understanding chemistry helps you to live life to its fullest for two basic reasons. The first is intrinsic: through an understanding of chemistry, you gain a powerful appreciation for just how rich and extraordinary the world really is. The second reason is extrinsic: understanding chemistry makes you a more informed citizen—it allows you to engage with many of the issues of our day. In other words, understanding chemistry makes you a deeper and richer person and makes your country and the world a better place to live. These reasons have been the foundation of education from the very beginnings of civilization.

How does chemistry help prepare you for a rich life and conscientious citizenship? Let me explain with two examples. My first one comes from the very first page of Chapter 1 of this book. There, I ask the following question: What is the most important idea in all of scientific knowledge? My answer to that question is this: the behavior of matter is determined by the properties of molecules and atoms. That simple statement is the reason I love chemistry. We humans have been able to study the substances that compose the world around us and explain their behavior by reference to particles so small that they can hardly be imagined. If you have never realized the remarkable dependence of the world we can see on the world we cannot, you have missed out on a fundamental truth about our universe. To have never encountered this truth is like never having read a play by Shakespeare or seen a sculpture by Michelangelo—or, for that matter, like never having discovered that the world is round. It robs you of an amazing and unforgettable experience of the world and the human ability to understand it.

My second example demonstrates how science literacy helps you to be a better citizen. Although I am largely sympathetic to the environmental movement, a lack of science literacy within some sectors of that movement and the resulting anti-environmental backlash create confusion that impedes real progress and opens the door to what could be misinformed policies. For example, I have heard conservative pundits say that volcanoes emit more carbon dioxide—the most significant greenhouse gas—than does petroleum combustion. I have also heard a liberal environmentalist say that we have to stop using hair spray because it is causing holes in the ozone layer that will lead to global warming. Well, the claim about volcanoes emitting more carbon dioxide than petroleum combustion can be refuted by the basic tools you will learn to use in Chapter 4 of this book. We can easily show that volcanoes emit only 1/50th as much carbon dioxide as petroleum combustion. As for hair spray depleting the ozone layer and thereby leading to global warming, the chlorofluorocarbons that deplete ozone have been banned from hair spray since 1978, and ozone depletion has nothing to do with global warming anyway. People with special interests or axes to grind can conveniently distort the truth before an ill-informed public, which is why we all need to be knowledgeable.

So this is why I think you should take this course. Not just to satisfy the requirement for your major and not just to get a good job some day, but to help you to lead a fuller life and to make the world a little better for everyone. I wish you the best as you embark on the journey to understanding the world around you at the molecular level. The rewards are well worth the effort.

To the Professor

First and foremost, thanks to all of you who adopted this book in its previous editions. You helped to make this book one of the most popular general chemistry textbooks in the world. I am grateful beyond words. Second, I have listened carefully to your feedback on the previous edition. The changes you see in this edition are the direct result of your input, as well as my own experience using the book in my general chemistry courses. If you have reviewed content or have contacted me directly, you will likely see your suggestions reflected in the changes I have made. Thank you.

Higher education in science is changing. Foremost among those changes is a shift toward active learning. A flood of recent studies has demonstrated that General Chemistry students learn better when they are active in the learning process. However, implementing active learning can be a difficult and time-consuming process. One of my main goals in this revision is to give you, the professor, a range of tools to easily implement active learning in your class. My goal is
simple: I want to make it easy for you to engage your students in active learning before class, during class, and after class.

- **BEFORE CLASS** Although the term active learning has been applied mainly to in-class learning, the main idea—that we learn better when we are actively engaged—applies to all of learning. I have developed two main tools to help students prepare for class in an active way. The first tool is a complete library of 3- to 6-minute Key Concept Videos (KCVs) that, with this edition, span virtually all of the key concepts in a general chemistry course. The videos introduce a key concept and encourage active learning because they stop in the middle and pose a question that must be answered before the video continues playing. Each video also has an associated follow-up question that can be assigned using Mastering Chemistry. You can assign a video before each one of your classes to get your students thinking about the concepts for that day. A second tool for use before class is active reading. Each chapter in the book now contains 10–12 Conceptual Connection questions. These questions are live in the ebook, assignable in Mastering Chemistry, and contain wrong answer feedback. Instead of passively reading the assigned material with no accountability, you can now encourage your students to engage in active reading, in which they read a bit and then answer a question that probes their comprehension and gives them immediate feedback.

- **DURING CLASS** By delivering some content through key concept videos and active reading before class, you can make room in your lecture to pose questions to your students that make the class experience active as well. This book features two main tools for in-class use. The first tool is Learning Catalytics, which allows you to pose many different types of questions to your students during class. Instead of passively listening to your lecture, students interact with the concepts you present through questions you pose. Your students can answer the questions individually, or you can pair them with a partner or small group. A second tool for in-class use is the Questions for Group Work. These questions appear in the end-of-chapter material and are specifically designed to be answered in small groups.

- **AFTER CLASS** Active learning can continue after class with two additional tools. The first is another library of 3- to 6-minute videos called Interactive Worked Examples (IWEs). Each IWE video walks a student through the solution to a chemistry problem. Like the KCVs, the IWE video stops in the middle and poses a question that must be answered before the video continues playing. Each video also has an associated follow-up problem that can be assigned using Mastering Chemistry. The second tool for after (or outside of) class active learning is Active Exam Preparation. Research studies suggest that students who take a pretest before an exam do better on the exam, especially if the pretest contains immediate feedback. Each chapter in this book contains a Self-Assessment Quiz that you can use to easily make a pretest for any of your exams. The Self-Assessment Quizzes are live in the ebook, assignable in Mastering Chemistry, and contain wrong answer feedback. Simply choose the questions that you want from each of the quizzes that span the chapters on your exam, and you can create an assignable pretest that students can use to actively prepare for your exams.

Although we have added many active learning tools to this edition and made other changes as well, the book’s goal remains the same: to present a rigorous and accessible treatment of general chemistry in the context of relevance. Teaching general chemistry would be much easier if all of our students had exactly the same level of preparation and ability. But alas, that is not the case. My own courses are populated with students with a range of backgrounds and abilities in chemistry. The challenge of successful teaching, in my opinion, is figuring out how to instruct and challenge the best students while not losing those with lesser backgrounds and abilities. My strategy has always been to set the bar relatively high, while at the same time providing the motivation and support necessary to reach the high bar. That is exactly the philosophy of this book. We do not have to compromise rigor in order to make chemistry accessible to our students. In this book, I have worked hard to combine rigor with accessibility—to create a book that does not dilute the content and yet can be used and understood by any student willing to put in the necessary effort.

Chemistry: A Molecular Approach is first and foremost a student-oriented book. My main goal is to motivate students and get them to achieve at the highest possible level. As we all know, many students take general chemistry because it is a requirement; they do not see the connection between chemistry and their lives or their intended careers. **Chemistry: A Molecular Approach** strives to make those connections consistently and effectively. Unlike other books, which often teach chemistry as something that happens only in the laboratory or in industry, this book teaches chemistry in the context of relevance. It shows students why chemistry is important to them, to their future careers, and to their world.

Second, Chemistry: A Molecular Approach is a pedagogically driven book. In seeking to develop problem-solving skills, a consistent approach (Sort, Strategize, Solve, and Check) is applied, usually in a two- or three-column format. In the two-column format, the left column shows the student how to analyze the problem and devise a solution strategy. It also lists the steps of the solution, explaining the rationale for each one, while the right column shows the implementation of each step. In the three-column format, the left column outlines the general procedure for solving an important category of problems that is then applied to two side-by-side examples. This strategy allows students to see both the general pattern and the slightly different ways in which the procedure may be applied in differing contexts. The aim is to help students understand both the concept of the problem (through the formulation of an explicit conceptual plan for each problem) and the solution to the problem.

Third, Chemistry: A Molecular Approach is a visual book. Wherever possible, I use images to deepen the
student’s insight into chemistry. In developing chemical principles, multipart images help show the connection between everyday processes visible to the unaided eye and what atoms and molecules are actually doing. Many of these images have three parts: macroscopic, molecular, and symbolic. This combination helps students to see the relationships between the formulas they write down on paper (symbolic), the world they see around them (macroscopic), and the atoms and molecules that compose that world (molecular). In addition, most figures are designed to teach rather than just to illustrate. They are rich with annotations and labels intended to help the student grasp the most important processes and the principles that underlie them. In this edition, the art program has been thoroughly revised in two major ways. First, navigation of the more complex figures has been reoriented to track from left to right whenever possible. Second, figure captions have been migrated into the image itself as an “author voice” that explains the image and guides the reader through it. The resulting images are rich with information but also clear and quickly understood.

Fourth, Chemistry: A Molecular Approach is a “big-picture” book. At the beginning of each chapter, a short paragraph helps students to see the key relationships between the different topics they are learning. Through a focused and concise narrative, I strive to make the basic ideas of every chapter clear to the student. Interim summaries are provided at selected spots in the narrative, making it easier to grasp (and review) the main points of important discussions. And to make sure that students never lose sight of the forest for the trees, each chapter includes several Conceptual Connections, which ask them to think about concepts and solve problems without doing any math. I want students to learn the concepts, not just plug numbers into equations to churn out the right answer. This philosophy is also integral to the Key Concept Videos, which concisely reinforce student appreciation of the core concepts in each chapter.

Lastly, Chemistry: A Molecular Approach is a book that delivers the depth of coverage faculty want. We do not have to cut corners and water down the material in order to get our students interested. We have to meet them where they are, challenge them to the highest level of achievement, and support them with enough pedagogy to allow them to succeed.

I hope that this book supports you in your vocation of teaching students chemistry. I am increasingly convinced of the importance of our task. Please feel free to contact me with any questions or comments about the book.

Nivaldo J. Tro
nivatro@gmail.com

What’s New in This Edition?

The book has been extensively revised and contains more small changes than can be detailed here. The most significant changes to the book and its supplements are listed below:

- **NEW INTERACTIVE VIDEOS** I have added 16 new Key Concept Videos (KCVs) and 24 new Interactive Worked Examples (IWEs) to the media package that accompanies the book. The video library now contains nearly 200 interactive videos. These tools are designed to help professors engage their students in active learning.

- **NEW IN-CHAPTER QUESTIONS WITH FEEDBACK** I have added approximately 67 new Conceptual Connection questions throughout the book and have changed the format to multiple choice (with wrong answer feedback in the ebook or through Mastering Chemistry). Each chapter now has 10–12 of these embedded assignable questions. These questions transform the reading process from passive to active and hold students accountable for reading assignments.

- **NEW MISSED THIS? FEATURE** I have added a new feature called MISSED THIS? to the Self-Assessment Quizzes and to the Problems by Topic section of the end-of-chapter problems. This feature lists the resources that students can use to learn how to answer the question or solve the problem. The resources include chapter sections to read, Key Concept Videos (KCVs) to watch, and Interactive Worked Examples (IWEs) to view. Students often try to solve an assigned question or problem before doing any reading or reviewing; they seek resources only after they have missed the question or problem. The MISSED THIS? feature guides them to reliable resources that provide just-in-time instruction.

- **NEW FOR PRACTICE FEEDBACK** I have enhanced 64 of the in-chapter For Practice problems (which immediately follow an in-chapter worked example) with feedback that can be accessed in the ebook or through Mastering Chemistry.

- **REVISED ART PROGRAM** The art program has been extensively revised. Navigation of the more complex figures has been reoriented to track from left to right, and many figure captions have been broken up and have been moved into the image itself as an “author voice” that explains the image and guides the reader through it.

- **REVISED DATA INTERPRETATION AND ANALYSIS QUESTIONS** The Data Interpretation and Analysis questions that accompany each chapter have been extensively revised to make them clearer and more accessible to students.

- **NEW SECTION ON DATA INTERPRETATION AND ANALYSIS** I have added a new section to Chapter 1 (Section 1.9) on the general topic of analyzing and interpreting data. This section introduces the skills required to address many of the revised data interpretation and analysis questions.

- **NEW HOW TO . . . FEATURE** All guidance for essential skills such as problem-solving techniques, drawing Lewis structures, and naming compounds is now presented in a consistent, step-by-step numbered list called How To...
expanded slightly and has been divided into two more focused chapters, so that Chapter 4 is now focused on stoichiometry and Chapter 5 on chemical reactions in solution. This new organization lessens the cognitive load for students and allows each chapter to be more direct and focused. All subsequent chapters have been renumbered accordingly.

- **NEW ACTIVITY SERIES CONTENT** I added a new subsection to Section 5.9 entitled The Activity Series: Predicting Whether a Redox Reaction Is Spontaneous. The new section includes new figures, tables, and a new worked example.

- **NEW READY-TO-GO LEARNING MODULES** These online modules offer students easy access to the best Tro content in Mastering Chemistry without needing to have it assigned.

- **NEW TWO-TIER OBJECTIVES** A system of two-tier objectives is being applied to the text and to the Mastering Chemistry assets. The two tiers are Learning Objectives, or LOs, and Enabling Objectives, or EOs. The LOs are broad, high-level objectives that summarize the overall learning goal, while the EOs are the building block skills that enable students to achieve the LO. The learning objectives are given in the Learning Outcomes table at the end of the chapter.

- **REVISED DATA** All the data throughout the book have been updated to reflect the most recent measurements available. These updates include Figure 4.2: Carbon Dioxide in the Atmosphere; Figure 4.3: Global Temperatures; the unnumbered figure in Section 7.10 of U.S. Energy Consumption; Figure 7.12: Energy Consumption by Source; Table 7.6: Changes in National Average Pollutant Levels, 1990–2016; Figure 15.19: Ozone Depletion in the Antarctic Spring; Figure 17.15: Sources of U.S. Energy; Figure 17.16: Acid Rain; and Figure 17.18: U.S. Sulfur Dioxide Pollutant Levels.

- **REVISED CHAPTER OPENERS** Many chapter-opening sections and (or) the corresponding art—including Chapters 1, 3, 4, 5, 6, 7, 10, 11, 18, 19, 20, and 22—have been replaced or modified.

Acknowledgments

The book you hold in your hands bears my name on the cover, but I am really only one member of a large team that carefully crafted this book. Most importantly, I thank my editor, Terry Haugen. Terry is a great editor and friend. He gives me the right balance of freedom and direction and always supports me in my endeavors. Thanks, Terry, for all you have done for me and for general chemistry courses throughout the world. Thanks also to Matt Walker, my new developmental editor on this project. Matt is creative, organized, and extremely competent. He has made significant contributions to this revision and has helped me with the many tasks that must be simultaneously addressed and developed during a revision as significant as this one. Matt, I hope this is only the beginning of a long and fruitful collaboration. I also owe a special debt of gratitude to Barbara Yien and Laura Southworth. Barbara was involved in many parts of content development, and Laura played a critical role in the revision of the art program. Many thanks to the both of you!

Thanks also to my media editor, Paula Iborra. Paula has been instrumental in helping me craft and develop the Key Concept Videos, Interactive Worked Examples, and other media content that accompany this text. Gracias, Paula.

I am also grateful to Harry Misthos, who helped with organizing reviews, as well as numerous other tasks associated with keeping the team running smoothly. I am also grateful to Jeanne Zalesky, Editor-in-Chief for Physical Sciences. She has supported me and my projects and allowed me to succeed. Thanks also to Adam Jaworski, who oversees science courseware at Pearson. I am grateful to have his wise and steady, yet innovative, hand at the wheel, especially during the many changes that are happening within educational publishing. I am also grateful to Chris Barker and Elizabeth Bell. Chris and I go way back and have worked together in many different ways. Chris, thanks for all you do to promote my books. Elizabeth is a marketing manager extraordinaire. She has endless energy and ideas for marketing this book. I have enjoyed working with here over the last several years and wish to congratulate her on the recent birth of her first child. Congratulations, Elizabeth! I continue to owe a special word of thanks to Glenn and Meg Turner of Burrston House, ideal collaborators whose contributions to the first edition of the book were extremely important and much appreciated. Quade Paul, who makes my ideas come alive with his art, has been with us from the beginning, and I owe a special debt of gratitude to him. I am also grateful to Maria Guglielmo Walsh and Elise Lanson for their creativity and hard work in crafting the design of this text. Finally, I would like to thank Beth Sweeten and the rest of the Pearson production team. They are a first-class operation—this text has benefited immeasurably from their talents and hard work. I also thank Francesca Monaco and her coworkers at CodeMantra. I am a picky author and Francesca is endlessly patient and a true professional. I am also greatly indebted to my copy editor, Betty Pessagno, for her dedication and professionalism over many projects, and to Eric Schrader for his exemplary photo research. And of course, I am continually grateful for Paul Corey, with whom I have now worked for over 18 years and 16 projects. Paul is a man of incredible energy and vision, and it is my great privilege to work with him. Paul told me many years ago (when he first signed me on to the Pearson team) to dream big, and then he provided the resources I needed to make those dreams come true. Thanks, Paul. I would also like to thank my first editor at Pearson, Kent Porter-Hamann. Kent and I spent many good years together writing books, and I continue to miss her presence in my work.

I am also grateful to those who have supported me personally while working on this book. First on that list is my wife, Ann. Her patience and love for me are beyond description, and without her, this book would never have been
written. I am also indebted to my children, Michael, Ali, Kyle, and Kaden, whose smiling faces and love of life always inspire me. I come from a large Cuban family whose closeness and support most people would envy. Thanks to my parents, Nivaldo and Sara; my siblings, Sarita, Mary, and Jorge; my siblings-in-law, Nachy, Karen, and John; and my nephews and nieces, Germain, Danny, Lisette, Sara, and Kenny. These are the people with whom I celebrate life.

I am especially grateful to Michael Tro, who put in many hours proofreading my manuscript, working problems and quiz questions, and organizing appendices. Michael, you are amazing—it is my privilege to have you work with me on this project.

I would like to thank all of the general chemistry students who have been in my classes throughout my 29 years as a professor. You have taught me much about teaching that is now in this book.

Lastly, I am indebted to the many reviewers, listed on the following pages, whose ideas are embedded throughout this book. They have corrected me, inspired me, and sharpened my thinking on how best to teach this subject we call chemistry. I deeply appreciate their commitment to this project. I am particularly grateful to Corey Beck who has played an important role in developing the objectives for this edition. I am also grateful to the accuracy of reviewers who tirelessly checked page proofs for correctness.

Reviewers of the Fifth Edition

Vanessa Castleberry, Baylor University
Andrew Frazier, University of Central Florida
Alton Hassell, Baylor University
Barry Lavine, Oklahoma State University
Diana Leung, The University of Alabama
Lauren McMillan, University of Alabama
David Perdian, Broward College
Daniele Ramella, Temple University
Shuai Sun, University of Kansas
Dennis Taylor, Clemson University
Tara Todt, Vanderbilt University

Reviewers of Previous Editions

Patricia G. Amateis, Virginia Tech
Margaret R. Asirvatham, University of Colorado
Paul Badger, Robert Morris University
Monica G. Baloga, Florida Institute of Technology
Rebecca Barlag, Ohio University
Mufeed M. Basti, University of Wisconsin-Madison
Amy E. Bellstein, Centre College
Donald Belkew, The University of New Mexico
Maria Benavides, University of Houston, Downtown
Kyle A. Beran, University of Texas of the Permian Basin
Thomas Bertoloni, University of Southern California
Christine V. Bilicki, Pasadena City College
Silas C. Blackstock, The University of Alabama
Robert E. Blake, Texas Tech University
Angela E. Boeger, Loyola University Chicago
Robert S. Boikess, Rutgers University
Paul Brandt, North Central College
Michelle M. Brooks, College of Charleston
Gary Buckley, Cameron University
Joseph H. Bularzik, Purdue University, Calumet
Cindy M. Burkhardt, Radford University
Andrew E. Burns, Kent State University at Stark
Kim C. Calvo, The University of Akron
Stephan C. Carlson, Lansing Community College
David A. Carter, Angelo State University
Ferman Chavez, Oakland University
Eric G. Chesloff, Villanova University
Ted Clark, The Ohio State University
William M. Cleaver, The University of Vermont
Charles T. Cox Jr., Georgia Institute of Technology
J. Ricky Cox, Murray State University
Samuel R. Cron, Arkansas State University
Guy Crundwell, Central Connecticut State University
Darwin B. Dahl, Western Kentucky University
Robert F. Dias, Old Dominion University
Daniel S. Domin, Tennessee State University
Bonnie Dixon, University of Maryland
Alan D. Earhart, Southeast Community College
Jack Eichler, University of California, Riverside
Amina K. El-Asmary, Collin College
Joseph P. Ellison, United States Military Academy at West Point
Joseph M. Erdon, Central New Mexico Community College
Deborah B. Exton, The University of Oregon
William A. Faber, Grand Rapids Community College
Michael Ferguson, Honolulu Community College
Maria C. Fermin-Ennis, Gordon College
Oscar Navarro Fernandez, University of Hawaii at Manoa
Jan Florian, Loyola University Chicago
Andy Frazier, University of Central Florida
Candice E. Fulton, Midwestern State University
Ron Garber, California State University at Long Beach
Carlos D. Garcia, The University of Texas at San Antonio
Eric S. Goll, Brookdale Community College
Robert A. Gossage, Acadia University
Pierre Y. Gouge, Santa Monica College
Thomas J. Greenbowe, Iona State University
Victoria Guarisco, Middle Georgia State University
Christin Gustafson, Illinois Central College
Jason A. Halfen, University of Wisconsin-Eau Claire
Nathan Hammer, University of Mississippi
Michael D. Hampton, University of Central Florida
Tamara Hanna, Texas Tech University
Lois Hansen-Polcar, Cuyahoga Community College-Western Campus
Tony Hascall, Northern Arizona University
Elda Hegmann, Kent State University
Monte L. Helm, Fort Lewis College
David E. Henderson, Trinity College
Susan K. Henderson, Quinnipiac University
Peter M. Hierl, The University of Kansas
Paula Hjorth-Gustín, San Diego Mesa College
Angela Hoffman, University of Portland
Todd A. Hopkins, Butler University
Byron E. Howell, Tyler Junior College
Ralph Isoviitsh, Xavier University of Louisiana
Kenneth C. Janis, University of California, Irvine
Milt Johnston, University of South Florida
Jason A. Kautz, University of Nebraska-Lincoln
Catherine A. Keenan, Chaffey College
Steven W. Keller, University of Missouri
Resa Kelly, San Jose State University
Chulsung Kim, Georgia Gwinnett College
Louis J. Kirshenbaum, University of Rhode Island
Mark Knecht, University of Kentucky
Bette Kreuz, University of Michigan-Dearborn
Sergiy Kryatov, Tufts University
Richard H. Langley, Stephen F. Austin State University
Clifford B. Lemaster, Boise State University
Sarah Lievens, University of California, Davis
Robley Light, Florida State University
Adam List, Vanderbilt University
Christophor Lovallo, Mount Royal University
Eric Malina, University of Nebraska-Lincoln
Benjamin R. Martin, Texas State University
Lydia J. Martinez-Rivera, University of Texas at San Antonio
Marcus T. McEllistrem, University of Wisconsin-Eau Claire
Danny G. McGuire, Cameron University
Charles W. McLaughlin, University of Nebraska, Lincoln
Curt L. McLendon, Saddleback College
Lauren McMilis, Ohio University

Joseph C. Thomas, The University of Akron
Stephen C. Carlson, Lansing Community College
Ferman Chavez, Oakland University
Eric G. Chesloff, Villanova University
Ted Clark, The Ohio State University
William M. Cleaver, The University of Vermont
Charles T. Cox Jr., Georgia Institute of Technology
J. Ricky Cox, Murray State University
Samuel R. Cron, Arkansas State University
Guy Crundwell, Central Connecticut State University
Darwin B. Dahl, Western Kentucky University
Robert F. Dias, Old Dominion University
Daniel S. Domin, Tennessee State University
Bonnie Dixon, University of Maryland
Alan D. Earhart, Southeast Community College
Jack Eichler, University of California, Riverside
Amina K. El-Asmary, Collin College
Joseph P. Ellison, United States Military Academy at West Point
Joseph M. Erdon, Central New Mexico Community College
Deborah B. Exton, The University of Oregon
William A. Faber, Grand Rapids Community College
Michael Ferguson, Honolulu Community College
Maria C. Fermin-Ennis, Gordon College
Oscar Navarro Fernandez, University of Hawaii at Manoa
Jan Florian, Loyola University Chicago
Andy Frazier, University of Central Florida
Candice E. Fulton, Midwestern State University
Ron Garber, California State University at Long Beach
Carlos D. Garcia, The University of Texas at San Antonio
Eric S. Goll, Brookdale Community College
Robert A. Gossage, Acadia University
Pierre Y. Gouge, Santa Monica College
Thomas J. Greenbowe, Iona State University
Victoria Guarisco, Middle Georgia State University
Christin Gustafson, Illinois Central College
Jason A. Halfen, University of Wisconsin-Eau Claire
Nathan Hammer, University of Mississippi
Michael D. Hampton, University of Central Florida
Tamara Hanna, Texas Tech University
Lois Hansen-Polcar, Cuyahoga Community College-Western Campus
Tony Hascall, Northern Arizona University
Elda Hegmann, Kent State University
Monte L. Helm, Fort Lewis College
David E. Henderson, Trinity College
Susan K. Henderson, Quinnipiac University
Peter M. Hierl, The University of Kansas
Paula Hjorth-Gustín, San Diego Mesa College
Angela Hoffman, University of Portland
Todd A. Hopkins, Butler University
Byron E. Howell, Tyler Junior College
Ralph Isoviitsh, Xavier University of Louisiana
Kenneth C. Janis, University of California, Irvine
Milt Johnston, University of South Florida
Jason A. Kautz, University of Nebraska-Lincoln
Catherine A. Keenan, Chaffey College
Steven W. Keller, University of Missouri
Resa Kelly, San Jose State University
Chulsung Kim, Georgia Gwinnett College
Louis J. Kirshenbaum, University of Rhode Island
Mark Knecht, University of Kentucky
Bette Kreuz, University of Michigan-Dearborn
Sergiy Kryatov, Tufts University
Richard H. Langley, Stephen F. Austin State University
Clifford B. Lemaster, Boise State University
Sarah Lievens, University of California, Davis
Robley Light, Florida State University
Adam List, Vanderbilt University
Christophor Lovallo, Mount Royal University
Eric Malina, University of Nebraska-Lincoln
Benjamin R. Martin, Texas State University
Lydia J. Martinez-Rivera, University of Texas at San Antonio
Marcus T. McEllistrem, University of Wisconsin-Eau Claire
Danny G. McGuire, Cameron University
Charles W. McLaughlin, University of Nebraska, Lincoln
Curt L. McLendon, Saddleback College
Lauren McMilis, Ohio University

I am also grateful to the accuracy of reviewers who tirelessly try. I deeply appreciate their commitment to this project. They have corrected me, inspired me, and sharpened a professor. You have taught me much about teaching that is amazing—it is my privilege to have you work with me on this project.

Lastly, I am indebted to the many reviewers, listed on the following pages, whose ideas are embedded throughout this book. They have corrected me, inspired me, and sharpened my thinking on how best to teach this subject we call chemistry. I deeply appreciate their commitment to this project. I am particularly grateful to Corey Beck who has played an important role in developing the objectives for this edition. I am also grateful to the accuracy of reviewers who tirelessly checked page proofs for correctness.
Robert C. McWilliams, United States Military Academy
Behnoush Memari, Broward College
David H. Metcalf, University of Virginia
Ray Mohseni, East Tennessee State University
Elisabeth A. Morlino, University of the Sciences, Philadelphia
Nancy Mullins, Florida State College at Jacksonville
James E. Murphy, Santa Monica College
Maria C. Nagar, Truman State University
Edward J. Neth, University of Connecticut
Aric Opadah, University of Wisconsin La Crosse
Kenneth S. Overway, Bates College
Greg Owens, University of Utah
Naresh Pandya, University of Hawaii
George Papadantonakis, The University of Illinois at Chicago
Gerard Parkin, Columbia University
Jessica Parr, University of Southern California
Yasmin Patel, Kansas State University
Tom Pentecost, Grand Valley State University
David Perdian, Broward College
Glenn A. Petrie, Central Missouri State
Norbert J. Pienta, University of Iowa
Louis H. Pignol, University of Minnesota
Jerry Poteat, Georgia Perimeter College
Valerie Reeves, University of New Brunswick
Dawn J. Richardson, Colvin College
Thomas G. Richmond, University of Utah
Dana L. Richter-Egger, University of Nebraska
Jason Ritchie, University of Mississippi
Christopher P. Roy, Duke University
A. Timothy Royappa, University of West Florida
Stephen P. Ruis, American River College
Raymond Sadeghi, The University of Texas at San Antonio
Alan E. Sadurski, Ohio Northern University
Thomas W. Schleich, University of California, Santa Cruz
Rod Schoonover, CA Polytechnic State University
Mark Schraf, West Virginia University
John Selegue, University of Kentucky
Tom Selegue, Pima Community College, West
Susan Shadle, Boise State University
Anju H. Sharma, Stevens Institute of Technology
Sherril A. Soman, Grand Valley State University
Michael S. Sommer, University of Wyoming
Jie S. Song, University of Michigan, Flint
Clarissa Sorensen, Central New Mexico Community College
Mary Kay Sorensen, University of Wisconsin, Milwaukee
Stacy E. Sparks, University of Texas, Austin
Richard Spinney, Ohio State University
William H. Steel, York College of Pennsylvania
Vinodh Kumar Subramaniam, East Carolina University
Jerry Suits, University of Northern Colorado
Tamar Y. Suskind, Oakland Community College
Uma Swamy, Florida International University
Ryan Sweeder, Michigan State University
Dennis Taylor, Clenton University
Jacquelyn Thomas, Southwestern College
Kathleen Thrush Shaginaw, Villanova University
Lydia Tien, Monroe Community College
David Livingstone Toppen, California State University Northridge
Marcy Towns, Purdue University
Harold Trimm, Broome Community College
Frank Tsung, Boston College
Laura VanDorn, University of Arizona
Susan Varkey, Mount Royal College
Ramaiyer Venkataraman, Jackson State University
John B. Vincent, University of Alabama, Tuscaloosa
Kent S. Voelkner, Lake Superior College
Sheryl K. Wallace, South Plains College
Wayne E. Wesolowski, University of Arizona
Sarah E. West, Notre Dame University
John Wiginton, University of Mississippi
Kurt J. Winkelmann, Florida Institute of Technology
Troy D. Wood, University of Buffalo
Servet M. Yatin, Quincy College
Kazushige Yokoyaama, SUNY Geneseo
Lin Zhu, RPUI

Chapter 13, Solids and Modern Materials, Advisory Board
Michael Burand, Oregon State University
Christopher Collison, Rochester Institute of Technology
Jordan Fantini, Denison University
Melissa Hines, Cornell University
Raymond Schaa, Penn State University
Jennifer Shanoski, Merritt College
Jim Zubrisky, University of Toledo

Focus Group Participants
We would like to thank the following professors for contributing their valuable time to meet with the author and the publishing team in order to provide a meaningful perspective on the most important challenges they face in teaching general chemistry. They gave us insight into creating a general chemistry text that successfully responds to those challenges.

Focus Group 13
Kim Cortes, Kennesaw State University
Patrick Daubenmire, Loyola University - Chicago
Michael Dianovskiy, South Dakota State University
Susan Eck, University of Oregon
Deborah Exton, University of Oregon
Joel Goldberg, University of Vermont
Edith Preciosa Kippenhan, University of Toledo
Thomas Mullen, University of North Florida
Tricia Shepherd, St. Edward’s University

Focus Groups 1–12
Corey Beck, Ohio University
Jennifer Duis, Northern Arizona University
Alton Hassell, Baylor University
Tina Huang, University of Illinois
Amy Irwin, Monroe Community College
Maria Korolev, University of Florida
Jennifer Schwartz Poehlmann, Stanford University
John Selegue, University of Kentucky
Sarah Siegel, Gonzaga University
Jeff Statler, University of Utah
Michael R. Abraham, University of Oklahoma
Ramesh D. Arasasingham, University of California, Irvine
James A. Armstrong, City College of San Francisco
Silas C. Blackstock, University of Alabama
Roberto A. Bogomolni, University of California, Santa Cruz
Stacey Brydges, University of California San Diego
Kenneth Capps, Central Florida Community College
Stephen C. Carlson, Lansing Community College
Charles E. Carrer, Florida Atlantic University
Kenneth Cawell, University of South Florida
Robert Craig Taylor, Oakland University
Darwin B. Dahl, Western Kentucky University
Mohammed Daoudi, University of Central Florida
Kate Deline, College of San Mateo
Stephanie Dillon, Florida State University
Ralph C. Dougherty, Florida State University
William Eck, University of Wisconsin, Marshfield/Wood County
Robert J. Eierman, University of Wisconsin, Eau Claire
Amina K. El-Ashmawy, Collin County Community College
William A. Faber, Grand Rapids Community College
Richard W. Frazee, Rowan University
Barbara A. Gage, Prince George’s Community College
Simon Garrett, California State University, Northridge
Raymond F. Glienna, Glendale Community College
Eric S. Goll, Brookdale Community College
Pierre V. Goueth, Santa Monica College
W. Tandy Grubbs, Stetson University
Jerome E. Haky, Florida Atlantic University
Jason A. Halien, University of Wisconsin, Eau Claire
John A. W. Harkless, Howard University
Paul I. Higgs, Barry University
Norris W. Hoffman, University of South Alabama
Tony Holland, Wallace Community College
Todd A. Hopkins, Butler University
Moheb Ishak, St. Petersburg College, St. Petersburg
Kamal Ismail, CUNY, Bronx Community College
Greg M. Jorgensen, American River College
Sharon K. Kapica, County College of Morris
Jason Kautz, University of Nebraska, Lincoln
Mark Kearley, Florida State University
Catherine A. Keenan, Chaffey College
Steven W. Keller, University of Missouri, Columbia
Ellen Kime-Hunt, Riverside Community College, Riverside Campus
Peter J. Krieger, Palm Beach Community College, Lake Worth
Roy A. Lacey, State University of New York, Stony Brook
David P. Licata, Coastline Community College
Michael E. Lipschutz, Purdue University
Patrick M. Lloyd, CUNY, Kingsborough Community College
Boon H. Loo, Towson University
James L. Mack, Fort Valley State University
Jeanette C. Madea, Broward Community College, North
Joseph L. March, University of Alabama, Birmingham
Jack F. McKenna, St. Cloud State University
Curtis L. McLendon, Saddleback College
Dianne Meador, American River College
David Metcalf, University of Virginia
John A. Milligan, Los Angeles Valley College
Alice J. Monroe, St. Petersburg College, Clearwater

Elisabeth A. Morlino, University of the Sciences, Philadelphia
Heino Nitsche, University of California at Berkeley
Pedro Patino, University of Central Florida
Jeremy Perotti, Nova Southeastern University
Norbert J. Pienta, University of Iowa
Jayashree Ranga, Salem State University
Cathrine E. Reck, Indiana University
Thomas Ridgway, University of Cincinnati
Jil Robinson, Indiana University
Richard Rosso, St. John's University
Steven Rowley, Middlesex County College
Benjamin E. Rusiloski, Delaware Valley College
Karen Sanchez, Florida Community College, Jacksonville
David M. Sarno, CUNY, Queensborough Community College
Reva A. Savkar, Northern Virginia Community College
Thomas W. Schleich, University of California, Santa Cruz
Donald L. Siegel, Rutgers University, New Brunswick
Mary L. Sohn, Florida Institute of Technology
Sherrill Soman-Williams, Grand Valley State University
Allison Soult, University of Kentucky
Louise S. Sowers, Richard Stockton College of New Jersey
Anne Spuches, East Carolina University
William H. Steel, York College of Pennsylvania
Uma Swamy, Florida International University
Richard E. Sykora, University of South Alabama
Galina G. Talanova, Howard University
Claire A. Tessier, University of Akron
Kathleen Thrush Shaginaw, Villanova University
John Vincent, University of Alabama
Gary L. Wood, Valdosta State University
Servet M. Yatin, Quincy College
James Zubricky, University of Toledo