STARTING OUT WITH

C++

From Control Structures through Objects

BRIEF VERSION
NINTH EDITION
Contents at a Glance

Preface xv

CHAPTER 1 Introduction to Computers and Programming 1
CHAPTER 2 Introduction to C++ 27
CHAPTER 3 Expressions and Interactivity 85
CHAPTER 4 Making Decisions 151
CHAPTER 5 Loops and Files 231
CHAPTER 6 Functions 305
CHAPTER 7 Arrays and Vectors 381
CHAPTER 8 Searching and Sorting Arrays 463
CHAPTER 9 Pointers 503
CHAPTER 10 Characters, C-Strings, and More about the string Class 557
CHAPTER 11 Structured Data 613
CHAPTER 12 Advanced File Operations 665
CHAPTER 13 Introduction to Classes 719
CHAPTER 14 More about Classes 817
CHAPTER 15 Inheritance, Polymorphism, and Virtual Functions 907

Appendix A: The ASCII Character Set 989
Appendix B: Operator Precedence and Associativity 991
Quick References 993
Index 995
Online The following appendices are available at www.pearsonhighered.com/gaddis.

Appendix C: Introduction to Flowcharting
Appendix D: Using UML in Class Design
Appendix E: Namespaces
Appendix F: Passing Command Line Arguments
Appendix G: Binary Numbers and Bitwise Operations
Appendix H: STL Algorithms
Appendix I: Multi-Source File Programs
Appendix J: Stream Member Functions for Formatting
Appendix K: Unions
Appendix L: Answers to Checkpoints
Appendix M: Answers to Odd Numbered Review Questions

Case Study 1: String Manipulation
Case Study 2: High Adventure Travel Agency—Part 1
Case Study 3: Loan Amortization
Case Study 4: Creating a String Class
Case Study 5: High Adventure Travel Agency—Part 2
Case Study 6: High Adventure Travel Agency—Part 3
Case Study 7: Intersection of Sets
Case Study 8: Sales Commission
Contents

Preface xv

CHAPTER 1 Introduction to Computers and Programming 1
 1.1 Why Program? 1
 1.2 Computer Systems: Hardware and Software 2
 1.3 Programs and Programming Languages 8
 1.4 What Is a Program Made of? 14
 1.5 Input, Processing, and Output 17
 1.6 The Programming Process 18
 1.7 Procedural and Object-Oriented Programming 22
Review Questions and Exercises 24

CHAPTER 2 Introduction to C++ 27
 2.1 The Parts of a C++ Program 27
 2.2 The cout Object 31
 2.3 The #include Directive 36
 2.4 Variables, Literals, and Assignment Statements 38
 2.5 Identifiers 42
 2.6 Integer Data Types 43
 2.7 The char Data Type 49
 2.8 The C++ string Class 53
 2.9 Floating-Point Data Types 55
 2.10 The bool Data Type 58
 2.11 Determining the Size of a Data Type 59
 2.12 More about Variable Assignments and Initialization 60
 2.13 Scope 62
 2.14 Arithmetic Operators 63
 2.15 Comments 71
 2.16 Named Constants 73
 2.17 Programming Style 75
Review Questions and Exercises 77
Programming Challenges 81
CHAPTER 3 Expressions and Interactivity 85

3.1 The cin Object 85
3.2 Mathematical Expressions 91
3.3 When You Mix Apples and Oranges: Type Conversion 100
3.4 Overflow and Underflow 102
3.5 Type Casting 103
3.6 Multiple Assignment and Combined Assignment 106
3.7 Formatting Output 110
3.8 Working with Characters and string Objects 120
3.9 More Mathematical Library Functions 126
3.10 Focus on Debugging: Hand Tracing a Program 132
3.11 Focus on Problem Solving: A Case Study 134

Review Questions and Exercises 138
Programming Challenges 144

CHAPTER 4 Making Decisions 151

4.1 Relational Operators 151
4.2 The if Statement 156
4.3 Expanding the if Statement 164
4.4 The if/else Statement 168
4.5 Nested if Statements 171
4.6 The if/else if Statement 178
4.7 Flags 183
4.8 Logical Operators 184
4.9 Checking Numeric Ranges with Logical Operators 191
4.10 Menus 192
4.11 Focus on Software Engineering: Validating User Input 195
4.12 Comparing Characters and Strings 197
4.13 The Conditional Operator 201
4.14 The switch Statement 204
4.15 More about Blocks and Variable Scope 213

Review Questions and Exercises 216
Programming Challenges 222

CHAPTER 5 Loops and Files 231

5.1 The Increment and Decrement Operators 231
5.2 Introduction to Loops: The while Loop 236
5.3 Using the while Loop for Input Validation 243
5.4 Counters 245
5.5 The do-while Loop 246
5.6 The for Loop 251
5.7 Keeping a Running Total 261
5.8 Sentinels 264
5.9 Focus on Software Engineering: Deciding Which Loop to Use 265
5.10 Nested Loops 266
5.11 Using Files for Data Storage 269
5.12 Optional Topics: Breaking and Continuing a Loop 288

Review Questions and Exercises 292
Programming Challenges 297
CHAPTER 6 Functions 305
6.1 Focus on Software Engineering: Modular Programming 305
6.2 Defining and Calling Functions 306
6.3 Function Prototypes 315
6.4 Sending Data into a Function 317
6.5 Passing Data by Value 322
6.6 Focus on Software Engineering: Using Functions in a
 Menu-Driven Program 324
6.7 The return Statement 328
6.8 Returning a Value from a Function 330
6.9 Returning a Boolean Value 338
6.10 Local and Global Variables 340
6.11 Static Local Variables 348
6.12 Default Arguments 351
6.13 Using Reference Variables as Parameters 354
6.14 Overloading Functions 360
6.15 The exit() Function 364
6.16 Stubs and Drivers 367
Review Questions and Exercises 369
Programming Challenges 372

CHAPTER 7 Arrays and Vectors 381
7.1 Arrays Hold Multiple Values 381
7.2 Accessing Array Elements 383
7.3 No Bounds Checking in C++ 395
7.4 The Range-Based for Loop 398
7.5 Processing Array Contents 402
7.6 Focus on Software Engineering: Using Parallel Arrays 410
7.7 Arrays as Function Arguments 413
7.8 Two-Dimensional Arrays 424
7.9 Arrays with Three or More Dimensions 431
7.10 Focus on Problem Solving and Program Design: A Case Study 433
7.11 Introduction to the STL vector 435
Review Questions and Exercises 449
Programming Challenges 454

CHAPTER 8 Searching and Sorting Arrays 463
8.1 Focus on Software Engineering: Introduction to Search Algorithms 463
8.2 Focus on Problem Solving and Program Design: A Case Study 469
8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 476
8.4 Focus on Problem Solving and Program Design: A Case Study 486
8.5 Sorting and Searching vectors 495
Review Questions and Exercises 498
Programming Challenges 499

CHAPTER 9 Pointers 503
9.1 Getting the Address of a Variable 503
9.2 Pointer Variables 505
9.3 The Relationship between Arrays and Pointers 512
12.9 Random-Access Files 697
12.10 Opening a File for Both Input and Output 705
Review Questions and Exercises 710
Programming Challenges 713

CHAPTER 13 Introduction to Classes 719
13.1 Procedural and Object-Oriented Programming 719
13.2 Introduction to Classes 726
13.3 Defining an Instance of a Class 731
13.4 Why Have Private Members? 744
13.5 Focus on Software Engineering: Separating Class Specification
 from Implementation 745
13.6 Inline Member Functions 751
13.7 Constructors 754
13.8 Passing Arguments to Constructors 759
13.9 Destructors 767
13.10 Overloading Constructors 771
13.11 Private Member Functions 775
13.12 Arrays of Objects 777
13.13 Focus on Problem Solving and Program Design: An OOP Case Study 781
13.14 Focus on Object-Oriented Programming: Simulating Dice with Objects 788
13.15 Focus on Object-Oriented Design: The Unified Modeling
 Language (UML) 792
13.16 Focus on Object-Oriented Design: Finding the Classes and
 Their Responsibilities 794
Review Questions and Exercises 803
Programming Challenges 808

CHAPTER 14 More about Classes 817
14.1 Instance and Static Members 817
14.2 Friends of Classes 825
14.3 Memberwise Assignment 830
14.4 Copy Constructors 831
14.5 Operator Overloading 837
14.6 Object Conversion 864
14.7 Aggregation 866
14.8 Focus on Object-Oriented Design: Class Collaborations 871
14.9 Focus on Object-Oriented Programming: Simulating the Game
 of Cho-Han 876
14.10 Rvalue References and Move Semantics 886
Review Questions and Exercises 895
Programming Challenges 900

CHAPTER 15 Inheritance, Polymorphism, and Virtual Functions 907
15.1 What Is Inheritance? 907
15.2 Protected Members and Class Access 916
15.3 Constructors and Destructors in Base and Derived Classes 922
15.4 Redefining Base Class Functions 936
15.5 Class Hierarchies 941
15.6 Polymorphism and Virtual Member Functions 947
15.7 Abstract Base Classes and Pure Virtual Functions 963
Contents

15.8 Multiple Inheritance 970
Review Questions and Exercises 977
Programming Challenges 981

Appendix A: The ASCII Character Set 989
Appendix B: Operator Precedence and Associativity 991
Quick References 993
Index 995

Online
The following appendices are available at www.pearsonhighered.com/gaddis.
Appendix C: Introduction to Flowcharting
Appendix D: Using UML in Class Design
Appendix E: Namespaces
Appendix F: Passing Command Line Arguments
Appendix G: Binary Numbers and Bitwise Operations
Appendix H: STL Algorithms
Appendix I: Multi-Source File Programs
Appendix J: Stream Member Functions for Formatting
Appendix K: Unions
Appendix L: Answers to Checkpoints
Appendix M: Answers to Odd Numbered Review Questions

Case Study 1: String Manipulation
Case Study 2: High Adventure Travel Agency—Part 1
Case Study 3: Loan Amortization
Case Study 4: Creating a String Class
Case Study 5: High Adventure Travel Agency—Part 2
Case Study 6: High Adventure Travel Agency—Part 3
Case Study 7: Intersection of Sets
Case Study 8: Sales Commission
| Chapter 1 | Introduction to Flowcharting, p. 20
| | Designing a Program with Pseudocode, p. 20
| | Designing the Account Balance Program, p. 25
| | Predicting the Result of Problem 33, p. 26
| Chapter 2 | Using cout, p. 32
| | Variable Definitions, p. 38
| | Assignment Statements and Simple Math Expressions, p. 63
| | Solving the Restaurant Bill Problem, p. 81
| Chapter 3 | Reading Input with cin, p. 85
| | Formatting Numbers with setprecision, p. 113
| | Solving the Stadium Seating Problem, p. 144
| Chapter 4 | The if Statement, p. 156
| | The if/else Statement, p. 168
| | The if/else if Statement, p. 178
| | Solving the Time Calculator Problem, p. 223
| Chapter 5 | The while Loop, p. 236
| | The for Loop, p. 251
| | Reading Data from a File, p. 278
| | Solving the Calories Burned Problem, p. 297
| Chapter 6 | Functions and Arguments, p. 317
| | Value-Returning Functions, p. 330
| | Solving the Markup Problem, p. 372
| Chapter 7 | Accessing Array Elements with a Loop, p. 386
| | Passing an Array to a Function, p. 413
| | Solving the Chips and Salsa Problem, p. 455
| Chapter 8 | The Binary Search, p. 466
| | The Selection Sort, p. 482
| | Solving the Charge Account Validation Modification Problem, p. 500
| Chapter 9 | Dynamically Allocating an Array, p. 531
| | Solving the Pointer Rewrite Problem, p. 554
| Chapter 10 | Writing a C-String-Handling Function, p. 585
| | More About the string Class, p. 591
| | Solving the Backward String Problem, p. 607 |
| Chapter 11 | Creating a Structure, p. 615
Passing a Structure to a Function, p. 631
Solving the Weather Statistics Problem, p. 659 |
| Chapter 12 | Passing File Stream Objects to Functions, p. 673
Working with Multiple Files, p. 686
Solving the File Encryption Filter Problem, p. 716 |
| Chapter 13 | Writing a Class, p. 726
Defining an Instance of a Class, p. 731
Solving the Employee Class Problem, p. 808 |
| Chapter 14 | Operator Overloading, p. 837
Class Aggregation, p. 866
Solving the NumDays Problem, p. 901 |
| Chapter 15 | Redefining a Base Class Function in a Derived Class, p. 936
Polymorphism, p. 947
Solving the Employee and ProductionWorker Classes Problem, p. 981 |
Welcome to the Brief Version of *Starting Out with C++: From Control Structures through Objects, 9th edition*. This book is intended for use in a two-semester C++ programming sequence, or an accelerated one-semester course. Students new to programming, as well as those with prior course work in other languages, will find this text beneficial. The fundamentals of programming are covered for the novice, while the details, pitfalls, and nuances of the C++ language are explored in depth for both the beginner and more experienced student. The book is written with clear, easy-to-understand language, and it covers all the necessary topics for an introductory programming course. This text is rich in example programs that are concise, practical, and real-world oriented, ensuring that the student not only learns how to implement the features and constructs of C++, but why and when to use them.

Changes in the Ninth Edition

This book’s pedagogy, organization, and clear writing style remain the same as in the previous edition. Many improvements and updates have been made, which are summarized here:

- The material on the Standard Template Library (STL) has been completely rewritten and expanded into its own chapter. Previously, covered exceptions, templates, and gave brief coverage to the STL. In this edition, covers exceptions and templates, is a new chapter dedicated to the STL. The new chapter covers the following topics:
 - The array and vector classes
 - The various types of iterators
 - Emplacement versus insertion
 - The map, multimap, and unordered_map Classes
 - The set, multiset, and unordered_set Classes
 - Sorting and searching algorithms
 - Permutation algorithms
 - Set algorithms
 - Using function pointers with STL algorithms
 - Function objects, or functors
 - Lambda expressions
- Chapter 2 now includes a discussion of alternative forms of variable initialization, including functional notation, and brace notation (also known as uniform initialization).
- Chapter 3 now mentions the round function, introduced in C++ 11.
Preface

- Chapter 7 now introduces array initialization much earlier.
- In Chapter 8, the bubble sort algorithm has been rewritten and improved.
- A new example of sorting and searching a vector of strings has been added to Chapter 8.
- In Chapter 9, the section on smart pointers now gives an overview of shared_ptr and weak_ptr, in addition to the existing coverage of unique_ptr.
- In Chapter 10, a new In the Spotlight section on string tokenizing has been added.
- Chapter 10 now covers the string-to-number conversion functions that were introduced in C++ 11.
- The material on unions that previously appeared in Chapter 11 has been moved to Appendix K, available on the book’s companion Website.
- Chapter 13 has new sections covering:
 o Member initialization lists.
 o In-place initialization.
 o Constructor delegation.
- Several new topics were added to Chapter 14, including:
 o Rvalue references and move semantics.
 o Checking for self-assignment when overloading the = operator.
 o Using member initialization lists in aggregate classes.
- Chapter 15 includes a new section on constructor inheritance.
- Several new programming problems have been added throughout the book.

Organization of the Text

This text teaches C++ in a step-by-step fashion. Each chapter covers a major set of topics and builds knowledge as the student progresses through the book. Although the chapters can be easily taught in their existing sequence, some flexibility is provided. The diagram shown in Figure P-1 suggests possible sequences of instruction.

Chapter 1 covers fundamental hardware, software, and programming concepts. You may choose to skip this chapter if the class is already familiar with those topics. Chapters 2 through 7 cover basic C++ syntax, data types, expressions, selection structures, repetition structures, functions, and arrays. Each of these chapters builds on the previous chapter and should be covered in the order presented.

After Chapter 7 has been covered, you may proceed to Chapter 8, or jump to Chapter 9.

After Chapter 9 has been covered, Chapter 10, 11, 12 or 13 may be covered. (If you jump to Chapter 12 at this point, you will need to postpone Sections 12.8, 12.9, and 12.10 until Chapter 11 has been covered.) After Chapter 13, you may cover Chapters 14 in sequence.

This text’s approach starts with a firm foundation in structured, procedural programming before delving fully into object-oriented programming and advanced data structures.
Figure P-1 Chapter dependency chart

Chapter 1 Introduction

Chapters 2–7 Basic Language Elements

Chapter 8 Searching and Sorting Arrays
Chapter 9 Pointers

Chapter 10 Characters, C-Strings, and More about the string Class
Chapter 11 Structured Data
Chapter 12 Advanced File Operations

Chapter 13 Introduction to Classes

Chapter 14 More about Classes

Chapter 15 Inheritance, Polymorphism, and Virtual Functions
Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming
This chapter provides an introduction to the field of computer science and covers the fundamentals of programming, problem solving, and software design. The components of programs, such as key words, variables, operators, and punctuation, are covered. The tools of the trade, such as pseudocode, flow charts, and hierarchy charts, are also presented.

Chapter 2: Introduction to C++
This chapter gets the student started in C++ by introducing data types, identifiers, variable declarations, constants, comments, program output, simple arithmetic operations, and C-strings. Programming style conventions are introduced and good programming style is modeled here, as it is throughout the text.

Chapter 3: Expressions and Interactivity
In this chapter, the student learns to write programs that input and handle numeric, character, and string data. The use of arithmetic operators and the creation of mathematical expressions are covered in greater detail, with emphasis on operator precedence. Debugging is introduced, with a section on hand tracing a program. Sections are also included on simple output formatting, on data type conversion and type casting, and on using library functions that work with numbers.

Chapter 4: Making Decisions
Here, the student learns about relational operators, relational expressions, and how to control the flow of a program with the if, if/else, and if/else if statements. The conditional operator and the switch statement are also covered. Crucial applications of these constructs are covered, such as menu-driven programs and the validation of input.

Chapter 5: Loops and Files
This chapter covers repetition control structures. The while loop, do-while loop, and for loop are taught, along with common uses for these devices. Counters, accumulators, running totals, sentinels, and other application-related topics are discussed. Sequential file I/O is also introduced. The student learns to read and write text files, and use loops to process the data in a file.

Chapter 6: Functions
In this chapter, the student learns how and why to modularize programs, using both void and value returning functions. Argument passing is covered, with emphasis on when arguments should be passed by value versus when they need to be passed by reference. Scope of variables is covered, and sections are provided on local versus global variables and on static local variables. Overloaded functions are also introduced and demonstrated.
Chapter 7: Arrays and Vectors
In this chapter, the student learns to create and work with single and multi-dimensional arrays. Many examples of array processing are provided including examples illustrating how to find the sum, average, highest, and lowest values in an array, and how to sum the rows, columns, and all elements of a two-dimensional array. Programming techniques using parallel arrays are also demonstrated, and the student is shown how to use a data file as an input source to populate an array. STL vectors are introduced and compared to arrays.

Chapter 8: Searching and Sorting Arrays
Here, the student learns the basics of sorting arrays and searching for data stored in them. The chapter covers the Bubble Sort, Selection Sort, Linear Search, and Binary Search algorithms. There is also a section on sorting and searching STL vector objects.

Chapter 9: Pointers
This chapter explains how to use pointers. Pointers are compared to and contrasted with reference variables. Other topics include pointer arithmetic, initialization of pointers, relational comparison of pointers, pointers and arrays, pointers and functions, dynamic memory allocation, and more.

Chapter 10: Characters, C-Strings, and More about the string Class
This chapter discusses various ways to process text at a detailed level. Library functions for testing and manipulating characters are introduced. C-strings are discussed, and the technique of storing C-strings in char arrays is covered. An extensive discussion of the string class methods is also given.

Chapter 11: Structured Data
The student is introduced to abstract data types and taught how to create them using structures, unions, and enumerated data types. Discussions and examples include using pointers to structures, passing structures to functions, and returning structures from functions.

Chapter 12: Advanced File Operations
This chapter covers sequential access, random access, text, and binary files. The various modes for opening files are discussed, as well as the many methods for reading and writing file contents. Advanced output formatting is also covered.

Chapter 13: Introduction to Classes
The student now shifts focus to the object-oriented paradigm. This chapter covers the fundamental concepts of classes. Member variables and functions are discussed. The student learns about private and public access specifications, and reasons to use each. The topics of constructors, overloaded constructors, and destructors are also presented. The chapter presents a section modeling classes with UML, and how to find the classes in a particular problem.
Chapter 14: More about Classes

This chapter continues the study of classes. Static members, friends, memberwise assignment, and copy constructors are discussed. The chapter also includes in-depth sections on operator overloading, object conversion, and object aggregation. There is also a section on class collaborations and the use of CRC cards.

Chapter 15: Inheritance, Polymorphism, and Virtual Functions

The study of classes continues in this chapter with the subjects of inheritance, polymorphism, and virtual member functions. The topics covered include base and derived class constructors and destructors, virtual member functions, base class pointers, static and dynamic binding, multiple inheritance, and class hierarchies.

Appendix A: The ASCII Character Set

A list of the ASCII and Extended ASCII characters and their codes

Appendix B: Operator Precedence and Associativity

A chart showing the C++ operators and their precedence

Features of the Text

Concept Statements Each major section of the text starts with a concept statement. This statement summarizes the ideas of the section.

Example Programs The text has hundreds of complete example programs, each designed to highlight the topic currently being studied. In most cases, these are practical, real-world examples. Source code for these programs is provided so that students can run the programs themselves.

Program Output After each example program, there is a sample of its screen output. This immediately shows the student how the program should function.

In the Spotlight Each of these sections provides a programming problem and a detailed, step-by-step analysis showing the student how to solve it.

VideoNotes A series of online videos, developed specifically for this book, is available for viewing at www.pearsonhighered.com/gaddis. Icons appear throughout the text alerting the student to videos about specific topics.

Checkpoints Checkpoints are questions placed throughout each chapter as a self-test study aid. Answers for all Checkpoint questions can be downloaded from the book’s Website at www.pearsonhighered.com/gaddis. This allows students to check how well they have learned a new topic.

Notes Notes appear at appropriate places throughout the text. They are short explanations of interesting or often misunderstood points relevant to the topic at hand.
Warnings

Warnings are notes that caution the student about certain C++ features, programming techniques, or practices that can lead to malfunctioning programs or lost data.

Case Studies

Case studies that simulate real-world applications appear in many chapters throughout the text. These case studies are designed to highlight the major topics of the chapter in which they appear.

Review Questions and Exercises

Each chapter presents a thorough and diverse set of review questions, such as fill-in-the-blank and short answer, that check the student’s mastery of the basic material presented in the chapter. These are followed by exercises requiring problem solving and analysis, such as the Algorithm Workbench, Predict the Output, and Find the Errors sections. Answers to the odd-numbered review questions and review exercises can be downloaded from the book’s Website at www.pearsonhighered.com/gaddis.

Programming Challenges

Each chapter offers a pool of programming exercises designed to solidify the student’s knowledge of the topics currently being studied. In most cases, the assignments present real-world problems to be solved. When applicable, these exercises include input validation rules.

Group Projects

There are several group programming projects throughout the text, intended to be constructed by a team of students. One student might build the program’s user interface, while another student writes the mathematical code, and another designs and implements a class the program uses. This process is similar to the way many professional programs are written and encourages team work within the classroom.

Software Development Project: Serendipity Booksellers

Available for download from the book’s Website at www.pearsonhighered.com/gaddis. This is an ongoing project that instructors can optionally assign to teams of students. It systematically develops a “real-world” software package: a point-of-sale program for the fictitious Serendipity Booksellers organization. The Serendipity assignment for each chapter adds more functionality to the software, using constructs and techniques covered in that chapter. When complete, the program will act as a cash register, manage an inventory database, and produce a variety of reports.

C++ Quick Reference Guide

For easy access, a quick reference guide to the C++ language is printed on the inside back cover of the book.

C++11

Throughout the text, new C++11 language features are introduced. Look for the C++11 icon to find these new features.
Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The following items are available on the Computer Science Portal at www.pearsonhighered.com/gaddis:

- The source code for each example program in the book
- Access to the book’s VideoNotes
- A full set of appendices, including answers to the Checkpoint questions and answers to the odd-numbered review questions
- A collection of valuable Case Studies
- The complete Serendipity Booksellers Project

Online Practice and Assessment with MyProgrammingLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of programming. Through practice exercises and immediate, personalized feedback, MyProgrammingLab improves the programming competence of beginning students who often struggle with the basic concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds of small practice exercises organized around the structure of this textbook. For students, the system automatically detects errors in the logic and syntax of their code submissions and offers targeted hints that enable students to figure out what went wrong—and why. For instructors, a comprehensive gradebook tracks correct and incorrect answers and stores the code inputted by students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the makers of the CodeLab interactive programming exercise system. For a full demonstration, to see feedback from instructors and students, or to get started using MyProgrammingLab in your course, visit www.myprogramminglab.com.

Instructor Resources

The following supplements are available only to qualified instructors:

- Answers to all Review Questions in the text
- Solutions for all Programming Challenges in the text
- PowerPoint presentation slides for every chapter
- Computerized test bank
- Answers to all Student Lab Manual questions
• Solutions for all Student Lab Manual programs

Visit the Pearson Instructor Resource Center (www.pearsonhighered.com/irc) for information on how to access instructor resources.

Textbook Web site

Student and instructor resources, including links to download Microsoft® Visual Studio Express and other popular IDEs, for all the books in the Gaddis *Starting Out with* series can be accessed at the following URL:

http://www.pearsonhighered.com/gaddis

Which Gaddis C++ book is right for you?

The *Starting Out with C++* Series includes three books, one of which is sure to fit your course:

- *Starting Out with C++: From Control Structures through Objects*
- *Starting Out with C++: Early Objects*
- *Starting Out with C++: Brief Version*

The following chart will help you determine which book is right for your course.

<table>
<thead>
<tr>
<th>FROM CONTROL STRUCTURES THROUGH OBJECTS</th>
<th>BRIEF VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATE INTRODUCTION OF OBJECTS</td>
<td>Classes are introduced in Chapter 13 of the standard text and Chapter 11 of the brief text, after control structures, functions, arrays, and pointers. Advanced OOP topics, such as inheritance and polymorphism, are covered in the following two chapters.</td>
</tr>
<tr>
<td>INTRODUCTION OF DATA STRUCTURES AND RECURSION</td>
<td>Linked lists, stacks and queues, and binary trees are introduced in the final chapters of the standard text. Recursion is covered after stacks and queues, but before binary trees. These topics are not covered in the brief text, though it does have appendices dealing with linked lists and recursion.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EARLY OBJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARLIER INTRODUCTION OF OBJECTS</td>
</tr>
<tr>
<td>INTRODUCTION OF DATA STRUCTURES AND RECURSION</td>
</tr>
</tbody>
</table>
Acknowledgments

There have been many helping hands in the development and publication of this text. We would like to thank the following faculty reviewers for their helpful suggestions and expertise.

Reviewers for the 9th Edition

Svetlana Marzelli
Atlantic Cape Community College

Jie Meichsner
St. Cloud State University

Ron Del Porto
Penn State Erie, The Behrend College

Lisa Rudnitsky
Baruch College

Reviewers for Previous Editions

Ahmad Abuhejleh
University of Wisconsin–River Falls

David Akins
El Camino College

Steve Allan
Utah State University

Vicki Allan
Utah State University

Karen M. Arlien
Bismark State College

Mary Astone
Troy University

Ijaz A. Awan
Savannah State University

Robert Baird
Salt Lake Community College

Don Biggerstaff
Fayetteville Technical Community College

Michael Bolton
Northeastern Oklahoma State University

Bill Brown

Chia-Chin Chang
Lakeland College

William Duncan
Louisiana State University

Pranshu Gupta
DeSales University

Charles Hardnett
Guinnett Technical College

Pikes Peak Community College

Robert Burn
Diablo Valley College

Charles Cadenhead
Richland Community College

Randall Campbell
Morningside College

Wayne Caruolo
Red Rocks Community College

Cathi Chambley-Miller
Aiken Technical College

C.C. Chao
Jacksonville State University

Joseph Chao
Bowling Green State University

Royce Curtis
Western Wisconsin Technical College

Joseph DeLibero
Arizona State University

Michael Dixon
Sacramento City College

Jeanne Douglas
University of Vermont

Michael Dowell
Augusta State University

Qiang Duan
Penn State University—Abington

William E. Duncan
Louisiana State University
Preface

Daniel Edwards
Oblone College

Judy Etchison
Southern Methodist University

Dennis Fairclough
Utah Valley State College

Xisheng Fang
Oblone College

Mark Fienup
University of Northern Iowa

Richard Flint
North Central College

Ann Ford Tyson
Florida State University

Jeanette Gibbons
South Dakota State University

James Gifford
University of Wisconsin–Stevens Point

Leon Gleiberman
Touro College

Barbara Guillott
Louisiana State University

Ranette Halverson, Ph.D.
Midwestern State University

Ken Hang
Green River Community College

Carol Hannahs
University of Kentucky

Dennis Heckman
Portland Community College

Ric Heishman
George Mason University

Michael Hennessy
University of Oregon

Ilga Higbee
Black Hawk College

Patricia Hines
Brookdale Community College

Mike Holland
Northern Virginia Community College

Mary Hovik
Lehigh Carbon Community College

Richard Hull
Lenoir-Rhyne College

Kay Johnson
Community College of Rhode Island

Chris Kardaras
North Central College

Willard Keeling
Blue Ridge Community College

A.J. Krygeris
Houston Community College

Sheila Lancaster
Gadsden State Community College

Ray Larson
Inver Hills Community College

Michelle Levine
Broward College

Jennifer Li
Oblone College

Norman H. Liebling
San Jacinto College

Cindy Lindstrom
Lakeland College

Zhu-qu Lu
University of Maine, Presque Isle

Heidar Malik
University of Houston

Debbie Mathews
J. Sargeant Reynolds Community College

Rick Matzen
Northeastern State University

Robert McDonald
East Stroudsburg University

James McGuffee
Austin Community College
Dean Mellas
Cerritos College
Lisa Milkowski
Milwaukee School of Engineering
Marguerite Nedreberg
Youngstown State University
Lynne O’Hanlon
Los Angeles Pierce College
Frank Paiano
Southwestern Community College
Theresa Park
Texas State Technical College
Mark Parker
Shoreline Community College
Tino Posillico
SUNY Farmingdale
Frederick Pratter
Eastern Oregon University
Susan L. Quick
Penn State University
Alberto Ramon
Diablo Valley College
Bazlur Rasheed
Sault College of Applied Arts and Technology
Farshad Ravanshad
Bergen Community College
Susan Reeder
Seattle University
Sandra Roberts
Snead College
Lopa Roychoudhuri
Angelo State University
Dolly Samson
Weber State University
Ruth Sapr
SUNY Farmingdale

City College of San Francisco
Dr. Sung Shin
South Dakota State University
Bari Siddique
University of Texas at Brownsville
William Slater
Collin County Community College
Shep Smithline
University of Minnesota
Richard Snyder
Lehigh Carbon Community College
Donald Southwell
Delta College
Caroline St. Claire
North Central College
Kirk Stephens
Southwestern Community College
Cherie Stevens
South Florida Community College
Dale Suggs
Campbell University
Mark Swanson
Red Wing Technical College
Ann Sudell Thorn
Del Mar College
Martha Tillman
College of San Mateo
Ralph Tomlinson
Iowa State University
David Topham
Oblone College
Robert Tureman
Paul D. Camp Community College
Arisa K. Ude
Richland College
Peter van der Goes
Rose State College
I would also like to thank my family and friends for their support in all of my projects. I am extremely fortunate to have Matt Goldstein as my editor, and Kristy Alaura as editorial assistant. Their guidance and encouragement made it a pleasure to write chapters and meet deadlines. I am also fortunate to have Demetrius Hall as my marketing manager. His hard work is truly inspiring, and he does a great job of getting this book out to the academic community. The production team, led by Sandra Rodriguez, worked tirelessly to make this book a reality. Thanks to you all!

About the Author

Tony Gaddis is the principal author of the *Starting Out with* series of textbooks. He has nearly two decades of experience teaching computer science courses, primarily at Haywood Community College. Tony is a highly acclaimed instructor who was previously selected as the North Carolina Community College Teacher of the Year and has received the Teaching Excellence award from the National Institute for Staff and Organizational Development. The *Starting Out with* series includes introductory textbooks covering Programming Logic and Design, Alice, C++, Java™, Microsoft® Visual Basic®, Microsoft® Visual C#, Python, and App Inventor, all published by Pearson.
MyProgrammingLab™

Through the power of practice and immediate personalized feedback, MyProgrammingLab helps improve your students’ performance.

PROGRAMMING PRACTICE

With MyProgrammingLab, your students will gain first-hand programming experience in an interactive online environment.

IMMEDIATE, PERSONALIZED FEEDBACK

MyProgrammingLab automatically detects errors in the logic and syntax of their code submission and offers targeted hints that enable students to figure out what went wrong and why.

GRADUATED COMPLEXITY

MyProgrammingLab breaks down programming concepts into short, understandable sequences of exercises. Within each sequence the level and sophistication of the exercises increase gradually but steadily.

DYNAMIC ROSTER

Students’ submissions are stored in a roster that indicates whether the submission is correct, how many attempts were made, and the actual code submissions from each attempt.

PEARSON eTEXT

The Pearson eText gives students access to their textbook anytime, anywhere.

STEP-BY-STEP VIDEONOTE TUTORIALS

These step-by-step video tutorials enhance the programming concepts presented in select Pearson textbooks.

For more information and titles available with MyProgrammingLab, please visit www.myprogramminglab.com.

Copyright © 2018 Pearson Education, Inc. or its affiliate(s). All rights reserved. HEL088173 • 11/15