To my wife, Sharon, for everything.
– John

To my wonderful wife Susan, and our children, Grace, Anthony, Adam, Lily, EJ, and Peter IV. Your continued love and support keep me going as always.
– Pete

To my loving wife, Melissa, for her support and encouragement.
– Joe
Welcome to *Java Foundations*. This book is designed to serve as the primary resource for a two- or three-term introductory course sequence, ranging from the most basic programming concepts to the design and implementation of complex data structures. This unified approach makes the important introductory sequence more cohesive and accessible for students.

We’ve borrowed the best elements from the industry-leading text *Java Software Solutions* for the introductory material, reworked to complement the design and vision of the overall text. For example, instead of having graphics sections spread throughout many chapters, the coverage of graphical user interfaces is accomplished in a well-organized chapter of its own.

In the later chapters, the exploration of collections and data structures is modeled after the coverage in *Java Software Structures*, but has been reworked to flow cleanly from the introductory material. The result is a comprehensive, cohesive, and seamless exploration of programming concepts.

New in the Fifth Edition

We appreciate the feedback we’ve received about this book and are pleased that it continues to serve so well as an introductory text. The changes made in this edition build on the strong pedagogy established by previous editions while updating crucial areas.

The biggest change in this edition is the overhaul of the graphical content to fully embrace the JavaFX platform, which has replaced Swing as the supported technology for graphics and Graphical User Interfaces (GUIs) in Java. The previous edition focused on Swing and had an introduction to JavaFX. The time has come to switch over completely to the new approach, which simplifies GUI development and provides better opportunities to discuss object-oriented programming.

The changes in this edition include:

- A brand new Chapter 6 on developing GUIs using JavaFX.
- A new Appendix F that discusses the rendering of graphics using JavaFX.
- A new Appendix G that explores the JavaFX Scene Builder, a drag-and-drop application for developing graphical front ends.
• Updated examples and discussions throughout the text.
• Updated end-of-chapter Programming Projects in several chapters.

In previous editions, we had established the following flow when discussing collections:

1. **Explore the collection conceptually.**
2. **Discuss the support in the Java API for the collection.**
3. **Use the collection to solve problems.**
4. **Explore implementation options and efficiency issues.**

Your feedback has indicated that this approach is working well and we have continued and reinforced its use. It clarifies the distinction between the way the Java API supports a particular collection and the way it might be implemented from scratch. It makes it easier for instructors to point out limitations of the API implementations in a compare-and-contrast fashion. This approach also allows an instructor, on a case-by-case basis, to simply introduce a collection without exploring implementation details if desired.

Chapter Breakdown

Chapter 1 (Introduction) introduces the Java programming language and the basics of program development. It contains an introduction to object-oriented development, including an overview of concepts and terminology. This chapter contains broad introductory material that can be covered while students become familiar with their development environment.

Chapter 2 (Data and Expressions) explores some of the basic types of data used in a Java program and the use of expressions to perform calculations. It discusses the conversion of data from one type to another, and how to read input interactively from the user with the help of the Scanner class.

Chapter 3 (Using Classes and Objects) explores the use of predefined classes and the objects that can be created from them. Classes and objects are used to manipulate character strings, produce random numbers, perform complex calculations, and format output. Packages, enumerated types, and wrapper classes are also discussed.

Chapter 4 (Conditionals and Loops) covers the use of Boolean expressions to make decisions. All related statements for conditionals and loops are discussed,
including the enhanced version of the for loop. The Scanner class is revisited for iterative input parsing and reading text files.

Chapter 5 (Writing Classes) explores the basic issues related to writing classes and methods. Topics include instance data, visibility, scope, method parameters, and return types. Constructors, method design, static data, and method overloading are covered as well. Testing and debugging are now covered in this chapter as well.

Chapter 6 (Graphical User Interfaces) is an exploration of GUI processing using the JavaFX platform, focusing on controls, events, and event handlers. Several types of controls are discussed using numerous GUI examples. Mouse events, keyboard events, and layout panes are also explored.

Chapter 7 (Arrays) contains extensive coverage of arrays and array processing. Topics include bounds checking, initializer lists, command-line arguments, variable-length parameter lists, and multidimensional arrays.

Chapter 8 (Inheritance) covers class derivations and associated concepts such as class hierarchies, overriding, and visibility. Strong emphasis is put on the proper use of inheritance and its role in software design.

Chapter 9 (Polymorphism) explores the concept of binding and how it relates to polymorphism. Then we examine how polymorphic references can be accomplished using either inheritance or interfaces. Design issues related to polymorphism are examined as well.

Chapter 10 (Exceptions) covers exception handling and the effects of uncaught exceptions. The try-catch statement is examined, as well as a discussion of exception propagation. The chapter also explores the use of exceptions when dealing with input and output, and examines an example that writes a text file.

Chapter 11 (Analysis of Algorithms) lays the foundation for determining the efficiency of an algorithm and explains the important criteria that allow a developer to compare one algorithm to another in proper ways. Our emphasis in this chapter is understanding the important concepts more than getting mired in heavy math or formality.

Chapter 12 (Introduction to Collections—Stacks) establishes the concept of a collection, stressing the need to separate the interface from the implementation. It also conceptually introduces a stack, then explores an array-based implementation of a stack.

Chapter 13 (Linked Structures—Stacks) discusses the use of references to create linked data structures. It explores the basic issues regarding the management of linked lists, and then defines an alternative implementation of a stack (introduced in Chapter 12) using an underlying linked data structure.

Chapter 14 (Queues) explores the concept and implementation of a first-in, first-out queue. The Java API Queue interface is discussed, as are linked and circular array implementations with Queue in code font.
Chapter 15 (Lists) covers three types of lists: ordered, unordered, and indexed. These three types of lists are compared and contrasted, with discussion of the operations that they share and those that are unique to each type. Inheritance is used appropriately in the design of the various types of lists, which are implemented using both array-based and linked representations.

Chapter 16 (Iterators) is a new chapter that isolates the concepts and implementation of iterators, which are so important to collections. The expanded discussion drives home the need to separate the iterator functionality from the details of any particular collection.

Chapter 17 (Recursion) is a general introduction to the concept of recursion and how recursive solutions can be elegant. It explores the implementation details of recursion and discusses the basic idea of analyzing recursive algorithms.

Chapter 18 (Searching and Sorting) discusses the linear and binary search algorithms, as well as the algorithms for several sorts: selection sort, insertion sort, bubble sort, quick sort, and merge sort. Programming issues related to searching and sorting, such as using the Comparable interface as the basis of comparing objects, are stressed in this chapter. An application uses animation to demonstrate the efficiency of sorting algorithms. The comparator interface is examined and demonstrated as well.

Chapter 19 (Trees) provides an overview of trees, establishing key terminology and concepts. It discusses various implementation approaches and uses a binary tree to represent and evaluate an arithmetic expression.

Chapter 20 (Binary Search Trees) builds off of the basic concepts established in Chapter 10 to define a classic binary search tree. A linked implementation of a binary search tree is examined, followed by a discussion of how the balance in the tree nodes is key to its performance. That leads to exploring AVL and red/black implementations of binary search trees.

Chapter 21 (Heaps and Priority Queues) explores the concept, use, and implementations of heaps and specifically their relationship to priority queues. A heap sort is used as an example of its usefulness as well. Both linked and array-based implementations are explored.

Chapter 22 (Sets and Maps) explores these two types of collections and their importance to the Java Collections API.

Chapter 23 (Multi-way Search Trees) is a natural extension of the discussion of the previous chapters. The concepts of 2-3 trees, 2-4 trees, and general B-trees are examined and implementation options are discussed.

Chapter 24 (Graphs) explores the concept of undirected and directed graphs and establishes important terminology. It examines several common graph algorithms and discusses implementation options, including adjacency matrices.

Chapter 25 (Databases) explores the concept of databases and their management, and discusses the basics of SQL queries. It then explores the techniques for
establishing a connection between a Java program and a database, and the API used to interact with it.

Supplements

The following student resources are available for this book:

- **Source code** for all programs presented in the book
- **VideoNotes** that explore select topics from the book

Resources can be accessed at www.pearson.com/lewis

The following instructor resources can be found at Pearson Education’s Instructor Resource Center:

- **Solutions** for select exercises and programming projects in the book
- **PowerPoint slides** for the presentation of the book content
- **Test bank**

To obtain access, please visit www.pearsonhighered.com/irc or contact your local Pearson Education sales representative.
MyLabProgramming

Through the power of practice and immediate personalized feedback, MyLab Programming™ helps improve your students’ performance.

PROGRAMMING PRACTICE

With MyLab Programming, your students will gain first-hand programming experience in an interactive online environment.

IMMEDIATE, PERSONALIZED FEEDBACK

MyLab Programming automatically detects errors in the logic and syntax of their code submission and offers targeted hints that enables students to figure out what went wrong and why.

GRADUATED COMPLEXITY

MyLab Programming breaks down programming concepts into short, understandable sequences of exercises. Within each sequence the level and sophistication of the exercises increase gradually but steadily.

DYNAMIC ROSTER

Students’ submissions are stored in a roster that indicates whether the submission is correct, how many attempts were made, and the actual code submissions from each attempt.

PEARSON eTEXT

The Pearson eText gives students access to their textbook anytime, anywhere.

STEP-BY-STEP VIDEONOTE TUTORIALS

These step-by-step video tutorials enhance the programming concepts presented in select Pearson textbooks.

For more information and titles available with MyLab Programming, please visit www.pearson.com/mylab/programming

Copyright © 2020 Pearson Education, Inc. or its affiliate(s). All rights reserved. HELO88173 • 11/15
Contents

Preface vii
Credits xxix
VideoNotes xxxi

Chapter 1 Introduction 1

1.1 The Java Programming Language 2
 A Java Program 3
 Comments 5
 Identifiers and Reserved Words 7
 White Space 9

1.2 Program Development 11
 Programming Language Levels 11
 Editors, Compilers, and Interpreters 13
 Development Environments 15
 Syntax and Semantics 16
 Errors 17

1.3 Problem Solving 18

1.4 Software Development Activities 20

1.5 Object-Oriented Programming 21
 Object-Oriented Software Principles 22

Chapter 2 Data and Expressions 33

2.1 Character Strings 34
 The `print` and `println` Methods 34
 String Concatenation 36
 Escape Sequences 40

2.2 Variables and Assignment 41
 Variables 41
 The Assignment Statement 44
 Constants 46
CONTENTS

2.3 **Primitive Data Types** 47
Integers and Floating Points 47
Characters 48
Booleans 50

2.4 **Expressions** 51
Arithmetic Operators 51
Operator Precedence 52
Increment and Decrement Operators 56
Assignment Operators 57

2.5 **Data Conversion** 58
Conversion Techniques 60

2.6 **Reading Input Data** 61
The `Scanner` Class 61

Chapter 3 Using Classes and Objects 75

3.1 **Creating Objects** 76
Aliases 78

3.2 **The String Class** 80

3.3 **Packages** 83
The `import` Declaration 84

3.4 **The Random Class** 86

3.5 **The Math Class** 89

3.6 **Formatting Output** 92
The `NumberFormat` Class 92
The `DecimalFormat` Class 94
The `printf` Method 96

3.7 **Enumerated Types** 97

3.8 **Wrapper Classes** 100
Autoboxing 102

Chapter 4 Conditionals and Loops 111

4.1 **Boolean Expressions** 112
Equality and Relational Operators 113
Logical Operators 114
4.2 The if Statement
- The if Statement 116
- The if-else Statement 119
- Using Block Statements 121
- The Conditional Operator 124
- Nested if Statements 125

4.3 Comparing Data
- Comparing Floats 127
- Comparing Characters 127
- Comparing Objects 128

4.4 The switch Statement 130

4.5 The while Statement
- Infinite Loops 140
- Nested Loops 141
- Other Loop Controls 144

4.6 Iterators
- Reading Text Files 146

4.7 The do Statement 148

4.8 The for Statement
- Iterators and for Loops 156
- Comparing Loops 157

Chapter 5 Writing Classes

5.1 Classes and Objects Revisited
- Identifying Classes and Objects 171
- Assigning Responsibilities 173

5.2 Anatomy of a Class
- Instance Data 178
- UML Class Diagrams 179

5.3 Encapsulation
- Visibility Modifiers 182
- Accessors and Mutators 183

5.4 Anatomy of a Method
- The return Statement 194
- Parameters 196
- Local Data 197
- Constructors Revisited 198
5.5 Static Class Members 199
 Static Variables 199
 Static Methods 200

5.6 Class Relationships 203
 Dependency 203
 Dependencies among Objects of the Same Class 204
 Aggregation 206
 The this Reference 211

5.7 Method Design 212
 Method Decomposition 213
 Method Parameters Revisited 218

5.8 Method Overloading 223

5.9 Testing 224
 Reviews 225
 Defect Testing 226
 Unit Testing 227
 Integration Testing 228
 System Testing 228
 Test-Driven Development 228

5.10 Debugging 229
 Simple Debugging with print Statements 230
 Debugging Concepts 230

Chapter 6 Graphical User Interfaces 245

6.1 Introduction to JavaFX 246
 GUI Elements 249
 Alternate Ways to Specify Event Handlers 252
 Determining Event Sources 253

6.2 Other GUI Controls 256
 Text Fields 256
 Check Boxes 259
 Radio Buttons 263
 Color and Date Pickers 267

6.3 Mouse and Key Events 270
 Mouse Events 271
 Key Events 276
6.4 Dialog Boxes 279
 File Choosers 283
6.5 JavaFX Properties 286
 Change Listeners 289
 Sliders 292
 Spinners 295
6.6 Tool Tips and Disabling Controls 299

Chapter 7 Arrays 313
7.1 Array Elements 314
7.2 Declaring and Using Arrays 315
 Bounds Checking 318
 Alternative Array Syntax 323
 _INITIALIZER Lists 324
 Arrays as Parameters 325
7.3 Arrays of Objects 325
7.4 Command-Line Arguments 335
7.5 Variable-Length Parameter Lists 337
7.6 Two-Dimensional Arrays 341
 Multidimensional Arrays 344
7.7 Arrays and GUIs 346
 An Array of Color Objects 346
 Choice Boxes 349

Chapter 8 Inheritance 361
8.1 Creating Subclasses 362
 The protected Modifier 367
 The super Reference 368
 Multiple Inheritance 372
8.2 Overriding Methods 373
 Shadowing Variables 376
8.3 Class Hierarchies 376
 The Object Class 377
 Abstract Classes 379
8.4 Visibility 381
8.5 Designing for Inheritance 383
Restricting Inheritance 384
8.6 Inheritance in JavaFX 385

Chapter 9 Polymorphism 395
9.1 Dynamic Binding 396
9.2 Polymorphism via Inheritance 397
9.3 Interfaces 409
 Interface Hierarchies 414
 The Comparable Interface 415
 The Iterator Interface 415
9.4 Polymorphism via Interfaces 416

Chapter 10 Exceptions 425
10.1 Exception Handling 426
10.2 Uncaught Exceptions 427
10.3 The try-catch Statement 428
 The finally Clause 431
10.4 Exception Propagation 432
10.5 The Exception Class Hierarchy 435
 Checked and Unchecked Exceptions 439
10.6 I/O Exceptions 439

Chapter 11 Analysis of Algorithms 449
11.1 Algorithm Efficiency 450
11.2 Growth Functions and Big-Oh Notation 451
11.3 Comparing Growth Functions 453
11.4 Determining Time Complexity 455
 Analyzing Loop Execution 455
 Nested Loops 456
 Method Calls 457
Chapter 12: Introduction to Collections—Stacks

12.1 Collections
- Abstract Data Types
- The Java Collections API

12.2 A Stack Collection

12.3 Crucial OO Concepts
- Inheritance and Polymorphism
- Generics

12.4 Using Stacks: Evaluating Postfix Expressions
- Javadoc

12.5 Exceptions

12.6 A Stack ADT

12.7 Implementing a Stack: With Arrays
- Managing Capacity

12.8 The ArrayStack Class
- The Constructors
- The `push` Operation
- The `pop` Operation
- The `peek` Operation
- Other Operations
- The `EmptyCollectionException` Class
- Other Implementations

Chapter 13: Linked Structures—Stacks

13.1 References as Links

13.2 Managing Linked Lists
- Accessing Elements
- Inserting Nodes
- Deleting Nodes

13.3 Elements without Links
- Doubly Linked Lists

13.4 Stacks in the Java API

13.5 Using Stacks: Traversing a Maze
CONTENTS

13.6 Implementing a Stack: With Links 520
 The LinkedStack Class 520
 The push Operation 524
 The pop Operation 526
 Other Operations 527

Chapter 14 Queues 533

14.1 A Conceptual Queue 534
14.2 Queues in the Java API 535
14.3 Using Queues: Code Keys 536
14.4 Using Queues: Ticket Counter Simulation 540
14.5 A Queue ADT 545
14.6 A Linked Implementation of a Queue 546
 The enqueue Operation 548
 The dequeue Operation 550
 Other Operations 551
14.7 Implementing Queues: With Arrays 552
 The enqueue Operation 556
 The dequeue Operation 558
 Other Operations 559
14.8 Double-Ended Queues (Dequeue) 559

Chapter 15 Lists 565

15.1 A List Collection 566
15.2 Lists in the Java Collections API 568
15.3 Using Unordered Lists: Program of Study 569
15.4 Using Indexed Lists: Josephus 579
15.5 A List ADT 581
 Adding Elements to a List 582
15.6 Implementing Lists with Arrays 587
 The remove Operation 589
 The contains Operation 591
 The add Operation for an Ordered List 592
CONTENTS

Operations Particular to Unordered Lists 593
The addAfter Operation for an Unordered List 593

15.7 Implementing Lists with Links 594
The remove Operation 595

15.8 Lists in JavaFX 597
Observable List 597
Sorted List 597

Chapter 16 Iterators 605

16.1 What’s an Iterator? 606
Other Iterator Issues 608

16.2 Using Iterators: Program of Study Revisited 609
Printing Certain Courses 613
Removing Courses 614

16.3 Implementing Iterators: With Arrays 615
16.4 Implementing Iterators: With Links 617

Chapter 17 Recursion 623

17.1 Recursive Thinking 624
Infinite Recursion 624
Recursion in Math 625

17.2 Recursive Programming 626
Recursion versus Iteration 629
Direct versus Indirect Recursion 629

17.3 Using Recursion 630
Traversing a Maze 630
The Towers of Hanoi 638

17.4 Analyzing Recursive Algorithms 643

Chapter 18 Searching and Sorting 651

18.1 Searching 652
Static Methods 653
Generic Methods 653
Linear Search 654
CONTENTS

Binary Search 656
Comparing Search Algorithms 658

18.2 Sorting 659
Selection Sort 662
Insertion Sort 664
Bubble Sort 666
Quick Sort 668
Merge Sort 672

18.3 Radix Sort 675

18.4 A Different Way to Sort—Comparator 679

Chapter 19 Trees 693

19.1 Trees 694
Tree Classifications 695

19.2 Strategies for Implementing Trees 697
Computational Strategy for Array Implementation of Trees 697
Simulated Link Strategy for Array Implementation of Trees 697
Analysis of Trees 699

19.3 Tree Traversals 700
Preorder Traversal 700
Inorder Traversal 701
Postorder Traversal 701
Level-Order Traversal 702

19.4 A Binary Tree ADT 703

19.5 Using Binary Trees: Expression Trees 707

19.6 A Back Pain Analyzer 719

19.7 Implementing Binary Trees with Links 724
The find Method 728
The iteratorInOrder Method 730

Chapter 20 Binary Search Trees 737

20.1 Binary Search Trees 738
Adding an Element to a Binary Search Tree 739
Removing an Element from a Binary Search Tree 741

20.2 Implementing a Binary Search Tree 743

20.3 Implementing Binary Search Trees: With Links 745
The addElement Operation 746
The removeElement Operation 748
The removeAllOccurrences Operation 752
The removeMin Operation 753
Implementing Binary Search Trees:
With Arrays 755

20.4 Using Binary Search Trees: Implementing Ordered Lists 755
Analysis of the BinarySearchTreeList Implementation 758

20.5 Balanced Binary Search Trees 759
Right Rotation 760
Left Rotation 761
Rightleft Rotation 762
Leftright Rotation 762

20.6 Implementing Binary Search Trees: AVL Trees 762
Right Rotation in an AVL Tree 763
Left Rotation in an AVL Tree 764
Rightleft Rotation in an AVL Tree 764
Leftright Rotation in an AVL Tree 765

20.7 Implementing Binary Search Trees:
Red/Black Trees 766
Insertion into a Red/Black Tree 766
Element Removal from a Red/Black Tree 770

Chapter 21 Heaps and Priority Queues 779

21.1 A Heap 780
The addElement Operation 782
The removeMin Operation 783
The findMin Operation 784

21.2 Using Heaps: Priority Queues 784
CONTENTS

21.3 Implementing Heaps: With Links 788
 The addElement Operation 788
 The removeMin Operation 792
 The findMin Operation 795

21.4 Implementing Heaps: With Arrays 795
 The addElement Operation 797
 The removeMin Operation 798
 The findMin Operation 800

21.5 Using Heaps: Heap Sort 800

Chapter 22 Sets and Maps 807

22.1 Set and Map Collections 808
22.2 Sets and Maps in the Java API 808
22.3 Using Sets: Domain Blocker 811
22.4 Using Maps: Product Sales 814
22.5 Using Maps: User Management 818
22.6 Implementing Sets and Maps Using Trees 823
22.7 Implementing Sets and Maps Using Hashing 823

Chapter 23 Multi-way Search Trees 831

23.1 Combining Tree Concepts 832
23.2 2-3 Trees 832
 Inserting Elements into a 2-3 Tree 833
 Removing Elements from a 2-3 Tree 835
23.3 2-4 Trees 838
23.4 B-Trees 840
 B*-Trees 841
 B+ -Trees 841
 Analysis of B-Trees 842
23.5 Implementation Strategies for B-Trees 842
Chapter 24 Graphs

24.1 Undirected Graphs 850
24.2 Directed Graphs 851
24.3 Networks 853
24.4 Common Graph Algorithms 854
 Traversals 854
 Testing for Connectivity 858
 Minimum Spanning Trees 860
 Determining the Shortest Path 863
24.5 Strategies for Implementing Graphs 863
 Adjacency Lists 864
 Adjacency Matrices 864
24.6 Implementing Undirected Graphs with an
 Adjacency Matrix 865
 The addEdge Method 870
 The addVertex Method 870
 The expandCapacity Method 871
 Other Methods 872

Chapter 25 Databases 879

25.1 Introduction to Databases 880
25.2 Establishing a Connection to a Database 882
 Obtaining a Database Driver 882
25.3 Creating and Altering Database Tables 885
 Create Table 885
 Alter Table 886
 Drop Column 887
25.4 Querying the Database 887
 Show Columns 888
25.5 Inserting, Viewing, and Updating Data 890
 Insert 891
CONTENTS

SELECT ... FROM 891
Update 896

25.6 Deleting Data and Database Tables 897
Deleting Data 897
Deleting Database Tables 898

Appendix A Glossary 903

Appendix B Number Systems 937
Place Value 938
Bases Higher Than 10 939
Conversions 940
Shortcut Conversions 943

Appendix C The Unicode Character Set 949

Appendix D Java Operators 953
Java Bitwise Operators 955

Appendix E Java Modifiers 959
Java Visibility Modifiers 960
A Visibility Example 960
Other Java Modifiers 961

Appendix F JavaFX Graphics 963
Coordinate Systems 964
Representing Colors 964
Basic Shapes 965
Arcs 970
<table>
<thead>
<tr>
<th>Images</th>
<th>974</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonts</td>
<td>976</td>
</tr>
<tr>
<td>Graphic Transformations</td>
<td>979</td>
</tr>
<tr>
<td>Translation</td>
<td>979</td>
</tr>
<tr>
<td>Scaling</td>
<td>980</td>
</tr>
<tr>
<td>Rotation</td>
<td>981</td>
</tr>
<tr>
<td>Shearing</td>
<td>982</td>
</tr>
<tr>
<td>Polygons and Polylines</td>
<td>982</td>
</tr>
<tr>
<td>Appendix G JavaFX Scene Builder</td>
<td>987</td>
</tr>
<tr>
<td>Hello Moon</td>
<td>988</td>
</tr>
<tr>
<td>Handling Events in JavaFX Scene Builder</td>
<td>993</td>
</tr>
<tr>
<td>Appendix H Regular Expressions</td>
<td>997</td>
</tr>
<tr>
<td>Appendix I Hashing</td>
<td>999</td>
</tr>
<tr>
<td>I.1 A Hashing</td>
<td>1000</td>
</tr>
<tr>
<td>I.2 Hashing Functions</td>
<td>1001</td>
</tr>
<tr>
<td>The Division Method</td>
<td>1002</td>
</tr>
<tr>
<td>The Folding Method</td>
<td>1002</td>
</tr>
<tr>
<td>The Mid-Square Method</td>
<td>1003</td>
</tr>
<tr>
<td>The Radix Transformation Method</td>
<td>1003</td>
</tr>
<tr>
<td>The Digit Analysis Method</td>
<td>1003</td>
</tr>
<tr>
<td>The Length-Dependent Method</td>
<td>1004</td>
</tr>
<tr>
<td>Hashing Functions in the Java Language</td>
<td>1004</td>
</tr>
<tr>
<td>I.3 Resolving Collisions</td>
<td>1004</td>
</tr>
<tr>
<td>Chaining</td>
<td>1005</td>
</tr>
<tr>
<td>Open Addressing</td>
<td>1006</td>
</tr>
<tr>
<td>I.4 Deleting Elements from a Hash Table</td>
<td>1009</td>
</tr>
<tr>
<td>Deleting from a Chained Implementation</td>
<td>1009</td>
</tr>
<tr>
<td>Deleting from an Open Addressing Implementation</td>
<td>1010</td>
</tr>
</tbody>
</table>
CONTENTS

1.5 Hash Tables in the Java Collections API
 The Hashtable Class 1011
 The HashSet Class 1013
 The HashMap Class 1013
 The IdentityHashMap Class 1014

1.6 The WeakHashMap Class
 LinkedHashSet and LinkedHashMap 1016

Appendix J Java Syntax 1023

Index 1037
Chapter 1 page 2: Reference: Java is a relatively new programming language compared to many others. It was developed in the early 1990s by James Gosling at Sun Microsystems. Java was released to the public in 1995 and has gained tremendous popularity since “The History of Java Technology” Oracle Corporation. 1995. Accessed at http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html

Chapter 1 page 15: Excerpt: A research group at Auburn University has developed jGRASP, a free Java IDE that is included on the CD that accompanies this book. It can also be downloaded from www.jgrasp.org. “jGRASP” is developed by the Department of Computer Science and Software Engineering in the Samuel Ginn College of Engineering at Auburn University.

Chapter 20: Text: Adel'son-Vel'skii and Landis developed a method called AVL trees that is a variation on this theme. For each node in the tree, we will keep track of the height of the left and right subtrees. Adelson-Velskii, Georgii and Evengii Landis. “An Algorithm for the Organization of Information.” 1962.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH
REGARD TO THIS INFORMATION, INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES.

THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

MICROSOFT® AND WINDOWS® ARE REGISTERED TRADEMARKS OF THE MICROSOFT CORPORATION IN THE U.S.A. AND OTHER COUNTRIES. THIS BOOK IS NOT SPONSORED OR ENDORED BY OR AFFILIATED WITH THE MICROSOFT CORPORATION.
LOCATION OF VIDEONOTES IN THE TEXT

Chapter 1 Overview of program elements, page 4
 Comparison of Java IDEs, page 16
 Examples of various error types, page 18

Chapter 2 Example using strings and escape sequences, page 40
 Review of primitive data and expressions, page 52
 Example using the Scanner class, page 63

Chapter 3 Creating objects, page 77
 Example using the Random and Math classes, page 89

Chapter 4 Examples using conditionals, page 123
 Examples using while loops, page 138
 Examples using for loops, page 155

Chapter 5 Dissecting the Die class, page 178
 Discussion of the Account class, page 194

Chapter 7 Overview of arrays, page 315
 Discussion of the LetterCount example, page 323

Chapter 8 Overview of inheritance, page 363
 Example using a class hierarchy, page 378

Chapter 9 Exploring the Firm program, page 404

Chapter 10 Proper exception handling, page 432

Chapter 12 An overview of the ArrayStack implementation, page 488

Chapter 13 Using a stack to solve a maze, page 512

Chapter 14 An array-based queue implementation, page 552

Chapter 15 List categories, page 566

Chapter 17 Analyzing recursive algorithms, page 644

Chapter 18 Demonstration of a binary search, page 657

Chapter 19 Demonstration of the four basic tree traversals, page 703

Chapter 20 Demonstration of the four basic tree rotations, page 763

Chapter 21 Demonstration of a heap sort on an array, page 801

Chapter 22 A comparison of sets and maps, page 808

Chapter 23 Inserting elements into, and removing elements from, a 2-3 tree, page 835

Chapter 24 Illustration of depth-first and breadth-first traversals of a graph, page 855