Preface

About This Book

We believe firmly that analyzing data to uncover insight and meaning is one of the most important skills to prepare students for both the workplace and civic life. This is not a book about “statistics,” but is a book about understanding our world and, in particular, understanding how statistical inference and data analysis can improve the world by helping us see more clearly.

Since the first edition, we’ve seen the rise of a new science of data and been amazed by the power of data to improve our health, predict our weather, connect long-lost friends, run our households, and organize our lives. But we’ve also been concerned by data breaches, by a loss of privacy that can threaten our social structures, and by attempts to manipulate opinion.

This is not a book meant merely to teach students to interpret the statistical findings of others. We do teach that; we all need to learn to critically evaluate arguments, particularly arguments based on data. But more importantly, we wish to inspire students to examine data and make their own discoveries. This is a book about doing. We are not interested in a course to teach students to memorize formulas or to ask them to mindlessly carry out procedures. Students must learn to think critically with and about data, to communicate their findings to others, and to carefully evaluate others’ arguments.

What’s New in the Third Edition

As educators and authors, we were strongly inspired by the spirit that created the Guidelines for Assessment and Instruction in Statistics Education (GAISE) (http://amstat.org/asa/education/Guidelines-for-Assessment-and-Instruction-in-Statistics-Education-Reports.aspx), which recommends that we

• teach statistical thinking, which includes teaching statistics as an investigative process and providing opportunities for students to engage in multivariate thinking;
• focus on conceptual understandings;
• integrate real data with a context and purpose;
• foster active learning;
• use technology to explore concepts and to analyze data;
• use assessments to improve and evaluate student learning.

These have guided the first two editions of the book. But the rise of data science has led us to rethink how we engage students with data, and so, in the third edition, we offer some new features that we hope will prepare students for working with the complex data that surrounds us.

More precisely, you’ll find

• An emphasis on what we call the Data Cycle, a device to guide students through the statistical investigation process. The Data Cycle includes four phases: Ask Questions, Consider Data, Analyze Data, and Interpret Data. A new marginal icon indicates when the Data Cycle is particularly relevant.
• An increased emphasis on formulating “statistical investigative questions” as an important first step in the Data Cycle. Previous editions have emphasized the other three steps, but we feel students need practice in formulating questions that will help them interpret data. To formulate questions is to engage in mathematical and statistical modeling, and this edition spends more time teaching this important skill.
• The end-of-chapter activities have been replaced by a series of “Data Projects.” These are self-guided activities that teach students important “data moves” that will help them navigate through the large and complex data sets that are so often found in the real world.

• The addition of a “Data Moves” icon. Some examples are based on extracts of data from much larger data sets. The Data Moves icon points students to these data sets and also indicate the “data moves” used to extract the data. We are indebted to Tim Erickson for the phrase “data moves” and the ideas that motivate it.

• A smoother and more refined approach to simulations in Chapter 5.

• Updated technology guides to match current hardware and software.

• New and updated examples in each chapter.

• New and updated data sets, with the inclusion of more large data.

Approach
Our text is concept-based, as opposed to method-based. We teach useful statistical methods, but we emphasize that applying the method is secondary to understanding the concept.

In the real world, computers do most of the heavy lifting for statisticians. We therefore adopt an approach that frees the instructor from having to teach tedious procedures and leaves more time for teaching deeper understanding of concepts. Accordingly, we present formulas as an aid to understanding the concepts, rather than as the focus of study.

We believe students need to learn how to

• Determine which statistical procedures are appropriate.

• Instruct the software to carry out the procedures.

• Interpret the output.

We understand that students will probably see only one type of statistical software in class. But we believe it is useful for students to compare output from several different sources, so in some examples we ask them to read output from two or more software packages.

Coverage
The first two-thirds of this book are concept-driven and cover exploratory data analysis and inferential statistics—fundamental concepts that every introductory statistics student should learn. The final third of the book builds on that strong conceptual foundation and is more methods-based. It presents several popular statistical methods and more fully explores methods presented earlier, such as regression and data collection.

Our ordering of topics is guided by the process through which students should analyze data. First, they explore and describe data, possibly deciding that graphics and numerical summaries provide sufficient insight. Then they make generalizations (inferences) about the larger world.

Chapters 1–4: Exploratory Data Analysis. The first four chapters cover data collection and summary. Chapter 1 introduces the important topic of data collection and compares and contrasts observational studies with controlled experiments. This chapter also teaches students how to handle raw data so that the data can be uploaded to their statistical software. Chapters 2 and 3 discuss graphical and numerical summaries of single
variables based on samples. We emphasize that the purpose is not just to produce a
graph or a number but, instead, to explain what those graphs and numbers say about
the world. Chapter 4 introduces simple linear regression and presents it as a technique
for providing graphical and numerical summaries of relationships between two numeri-

We feel strongly that introducing regression early in the text is beneficial in build-
ing student understanding of the applicability of statistics to real-world scenarios. After
completing the chapters covering data collection and summary, students have acquired
the skills and sophistication they need to describe two-variable associations and to
generate informal hypotheses. Two-variable associations provide a rich context for
class discussion and allow the course to move from fabricated problems (because
one-variable analyses are relatively rare in the real world) to real problems that appear
frequently in everyday life. We return to regression in Chapter 14, when we discuss
statistical inference in the context of regression, which requires quite a bit of machinery.
We feel that it would be a shame to delay until the end of the course all the insights
that regression without inference can provide.

Chapters 5–8: Inference. These chapters teach the fundamental concepts of statisti-
cal inference. The main idea is that our data mirror the real world, but imperfectly;
although our estimates are uncertain, under the right conditions we can quantify our
uncertainty. Verifying that these conditions exist and understanding what happens if
they are not satisfied are important themes of these chapters.

Chapters 9–11: Methods. Here we return to the themes covered earlier in the text
and present them in a new context by introducing additional statistical methods, such
as estimating population means, analyzing categorical variables, and analyzing rela-
tions between a numerical and a categorical variable. We also introduce multiple
comparisons and use them to motivate the need for the statistical method of ANOVA.

Chapters 12–14: Special Topics. Students who have covered all topics up to this point
will have a solid foundation in statistics. These final chapters build on that foundation
and offer more details, as we explore the topics of designing controlled experiments,
survey sampling, additional contexts for hypothesis testing, and using regression to
make inferences about a population.

In Chapter 12 we provide guidance for reading scientific literature. Even if your
schedule does not allow you to cover Chapter 12, we recommend using Section 12.3 to
offer students the experience of critically examining real scientific papers.

Organization

Our preferred order of progressing through the text is reflected in the Contents, but
there are some alternative pathways as well.

10-week Quarter. The first eight chapters provide a full, one-quarter course in intro-
ductive statistics. If time remains, cover Sections 9.1 and 9.2 as well, so that students
can solidify their understanding of confidence intervals and hypothesis tests by revisiting
the topic with a new parameter.

Proportions First. Ask two statisticians, and you will get three opinions on whether
it is best to teach means or proportions first. We have come down on the side of
proportions for a variety of reasons. Proportions are much easier to find in popular
news media (particularly around election time), so they can more readily be tied to
students’ everyday lives. Also, the mathematics and statistical theory are simpler;
because there’s no need to provide a separate estimate for the population standard
deivation, inference is based on the Normal distribution, and no further approximations
(that is, the t-distribution) are required. Hence, we can quickly get to the heart of the
matter with fewer technical diversions.
The basic problem here is how to quantify the uncertainty involved in estimating a parameter and how to quantify the probability of making incorrect decisions when posing hypotheses. We cover these ideas in detail in the context of proportions. Students can then more easily learn how these same concepts are applied in the new context of means (and any other parameter they may need to estimate).

Means First. Conversely, many people feel that there is time for only one parameter and that this parameter should be the mean. For this alternative presentation, cover Chapters 6, 7, and 9, in that order. On this path, students learn about survey sampling and the terminology of inference (population vs. sample, parameter vs. statistic) and then tackle inference for the mean, including hypothesis testing.

To minimize the coverage of proportions, you might choose to cover Chapter 6, Section 7.1 (which treats the language and framework of statistical inference in detail), and then Chapter 9. Chapters 7 and 8 develop the concepts of statistical inference more slowly than Chapter 9, but essentially, Chapter 9 develops the same ideas in the context of the mean.

If you present Chapter 9 before Chapters 7 and 8, we recommend that you devote roughly twice as much time to Chapter 9 as you have devoted to previous chapters, because many challenging ideas are explored in this chapter. If you have already covered Chapters 7 and 8 thoroughly, Chapter 9 can be covered more quickly.

Features

We’ve incorporated into this text a variety of features to aid student learning and to facilitate its use in any classroom.

Integrating Technology

Modern statistics is inseparable from computers. We have worked to make this textbook accessible for any classroom, regardless of the level of in-class exposure to technology, while still remaining true to the demands of the analysis. We know that students sometimes do not have access to technology when doing homework, so many exercises provide output from software and ask students to interpret and critically evaluate that given output.

Using technology is important because it enables students to handle real data, and real data sets are often large and messy. The following features are designed to guide students.

- **TechTips** outline steps for performing calculations using TI-84® (including TI-84 + C®) graphing calculators, Excel®, Minitab®, and StatCrunch®. We do not want students to get stuck because they don’t know how to reproduce the results we show in the book, so whenever a new method or procedure is introduced, an icon, refers students to the TechTips section at the end of the chapter. Each set of TechTips contains at least one mini-example, so that students are not only learning to use the technology but also practicing data analysis and reinforcing ideas discussed in the text. Most of the provided TI-84 steps apply to all TI-84 calculators, but some are unique to the TI-84 + C calculator. Throughout the text, screenshots of TI calculators are labeled “TI-84” but are, in fact, from a TI-84 Plus C Silver Edition.

- All data sets used in the exposition and exercises are available at http://www.pearsonhighered.com/mathstatsresources/.

Guiding Students

- Each chapter opens with a Theme. Beginners have difficulty seeing the forest for the trees, so we use a theme to give an overview of the chapter content.
• Each chapter begins by posing a real-world Case Study. At the end of the chapter, we show how techniques covered in the chapter helped solve the problem presented in the Case Study.

• Margin Notes draw attention to details that enhance student learning and reading comprehension.
 - Caution notes provide warnings about common mistakes or misconceptions.
 - Looking Back reminders refer students to earlier coverage of a topic.
 - Details clarify or expand on a concept.

• Key Points highlight essential concepts to draw special attention to them. Understanding these concepts is essential for progress.

• Snapshots break down key statistical concepts introduced in the chapter, quickly summarizing each concept or procedure and indicating when and how it should be used.

• Data Moves point students toward more complete source data.

• An abundance of worked-out examples model solutions to real-world problems relevant to students’ lives. Each example is tied to an end-of-chapter exercise so that students can practice solving a similar problem and test their understanding. Within the exercise sets, the icon TRY indicates which problems are tied to worked-out examples in that chapter, and the numbers of those examples are indicated.

• The Chapter Review that concludes each chapter provides a list of important new terms, student learning objectives, a summary of the concepts and methods discussed, and sources for data, articles, and graphics referred to in the chapter.

Active Learning

• Each chapter ends in a Data Project. These are activities designed for students to work alone or in pairs. Data analysis requires practice, and these sections, which grow increasingly more complex, are intended to guide students through basic “data moves” to help them find insight in complex data.

• All exercises are located at the end of the chapter. Section Exercises are designed to begin with a few basic problems that strengthen recall and assess basic knowledge, followed by mid-level exercises that ask more complex, open-ended questions. Chapter Review Exercises provide a comprehensive review of material covered throughout the chapter.

 The exercises emphasize good statistical practice by requiring students to verify conditions, make suitable use of graphics, find numerical values, and interpret their findings in writing. All exercises are paired so that students can check their work on the odd-numbered exercise and then tackle the corresponding even-numbered exercise. The answers to all odd-numbered exercises appear in the back of the student edition of the text.

 Challenging exercises, identified with an asterisk (*), ask open-ended questions and sometimes require students to perform a complete statistical analysis.

• Most chapters include select exercises, marked with a g within the exercise set, to indicate that problem-solving help is available in the Guided Exercises section. If students need support while doing homework, they can turn to the Guided Exercises to see a step-by-step approach to solving the problem.
Acknowledgments

We are grateful for the attention and energy that a large number of people devoted to making this a better book. We extend our gratitude to Chere Bemelmans, who handled production, and to Tamela Ambush, content producer. Many thanks to John Norbutas for his technical advice and help with the TechTips. We thank Deirdre Lynch, editor-in-chief, for signing us up and sticking with us, and we are grateful to Emily Ockay for her market development efforts.

We extend our sincere thanks for the suggestions and contributions made by the following reviewers of this edition:

Beth Burns, Bowling Green State University
Rod Elmore, Mid Michigan Community College
Carly Fetteroll, Western New England University
Elizabeth Flynn, College of the Canyons
David French, Tidewater Community College
Terry Fuller, California State University, Northridge
Kimberly Gardner, Kennesaw State University
Ryan Girard, Kauai Community College
Carrie Grant, Flagler College
Deborah Hanus, Brookhaven College
Kristin Harvey, The University of Texas at Austin
Abbas Jaffary, Moraine Valley Community College
Tony Jenkins, Northwestern Michigan College
Jonathan Kalk, Kauai Community College
Joseph Kudrle, University of Vermont
Matt Lathrop, Heartland Community College
Raymond E. Lee, The University of North Carolina at Pembroke
Karen McNeal, Moraine Valley Community College
Tejal Naik, West Valley College
Hadley Pridgen, Gulf Coast State College
John M. Russell, Old Dominion University
Amy Salvati, Adirondack Community College
Marcia Siderow, California State University, Northridge
Kenneth Strazzetti, George Mason University
Amy Vu, West Valley College
Rebecca Walker, Guttman Community College

We would also like to extend our sincere thanks for the suggestions and contributions made by the following reviewers, class testers, and focus group attendees of the previous edition.

Arun Agarwal, Grambling State University
Anne Albert, University of Findlay
Michael Allen, Glendale Community College
Eugene Allevato, Woodbury University
Dr. Jerry Allison, Trident Technical College
Polly Amstutz, University of Nebraska
Patricia Anderson, Southern Adventist University
Mary Anne Anthony-Smith, Santa Ana College
David C. Ashley, Florida State College at Jacksonville
Dana Asmus, Greenville Technical College
Kathy Autrey, Northwestern State University of Louisiana
Wayne Barber, Chemeketa Community College
Roxane Barrows, Hocking College
Jennifer Beineke, Western New England College
Diane Benner, Harrisburg Area Community College
Norma Biscula, University of Maine, Augusta
K.B. Boomer, Bucknell University
Mario Borha, Loyola University of Chicago
David Bosworth, Hutchinson Community College
Diana Boyette, Seminole Community College
Elizabeth Paulus Brown, Waukesha County Technical College
Leslie Buck, Saffolk Community College
R.B. Campbell, University of Northern Iowa
Stephanie Campbell, Mineral Area College
Ann Cannon, Cornell College
Rao Chaganty, Old Dominion University
Carolyn Chapel, Western Technical College
Christine Cole, Moorpark College
Linda Brant Collins, University of Chicago
James A. Condor, Monroe Community College
Carolyn Cuff, Westminster College
Phyllis Curtiss, Grand Valley State University
Monica Dabos, University of California, Santa Barbara
Greg Davis, University of Wisconsin, Green Bay
Bob Denton, Orange Coast College
Julie DePree, University of New Mexico–Valencia
Jill DeWitt, Baker Community College of Muskegon
Paul Drelles, West Shore Community College
Keith Driscoll, Clayton State University
Rob Eby, Blinn College
Nancy Eschen, Florida Community College at Jacksonville
Karen Estes, St. Petersburg College
Mariana Evans, University of Nevada, Reno
Harshini Fernando, Purdue University North Central
Stephanie Fitchett, University of Northern Colorado
Elaine B. Fitz, Bucks County Community College
Michael Flesch, Metropolitan Community College
Melinda Fox, Ivy Tech Community College, Fairbanks
Joshua Francis, Defiance College
Michael Frankel, Kennesaw State University
Heather Gamber, Lone Star College
Debbie Garrison, Valencia Community College, East Campus
Kim Gilbert, University of Georgia
Stephen Gold, Cypress College
Nick Gomersall, Luther College
Mary Elizabeth Gore, Community College of Baltimore County–Essex
ACKNOWLEDGMENTS

Ken Grace, Anoka Ramsey Community College
Larry Green, Lake Tahoe Community College
Jeffrey Grell, Baltimore City Community College
Albert Groccia, Valencia Community College, Oceola Campus
David Gurney, Southeastern Louisiana University
Chris Hakenkamp, University of Maryland, College Park
Melodie Hallet, San Diego State University
Donnie Hallstone, Green River Community College
Cecil Hallum, Sam Houston State University
Josephine Hamer, Western Connecticut State University
Mark Harbison, Sacramento City College
Beverly J. Harter, Oklahoma Wesleyan University
Laura Heath, Palm Beach State College
Greg Henderson, Hillsborough Community College
Mary Ann Henderson, Morton College
Carla Hill, Marist College
Michael Huber, Muhlenberg College
Kelly Jackson, Camden County College
Bridgette Jacob, Onondaga Community College
Robert Jernigan, American University
Chun Jin, Central Connecticut State University
Jim Johnston, Concord University
Maryann Justinger, Ed.D., Erie Community College
Joseph Karsnowski, Norwalk Community College
Sushita Karunaratne, Purdue University North Central
Mohammed Kazemi, University of North Carolina–Charlotte
Robert Keller, Loras College
Omar Keshtik, Ohio State University
Raja Khoury, Collin County Community College
Brianna Killian, Daytona State College
Yoon G. Kim, Humboldt State University
Greg Knofczynski, Armstrong Atlantic University
Jeffrey Kollath, Oregon State University
Erica Kwiatkowski-Egizio, Joliet Junior College
Sister Jean A. Lanahan, OP, Molloy College
Katie Larkin, Lake Tahoe Community College
Michael LaValle, Rochester Community College
Dean Leoni, Edmonds Community College
Lenore Leret, Bergen Community College
Quan Li, Texas A&M University
Doug Mace, Kirtland Community College
Walter H. Mackey, Owens Community College
Keith McCoy, Wilbur Wright College
Elaine McEachern-Newman, Sonoma State University
William McGregor, Rockland Community College
Bill Meisel, Florida State College at Jacksonville
Bruno Mendes, University of California, Santa Cruz
Wendy Miao, El Camino College
Robert Mignone, College of Charleston
Ashod Minasian, El Camino College
Megan Mocko, University of Florida
Sumona Mondal, Clarkson University
Kathy Mowers, Owensboro Community and Technical College
Mary Moynihan, Cape Cod Community College
Junalyn Navarra-Madsen, Texas Woman’s University
Azarina Nazanian, Santa Fe College
Stacey O. Nicholls, Arden College
Helen Noble, San Diego State University
Lyn Noble, Florida State College at Jacksonville
Keith Oberlander, Pasadena City College
Pamela Omer, Western New England College
Ralph Padgett Jr., University of California – Riverside
Nabendu Pal, University of Louisiana at Lafayette
Irene Palacios, Grossmont College
Ron Palcic, Johnson County Community College
Adam Pennell, Greensboro College
Patrick Perry, Hawaii Pacific University
Joseph Pick, Palm Beach State College
Philip Pickering, Genesee Community College
Victor I. Piercey, Ferris State University
Robin Powell, Greenville Technical College
Nicholas Pritchard, Coastal Carolina University
Linda Quinn, Cleveland State University
William Radulovich, Florida State College at Jacksonville
Munmun Rashid, Indiana University of Pennsylvania
Fred J. Rispoli, Dowling College
Danielle Rivard, Post University
Nancy Rivers, Wake Technical Community College
Corlis Robe, East Tennessee State University
Thomas Roe, South Dakota State University
Alex Rolon, North Hampton Community College
Dan Rowe, Heartland Community College
Ali Saadat, University of California – Riverside
Kelly Sakkenen, Lake Land College
Carol Saltsgaver, University of Illinois–Springfield
Radha Sankaran, Pasco County Community College
Delray Schultz, Millersville University
Jenny Shook, Pennsylvania State University
Danya Smithers, Northeast State Technical Community College
Larry Southard, Florida Gulf Coast University
Dianna J. Spence, North Georgia College & State University
René Sporer, Diablo Valley College
Jeganathan Srijandarajah, Madison Area Technical College–Traqx
David Stewart, Community College of Baltimore County–Cantonsville
Linda Strauss, Penn State University
John Stroyles, Georgia Southwestern State University
Joseph Sukta, Moraine Valley Community College
Sharon I. Sullivan, Catawba College
Lori Thomas, Midland College
Malissa Trent, Northeast State Technical Community College
Ruth Trygstad, Salt Lake Community College
Gail Tudor, Husson University
Manuel T. Uy, College of Alameda
Lewis Van Brackle, Kennesaw State University
Mabhobeh Vezvaei, Kent State University
Joseph Villalobos, El Camino College
Barbara Wainwright, Salisbury University
Henry Wakhungu, Indiana University
Jerimi Ann Walker, Moraine Valley Community College
Dottie Walton, Cuyahoga Community College
Jen-Jing Wang, SUNY, Oneonta
Jane West, Trident Technical College
Michelle White, Terra Community College
Bonnie-Lou Wicklund, Mount Wachusett Community College
Sandra Williams, Front Range Community College
Rebecca Wong, West Valley College
Alan Worley, South Plains College
Jane-Marie Wright, Suffolk Community College
Haishen Yao, CUNY, Queensborough Community College
Lynda Zenati, Robert Morris Community College
Yan Zheng-Araujo, Springfield Community Technical College
Cathleen Zucco-Teveloff, Rider University
Mark A. Zuiker, Minnesota State University, Mankato

Copyright Pearson. All Rights Reserved.
MyLab Statistics Online Course for *Introductory Statistics: Exploring the World Through Data, 3e*

(Access Code Required)

MyLab™ Statistics is available to accompany Pearson's market-leading text offerings. To give students a consistent tone, voice, and teaching method, each text's flavor and approach is tightly integrated throughout the accompanying MyLab Statistics course, making learning the material as seamless as possible.

NEW! Integrated Review

This MyLab includes a full suite of supporting Integrated Review resources for the Gould, *Introductory Statistics* course, including pre-made, assignable (and editable) quizzes to assess the prerequisite skills needed for each chapter, and personalized remediation for any gaps in skills that are identified. Each student, therefore, receives just the help that he or she needs—no more, no less.

NEW! Data Projects

Data Projects from the text are assignable in MyLab Statistics and provide opportunities for students to practice statistical thinking beyond the classroom. StatCrunch Projects that either span the entire curriculum or focus on certain key concepts are also assignable in MyLab Statistics and encourage students to apply concepts to real situations and make data-informed decisions.

UPDATED! Conceptual Questions

The Conceptual Question Library in MyLab Statistics includes 1,000 assignable questions that assess conceptual understanding. These questions are now correlated by chapter to make it easier than ever to navigate and assign these types of questions.

pearson.com/mylab/statistics

Copyright Pearson. All Rights Reserved.
Student Resources

StatCrunch
StatCrunch® is powerful web-based statistical software that allows users to collect, crunch, and communicate with data. The vibrant online community offers tens of thousands of shared data sets for students and instructors to analyze, in addition to all of the data sets in the text or online homework. StatCrunch is integrated directly into MyLab Statistics or it can be purchased separately. Learn more at www.statcrunch.com.

Video Resources
Chapter Review videos walk students through solving some of the more complex problems and review key concepts from each chapter. Data Cycle of Everyday Things videos demonstrate for students that data collection and data analysis can be applied to answer questions about everyday life. StatTalk Videos, hosted by fun-loving statistician Andrew Vickers, demonstrate important statistical concepts through interesting stories and real-life events. Assessment questions for each video are also available.

Data Sets
All data sets from the textbook are available in MyLab Statistics. They can be analyzed in StatCrunch or downloaded for use in other statistical software programs.

Statistical Software Support
Instructors and students can copy data sets from the text and MyLab Statistics exercises directly into software such as StatCrunch or Excel®. Students can also access instructional support tools including tutorial videos, Study Cards, and manuals for a variety of statistical software programs including, StatCrunch, Excel, Minitab®, JMP®, R, SPSS, and TI 83/84 calculators.

Student Solutions Manual

Instructor Resources

Instructor’s Edition
Includes answers to all text exercises, as well as a set of Instructor Notes at the front of the text that offer chapter-by-chapter teaching suggestions and commentary. (ISBN-13: 978-0-13-516300-9; ISBN-10: 0-13-516300-5)

Instructor Solutions Manual
Written by James Lapp, the Instructor Solutions Manual contains worked-out solutions to all text exercises. It can be downloaded from MyLab Statistics or from www.pearson.com.

PowerPoint Slides
PowerPoint slides provide an overview of each chapter, stressing important definitions and offering additional examples. They can be downloaded from MyLab Statistics or from www.pearson.com.

TestGen
TestGen® (www.pearson.com/testgen) enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text. TestGen is algorithmically based, allowing instructors to create multiple but equivalent versions of the same question or test, and modify test bank questions or add new questions. It is available for download from Pearson's online catalog, www.pearson.com. The questions are also assignable in MyLab Statistics.

Learning Catalytics
Now included in all MyLab Statistics courses, this student response tool uses students' smartphones, tablets, or laptops to engage them in more interactive tasks and thinking during lecture. Learning Catalytics™ fosters student engagement and peer-to-peer learning with real-time analytics. Access pre-built exercises created specifically for statistics.

Question Libraries
In addition to StatCrunch Projects and the Conceptual Question Library, MyLab Statistics also includes a Getting Ready for Statistics library that contains more than 450 exercises on prerequisite topics.
Statistical Software
Bundle Options

Minitab and Minitab Express™
Bundling Minitab software with educational materials ensures students have access to the software they need in the classroom, around campus, and at home. And having 12-month access to Minitab and Minitab Express ensures students can use the software for the duration of their course. ISBN 13: 978-0-13-445640-9 ISBN 10: 0-13-445640-8

JMP Student Edition

XLSTAT™
An Excel add-in that enhances the analytical capabilities of Excel. XLSTAT is used by leading businesses and universities around the world. It is available to bundle with this text. For more information go to www.pearsonhighered.com/xlstatupdate. (ISBN-13: 978-0-321-75940-5; ISBN-10: 0-321-75940-0)