
Assembly Language for
x86 Processors

Eighth Edition

KIP R. IRVINE

Florida International University
School of Computing and Information Sciences

A01_IRVI1656_08_SE_FM.indd 1 28/02/19 4:31 PM

Senior Vice President Courseware Portfolio Management:
Marcia J. Horton
Vice President, Portfolio Management: Engineering,
Computer Science & Global Editions: Julian Partridge
Executive Portfolio Manager: Tracy Johnson
Portfolio Management Assistant: Meghan Jacoby
Product Marketing Manager: Yvonne Vannatta
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant

Managing Content Producer: Scott Disanno
Content Producer: Amanda Brands
Manufacturing Buyer, Higher Ed, Lake Side Communications, Inc.
(LSC): Maura Zaldivar-Garcia
Inventory Manager: Bruce Boundy
Rights and Permissions Manager: Ben Ferrini
Full-Service Project Management: Vanitha Puela, Pearson CSC
Cover Image: Tetra Images/Alamy Stock Photo
Printer/Binder: LSC Communications, Inc.

IA-32, Pentium, i486, Intel64, Celeron, and Intel 386 are trademarks of Intel Corporation. Athlon, Phenom, and Opteron are trademarks of Advanced
Micro Devices. TASM and Turbo Debugger are trademarks of Borland International. Microsoft Assembler (MASM), Windows Vista, Windows 7, Win-
dows NT, Windows Me, Windows 95, Windows 98, Windows 2000, Windows XP, MS-Windows, PowerPoint, Win32, DEBUG, WinDbg, MS-DOS,
Visual Studio, Visual C++, and CodeView are registered trademarks of Microsoft Corporation. Autocad is a trademark of Autodesk. Java is a trademark
of Sun Microsystems. PartitionMagic is a trademark of Symantec. All other trademarks or product names are the property of their respective owners.

Copyright © 2020, 2015, 2011, 2007, 2003 by Pearson Inc. 221 River Street, Hoboken, NJ 07030. All rights reserved. Manufactured in the
United States of America. This publication is protected by Copyright and permissions should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission(s) to use materials from this work, please visit http://www.pearsoned.com/permissions/.

Previously published as Assembly Language for Intel-Based Computers.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing
of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION
CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE. ALL
SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR
ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMATION,
INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS
FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS RESPECTIVE SUP-
PLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES.
THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPH-
ICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE
SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED HEREIN
AT ANY TIME. PARTIAL SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

MICROSOFT® AND WINDOWS® ARE REGISTERED TRADEMARKS OF THE MICROSOFT CORPORATION IN THE USA AND OTHER
COUNTRIES. SCREEN SHOTS AND ICONS REPRINTED WITH PERMISSION FROM THE MICROSOFT CORPORATION. THIS BOOK
IS NOT SPONSORED OR ENDORSED BY OR AFFILIATED WITH THE MICROSOFT CORPORATION.

Library of Congress Cataloging-in-Publication Data
Names: Irvine, Kip R., 1951- author.
Title: Assembly language for X86 processors / Kip R. Irvine, Florida
 International University School of Computing and Information Sciences.
Other titles: Assembly language for Intel-based computers
Description: Eighth edition. | Hoboken : Pearson, [2019] | Earlier editions
 published under title: Assembly language for intel-based computers. |
 Includes bibliographical references and index.
Identifiers: LCCN 2018058613| ISBN 9780135381694 | ISBN 013538169X
Subjects: LCSH: IBM microcomputers--Programming. | X86 assembly language
 (Computer program language)
Classification: LCC QA76.73.X16 I78 2019 | DDC 005.265--dc23 LC record available at https://lccn.loc.gov/2018058613

10 9 8 7 6 5 4 3 2 1

ISBN-10: 0-13-538169-X
ISBN-13: 978-0-13-538169-4

A01_IRVI1656_08_SE_FM.indd 2 28/02/19 4:31 PM

To Jack and Candy Irvine

A01_IRVI1656_08_SE_FM.indd 3 28/02/19 4:31 PM

A01_IRVI1656_08_SE_FM.indd 4 28/02/19 4:31 PM

v

Contents
Preface xxi

1 Basic Concepts 1
1.1 Welcome to Assembly Language 1

1.1.1 Questions You Might Ask 2
1.1.2 Assembly Language Applications 5
1.1.3 Section Review 6

1.2 Virtual Machine Concept 7
1.2.1 Section Review 9

1.3 Data Representation 10
1.3.1 Binary Integers 10
1.3.2 Binary Addition 12
1.3.3 Integer Storage Sizes 13
1.3.4 Hexadecimal Integers 14
1.3.5 Hexadecimal Addition 16
1.3.6 Signed Binary Integers 16
1.3.7 Binary Subtraction 19
1.3.8 Character Storage 20
1.3.9 Binary-Coded Decimal (BCD) Numbers 22
1.3.10 Section Review 22

1.4 Boolean Expressions 23
1.4.1 Truth Tables for Boolean Functions 26
1.4.2 Section Review 27

1.5 Chapter Summary 27

1.6 Key Terms 28

1.7 Review Questions and Exercises 29
1.7.1 Short Answer 29
1.7.2 Algorithm Workbench 31

2 x86 Processor Architecture 33
2.1 General Concepts 34

2.1.1 Basic Microcomputer Design 34
2.1.2 Instruction Execution Cycle 35
2.1.3 Reading from Memory 36

A01_IRVI1656_08_SE_FM.indd 5 28/02/19 4:31 PM

vi Contents

2.1.4 Loading and Executing a Program 37
2.1.5 Section Review 38

2.2 32-Bit x86 Processors 39
2.2.1 Modes of Operation 39
2.2.2 Basic Execution Environment 39
2.2.3 x86 Memory Management 43
2.2.4 Section Review 44

2.3 64-Bit x86-64 Processors 44
2.3.1 64-Bit Operation Modes 45
2.3.2 Basic 64-Bit Execution Environment 45
2.3.3 Section Review 46

2.4 Components of a Typical x86 Computer 47
2.4.1 Motherboard 47
2.4.2 Memory 49
2.4.3 Section Review 49

2.5 Input-Output System 50
2.5.1 Levels of I/O Access 50
2.5.2 Section Review 52

2.6 Chapter Summary 53

2.7 Key Terms 54

2.8 Review Questions 55

3 Assembly Language Fundamentals 57
3.1 Basic Language Elements 58

3.1.1 First Assembly Language Program 58
3.1.2 Integer Literals 59
3.1.3 Constant Integer Expressions 60
3.1.4 Real Number Literals 61
3.1.5 Character Literals 61
3.1.6 String Literals 62
3.1.7 Reserved Words 62
3.1.8 Identifiers 62
3.1.9 Directives 63
3.1.10 Instructions 63
3.1.11 Section Review 67

3.2 Example: Adding and Subtracting Integers 67
3.2.1 The AddTwo Program 67
3.2.2 Running and Debugging the AddTwo Program 69
3.2.3 Program Template 73
3.2.4 Section Review 74

A01_IRVI1656_08_SE_FM.indd 6 28/02/19 4:31 PM

Contents vii

3.3 Assembling, Linking, and Running Programs 75
3.3.1 The Assemble-Link-Execute Cycle 75
3.3.2 Listing File 76
3.3.3 Section Review 78

3.4 Defining Data 78
3.4.1 Intrinsic Data Types 78
3.4.2 Data Definition Statement 79
3.4.3 Adding a Variable to the AddTwo Program 80
3.4.4 Defining BYTE and SBYTE Data 81
3.4.5 Defining WORD and SWORD Data 83
3.4.6 Defining DWORD and SDWORD Data 84
3.4.7 Defining QWORD Data 84
3.4.8 Defining Packed BCD (TBYTE) Data 85
3.4.9 Defining Floating-Point Types 85
3.4.10 A Program That Adds Variables 86
3.4.11 Little-Endian Order 87
3.4.12 Declaring Uninitialized Data 88
3.4.13 Section Review 88

3.5 Symbolic Constants 90
3.5.1 Equal-Sign Directive 90
3.5.2 Calculating the Sizes of Arrays and Strings 91
3.5.3 EQU Directive 92
3.5.4 TEXTEQU Directive 93
3.5.5 Section Review 94

3.6 Introducing 64-Bit Programming 95

3.7 Chapter Summary 96

3.8 Key Terms 98
3.8.1 Terms 98
3.8.2 Instructions, Operators, and Directives 98

3.9 Review Questions and Exercises 99
3.9.1 Short Answer 99
3.9.2 Algorithm Workbench 100

3.10 Programming Exercises 100

4 Data Transfers, Addressing, and
Arithmetic 102

4.1 Data Transfer Instructions 103
4.1.1 Introduction 103
4.1.2 Operand Types 103
4.1.3 Direct Memory Operands 103

A01_IRVI1656_08_SE_FM.indd 7 28/02/19 4:31 PM

viii Contents

4.1.4 MOV Instruction 105
4.1.5 Zero/Sign Extension of Integers 106
4.1.6 LAHF and SAHF Instructions 108
4.1.7 XCHG Instruction 109
4.1.8 Direct-Offset Operands 109
4.1.9 Examples of Moving Data 110
4.1.10 Section Review 113

4.2 Addition and Subtraction 114
4.2.1 INC and DEC Instructions 114
4.2.2 ADD Instruction 114
4.2.3 SUB Instruction 115
4.2.4 NEG Instruction 115
4.2.5 Implementing Arithmetic Expressions 115
4.2.6 Flags Affected by Addition and Subtraction 116
4.2.7 Example Program (AddSubTest) 120
4.2.8 Section Review 121

4.3 Data-Related Operators and Directives 122
4.3.1 OFFSET Operator 122
4.3.2 ALIGN Directive 123
4.3.3 PTR Operator 124
4.3.4 TYPE Operator 125
4.3.5 LENGTHOF Operator 125
4.3.6 SIZEOF Operator 126
4.3.7 LABEL Directive 126
4.3.8 Section Review 127

4.4 Indirect Addressing 127
4.4.1 Indirect Operands 127
4.4.2 Arrays 128
4.4.3 Indexed Operands 129
4.4.4 Pointers 131
4.4.5 Section Review 132

4.5 JMP and LOOP Instructions 134
4.5.1 JMP Instruction 134
4.5.2 LOOP Instruction 135
4.5.3 Displaying an Array in the Visual Studio Debugger 136
4.5.4 Summing an Integer Array 137
4.5.5 Copying a String 138
4.5.6 Section Review 139

4.6 64-Bit Programming 140
4.6.1 MOV Instruction 140
4.6.2 64-Bit Version of SumArray 141
4.6.3 Addition and Subtraction 142
4.6.4 Section Review 143

A01_IRVI1656_08_SE_FM.indd 8 28/02/19 4:31 PM

Contents ix

4.7 Chapter Summary 144

4.8 Key Terms 145
4.8.1 Terms 145
4.8.2 Instructions, Operators, and Directives 145

4.9 Review Questions and Exercises 146
4.9.1 Short Answer 146
4.9.2 Algorithm Workbench 148

4.10 Programming Exercises 149

5 Procedures 151
5.1 Stack Operations 152

5.1.1 Runtime Stack (32-Bit Mode) 152
5.1.2 PUSH and POP Instructions 154
5.1.3 Section Review 157

5.2 Defining and Using Procedures 158
5.2.1 PROC Directive 158
5.2.2 CALL and RET Instructions 160
5.2.3 Nested Procedure Calls 161
5.2.4 Passing Register Arguments to Procedures 163
5.2.5 Example: Summing an Integer Array 163
5.2.6 Saving and Restoring Registers 165
5.2.7 Section Review 166

5.3 Linking to an External Library 167
5.3.1 Background Information 167
5.3.2 Section Review 168

5.4 The Irvine32 Library 169
5.4.1 Motivation for Creating the Library 169
5.4.2 The Win32 Console Window 171
5.4.3 Individual Procedure Descriptions 172
5.4.4 Library Test Programs 184
5.4.5 Section Review 192

5.5 64-Bit Assembly Programming 193
5.5.1 The Irvine64 Library 193
5.5.2 Calling 64-Bit Subroutines 194
5.5.3 The x64 Calling Convention 195
5.5.4 Sample Program that Calls a Procedure 195
5.5.5 Section Review 197

5.6 Chapter Summary 198

A01_IRVI1656_08_SE_FM.indd 9 28/02/19 4:31 PM

x Contents

5.7 Key Terms 199
5.7.1 Terms 199
5.7.2 Instructions, Operators, and Directives 199

5.8 Review Questions and Exercises 199
5.8.1 Short Answer 199
5.8.2 Algorithm Workbench 202

5.9 Programming Exercises 203

6 Conditional Processing 205
6.1 Boolean and Comparison Instructions 206

6.1.1 The CPU Status Flags 206
6.1.2 AND Instruction 207
6.1.3 OR Instruction 208
6.1.4 Bit-Mapped Sets 209
6.1.5 XOR Instruction 211
6.1.6 NOT Instruction 212
6.1.7 TEST Instruction 212
6.1.8 CMP Instruction 213
6.1.9 Setting and Clearing Individual CPU Flags 214
6.1.10 Boolean Instructions in 64-Bit Mode 214
6.1.11 Section Review 215

6.2 Conditional Jumps 216
6.2.1 Conditional Structures 216
6.2.2 Jcond Instruction 217
6.2.3 Types of Conditional Jump Instructions 217
6.2.4 Conditional Jump Applications 221
6.2.5 Section Review 225

6.3 Conditional Loop Instructions 226
6.3.1 LOOPZ and LOOPE Instructions 226
6.3.2 LOOPNZ and LOOPNE Instructions 227
6.3.3 Section Review 227

6.4 Conditional Structures 228
6.4.1 Block-Structured IF Statements 228
6.4.2 Compound Expressions 233
6.4.3 WHILE Loops 234
6.4.4 Table-Driven Selection 237
6.4.5 Section Review 239

6.5 Application: Finite-State Machines 240
6.5.1 Validating an Input String 240
6.5.2 Validating a Signed Integer 241
6.5.3 Section Review 245

A01_IRVI1656_08_SE_FM.indd 10 28/02/19 4:31 PM

Contents xi

6.6 Conditional Control Flow Directives (Optional topic) 246
6.6.1 Creating IF Statements 246
6.6.2 Signed and Unsigned Comparisons 249
6.6.3 Compound Expressions 250
6.6.4 Creating Loops with .REPEAT and .WHILE 253

6.7 Chapter Summary 254

6.8 Key Terms 255
6.8.1 Terms 255
6.8.2 Instructions, Operators, and Directives 255

6.9 Review Questions and Exercises 256
6.9.1 Short Answer 256
6.9.2 Algorithm Workbench 258

6.10 Programming Exercises 259
6.10.1 Suggestions for Testing Your Code 259
6.10.2 Exercise Descriptions 260

7 Integer Arithmetic 263
7.1 Shift and Rotate Instructions 264

7.1.1 Logical Shifts and Arithmetic Shifts 264
7.1.2 SHL Instruction 265
7.1.3 SHR Instruction 266
7.1.4 SAL and SAR Instructions 267
7.1.5 ROL Instruction 268
7.1.6 ROR Instruction 269
7.1.7 RCL and RCR Instructions 269
7.1.8 Signed Overflow 270
7.1.9 SHLD/SHRD Instructions 270
7.1.10 Section Review 272

7.2 Shift and Rotate Applications 274
7.2.1 Shifting Multiple Doublewords 274
7.2.2 Multiplication by Shifting Bits 275
7.2.3 Displaying Binary Bits 276
7.2.4 Extracting File Date Fields 276
7.2.5 Section Review 277

7.3 Multiplication and Division Instructions 279
7.3.1 Unsigned Integer Multiplication (MUL) 279
7.3.2 Signed Integer Multiplication (IMUL) 281
7.3.3 Measuring Program Execution Times 284
7.3.4 Unsigned Integer Division (DIV) 286
7.3.5 Signed Integer Division (IDIV) 288

A01_IRVI1656_08_SE_FM.indd 11 28/02/19 4:31 PM

xii Contents

7.3.6 Implementing Arithmetic Expressions 292
7.3.7 Section Review 294

7.4 Extended Addition and Subtraction 295
7.4.1 ADC Instruction 295
7.4.2 Extended Addition Example 296
7.4.3 SBB Instruction 298
7.4.4 Section Review 299

7.5 ASCII and Unpacked Decimal Arithmetic 299
7.5.1 AAA Instruction 300
7.5.2 AAS Instruction 302
7.5.3 AAM Instruction 303
7.5.4 AAD Instruction 303
7.5.5 Section Review 303

7.6 Packed Decimal Arithmetic 304
7.6.1 DAA Instruction 305
7.6.2 DAS Instruction 306
7.6.3 Section Review 306

7.7 Chapter Summary 307

7.8 Key Terms 308
7.8.1 Terms 308
7.8.2 Instructions, Operators, and Directives 308

7.9 Review Questions and Exercises 308
7.9.1 Short Answer 308
7.9.2 Algorithm Workbench 310

7.10 Programming Exercises 311

8 Advanced Procedures 314
8.1 Introduction 315

8.2 Stack Frames 315
8.2.1 Stack Parameters 315
8.2.2 Disadvantages of Register Parameters 316
8.2.3 Accessing Stack Parameters 318
8.2.4 32-Bit Calling Conventions 321
8.2.5 Local Variables 323
8.2.6 Reference Parameters 324
8.2.7 LEA Instruction 326
8.2.8 ENTER and LEAVE Instructions 326
8.2.9 LOCAL Directive 328
8.2.10 The Microsoft x64 Calling Convention 329
8.2.11 Section Review 330

A01_IRVI1656_08_SE_FM.indd 12 28/02/19 4:31 PM

Contents xiii

8.3 Recursion 331
8.3.1 Recursively Calculating a Sum 331
8.3.2 Calculating a Factorial 333
8.3.3 Section Review 339

8.4 INVOKE, ADDR, PROC, and PROTO 340
8.4.1 INVOKE Directive 340
8.4.2 ADDR Operator 341
8.4.3 PROC Directive 342
8.4.4 PROTO Directive 345
8.4.5 Parameter Classifications 348
8.4.6 Example: Exchanging Two Integers 349
8.4.7 Debugging Tips 350
8.4.8 WriteStackFrame Procedure 351
8.4.9 Section Review 352

8.5 Creating Multimodule Programs 352
8.5.1 Hiding and Exporting Procedure Names 352
8.5.2 Calling External Procedures 353
8.5.3 Using Variables and Symbols across Module Boundaries 354
8.5.4 Example: ArraySum Program 355
8.5.5 Creating the Modules Using Extern 356
8.5.6 Creating the Modules Using INVOKE and PROTO 359
8.5.7 Section Review 362

8.6 Advanced Use of Parameters (Optional Topic) 363
8.6.1 Stack Affected by the USES Operator 363
8.6.2 Passing 8-Bit and 16-Bit Arguments on the Stack 364
8.6.3 Passing 64-Bit Arguments 366
8.6.4 Non-Doubleword Local Variables 366

8.7 Java Bytecodes (Optional Topic) 369
8.7.1 Java Virtual Machine 369
8.7.2 Instruction Set 370
8.7.3 Java Disassembly Examples 371
8.7.4 Example: Conditional Branch 374

8.8 Chapter Summary 376

8.9 Key Terms 377
8.9.1 Terms 377
8.9.2 Instructions, Operators, and Directives 377

8.10 Review Questions and Exercises 377
8.10.1 Short Answer 377
8.10.2 Algorithm Workbench 378

8.11 Programming Exercises 378

A01_IRVI1656_08_SE_FM.indd 13 28/02/19 4:31 PM

xiv Contents

9 Strings and Arrays 381
9.1 Introduction 381

9.2 String Primitive Instructions 382
9.2.1 MOVSB, MOVSW, and MOVSD 383
9.2.2 CMPSB, CMPSW, and CMPSD 384
9.2.3 SCASB, SCASW, and SCASD 385
9.2.4 STOSB, STOSW, and STOSD 385
9.2.5 LODSB, LODSW, and LODSD 385
9.2.6 Section Review 386

9.3 Selected String Procedures 387
9.3.1 Str_compare Procedure 388
9.3.2 Str_length Procedure 389
9.3.3 Str_copy Procedure 389
9.3.4 Str_trim Procedure 390
9.3.5 Str_ucase Procedure 393
9.3.6 String Library Demo Program 393
9.3.7 String Procedures in the Irvine64 Library 395
9.3.8 Section Review 398

9.4 Two-Dimensional Arrays 399
9.4.1 Ordering of Rows and Columns 399
9.4.2 Base-Index Operands 399
9.4.3 Base-Index-Displacement Operands 401
9.4.4 Base-Index Operands in 64-Bit Mode 402
9.4.5 Section Review 403

9.5 Searching and Sorting Integer Arrays 404
9.5.1 Bubble Sort 404
9.5.2 Binary Search 406
9.5.3 Section Review 412

9.6 Java Bytecodes: String Processing (Optional Topic) 413

9.7 Chapter Summary 414

9.8 Key Terms and Instructions 415

9.9 Review Questions and Exercises 415
9.9.1 Short Answer 415
9.9.2 Algorithm Workbench 416

9.10 Programming Exercises 416

A01_IRVI1656_08_SE_FM.indd 14 28/02/19 4:31 PM

Contents xv

10 Structures and Macros 421
10.1 Structures 421

10.1.1 Defining Structures 422
10.1.2 Declaring Structure Objects 424
10.1.3 Referencing Structure Objects 425
10.1.4 Example: Displaying the System Time 428
10.1.5 Structures Containing Structures 430
10.1.6 Example: Drunkard’s Walk 430
10.1.7 Declaring and Using Unions 434
10.1.8 Section Review 436

10.2 Macros 437
10.2.1 Overview 437
10.2.2 Defining Macros 438
10.2.3 Invoking Macros 439
10.2.4 Additional Macro Features 440
10.2.5 Using Our Macro Library (32-Bit Mode Only) 444
10.2.6 Example Program: Wrappers 451
10.2.7 Section Review 452

10.3 Conditional-Assembly Directives 453
10.3.1 Checking for Missing Arguments 454
10.3.2 Default Argument Initializers 455
10.3.3 Boolean Expressions 456
10.3.4 IF, ELSE, and ENDIF Directives 456
10.3.5 The IFIDN and IFIDNI Directives 457
10.3.6 Example: Summing a Matrix Row 458
10.3.7 Special Operators 461
10.3.8 Macro Functions 464
10.3.9 Section Review 466

10.4 Defining Repeat Blocks 467
10.4.1 WHILE Directive 467
10.4.2 REPEAT Directive 468
10.4.3 FOR Directive 468
10.4.4 FORC Directive 469
10.4.5 Example: Linked List 470
10.4.6 Section Review 471

10.5 Chapter Summary 473

10.6 Key Terms 474
10.6.1 Terms 474
10.6.2 Operators and Directives 474

A01_IRVI1656_08_SE_FM.indd 15 28/02/19 4:31 PM

xvi Contents

10.7 Review Questions and Exercises 475
10.7.1 Short Answer 475
10.7.2 Algorithm Workbench 475

10.8 Programming Exercises 477

11 MS-Windows Programming 480
11.1 Win32 Console Programming 480

11.1.1 Background Information 481
11.1.2 Win32 Console Functions 485
11.1.3 Displaying a Message Box 487
11.1.4 Console Input 490
11.1.5 Console Output 496
11.1.6 Reading and Writing Files 498
11.1.7 File I/O in the Irvine32 Library 502
11.1.8 Testing the File I/O Procedures 504
11.1.9 Console Window Manipulation 507
11.1.10 Controlling the Cursor 510
11.1.11 Controlling the Text Color 511
11.1.12 Time and Date Functions 513
11.1.13 Using the 64-Bit Windows API 517
11.1.14 Section Review 518

11.2 Writing a Graphical Windows Application 519
11.2.1 Necessary Structures 519
11.2.2 The MessageBox Function 521
11.2.3 The WinMain Procedure 521
11.2.4 The WinProc Procedure 522
11.2.5 The ErrorHandler Procedure 523
11.2.6 Program Listing 523
11.2.7 Section Review 527

11.3 Dynamic Memory Allocation 528
11.3.1 HeapTest Programs 531
11.3.2 Section Review 535

11.4 32-bit x86 Memory Management 535
11.4.1 Linear Addresses 536
11.4.2 Page Translation 539
11.4.3 Section Review 541

11.5 Chapter Summary 541

11.6 Key Terms 543

11.7 Review Questions and Exercises 543
11.7.1 Short Answer 543
11.7.2 Algorithm Workbench 544

11.8 Programming Exercises 544

A01_IRVI1656_08_SE_FM.indd 16 28/02/19 4:31 PM

Contents xvii

12 Floating-Point Processing and Instruction
Encoding 547

12.1 Floating-Point Binary Representation 547
12.1.1 IEEE Binary Floating-Point Representation 548
12.1.2 The Exponent 550
12.1.3 Normalized Binary Floating-Point Numbers 550
12.1.4 Creating the IEEE Representation 550
12.1.5 Converting Decimal Fractions to Binary Reals 552
12.1.6 Section Review 554

12.2 Floating-Point Unit 555
12.2.1 FPU Register Stack 555
12.2.2 Rounding 558
12.2.3 Floating-Point Exceptions 560
12.2.4 Floating-Point Instruction Set 560
12.2.5 Arithmetic Instructions 563
12.2.6 Comparing Floating-Point Values 567
12.2.7 Reading and Writing Floating-Point Values 570
12.2.8 Exception Synchronization 571
12.2.9 Code Examples 572
12.2.10 Mixed-Mode Arithmetic 574
12.2.11 Masking and Unmasking Exceptions 575
12.2.12 Section Review 576

12.3 x86 Instruction Encoding 577
12.3.1 Instruction Format 577
12.3.2 Single-Byte Instructions 578
12.3.3 Move Immediate to Register 579
12.3.4 Register-Mode Instructions 580
12.3.5 Processor Operand-Size Prefix 581
12.3.6 Memory-Mode Instructions 582
12.3.7 Section Review 585

12.4 Chapter Summary 585

12.5 Key Terms 587

12.6 Review Questions and Exercises 587
12.6.1 Short Answer 587
12.6.2 Algorithm Workbench 588

12.7 Programming Exercises 589

A01_IRVI1656_08_SE_FM.indd 17 28/02/19 4:31 PM

xviii Contents

13 High-Level Language Interface 593
13.1 Introduction 593

13.1.1 General Conventions 593
13.1.2 .MODEL Directive 595
13.1.3 Examining Compiler-Generated Code 597
13.1.4 Section Review 602

13.2 Inline Assembly Code 602
13.2.1 __asm Directive in Visual C++ 602
13.2.2 File Encryption Example 605
13.2.3 Section Review 608

13.3 Linking 32-Bit Assembly Language Code to C/C++ 609
13.3.1 IndexOf Example 610
13.3.2 Calling C and C++ Functions 613
13.3.3 Multiplication Table Example 615
13.3.4 Section Review 618

13.4 Chapter Summary 619

13.5 Key Terms 620

13.6 Review Questions 620

13.7 Programming Exercises 620

14 16-Bit MS-DOS Programming 622
14.1 MS-DOS and the IBM-PC 622

14.1.1 Memory Organization 623
14.1.2 Redirecting Input-Output 624
14.1.3 Software Interrupts 625
14.1.4 INT Instruction 626
14.1.5 Coding for 16-Bit Programs 627
14.1.6 Section Review 628

14.2 MS-DOS Function Calls (INT 21h) 628
14.2.1 Selected Output Functions 630
14.2.2 Hello World Program Example 632
14.2.3 Selected Input Functions 633
14.2.4 Date/Time Functions 637
14.2.5 Section Review 641

14.3 Standard MS-DOS File I/O Services 641
14.3.1 Create or Open File (716Ch) 643
14.3.2 Close File Handle (3Eh) 644
14.3.3 Move File Pointer (42h) 644
14.3.4 Get File Creation Date and Time 645

A01_IRVI1656_08_SE_FM.indd 18 28/02/19 4:31 PM

Contents xix

14.3.5 Selected Library Procedures 646
14.3.6 Example: Read and Copy a Text File 647
14.3.7 Reading the MS-DOS Command Tail 649
14.3.8 Example: Creating a Binary File 651
14.3.9 Section Review 654

14.4 Chapter Summary 655

14.5 Programming Exercises 657

15 Disk Fundamentals 659
15.1 Disk Storage Systems 659

15.1.1 Tracks, Cylinders, and Sectors 660
15.1.2 Disk Partitions (Volumes) 662
15.1.3 Section Review 663

15.2 File Systems 663
15.2.1 FAT12 664
15.2.2 FAT16 664
15.2.3 FAT32 665
15.2.4 NTFS 665
15.2.5 Primary Disk Areas 666
15.2.6 Section Review 667

15.3 Disk Directory 667
15.3.1 MS-DOS Directory Structure 668
15.3.2 Long Filenames in MS-Windows 671
15.3.3 File Allocation Table (FAT) 673
15.3.4 Section Review 673

15.4 Reading and Writing Disk Sectors 674
15.4.1 Sector Display Program 675
15.4.2 Section Review 679

15.5 System-Level File Functions 680
15.5.1 Get Disk Free Space (7303h) 680
15.5.2 Create Subdirectory (39h) 683
15.5.3 Remove Subdirectory (3Ah) 684
15.5.4 Set Current Directory (3Bh) 684
15.5.5 Get Current Directory (47h) 684
15.5.6 Get and Set File Attributes (7143h) 685
15.5.7 Section Review 685

15.6 Chapter Summary 685

15.7 Key Terms 687

15.8 Programming Exercises 687

A01_IRVI1656_08_SE_FM.indd 19 28/02/19 4:31 PM

xx Contents

16 BIOS-Level Programming 689
16.1 Introduction 689

16.1.1 BIOS Data Area 690

16.2 Keyboard Input with INT 16h 691
16.2.1 How the Keyboard Works 691
16.2.2 INT 16h Functions 692
16.2.3 Section Review 696

16.3 Video Programming with INT 10h 697
16.3.1 Basic Background 697
16.3.2 Controlling the Color 699
16.3.3 INT 10h Video Functions 701
16.3.4 Library Procedure Examples 713
16.3.5 Section Review 713

16.4 Drawing Graphics Using INT 10h 714
16.4.1 INT 10h Pixel-Related Functions 715
16.4.2 DrawLine Program 716
16.4.3 Cartesian Coordinates Program 718
16.4.4 Converting Cartesian Coordinates to Screen Coordinates 720
16.4.5 Section Review 721

16.5 Memory-Mapped Graphics 722
16.5.1 Mode 13h: 320 * 200, 256 Colors 722
16.5.2 Memory-Mapped Graphics Program 724
16.5.3 Section Review 727

16.6 Mouse Programming 727
16.6.1 Mouse INT 33h Functions 727
16.6.2 Mouse Tracking Program 732
16.6.3 Section Review 737

16.7 Chapter Summary 738

16.8 Programming Exercises 739

A MASM Reference 741
B The x86 Instruction Set 763
C BIOS and MS-DOS Interrupts 797
D Answers to Review Questions

(Chapters 14–16) 807
Glossary 816
Index 828

A01_IRVI1656_08_SE_FM.indd 20 28/02/19 4:31 PM

xxi

Preface

Assembly Language for x86 Processors, Eighth Edition, teaches assembly language programming and
 architecture for x86 and Intel64 processors. It is an appropriate text for the following types of college
courses:

• Assembly Language Programming
• Fundamentals of Computer Systems
• Fundamentals of Computer Architecture

Students use Intel or AMD processors and program with Microsoft Macro Assembler (MASM), run-
ning on recent versions of Microsoft Windows. Although this book was originally designed as a pro-
gramming textbook for college students, it serves as an effective supplement to computer architecture
courses. As a testament to its popularity, previous editions have been translated into numerous languages.

Emphasis of Topics This edition includes topics that lead naturally into subsequent courses in com-
puter architecture, operating systems, and compiler writing:

• Virtual machine concept
• Instruction set architecture
• Elementary Boolean operations
• Instruction execution cycle
• Memory access and handshaking
• Interrupts and polling
• Hardware-based I/O
• Floating-point binary representation

Other topics relate specially to x86 and Intel64 architecture:

• Protected memory and paging
• Memory segmentation in real-address mode
• 16-Bit interrupt handling
• MS-DOS and BIOS system calls (interrupts)
• Floating-point unit architecture and programming
• Instruction encoding

Certain examples presented in the book lend themselves to courses that occur later in a computer science
curriculum:

• Searching and sorting algorithms
• High-level language structures
• Finite-state machines
• Code optimization examples

A01_IRVI1656_08_SE_FM.indd 21 28/02/19 4:31 PM

xxii Preface

What’s New in the Eighth Edition

This edition represents this book’s transition into the world of interactive electronic textbooks. We’re
very excited about this innovative concept, because for the first time readers will be able to experiment
and interact with review questions, code animations, tutorial videos, and multiple-input exercises.

• All section reviews in the chapters have been rewritten as interactive questions, giving the reader
immediate feedback on their answers. New questions were added, others removed, and many revised.

• Code animations allow the reader to step through program code and view both variable values and
comments about the code. Readers no longer have to visually jump back and forth between program
code and text explanations on the next page.

• Links to timely tutorial videos have been inserted in the text, so readers can receive tutoring on
topics as they encounter them in the text. Previously, readers would need to purchase a separate sub-
scription to gain access to the entire set of videos, presented as a list. In this edition, videos are free.

• Multiple-input exercises allow readers to browse a program listing and insert variable values into
boxes next to the code. They receive immediate colorized feedback, giving them the opportunity to
experiment until all input values are correct.

• Hypertexted definitions of key terms are placed throughout the text, connected to an online glossary.

In short, we have taken the successful content of this book (refined through many editions) and brought
it into the interactive electronic textbook world.

This book is still focused on its primary goal, to teach students how to write and debug programs at
the machine level. It will never replace a complete book on computer architecture, but it does give stu-
dents the first-hand experience of writing software in an environment that teaches them how a computer
works. Our premise is that students retain knowledge better when theory is combined with experience.
In an engineering course, students construct prototypes; in a computer architecture course, students
should write machine-level programs. In both cases, they have a memorable experience that gives them
confidence to work in any OS/machine-oriented environment.

Protected mode programming is entirely the focus of chapters 1 through 13. As such, students can
create 32-bit and 64-bit programs that run under the most recent versions of Microsoft Windows. The
remaining three legacy chapters cover 16-bit programming. These chapters cover BIOS programming,
MS-DOS services, keyboard and mouse input, dist storage fundamentals, video programming, and
graphics.

Subroutine Libraries We supply three versions of the subroutine library that students use for basic
input/output, simulations, timing, and other useful tasks. The Irvine32 and Irvine64 libraries run in pro-
tected mode. The 16-bit version (Irvine16.lib) runs in real-address mode and is used only by Chapter 14
through Chapter 16. Full source code for the libraries is supplied on the companion website. The link
libraries are available only for convenience, not to prevent students from learning how to program input–
output themselves. Students are encouraged to create their own libraries.

Included Software and Examples All the example programs were tested with Microsoft Macro
Assembler, running in a recent version of Microsoft Visual Studio. In addition, batch files are supplied
that permit students to assemble and run applications from the Windows command prompt. Information

A01_IRVI1656_08_SE_FM.indd 22 28/02/19 4:31 PM

Preface xxiii

Updates and corrections to this book may be found at the Companion website, including additional
programming projects for instructors to assign at the ends of chapters.

Overall Goals

The following goals of this book are designed to broaden the student’s interest and knowledge in topics
related to assembly language:

• Intel and AMD processor architecture and programming
• Real-address mode and protected mode programming
• Assembly language directives, macros, operators, and program structure
• Programming methodology, showing how to use assembly language to create system-level software

tools and application programs
• Computer hardware manipulation
• Interaction between assembly language programs, the operating system, and other application

programs

One of our goals is to help students approach programming problems with a machine-level mind set. It
is important to think of the CPU as an interactive tool, and to learn to monitor its operation as directly
as possible. A debugger is a programmer’s best friend, not only for catching errors, but as an educa-
tional tool that teaches about the CPU and operating system. We encourage students to look beneath
the surface of high-level languages and to realize that most programming languages are designed to
be portable and, therefore, independent of their host machines. In addition to the short examples,
this book contains hundreds of ready-to-run programs that demonstrate instructions or ideas as they
are presented in the text. Reference materials, such as guides to MS-DOS interrupts and instruction
mnemonics, are available at the end of the book.

Required Background The reader should already be able to program confidently in at least one high-
level programming language such as Python, Java, C, or C++. One chapter covers C++ interfacing, so it is
very helpful to have a compiler on hand. I have used this book in the classroom with majors in both com-
puter science and management information systems, and it has been used elsewhere in engineering courses.

Features

Complete Program Listings The author’s website contains supplemental learning materials, study
guides, and all the source code from the book’s examples. Two link libraries (32-bit and 64-bit) are
supplied with the book, containing more than 40 procedures that simplify user input–output, numeric
processing, disk and file handling, and string handling. In the beginning stages of the course, students
can use this library to enhance their programs. Later, they can create their own procedures and add them
to the library.

Programming Logic Two chapters emphasize Boolean logic and bit-level manipulation. A conscious
attempt is made to relate high-level programming logic to the low-level details of the machine. This
approach helps students to create more efficient implementations and to better understand how compilers
generate object code.

A01_IRVI1656_08_SE_FM.indd 23 28/02/19 4:31 PM

xxiv Preface

Hardware and Operating System Concepts The first two chapters introduce basic hardware and
data representation concepts, including binary numbers, CPU architecture, status flags, and memory
mapping. A survey of the computer’s hardware and a historical perspective of the Intel processor family
helps students to better understand their target computer system.

Structured Programming Approach Beginning with Chapter 5, procedures and functional decom-
position are emphasized. Students are given more complex programming exercises, requiring them to
focus on design before starting to write code.

Java Bytecodes and the Java Virtual Machine In Chapters 8 and 9, the author explains the basic
operation of Java bytecodes with short illustrative examples. Numerous short examples are shown in
disassembled bytecode format, followed by detailed step-by-step explanations.

Creating Link Libraries Students are free to add their own procedures to the book’s link library and
create new libraries. They learn to use a toolbox approach to programming and to write code that is
useful in more than one program.

Macros and Structures A chapter is devoted to creating structures, unions, and macros, which are
essential in assembly language and systems programming. Conditional macros with advanced operators
serve to make the macros more professional.

Interfacing to High-Level Languages A chapter is devoted to interfacing assembly language to C
and C++. This is an important job skill for students who are likely to find jobs programming in high-level
languages. They can learn to optimize their code and see examples of how C++ compilers optimize code.

Instructional Aids All the program listings are available on the Web. Instructors are provided a test
bank, answers to review questions, solutions to programming exercises, and a Microsoft PowerPoint
slide presentation for each chapter. More details can be found on Page xxvi.

VideoNotes VideoNotes are Pearson’s visual tool designed to teach students key programming con-
cepts and techniques. These short step-by-step videos demonstrate basic assembly language concepts.
VideoNotes allow for self-paced instruction with easy navigation including the ability to select, play,
rewind, fast-forward, and stop within each VideoNote exercise. Details below.

Chapter Descriptions

Chapters 1 to 8 contain core concepts of assembly language and should be covered in sequence. After
that, you have a fair amount of freedom. The following chapter dependency graph shows how later
chapters depend on knowledge gained from other chapters.

A01_IRVI1656_08_SE_FM.indd 24 28/02/19 4:31 PM

Preface xxv

1 through 9

10

11 12 13 14 16

15

1. Basic Concepts: Applications of assembly language, basic concepts, machine language, and data
representation.

2. x86 Processor Architecture: Basic microcomputer design, instruction execution cycle, x86 proces-
sor architecture, Intel64 architecture, x86 memory management, components of a microcomputer,
and the input–output system.

3. Assembly Language Fundamentals: Introduction to assembly language, linking and debugging,
and defining constants and variables.

4. Data Transfers, Addressing, and Arithmetic: Simple data transfer and arithmetic instructions,
assemble-link-execute cycle, operators, directives, expressions, JMP and LOOP instructions, and
indirect addressing.

5. Procedures: Linking to an external library, description of the book’s link library, stack operations,
defining and using procedures, flowcharts, and top-down structured design.

6. Conditional Processing: Boolean and comparison instructions, conditional jumps and loops, high-
level logic structures, and finite-state machines.

7. Integer Arithmetic: Shift and rotate instructions with useful applications, multiplication and divi-
sion, extended addition and subtraction, and ASCII and packed decimal arithmetic.

8. Advanced Procedures: Stack parameters, local variables, advanced PROC and INVOKE directives,
and recursion.

9. Strings and Arrays: String primitives, manipulating arrays of characters and integers, two-
dimensional arrays, sorting, and searching.

10. Structures and Macros: Structures, macros, conditional assembly directives, and defining repeat
blocks.

11. MS-Windows Programming: Protected mode memory management concepts, using the Micro-
soft-Windows API to display text and colors, and dynamic memory allocation.

12. Floating-Point Processing and Instruction Encoding: Floating-point binary representation and
floating-point arithmetic. Learning to program the 32-bit floating-point unit. Understanding the
encoding of 32-bit machine instructions.

13. High-Level Language Interface: Parameter passing conventions, inline assembly code, and linking
assembly language modules to C and C++ programs.

14. 16-Bit MS-DOS Programming: Memory organization, interrupts, function calls, and standard
MS-DOS file I/O services.

A01_IRVI1656_08_SE_FM.indd 25 28/02/19 4:31 PM

xxvi Preface

15. Disk Fundamentals: Disk storage systems, sectors, clusters, directories, file allocation tables, han-
dling MS-DOS error codes, and drive and directory manipulation.

16. BIOS-Level Programming: Keyboard input, video text, graphics, and mouse programming.

• Appendix A: MASM Reference
• Appendix B: The x86 Instruction Set
• Appendix C: BIOS and MS-DOS Interrupts
• Appendix D: Answers to Review Questions (Chapters 14–16)

Instructor and Student Resources
Instructor Resource Materials
The following protected instructor material is available on pearson.com
For username and password information, please contact your Pearson Representative.

• Lecture PowerPoint Slides
• Instructor Solutions Manual

Student Resource Materials
The following useful materials are located at www.asmirvine.com:

• Getting Started, a comprehensive step-by-step tutorial that helps students customize Visual Studio
for assembly language programming.

• Corrections to errors found in the book.
• Supplementary articles on assembly language programming topics.
• Required support files for assembling and linking your programs, complete source code for all exam-

ple programs in the book, and complete source code for the author’s supplementary library.
• Assembly Language Workbook, an interactive workbook covering number conversions, addressing

modes, register usage, debug programming, and floating-point binary numbers.
• Debugging Tools: Tutorials on using the Microsoft Visual Studio debugger.

Acknowledgments

Many thanks are due to Tracy Johnson, Portfolio Manager for Computer Science at Pearson Education,
who has provided friendly, helpful guidance for many years. Vanitha Puela of SPi Global did an excellent
job on the book production, along with Amanda Brands as the Content Producer at Pearson.

Previous Editions
I offer my special thanks to the following individuals who were most helpful during the development of
earlier editions of this book:

• William Barrett, San Jose State University
• Scott Blackledge
• James Brink, Pacific Lutheran University
• Gerald Cahill, Antelope Valley College
• John Taylor

A01_IRVI1656_08_SE_FM.indd 26 28/02/19 4:31 PM

xxvii

About the Author
Kip Irvine has written five computer programming textbooks, for Intel Assembly Language, C++. Visual
Basic (beginning and advanced), and COBOL. His book Assembly Language for Intel-Based Computers
has been translated into six languages. His first college degrees (B.M., M.M., and doctorate) were in
Music Composition, at University of Hawaii and University of Miami. He began programming com-
puters for music synthesis around 1982 and taught programming at Miami-Dade Community College
for 17 years. He earned an M.S. degree in Computer Science from the University of Miami, and taught
computer programming in the School of Computing and Information Sciences at Florida International
University for 18 years.

A01_IRVI1656_08_SE_FM.indd 27 28/02/19 4:31 PM

A01_IRVI1656_08_SE_FM.indd 28 28/02/19 4:31 PM

