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Preface

Assembly Language for x86 Processors, Eighth Edition, teaches assembly language programming and 
architecture for x86 and Intel64 processors. It is an appropriate text for the following types of college 
courses:

•	Assembly Language Programming
•	Fundamentals of Computer Systems
•	Fundamentals of Computer Architecture

Students use Intel or AMD processors and program with Microsoft Macro Assembler (MASM), run-
ning on recent versions of Microsoft Windows. Although this book was originally designed as a pro-
gramming textbook for college students, it serves as an effective supplement to computer architecture 
courses. As a testament to its popularity, previous editions have been translated into numerous languages.

Emphasis of Topics  This edition includes topics that lead naturally into subsequent courses in com-
puter architecture, operating systems, and compiler writing:

•	Virtual machine concept
•	Instruction set architecture
•	Elementary Boolean operations
•	Instruction execution cycle
•	Memory access and handshaking
•	Interrupts and polling
•	Hardware-based I/O
•	Floating-point binary representation

Other topics relate specially to x86 and Intel64 architecture:

•	Protected memory and paging
•	Memory segmentation in real-address mode
•	16-Bit interrupt handling
•	MS-DOS and BIOS system calls (interrupts)
•	Floating-point unit architecture and programming
•	Instruction encoding

Certain examples presented in the book lend themselves to courses that occur later in a computer science 
curriculum:

•	Searching and sorting algorithms
•	High-level language structures
•	Finite-state machines
•	Code optimization examples
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What’s New in the Eighth Edition

This edition represents this book’s transition into the world of interactive electronic textbooks. We’re 
very excited about this innovative concept, because for the first time readers will be able to experiment 
and interact with review questions, code animations, tutorial videos, and multiple-input exercises.

•	All section reviews in the chapters have been rewritten as interactive questions, giving the reader 
immediate feedback on their answers. New questions were added, others removed, and many revised.

•	Code animations allow the reader to step through program code and view both variable values and 
comments about the code. Readers no longer have to visually jump back and forth between program 
code and text explanations on the next page.

•	Links to timely tutorial videos have been inserted in the text, so readers can receive tutoring on 
topics as they encounter them in the text. Previously, readers would need to purchase a separate sub-
scription to gain access to the entire set of videos, presented as a list. In this edition, videos are free.

•	Multiple-input exercises allow readers to browse a program listing and insert variable values into 
boxes next to the code. They receive immediate colorized feedback, giving them the opportunity to 
experiment until all input values are correct.

•	Hypertexted definitions of key terms are placed throughout the text, connected to an online glossary.

In short, we have taken the successful content of this book (refined through many editions) and brought 
it into the interactive electronic textbook world.

This book is still focused on its primary goal, to teach students how to write and debug programs at 
the machine level. It will never replace a complete book on computer architecture, but it does give stu-
dents the first-hand experience of writing software in an environment that teaches them how a computer 
works. Our premise is that students retain knowledge better when theory is combined with experience. 
In an engineering course, students construct prototypes; in a computer architecture course, students 
should write machine-level programs. In both cases, they have a memorable experience that gives them 
confidence to work in any OS/machine-oriented environment.

Protected mode programming is entirely the focus of chapters 1 through 13. As such, students can 
create 32-bit and 64-bit programs that run under the most recent versions of Microsoft Windows. The 
remaining three legacy chapters cover 16-bit programming. These chapters cover BIOS programming, 
MS-DOS services, keyboard and mouse input, dist storage fundamentals, video programming, and 
graphics.

Subroutine Libraries  We supply three versions of the subroutine library that students use for basic 
input/output, simulations, timing, and other useful tasks. The Irvine32 and Irvine64 libraries run in pro-
tected mode. The 16-bit version (Irvine16.lib) runs in real-address mode and is used only by Chapter 14 
through Chapter 16. Full source code for the libraries is supplied on the companion website. The link 
libraries are available only for convenience, not to prevent students from learning how to program input–
output themselves. Students are encouraged to create their own libraries.

Included Software and Examples  All the example programs were tested with Microsoft Macro 
Assembler, running in a recent version of Microsoft Visual Studio. In addition, batch files are supplied 
that permit students to assemble and run applications from the Windows command prompt. Information 
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Updates and corrections to this book may be found at the Companion website, including additional 
programming projects for instructors to assign at the ends of chapters.

Overall Goals

The following goals of this book are designed to broaden the student’s interest and knowledge in topics 
related to assembly language:

•	Intel and AMD processor architecture and programming
•	Real-address mode and protected mode programming
•	Assembly language directives, macros, operators, and program structure
•	Programming methodology, showing how to use assembly language to create system-level software 

tools and application programs
•	Computer hardware manipulation
•	Interaction between assembly language programs, the operating system, and other application 

programs

One of our goals is to help students approach programming problems with a machine-level mind set. It 
is important to think of the CPU as an interactive tool, and to learn to monitor its operation as directly 
as possible. A debugger is a programmer’s best friend, not only for catching errors, but as an educa-
tional tool that teaches about the CPU and operating system. We encourage students to look beneath 
the surface of high-level languages and to realize that most programming languages are designed to 
be portable and, therefore, independent of their host machines. In addition to the short examples, 
this book contains hundreds of ready-to-run programs that demonstrate instructions or ideas as they 
are presented in the text. Reference materials, such as guides to MS-DOS interrupts and instruction 
mnemonics, are available at the end of the book.

Required Background  The reader should already be able to program confidently in at least one high-
level programming language such as Python, Java, C, or C++. One chapter covers C++ interfacing, so it is 
very helpful to have a compiler on hand. I have used this book in the classroom with majors in both com-
puter science and management information systems, and it has been used elsewhere in engineering courses.

Features

Complete Program Listings  The author’s website contains supplemental learning materials, study 
guides, and all the source code from the book’s examples. Two link libraries (32-bit and 64-bit) are 
supplied with the book, containing more than 40 procedures that simplify user input–output, numeric 
processing, disk and file handling, and string handling. In the beginning stages of the course, students 
can use this library to enhance their programs. Later, they can create their own procedures and add them 
to the library.

Programming Logic  Two chapters emphasize Boolean logic and bit-level manipulation. A conscious 
attempt is made to relate high-level programming logic to the low-level details of the machine. This 
approach helps students to create more efficient implementations and to better understand how compilers 
generate object code.
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Hardware and Operating System Concepts  The first two chapters introduce basic hardware and 
data representation concepts, including binary numbers, CPU architecture, status flags, and memory 
mapping. A survey of the computer’s hardware and a historical perspective of the Intel processor family 
helps students to better understand their target computer system.

Structured Programming Approach  Beginning with Chapter 5, procedures and functional decom-
position are emphasized. Students are given more complex programming exercises, requiring them to 
focus on design before starting to write code.

Java Bytecodes and the Java Virtual Machine  In Chapters 8 and 9, the author explains the basic 
operation of Java bytecodes with short illustrative examples. Numerous short examples are shown in 
disassembled bytecode format, followed by detailed step-by-step explanations.

Creating Link Libraries  Students are free to add their own procedures to the book’s link library and 
create new libraries. They learn to use a toolbox approach to programming and to write code that is 
useful in more than one program.

Macros and Structures  A chapter is devoted to creating structures, unions, and macros, which are 
essential in assembly language and systems programming. Conditional macros with advanced operators 
serve to make the macros more professional.

Interfacing to High-Level Languages  A chapter is devoted to interfacing assembly language to C 
and C++. This is an important job skill for students who are likely to find jobs programming in high-level 
languages. They can learn to optimize their code and see examples of how C++ compilers optimize code.

Instructional Aids  All the program listings are available on the Web. Instructors are provided a test 
bank, answers to review questions, solutions to programming exercises, and a Microsoft PowerPoint 
slide presentation for each chapter. More details can be found on Page xxvi.

VideoNotes  VideoNotes are Pearson’s visual tool designed to teach students key programming con-
cepts and techniques. These short step-by-step videos demonstrate basic assembly language concepts. 
VideoNotes allow for self-paced instruction with easy navigation including the ability to select, play, 
rewind, fast-forward, and stop within each VideoNote exercise. Details below.

Chapter Descriptions

Chapters 1 to 8 contain core concepts of assembly language and should be covered in sequence. After 
that, you have a fair amount of freedom. The following chapter dependency graph shows how later 
chapters depend on knowledge gained from other chapters.
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1 through 9

10

11 12 13 14 16

15

1.	 Basic Concepts: Applications of assembly language, basic concepts, machine language, and data 
representation.

2.	 x86 Processor Architecture: Basic microcomputer design, instruction execution cycle, x86 proces-
sor architecture, Intel64 architecture, x86 memory management, components of a microcomputer, 
and the input–output system.

3.	 Assembly Language Fundamentals: Introduction to assembly language, linking and debugging, 
and defining constants and variables.

4.	 Data Transfers, Addressing, and Arithmetic: Simple data transfer and arithmetic instructions, 
assemble-link-execute cycle, operators, directives, expressions, JMP and LOOP instructions, and 
indirect addressing.

5.	 Procedures: Linking to an external library, description of the book’s link library, stack operations, 
defining and using procedures, flowcharts, and top-down structured design.

6.	 Conditional Processing: Boolean and comparison instructions, conditional jumps and loops, high-
level logic structures, and finite-state machines.

7.	 Integer Arithmetic: Shift and rotate instructions with useful applications, multiplication and divi-
sion, extended addition and subtraction, and ASCII and packed decimal arithmetic.

8.	 Advanced Procedures: Stack parameters, local variables, advanced PROC and INVOKE directives, 
and recursion.

9.	 Strings and Arrays: String primitives, manipulating arrays of characters and integers, two-
dimensional arrays, sorting, and searching.

10.	 Structures and Macros: Structures, macros, conditional assembly directives, and defining repeat 
blocks.

11.	 MS-Windows Programming: Protected mode memory management concepts, using the Micro-
soft-Windows API to display text and colors, and dynamic memory allocation.

12.	 Floating-Point Processing and Instruction Encoding: Floating-point binary representation and 
floating-point arithmetic. Learning to program the 32-bit floating-point unit. Understanding the 
encoding of 32-bit machine instructions.

13.	 High-Level Language Interface: Parameter passing conventions, inline assembly code, and linking 
assembly language modules to C and C++ programs.

14.	 16-Bit MS-DOS Programming: Memory organization, interrupts, function calls, and standard 
MS-DOS file I/O services.
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15.	 Disk Fundamentals: Disk storage systems, sectors, clusters, directories, file allocation tables, han-
dling MS-DOS error codes, and drive and directory manipulation.

16.	 BIOS-Level Programming: Keyboard input, video text, graphics, and mouse programming.

•	Appendix A: MASM Reference
•	Appendix B: The x86 Instruction Set
•	Appendix C: BIOS and MS-DOS Interrupts
•	Appendix D: Answers to Review Questions (Chapters 14–16)

Instructor and Student Resources
Instructor Resource Materials
The following protected instructor material is available on pearson.com
For username and password information, please contact your Pearson Representative.

•	Lecture PowerPoint Slides
•	Instructor Solutions Manual

Student Resource Materials
The following useful materials are located at www.asmirvine.com:

•	Getting Started, a comprehensive step-by-step tutorial that helps students customize Visual Studio 
for assembly language programming.

•	Corrections to errors found in the book.
•	Supplementary articles on assembly language programming topics.
•	Required support files for assembling and linking your programs, complete source code for all exam-

ple programs in the book, and complete source code for the author’s supplementary library.
•	Assembly Language Workbook, an interactive workbook covering number conversions, addressing 

modes, register usage, debug programming, and floating-point binary numbers.
•	Debugging Tools: Tutorials on using the Microsoft Visual Studio debugger.
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