
Assembly Language for
x86 Processors

Eighth Edition

KIP R. IRVINE

Florida International University
School of Computing and Information Sciences

A01_IRVI1656_08_SE_FM.indd 1 28/02/19 4:31 PM

Senior Vice President Courseware Portfolio Management:
Marcia J. Horton
Vice President, Portfolio Management: Engineering,
Computer Science & Global Editions: Julian Partridge
Executive Portfolio Manager: Tracy Johnson
Portfolio Management Assistant: Meghan Jacoby
Product Marketing Manager: Yvonne Vannatta
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant

Managing Content Producer: Scott Disanno
Content Producer: Amanda Brands
Manufacturing Buyer, Higher Ed, Lake Side Communications, Inc.
(LSC): Maura Zaldivar-Garcia
Inventory Manager: Bruce Boundy
Rights and Permissions Manager: Ben Ferrini
Full-Service Project Management: Vanitha Puela, Pearson CSC
Cover Image: Tetra Images/Alamy Stock Photo
Printer/Binder: LSC Communications, Inc.

IA-32, Pentium, i486, Intel64, Celeron, and Intel 386 are trademarks of Intel Corporation. Athlon, Phenom, and Opteron are trademarks of Advanced
Micro Devices. TASM and Turbo Debugger are trademarks of Borland International. Microsoft Assembler (MASM), Windows Vista, Windows 7, Win-
dows NT, Windows Me, Windows 95, Windows 98, Windows 2000, Windows XP, MS-Windows, PowerPoint, Win32, DEBUG, WinDbg, MS-DOS,
Visual Studio, Visual C++, and CodeView are registered trademarks of Microsoft Corporation. Autocad is a trademark of Autodesk. Java is a trademark
of Sun Microsystems. PartitionMagic is a trademark of Symantec. All other trademarks or product names are the property of their respective owners.

Copyright © 2020, 2015, 2011, 2007, 2003 by Pearson Inc. 221 River Street, Hoboken, NJ 07030. All rights reserved. Manufactured in the
United States of America. This publication is protected by Copyright and permissions should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission(s) to use materials from this work, please visit http://www.pearsoned.com/permissions/.

Previously published as Assembly Language for Intel-Based Computers.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing
of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION
CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE. ALL
SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR
ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMATION,
INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS
FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS RESPECTIVE SUP-
PLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES.
THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPH-
ICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE
SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED HEREIN
AT ANY TIME. PARTIAL SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

MICROSOFT® AND WINDOWS® ARE REGISTERED TRADEMARKS OF THE MICROSOFT CORPORATION IN THE USA AND OTHER
COUNTRIES. SCREEN SHOTS AND ICONS REPRINTED WITH PERMISSION FROM THE MICROSOFT CORPORATION. THIS BOOK
IS NOT SPONSORED OR ENDORSED BY OR AFFILIATED WITH THE MICROSOFT CORPORATION.

Library of Congress Cataloging-in-Publication Data
Names: Irvine, Kip R., 1951- author.
Title: Assembly language for X86 processors / Kip R. Irvine, Florida
  International University School of Computing and Information Sciences.
Other titles: Assembly language for Intel-based computers
Description: Eighth edition. | Hoboken : Pearson, [2019] | Earlier editions
  published under title: Assembly language for intel-based computers. |
  Includes bibliographical references and index.
Identifiers: LCCN 2018058613| ISBN 9780135381694 | ISBN 013538169X
Subjects: LCSH: IBM microcomputers--Programming. | X86 assembly language
  (Computer program language)
Classification: LCC QA76.73.X16 I78 2019 | DDC 005.265--dc23 LC record available at https://lccn.loc.gov/2018058613

10  9  8  7  6  5  4  3  2  1

ISBN-10:      0-13-538169-X
ISBN-13: 978-0-13-538169-4

A01_IRVI1656_08_SE_FM.indd 2 28/02/19 4:31 PM

To Jack and Candy Irvine

A01_IRVI1656_08_SE_FM.indd 3 28/02/19 4:31 PM

A01_IRVI1656_08_SE_FM.indd 4 28/02/19 4:31 PM

v

Contents
Preface  xxi

1	 Basic Concepts  1
1.1	 Welcome to Assembly Language  1

1.1.1	 Questions You Might Ask  2
1.1.2	 Assembly Language Applications  5
1.1.3	 Section Review  6

1.2	 Virtual Machine Concept  7
1.2.1	 Section Review  9

1.3	 Data Representation  10
1.3.1	 Binary Integers  10
1.3.2	 Binary Addition  12
1.3.3	 Integer Storage Sizes  13
1.3.4	 Hexadecimal Integers  14
1.3.5	 Hexadecimal Addition  16
1.3.6	 Signed Binary Integers  16
1.3.7	 Binary Subtraction  19
1.3.8	 Character Storage  20
1.3.9	 Binary-Coded Decimal (BCD) Numbers  22
1.3.10	 Section Review  22

1.4	 Boolean Expressions  23
1.4.1	 Truth Tables for Boolean Functions  26
1.4.2	 Section Review  27

1.5	 Chapter Summary  27

1.6	 Key Terms  28

1.7	 Review Questions and Exercises  29
1.7.1	 Short Answer  29
1.7.2	 Algorithm Workbench  31

2	 x86 Processor Architecture  33
2.1	 General Concepts  34

2.1.1	 Basic Microcomputer Design  34
2.1.2	 Instruction Execution Cycle  35
2.1.3	 Reading from Memory  36

A01_IRVI1656_08_SE_FM.indd 5 28/02/19 4:31 PM

vi	 Contents

2.1.4	 Loading and Executing a Program  37
2.1.5	 Section Review  38

2.2	 32-Bit x86 Processors  39
2.2.1	 Modes of Operation  39
2.2.2	 Basic Execution Environment  39
2.2.3	 x86 Memory Management  43
2.2.4	 Section Review  44

2.3	 64-Bit x86-64 Processors  44
2.3.1	 64-Bit Operation Modes  45
2.3.2	 Basic 64-Bit Execution Environment  45
2.3.3	 Section Review  46

2.4	 Components of a Typical x86 Computer  47
2.4.1	 Motherboard  47
2.4.2	 Memory  49
2.4.3	 Section Review  49

2.5	 Input-Output System  50
2.5.1	 Levels of I/O Access  50
2.5.2	 Section Review  52

2.6	 Chapter Summary  53

2.7	 Key Terms  54

2.8	 Review Questions  55

3	 Assembly Language Fundamentals  57
3.1	 Basic Language Elements  58

3.1.1	 First Assembly Language Program  58
3.1.2	 Integer Literals  59
3.1.3	 Constant Integer Expressions  60
3.1.4	 Real Number Literals  61
3.1.5	 Character Literals  61
3.1.6	 String Literals  62
3.1.7	 Reserved Words  62
3.1.8	 Identifiers  62
3.1.9	 Directives  63
3.1.10	 Instructions  63
3.1.11	 Section Review  67

3.2	 Example: Adding and Subtracting Integers  67
3.2.1	 The AddTwo Program  67
3.2.2	 Running and Debugging the AddTwo Program  69
3.2.3	 Program Template  73
3.2.4	 Section Review  74

A01_IRVI1656_08_SE_FM.indd 6 28/02/19 4:31 PM

Contents	 vii

3.3	 Assembling, Linking, and Running Programs  75
3.3.1	 The Assemble-Link-Execute Cycle  75
3.3.2	 Listing File  76
3.3.3	 Section Review  78

3.4	 Defining Data  78
3.4.1	 Intrinsic Data Types  78
3.4.2	 Data Definition Statement  79
3.4.3	 Adding a Variable to the AddTwo Program  80
3.4.4	 Defining BYTE and SBYTE Data  81
3.4.5	 Defining WORD and SWORD Data  83
3.4.6	 Defining DWORD and SDWORD Data  84
3.4.7	 Defining QWORD Data  84
3.4.8	 Defining Packed BCD (TBYTE) Data  85
3.4.9	 Defining Floating-Point Types  85
3.4.10	 A Program That Adds Variables  86
3.4.11	 Little-Endian Order  87
3.4.12	 Declaring Uninitialized Data  88
3.4.13	 Section Review  88

3.5	 Symbolic Constants  90
3.5.1	 Equal-Sign Directive  90
3.5.2	 Calculating the Sizes of Arrays and Strings  91
3.5.3	 EQU Directive  92
3.5.4	 TEXTEQU Directive  93
3.5.5	 Section Review  94

3.6	 Introducing 64-Bit Programming  95

3.7	 Chapter Summary  96

3.8	 Key Terms  98
3.8.1	 Terms  98
3.8.2	 Instructions, Operators, and Directives  98

3.9	 Review Questions and Exercises  99
3.9.1	 Short Answer  99
3.9.2	 Algorithm Workbench  100

3.10	 Programming Exercises  100

4	 Data Transfers, Addressing, and
Arithmetic  102

4.1	 Data Transfer Instructions  103
4.1.1	 Introduction  103
4.1.2	 Operand Types  103
4.1.3	 Direct Memory Operands  103

A01_IRVI1656_08_SE_FM.indd 7 28/02/19 4:31 PM

viii	 Contents

4.1.4	 MOV Instruction  105
4.1.5	 Zero/Sign Extension of Integers  106
4.1.6	 LAHF and SAHF Instructions  108
4.1.7	 XCHG Instruction  109
4.1.8	 Direct-Offset Operands  109
4.1.9	 Examples of Moving Data  110
4.1.10	 Section Review  113

4.2	 Addition and Subtraction  114
4.2.1	 INC and DEC Instructions  114
4.2.2	 ADD Instruction  114
4.2.3	 SUB Instruction  115
4.2.4	 NEG Instruction  115
4.2.5	 Implementing Arithmetic Expressions  115
4.2.6	 Flags Affected by Addition and Subtraction  116
4.2.7	 Example Program (AddSubTest)  120
4.2.8	 Section Review  121

4.3	 Data-Related Operators and Directives  122
4.3.1	 OFFSET Operator  122
4.3.2	 ALIGN Directive  123
4.3.3	 PTR Operator  124
4.3.4	 TYPE Operator  125
4.3.5	 LENGTHOF Operator  125
4.3.6	 SIZEOF Operator  126
4.3.7	 LABEL Directive  126
4.3.8	 Section Review  127

4.4	 Indirect Addressing  127
4.4.1	 Indirect Operands  127
4.4.2	 Arrays  128
4.4.3	 Indexed Operands  129
4.4.4	 Pointers  131
4.4.5	 Section Review  132

4.5	 JMP and LOOP Instructions  134
4.5.1	 JMP Instruction  134
4.5.2	 LOOP Instruction  135
4.5.3	 Displaying an Array in the Visual Studio Debugger  136
4.5.4	 Summing an Integer Array  137
4.5.5	 Copying a String  138
4.5.6	 Section Review  139

4.6	 64-Bit Programming  140
4.6.1	 MOV Instruction  140
4.6.2	 64-Bit Version of SumArray  141
4.6.3	 Addition and Subtraction  142
4.6.4	 Section Review  143

A01_IRVI1656_08_SE_FM.indd 8 28/02/19 4:31 PM

Contents	 ix

4.7	 Chapter Summary  144

4.8	 Key Terms  145
4.8.1	 Terms  145
4.8.2	 Instructions, Operators, and Directives  145

4.9	 Review Questions and Exercises  146
4.9.1	 Short Answer  146
4.9.2	 Algorithm Workbench  148

4.10	 Programming Exercises  149

5	 Procedures  151
5.1	 Stack Operations  152

5.1.1	 Runtime Stack (32-Bit Mode)  152
5.1.2	 PUSH and POP Instructions  154
5.1.3	 Section Review  157

5.2	 Defining and Using Procedures  158
5.2.1	 PROC Directive  158
5.2.2	 CALL and RET Instructions  160
5.2.3	 Nested Procedure Calls  161
5.2.4	 Passing Register Arguments to Procedures  163
5.2.5	 Example: Summing an Integer Array  163
5.2.6	 Saving and Restoring Registers  165
5.2.7	 Section Review  166

5.3	 Linking to an External Library  167
5.3.1	 Background Information  167
5.3.2	 Section Review  168

5.4	 The Irvine32 Library  169
5.4.1	 Motivation for Creating the Library  169
5.4.2	 The Win32 Console Window  171
5.4.3	 Individual Procedure Descriptions  172
5.4.4	 Library Test Programs  184
5.4.5	 Section Review  192

5.5	 64-Bit Assembly Programming  193
5.5.1	 The Irvine64 Library  193
5.5.2	 Calling 64-Bit Subroutines  194
5.5.3	 The x64 Calling Convention  195
5.5.4	 Sample Program that Calls a Procedure  195
5.5.5	 Section Review  197

5.6	 Chapter Summary  198

A01_IRVI1656_08_SE_FM.indd 9 28/02/19 4:31 PM

x	 Contents

5.7	 Key Terms  199
5.7.1	 Terms  199
5.7.2	 Instructions, Operators, and Directives  199

5.8	 Review Questions and Exercises  199
5.8.1	 Short Answer  199
5.8.2	 Algorithm Workbench  202

5.9	 Programming Exercises  203

6	 Conditional Processing  205
6.1	 Boolean and Comparison Instructions  206

6.1.1	 The CPU Status Flags  206
6.1.2	 AND Instruction  207
6.1.3	 OR Instruction  208
6.1.4	 Bit-Mapped Sets  209
6.1.5	 XOR Instruction  211
6.1.6	 NOT Instruction  212
6.1.7	 TEST Instruction  212
6.1.8	 CMP Instruction  213
6.1.9	 Setting and Clearing Individual CPU Flags  214
6.1.10	 Boolean Instructions in 64-Bit Mode  214
6.1.11	 Section Review  215

6.2	 Conditional Jumps  216
6.2.1	 Conditional Structures  216
6.2.2	 Jcond Instruction  217
6.2.3	 Types of Conditional Jump Instructions  217
6.2.4	 Conditional Jump Applications  221
6.2.5	 Section Review  225

6.3	 Conditional Loop Instructions  226
6.3.1	 LOOPZ and LOOPE Instructions  226
6.3.2	 LOOPNZ and LOOPNE Instructions  227
6.3.3	 Section Review  227

6.4	 Conditional Structures  228
6.4.1	 Block-Structured IF Statements  228
6.4.2	 Compound Expressions  233
6.4.3	 WHILE Loops  234
6.4.4	 Table-Driven Selection  237
6.4.5	 Section Review  239

6.5	 Application: Finite-State Machines  240
6.5.1	 Validating an Input String  240
6.5.2	 Validating a Signed Integer  241
6.5.3	 Section Review  245

A01_IRVI1656_08_SE_FM.indd 10 28/02/19 4:31 PM

Contents	 xi

6.6	 Conditional Control Flow Directives (Optional topic)  246
6.6.1	 Creating IF Statements  246
6.6.2	 Signed and Unsigned Comparisons  249
6.6.3	 Compound Expressions  250
6.6.4	 Creating Loops with .REPEAT and .WHILE  253

6.7	 Chapter Summary  254

6.8	 Key Terms  255
6.8.1	 Terms  255
6.8.2	 Instructions, Operators, and Directives  255

6.9	 Review Questions and Exercises  256
6.9.1	 Short Answer  256
6.9.2	 Algorithm Workbench  258

6.10	 Programming Exercises  259
6.10.1	 Suggestions for Testing Your Code  259
6.10.2	 Exercise Descriptions  260

7	 Integer Arithmetic  263
7.1	 Shift and Rotate Instructions  264

7.1.1	 Logical Shifts and Arithmetic Shifts  264
7.1.2	 SHL Instruction  265
7.1.3	 SHR Instruction  266
7.1.4	 SAL and SAR Instructions  267
7.1.5	 ROL Instruction  268
7.1.6	 ROR Instruction  269
7.1.7	 RCL and RCR Instructions  269
7.1.8	 Signed Overflow  270
7.1.9	 SHLD/SHRD Instructions  270
7.1.10	 Section Review  272

7.2	 Shift and Rotate Applications  274
7.2.1	 Shifting Multiple Doublewords  274
7.2.2	 Multiplication by Shifting Bits  275
7.2.3	 Displaying Binary Bits  276
7.2.4	 Extracting File Date Fields  276
7.2.5	 Section Review  277

7.3	 Multiplication and Division Instructions  279
7.3.1	 Unsigned Integer Multiplication (MUL)  279
7.3.2	 Signed Integer Multiplication (IMUL)  281
7.3.3	 Measuring Program Execution Times  284
7.3.4	 Unsigned Integer Division (DIV)  286
7.3.5	 Signed Integer Division (IDIV)  288

A01_IRVI1656_08_SE_FM.indd 11 28/02/19 4:31 PM

xii	 Contents

7.3.6	 Implementing Arithmetic Expressions  292
7.3.7	 Section Review  294

7.4	 Extended Addition and Subtraction  295
7.4.1	 ADC Instruction  295
7.4.2	 Extended Addition Example  296
7.4.3	 SBB Instruction  298
7.4.4	 Section Review  299

7.5	 ASCII and Unpacked Decimal Arithmetic  299
7.5.1	 AAA Instruction  300
7.5.2	 AAS Instruction  302
7.5.3	 AAM Instruction  303
7.5.4	 AAD Instruction  303
7.5.5	 Section Review  303

7.6	 Packed Decimal Arithmetic  304
7.6.1	 DAA Instruction  305
7.6.2	 DAS Instruction  306
7.6.3	 Section Review  306

7.7	 Chapter Summary  307

7.8	 Key Terms  308
7.8.1	 Terms  308
7.8.2	 Instructions, Operators, and Directives  308

7.9	 Review Questions and Exercises  308
7.9.1	 Short Answer  308
7.9.2	 Algorithm Workbench  310

7.10	 Programming Exercises  311

8	 Advanced Procedures  314
8.1	 Introduction  315

8.2	 Stack Frames  315
8.2.1	 Stack Parameters  315
8.2.2	 Disadvantages of Register Parameters  316
8.2.3	 Accessing Stack Parameters  318
8.2.4	 32-Bit Calling Conventions  321
8.2.5	 Local Variables  323
8.2.6	 Reference Parameters  324
8.2.7	 LEA Instruction  326
8.2.8	 ENTER and LEAVE Instructions  326
8.2.9	 LOCAL Directive  328
8.2.10	 The Microsoft x64 Calling Convention  329
8.2.11	 Section Review  330

A01_IRVI1656_08_SE_FM.indd 12 28/02/19 4:31 PM

Contents	 xiii

8.3	 Recursion  331
8.3.1	 Recursively Calculating a Sum  331
8.3.2	 Calculating a Factorial  333
8.3.3	 Section Review  339

8.4	 INVOKE, ADDR, PROC, and PROTO  340
8.4.1	 INVOKE Directive  340
8.4.2	 ADDR Operator  341
8.4.3	 PROC Directive  342
8.4.4	 PROTO Directive  345
8.4.5	 Parameter Classifications  348
8.4.6	 Example: Exchanging Two Integers  349
8.4.7	 Debugging Tips  350
8.4.8	 WriteStackFrame Procedure  351
8.4.9	 Section Review  352

8.5	 Creating Multimodule Programs  352
8.5.1	 Hiding and Exporting Procedure Names  352
8.5.2	 Calling External Procedures  353
8.5.3	 Using Variables and Symbols across Module Boundaries  354
8.5.4	 Example: ArraySum Program  355
8.5.5	 Creating the Modules Using Extern  356
8.5.6	 Creating the Modules Using INVOKE and PROTO  359
8.5.7	 Section Review  362

8.6	 Advanced Use of Parameters (Optional Topic)  363
8.6.1	 Stack Affected by the USES Operator  363
8.6.2	 Passing 8-Bit and 16-Bit Arguments on the Stack  364
8.6.3	 Passing 64-Bit Arguments  366
8.6.4	 Non-Doubleword Local Variables  366

8.7	 Java Bytecodes (Optional Topic)  369
8.7.1	 Java Virtual Machine  369
8.7.2	 Instruction Set  370
8.7.3	 Java Disassembly Examples  371
8.7.4	 Example: Conditional Branch  374

8.8	 Chapter Summary  376

8.9	 Key Terms  377
8.9.1	 Terms  377
8.9.2	 Instructions, Operators, and Directives  377

8.10	 Review Questions and Exercises  377
8.10.1	 Short Answer  377
8.10.2	 Algorithm Workbench  378

8.11	 Programming Exercises  378

A01_IRVI1656_08_SE_FM.indd 13 28/02/19 4:31 PM

xiv	 Contents

9	 Strings and Arrays  381
9.1	 Introduction  381

9.2	 String Primitive Instructions  382
9.2.1	 MOVSB, MOVSW, and MOVSD  383
9.2.2	 CMPSB, CMPSW, and CMPSD  384
9.2.3	 SCASB, SCASW, and SCASD  385
9.2.4	 STOSB, STOSW, and STOSD  385
9.2.5	 LODSB, LODSW, and LODSD  385
9.2.6	 Section Review  386

9.3	 Selected String Procedures  387
9.3.1	 Str_compare Procedure  388
9.3.2	 Str_length Procedure  389
9.3.3	 Str_copy Procedure  389
9.3.4	 Str_trim Procedure  390
9.3.5	 Str_ucase Procedure  393
9.3.6	 String Library Demo Program  393
9.3.7	 String Procedures in the Irvine64 Library  395
9.3.8	 Section Review  398

9.4	 Two-Dimensional Arrays  399
9.4.1	 Ordering of Rows and Columns  399
9.4.2	 Base-Index Operands  399
9.4.3	 Base-Index-Displacement Operands  401
9.4.4	 Base-Index Operands in 64-Bit Mode  402
9.4.5	 Section Review  403

9.5	 Searching and Sorting Integer Arrays  404
9.5.1	 Bubble Sort  404
9.5.2	 Binary Search  406
9.5.3	 Section Review  412

9.6	 Java Bytecodes: String Processing (Optional Topic)  413

9.7	 Chapter Summary  414

9.8	 Key Terms and Instructions  415

9.9	 Review Questions and Exercises  415
9.9.1	 Short Answer  415
9.9.2	 Algorithm Workbench  416

9.10	 Programming Exercises  416

A01_IRVI1656_08_SE_FM.indd 14 28/02/19 4:31 PM

Contents	 xv

10	 Structures and Macros  421
10.1	 Structures  421

10.1.1	 Defining Structures  422
10.1.2	 Declaring Structure Objects  424
10.1.3	 Referencing Structure Objects  425
10.1.4	 Example: Displaying the System Time  428
10.1.5	 Structures Containing Structures  430
10.1.6	 Example: Drunkard’s Walk  430
10.1.7	 Declaring and Using Unions  434
10.1.8	 Section Review  436

10.2	 Macros  437
10.2.1	 Overview  437
10.2.2	 Defining Macros  438
10.2.3	 Invoking Macros  439
10.2.4	 Additional Macro Features  440
10.2.5	 Using Our Macro Library (32-Bit Mode Only)  444
10.2.6	 Example Program: Wrappers  451
10.2.7	 Section Review  452

10.3	 Conditional-Assembly Directives  453
10.3.1	 Checking for Missing Arguments  454
10.3.2	 Default Argument Initializers  455
10.3.3	 Boolean Expressions  456
10.3.4	 IF, ELSE, and ENDIF Directives  456
10.3.5	 The IFIDN and IFIDNI Directives  457
10.3.6	 Example: Summing a Matrix Row  458
10.3.7	 Special Operators  461
10.3.8	 Macro Functions  464
10.3.9	 Section Review  466

10.4	 Defining Repeat Blocks  467
10.4.1	 WHILE Directive  467
10.4.2	 REPEAT Directive  468
10.4.3	 FOR Directive  468
10.4.4	 FORC Directive  469
10.4.5	 Example: Linked List  470
10.4.6	 Section Review  471

10.5	 Chapter Summary  473

10.6	 Key Terms  474
10.6.1	 Terms  474
10.6.2	 Operators and Directives  474

A01_IRVI1656_08_SE_FM.indd 15 28/02/19 4:31 PM

xvi	 Contents

10.7	 Review Questions and Exercises  475
10.7.1	 Short Answer  475
10.7.2	 Algorithm Workbench  475

10.8	 Programming Exercises  477

11	 MS-Windows Programming  480
11.1	 Win32 Console Programming  480

11.1.1	 Background Information  481
11.1.2	 Win32 Console Functions  485
11.1.3	 Displaying a Message Box  487
11.1.4	 Console Input  490
11.1.5	 Console Output  496
11.1.6	 Reading and Writing Files  498
11.1.7	 File I/O in the Irvine32 Library  502
11.1.8	 Testing the File I/O Procedures  504
11.1.9	 Console Window Manipulation  507
11.1.10	 Controlling the Cursor  510
11.1.11	 Controlling the Text Color  511
11.1.12	 Time and Date Functions  513
11.1.13	 Using the 64-Bit Windows API  517
11.1.14	 Section Review  518

11.2	 Writing a Graphical Windows Application  519
11.2.1	 Necessary Structures  519
11.2.2	 The MessageBox Function  521
11.2.3	 The WinMain Procedure  521
11.2.4	 The WinProc Procedure  522
11.2.5	 The ErrorHandler Procedure  523
11.2.6	 Program Listing  523
11.2.7	 Section Review  527

11.3	 Dynamic Memory Allocation  528
11.3.1	 HeapTest Programs  531
11.3.2	 Section Review  535

11.4	 32-bit x86 Memory Management  535
11.4.1	 Linear Addresses  536
11.4.2	 Page Translation  539
11.4.3	 Section Review  541

11.5	 Chapter Summary  541

11.6	 Key Terms  543

11.7	 Review Questions and Exercises  543
11.7.1	 Short Answer  543
11.7.2	 Algorithm Workbench  544

11.8	 Programming Exercises  544

A01_IRVI1656_08_SE_FM.indd 16 28/02/19 4:31 PM

Contents	 xvii

12	 Floating-Point Processing and Instruction
Encoding  547

12.1	 Floating-Point Binary Representation  547
12.1.1	 IEEE Binary Floating-Point Representation  548
12.1.2	 The Exponent  550
12.1.3	 Normalized Binary Floating-Point Numbers  550
12.1.4	 Creating the IEEE Representation  550
12.1.5	 Converting Decimal Fractions to Binary Reals  552
12.1.6	 Section Review  554

12.2	 Floating-Point Unit  555
12.2.1	 FPU Register Stack  555
12.2.2	 Rounding  558
12.2.3	 Floating-Point Exceptions  560
12.2.4	 Floating-Point Instruction Set  560
12.2.5	 Arithmetic Instructions  563
12.2.6	 Comparing Floating-Point Values  567
12.2.7	 Reading and Writing Floating-Point Values  570
12.2.8	 Exception Synchronization  571
12.2.9	 Code Examples  572
12.2.10	 Mixed-Mode Arithmetic  574
12.2.11	 Masking and Unmasking Exceptions  575
12.2.12	 Section Review  576

12.3	 x86 Instruction Encoding  577
12.3.1	 Instruction Format  577
12.3.2	 Single-Byte Instructions  578
12.3.3	 Move Immediate to Register  579
12.3.4	 Register-Mode Instructions  580
12.3.5	 Processor Operand-Size Prefix  581
12.3.6	 Memory-Mode Instructions  582
12.3.7	 Section Review  585

12.4	 Chapter Summary  585

12.5	 Key Terms  587

12.6	 Review Questions and Exercises  587
12.6.1	 Short Answer  587
12.6.2	 Algorithm Workbench  588

12.7	 Programming Exercises  589

A01_IRVI1656_08_SE_FM.indd 17 28/02/19 4:31 PM

xviii	 Contents

13	 High-Level Language Interface  593
13.1	 Introduction  593

13.1.1	 General Conventions  593
13.1.2	 .MODEL Directive  595
13.1.3	 Examining Compiler-Generated Code  597
13.1.4	 Section Review  602

13.2	 Inline Assembly Code  602
13.2.1	 __asm Directive in Visual C++  602
13.2.2	 File Encryption Example  605
13.2.3	 Section Review  608

13.3	 Linking 32-Bit Assembly Language Code to C/C++  609
13.3.1	 IndexOf Example  610
13.3.2	 Calling C and C++ Functions  613
13.3.3	 Multiplication Table Example  615
13.3.4	 Section Review  618

13.4	 Chapter Summary  619

13.5	 Key Terms  620

13.6	 Review Questions  620

13.7	 Programming Exercises  620

14	 16-Bit MS-DOS Programming  622
14.1	 MS-DOS and the IBM-PC  622

14.1.1	 Memory Organization  623
14.1.2	 Redirecting Input-Output  624
14.1.3	 Software Interrupts  625
14.1.4	 INT Instruction  626
14.1.5	 Coding for 16-Bit Programs  627
14.1.6	 Section Review  628

14.2	 MS-DOS Function Calls (INT 21h)  628
14.2.1	 Selected Output Functions  630
14.2.2	 Hello World Program Example  632
14.2.3	 Selected Input Functions  633
14.2.4	 Date/Time Functions  637
14.2.5	 Section Review  641

14.3	 Standard MS-DOS File I/O Services  641
14.3.1	 Create or Open File (716Ch)  643
14.3.2	 Close File Handle (3Eh)  644
14.3.3	 Move File Pointer (42h)  644
14.3.4	 Get File Creation Date and Time  645

A01_IRVI1656_08_SE_FM.indd 18 28/02/19 4:31 PM

Contents	 xix

14.3.5	 Selected Library Procedures  646
14.3.6	 Example: Read and Copy a Text File  647
14.3.7	 Reading the MS-DOS Command Tail  649
14.3.8	 Example: Creating a Binary File  651
14.3.9	 Section Review  654

14.4	 Chapter Summary  655

14.5	 Programming Exercises  657

15	 Disk Fundamentals  659
15.1	 Disk Storage Systems  659

15.1.1	 Tracks, Cylinders, and Sectors  660
15.1.2	 Disk Partitions (Volumes)  662
15.1.3	 Section Review  663

15.2	 File Systems  663
15.2.1	 FAT12  664
15.2.2	 FAT16  664
15.2.3	 FAT32  665
15.2.4	 NTFS  665
15.2.5	 Primary Disk Areas  666
15.2.6	 Section Review  667

15.3	 Disk Directory  667
15.3.1	 MS-DOS Directory Structure  668
15.3.2	 Long Filenames in MS-Windows  671
15.3.3	 File Allocation Table (FAT)  673
15.3.4	 Section Review  673

15.4	 Reading and Writing Disk Sectors  674
15.4.1	 Sector Display Program  675
15.4.2	 Section Review  679

15.5	 System-Level File Functions  680
15.5.1	 Get Disk Free Space (7303h)  680
15.5.2	 Create Subdirectory (39h)  683
15.5.3	 Remove Subdirectory (3Ah)  684
15.5.4	 Set Current Directory (3Bh)  684
15.5.5	 Get Current Directory (47h)  684
15.5.6	 Get and Set File Attributes (7143h)  685
15.5.7	 Section Review  685

15.6	 Chapter Summary  685

15.7	 Key Terms  687

15.8	 Programming Exercises  687

A01_IRVI1656_08_SE_FM.indd 19 28/02/19 4:31 PM

xx	 Contents

16	 BIOS-Level Programming  689
16.1	 Introduction  689

16.1.1	 BIOS Data Area  690

16.2	 Keyboard Input with INT 16h  691
16.2.1	 How the Keyboard Works  691
16.2.2	 INT 16h Functions  692
16.2.3	 Section Review  696

16.3	 Video Programming with INT 10h  697
16.3.1	 Basic Background  697
16.3.2	 Controlling the Color  699
16.3.3	 INT 10h Video Functions  701
16.3.4	 Library Procedure Examples  713
16.3.5	 Section Review  713

16.4	 Drawing Graphics Using INT 10h  714
16.4.1	 INT 10h Pixel-Related Functions  715
16.4.2	 DrawLine Program  716
16.4.3	 Cartesian Coordinates Program  718
16.4.4	 Converting Cartesian Coordinates to Screen Coordinates  720
16.4.5	 Section Review  721

16.5	 Memory-Mapped Graphics  722
16.5.1	 Mode 13h: 320 * 200, 256 Colors  722
16.5.2	 Memory-Mapped Graphics Program  724
16.5.3	 Section Review  727

16.6	 Mouse Programming  727
16.6.1	 Mouse INT 33h Functions  727
16.6.2	 Mouse Tracking Program  732
16.6.3	 Section Review  737

16.7	 Chapter Summary  738

16.8	 Programming Exercises  739

A	 MASM Reference  741
B	 The x86 Instruction Set  763
C	 BIOS and MS-DOS Interrupts  797
D	 Answers to Review Questions

(Chapters 14–16)  807
Glossary  816
Index  828

A01_IRVI1656_08_SE_FM.indd 20 28/02/19 4:31 PM

xxi

Preface

Assembly Language for x86 Processors, Eighth Edition, teaches assembly language programming and
architecture for x86 and Intel64 processors. It is an appropriate text for the following types of college
courses:

•	Assembly Language Programming
•	Fundamentals of Computer Systems
•	Fundamentals of Computer Architecture

Students use Intel or AMD processors and program with Microsoft Macro Assembler (MASM), run-
ning on recent versions of Microsoft Windows. Although this book was originally designed as a pro-
gramming textbook for college students, it serves as an effective supplement to computer architecture
courses. As a testament to its popularity, previous editions have been translated into numerous languages.

Emphasis of Topics  This edition includes topics that lead naturally into subsequent courses in com-
puter architecture, operating systems, and compiler writing:

•	Virtual machine concept
•	Instruction set architecture
•	Elementary Boolean operations
•	Instruction execution cycle
•	Memory access and handshaking
•	Interrupts and polling
•	Hardware-based I/O
•	Floating-point binary representation

Other topics relate specially to x86 and Intel64 architecture:

•	Protected memory and paging
•	Memory segmentation in real-address mode
•	16-Bit interrupt handling
•	MS-DOS and BIOS system calls (interrupts)
•	Floating-point unit architecture and programming
•	Instruction encoding

Certain examples presented in the book lend themselves to courses that occur later in a computer science
curriculum:

•	Searching and sorting algorithms
•	High-level language structures
•	Finite-state machines
•	Code optimization examples

A01_IRVI1656_08_SE_FM.indd 21 28/02/19 4:31 PM

xxii	 Preface

What’s New in the Eighth Edition

This edition represents this book’s transition into the world of interactive electronic textbooks. We’re
very excited about this innovative concept, because for the first time readers will be able to experiment
and interact with review questions, code animations, tutorial videos, and multiple-input exercises.

•	All section reviews in the chapters have been rewritten as interactive questions, giving the reader
immediate feedback on their answers. New questions were added, others removed, and many revised.

•	Code animations allow the reader to step through program code and view both variable values and
comments about the code. Readers no longer have to visually jump back and forth between program
code and text explanations on the next page.

•	Links to timely tutorial videos have been inserted in the text, so readers can receive tutoring on
topics as they encounter them in the text. Previously, readers would need to purchase a separate sub-
scription to gain access to the entire set of videos, presented as a list. In this edition, videos are free.

•	Multiple-input exercises allow readers to browse a program listing and insert variable values into
boxes next to the code. They receive immediate colorized feedback, giving them the opportunity to
experiment until all input values are correct.

•	Hypertexted definitions of key terms are placed throughout the text, connected to an online glossary.

In short, we have taken the successful content of this book (refined through many editions) and brought
it into the interactive electronic textbook world.

This book is still focused on its primary goal, to teach students how to write and debug programs at
the machine level. It will never replace a complete book on computer architecture, but it does give stu-
dents the first-hand experience of writing software in an environment that teaches them how a computer
works. Our premise is that students retain knowledge better when theory is combined with experience.
In an engineering course, students construct prototypes; in a computer architecture course, students
should write machine-level programs. In both cases, they have a memorable experience that gives them
confidence to work in any OS/machine-oriented environment.

Protected mode programming is entirely the focus of chapters 1 through 13. As such, students can
create 32-bit and 64-bit programs that run under the most recent versions of Microsoft Windows. The
remaining three legacy chapters cover 16-bit programming. These chapters cover BIOS programming,
MS-DOS services, keyboard and mouse input, dist storage fundamentals, video programming, and
graphics.

Subroutine Libraries  We supply three versions of the subroutine library that students use for basic
input/output, simulations, timing, and other useful tasks. The Irvine32 and Irvine64 libraries run in pro-
tected mode. The 16-bit version (Irvine16.lib) runs in real-address mode and is used only by Chapter 14
through Chapter 16. Full source code for the libraries is supplied on the companion website. The link
libraries are available only for convenience, not to prevent students from learning how to program input–
output themselves. Students are encouraged to create their own libraries.

Included Software and Examples  All the example programs were tested with Microsoft Macro
Assembler, running in a recent version of Microsoft Visual Studio. In addition, batch files are supplied
that permit students to assemble and run applications from the Windows command prompt. Information

A01_IRVI1656_08_SE_FM.indd 22 28/02/19 4:31 PM

Preface	 xxiii

Updates and corrections to this book may be found at the Companion website, including additional
programming projects for instructors to assign at the ends of chapters.

Overall Goals

The following goals of this book are designed to broaden the student’s interest and knowledge in topics
related to assembly language:

•	Intel and AMD processor architecture and programming
•	Real-address mode and protected mode programming
•	Assembly language directives, macros, operators, and program structure
•	Programming methodology, showing how to use assembly language to create system-level software

tools and application programs
•	Computer hardware manipulation
•	Interaction between assembly language programs, the operating system, and other application

programs

One of our goals is to help students approach programming problems with a machine-level mind set. It
is important to think of the CPU as an interactive tool, and to learn to monitor its operation as directly
as possible. A debugger is a programmer’s best friend, not only for catching errors, but as an educa-
tional tool that teaches about the CPU and operating system. We encourage students to look beneath
the surface of high-level languages and to realize that most programming languages are designed to
be portable and, therefore, independent of their host machines. In addition to the short examples,
this book contains hundreds of ready-to-run programs that demonstrate instructions or ideas as they
are presented in the text. Reference materials, such as guides to MS-DOS interrupts and instruction
mnemonics, are available at the end of the book.

Required Background  The reader should already be able to program confidently in at least one high-
level programming language such as Python, Java, C, or C++. One chapter covers C++ interfacing, so it is
very helpful to have a compiler on hand. I have used this book in the classroom with majors in both com-
puter science and management information systems, and it has been used elsewhere in engineering courses.

Features

Complete Program Listings  The author’s website contains supplemental learning materials, study
guides, and all the source code from the book’s examples. Two link libraries (32-bit and 64-bit) are
supplied with the book, containing more than 40 procedures that simplify user input–output, numeric
processing, disk and file handling, and string handling. In the beginning stages of the course, students
can use this library to enhance their programs. Later, they can create their own procedures and add them
to the library.

Programming Logic  Two chapters emphasize Boolean logic and bit-level manipulation. A conscious
attempt is made to relate high-level programming logic to the low-level details of the machine. This
approach helps students to create more efficient implementations and to better understand how compilers
generate object code.

A01_IRVI1656_08_SE_FM.indd 23 28/02/19 4:31 PM

xxiv	 Preface

Hardware and Operating System Concepts  The first two chapters introduce basic hardware and
data representation concepts, including binary numbers, CPU architecture, status flags, and memory
mapping. A survey of the computer’s hardware and a historical perspective of the Intel processor family
helps students to better understand their target computer system.

Structured Programming Approach  Beginning with Chapter 5, procedures and functional decom-
position are emphasized. Students are given more complex programming exercises, requiring them to
focus on design before starting to write code.

Java Bytecodes and the Java Virtual Machine  In Chapters 8 and 9, the author explains the basic
operation of Java bytecodes with short illustrative examples. Numerous short examples are shown in
disassembled bytecode format, followed by detailed step-by-step explanations.

Creating Link Libraries  Students are free to add their own procedures to the book’s link library and
create new libraries. They learn to use a toolbox approach to programming and to write code that is
useful in more than one program.

Macros and Structures  A chapter is devoted to creating structures, unions, and macros, which are
essential in assembly language and systems programming. Conditional macros with advanced operators
serve to make the macros more professional.

Interfacing to High-Level Languages  A chapter is devoted to interfacing assembly language to C
and C++. This is an important job skill for students who are likely to find jobs programming in high-level
languages. They can learn to optimize their code and see examples of how C++ compilers optimize code.

Instructional Aids  All the program listings are available on the Web. Instructors are provided a test
bank, answers to review questions, solutions to programming exercises, and a Microsoft PowerPoint
slide presentation for each chapter. More details can be found on Page xxvi.

VideoNotes  VideoNotes are Pearson’s visual tool designed to teach students key programming con-
cepts and techniques. These short step-by-step videos demonstrate basic assembly language concepts.
VideoNotes allow for self-paced instruction with easy navigation including the ability to select, play,
rewind, fast-forward, and stop within each VideoNote exercise. Details below.

Chapter Descriptions

Chapters 1 to 8 contain core concepts of assembly language and should be covered in sequence. After
that, you have a fair amount of freedom. The following chapter dependency graph shows how later
chapters depend on knowledge gained from other chapters.

A01_IRVI1656_08_SE_FM.indd 24 28/02/19 4:31 PM

Preface	 xxv

1 through 9

10

11 12 13 14 16

15

1.	 Basic Concepts: Applications of assembly language, basic concepts, machine language, and data
representation.

2.	 x86 Processor Architecture: Basic microcomputer design, instruction execution cycle, x86 proces-
sor architecture, Intel64 architecture, x86 memory management, components of a microcomputer,
and the input–output system.

3.	 Assembly Language Fundamentals: Introduction to assembly language, linking and debugging,
and defining constants and variables.

4.	 Data Transfers, Addressing, and Arithmetic: Simple data transfer and arithmetic instructions,
assemble-link-execute cycle, operators, directives, expressions, JMP and LOOP instructions, and
indirect addressing.

5.	 Procedures: Linking to an external library, description of the book’s link library, stack operations,
defining and using procedures, flowcharts, and top-down structured design.

6.	 Conditional Processing: Boolean and comparison instructions, conditional jumps and loops, high-
level logic structures, and finite-state machines.

7.	 Integer Arithmetic: Shift and rotate instructions with useful applications, multiplication and divi-
sion, extended addition and subtraction, and ASCII and packed decimal arithmetic.

8.	 Advanced Procedures: Stack parameters, local variables, advanced PROC and INVOKE directives,
and recursion.

9.	 Strings and Arrays: String primitives, manipulating arrays of characters and integers, two-
dimensional arrays, sorting, and searching.

10.	 Structures and Macros: Structures, macros, conditional assembly directives, and defining repeat
blocks.

11.	 MS-Windows Programming: Protected mode memory management concepts, using the Micro-
soft-Windows API to display text and colors, and dynamic memory allocation.

12.	 Floating-Point Processing and Instruction Encoding: Floating-point binary representation and
floating-point arithmetic. Learning to program the 32-bit floating-point unit. Understanding the
encoding of 32-bit machine instructions.

13.	 High-Level Language Interface: Parameter passing conventions, inline assembly code, and linking
assembly language modules to C and C++ programs.

14.	 16-Bit MS-DOS Programming: Memory organization, interrupts, function calls, and standard
MS-DOS file I/O services.

A01_IRVI1656_08_SE_FM.indd 25 28/02/19 4:31 PM

xxvi	 Preface

15.	 Disk Fundamentals: Disk storage systems, sectors, clusters, directories, file allocation tables, han-
dling MS-DOS error codes, and drive and directory manipulation.

16.	 BIOS-Level Programming: Keyboard input, video text, graphics, and mouse programming.

•	Appendix A: MASM Reference
•	Appendix B: The x86 Instruction Set
•	Appendix C: BIOS and MS-DOS Interrupts
•	Appendix D: Answers to Review Questions (Chapters 14–16)

Instructor and Student Resources
Instructor Resource Materials
The following protected instructor material is available on pearson.com
For username and password information, please contact your Pearson Representative.

•	Lecture PowerPoint Slides
•	Instructor Solutions Manual

Student Resource Materials
The following useful materials are located at www.asmirvine.com:

•	Getting Started, a comprehensive step-by-step tutorial that helps students customize Visual Studio
for assembly language programming.

•	Corrections to errors found in the book.
•	Supplementary articles on assembly language programming topics.
•	Required support files for assembling and linking your programs, complete source code for all exam-

ple programs in the book, and complete source code for the author’s supplementary library.
•	Assembly Language Workbook, an interactive workbook covering number conversions, addressing

modes, register usage, debug programming, and floating-point binary numbers.
•	Debugging Tools: Tutorials on using the Microsoft Visual Studio debugger.

Acknowledgments

Many thanks are due to Tracy Johnson, Portfolio Manager for Computer Science at Pearson Education,
who has provided friendly, helpful guidance for many years. Vanitha Puela of SPi Global did an excellent
job on the book production, along with Amanda Brands as the Content Producer at Pearson.

Previous Editions
I offer my special thanks to the following individuals who were most helpful during the development of
earlier editions of this book:

•	William Barrett, San Jose State University
•	Scott Blackledge
•	James Brink, Pacific Lutheran University
•	Gerald Cahill, Antelope Valley College
•	John Taylor

A01_IRVI1656_08_SE_FM.indd 26 28/02/19 4:31 PM

xxvii

About the Author
Kip Irvine has written five computer programming textbooks, for Intel Assembly Language, C++. Visual
Basic (beginning and advanced), and COBOL. His book Assembly Language for Intel-Based Computers
has been translated into six languages. His first college degrees (B.M., M.M., and doctorate) were in
Music Composition, at University of Hawaii and University of Miami. He began programming com-
puters for music synthesis around 1982 and taught programming at Miami-Dade Community College
for 17 years. He earned an M.S. degree in Computer Science from the University of Miami, and taught
computer programming in the School of Computing and Information Sciences at Florida International
University for 18 years.

A01_IRVI1656_08_SE_FM.indd 27 28/02/19 4:31 PM

A01_IRVI1656_08_SE_FM.indd 28 28/02/19 4:31 PM

