To Natasha and Hannah for all the joy you bring to my life. —J. B.

To Kaui, Pono, Koa, and Kai for all the love and laughter. —P. D.

To Katrina, Evan, and Cole for your love and support. —J. H.
Brief Contents

PART 1 Introduction
CHAPTER 1 Corporate Finance and the Financial Manager 3
CHAPTER 2 Introduction to Financial Statement Analysis 27

PART 2 Interest Rates and Valuing Cash Flows 71
CHAPTER 3 Time Value of Money: An Introduction 73
CHAPTER 4 Time Value of Money: Valuing Cash Flow Streams 93
CHAPTER 5 Interest Rates 131
CHAPTER 6 Bonds 159
CHAPTER 7 Stock Valuation 197

PART 3 Valuation and the Firm 225
CHAPTER 8 Investment Decision Rules 227
CHAPTER 9 Fundamentals of Capital Budgeting 265
CHAPTER 10 Stock Valuation: A Second Look 303

PART 4 Risk and Return 335
CHAPTER 11 Risk and Return in Capital Markets 337
CHAPTER 12 Systematic Risk and the Equity Risk Premium 369
CHAPTER 13 The Cost of Capital 405

PART 5 Long-Term Financing 433
CHAPTER 14 Raising Equity Capital 435
CHAPTER 15 Debt Financing 467

PART 6 Capital Structure and Payout Policy 495
CHAPTER 16 Capital Structure 497
CHAPTER 17 Payout Policy 537

PART 7 Financial Planning and Forecasting 571
CHAPTER 18 Financial Modeling and Pro Forma Analysis 573
CHAPTER 19 Working Capital Management 603
CHAPTER 20 Short-Term Financial Planning 629

PART 8 Special Topics 659
CHAPTER 21 Option Applications and Corporate Finance 661
CHAPTER 22 Mergers and Acquisitions 687
CHAPTER 23 International Corporate Finance 717
PART 1 Introduction 1

CHAPTER 1 Corporate Finance and the Financial Manager 3

1.1 Why Study Finance? 4
1.2 The Four Types of Firms 4
 Sole Proprietorships 5
 Partnerships 6
 Limited Liability Companies 6
 Corporations 6
 Tax Implications for Corporate Entities 8
 • Corporate Taxation Around the World 8
1.3 The Financial Manager 10
 Making Investment Decisions 10
 • GLOBAL FINANCIAL CRISIS The Dodd-Frank Act 10
 Making Financing Decisions 11
 Managing Short-Term Cash Needs 11
 The Goal of the Financial Manager 11
 • Shareholder Value Versus Stakeholder Value 12
1.4 The Financial Manager’s Place in the Corporation 12
 The Corporate Management Team 12
 Ethics and Incentives in Corporations 13
 • GLOBAL FINANCIAL CRISIS The Dodd-Frank Act on Corporate Compensation and Governance 14
 • Citizens United v. Federal Election Commission 14
1.5 The Stock Market 15
 The Largest Stock Markets 15
 Primary Versus Secondary Markets 16
 Traditional Trading Venues 16
 • INTERVIEW WITH Frank Hatheway 17
 New Competition and Market Changes 18
 Dark Pools 19
 Listing Standards 19
 Other Financial Markets 19
 • NYSE, NASDAQ, DJIA, S&P 500: Awash in Acronyms 20
1.6 Financial Institutions 20
 The Financial Cycle 20
 Types of Financial Institutions 21

CHAPTER 2 Introduction to Financial Statement Analysis 27

2.1 Firms’ Disclosure of Financial Information 28
 Preparation of Financial Statements 28
 • International Financial Reporting Standards 28
 • INTERVIEW WITH Ruth Porat 29
 Types of Financial Statements 30
2.2 The Balance Sheet 30
 Assets 31
 Liabilities 32
 Stockholders’ Equity 32
 Market Value Versus Book Value 33
 Market-to-Book Ratio 34
 Enterprise Value 34
2.3 The Income Statement 36
 Earnings Calculations 36
 EBITDA 37
2.4 The Statement of Cash Flows 38
 Operating Activity 38
 Investment Activity 41
 Financing Activity 41
2.5 Other Financial Statement Information 41
 Statement of Stockholders’ Equity 42
 Management Discussion and Analysis 42
 Notes to the Financial Statements 42
2.6 Financial Statement Analysis 42
 Profitability Ratios 43
 Liquidity Ratios 44
 Asset Efficiency 44
 Working Capital Ratios 44
 Interest Coverage Ratios 46
 Leverage Ratios 46
 Valuation Ratios 48
 • COMMON MISTAKE Mismatched Ratios 48
 Operating Returns 49
 The DuPont Identity 50
2.7 Financial Reporting in Practice 54
 Enron 54
 The Sarbanes-Oxley Act 54

Role of Financial Institutions 21
Summary 23 • Problems 24
Detailed Contents

PART 1 Global Financial Crisis 55
• Dodd-Frank Act 55
• Global Financial Crisis 56
Bernard Madoff's Ponzi Scheme 56
The Financial Statements: A Useful Starting Point 56
Summary 57
Problems 60

PART 2 Interest Rates and Valuing Cash Flows 71

CHAPTER 3 Time Value of Money: An Introduction 73

3.1 Cost-Benefit Analysis 74
Role of the Financial Manager 74
Quantifying Costs and Benefits 74

3.2 Market Prices and the Valuation Principle 76
The Valuation Principle 76
Why There Can Be Only One Competitive Price for a Good 77
• Your Personal Financial Decisions 78

3.3 The Time Value of Money and Interest Rates 78
The Time Value of Money 78
The Interest Rate: Converting Cash Across Time 79
Timelines 82

3.4 Valuing Cash Flows at Different Points in Time 83
Rule 1: Comparing and Combining Values 83
• Common Mistake Summing Cash Flows Across Time 83
Rule 2: Compounding 84
• Rule of 72 85
Rule 3: Discounting 86
• Using a Financial Calculator 88
Summary 88
• Critical Thinking 89
Problems 89

CHAPTER 4 Time Value of Money: Valuing Cash Flow Streams 93

4.1 Valuing a Stream of Cash Flows 94
Applying the Rules of Valuing Cash Flows to a Cash Flow Stream 94
• Using a Financial Calculator: Solving for Present and Future Values of Cash Flow Streams 97

4.2 Perpetuities 98
Perpetuities 98

CHAPTER 5 Interest Rates 131

5.1 Interest Rate Quotes and Adjustments 132
The Effective Annual Rate 132
Adjusting the Discount Rate to Different Time Periods 133
Annual Percentage Rates 134
• Common Mistake Using the EAR in the Annuity Formula 135

5.2 Application: Discount Rates and Loans 137
Computing Loan Payments 137
• Global Financial Crisis Teaser Rates and Subprime Loans 139
Computing the Outstanding Loan Balance 139

5.3 The Determinants of Interest Rates 140
Inflation and Real Versus Nominal Rates 141
Investment and Interest Rate Policy 142
• How Is Inflation Actually Calculated? 143
The Yield Curve and Discount Rates 144
• Interview with Dr. Janet Yellen 146
• Common Mistake Using the Annuity Formula When Discount Rates Vary 147
The Yield Curve and the Economy 147

5.4 The Opportunity Cost of Capital 150
• Interest Rates, Discount Rates, and the Cost of Capital 151
• Common Mistake States Dig a $3 Trillion Hole by Discounting at the Wrong Rate 152
Summary 152
• Critical Thinking 154
Problems 154
8.6 Choosing Among Projects When Resources Are Limited 251
Evaluating Projects with Different Resource Requirements 251

8.7 Putting It All Together 254
Summary 255 ● Critical Thinking 256 ● Problems 257 ● Data Case 263

CHAPTER 8 APPENDIX Creating the NPV Profile Using Excel’s Data Table Function 264

CHAPTER 9 Fundamentals of Capital Budgeting 265
9.1 The Capital Budgeting Process 266
9.2 Forecasting Incremental Earnings 267
Operating Expenses Versus Capital Expenditures 267
Incremental Revenue and Cost Estimates 268
Taxes 269
Incremental Earnings Forecast 269

9.3 Determining Incremental Free Cash Flow 271
Converting from Earnings to Free Cash Flow 272
Calculating Free Cash Flow Directly 275
Calculating the NPV 276 ● USING EXCEL Capital Budgeting Using a Spreadsheet Program 277

9.4 Other Effects on Incremental Free Cash Flows 278
Opportunity Costs 278 ● COMMON MISTAKE The Opportunity Cost of an Idle Asset 278
Project Externalities 278
Sunk Costs 279 ● COMMON MISTAKE The Sunk Cost Fallacy 279
Adjusting Free Cash Flow 280
Replacement Decisions 282

9.5 Analyzing the Project 283
Sensitivity Analysis 283
Break-Even Analysis 284 ● INTERVIEW WITH David Holland 286
Scenario Analysis 287 ● USING EXCEL Project Analysis Using Excel 288

9.6 Real Options in Capital Budgeting 289
Option to Delay 290
Option to Expand 290
Option to Abandon 290
Summary 291 ● Critical Thinking 292 ● Problems 292 ● Data Case 300

CHAPTER 9 APPENDIX MACRS Depreciation 301

CHAPTER 10 Stock Valuation: A Second Look 303
10.1 The Discounted Free Cash Flow Model 304
Valuing the Enterprise 304
Implementing the Model 305
Connection to Capital Budgeting 306

10.2 Valuation Based on Comparable Firms 308
Valuation Multiples 308
Limitations of Multiples 313
Comparison with Discounted Cash Flow Methods 314

10.3 Stock Valuation Techniques: A Final Word 314 ● INTERVIEW WITH Douglas Kehring 315

10.4 Information, Competition, and Stock Prices 316
Information in Stock Prices 316
Competition and Efficient Markets 318 ● Forms of Market Efficiency 318
Lessons for Investors and Corporate Managers 320 ● Nobel Prize The 2013 Prize: An Enigma? 321
The Efficient Markets Hypothesis Versus No Arbitrage 321

10.5 Individual Biases and Trading 322
Excessive Trading and Overconfidence 322
Hanging On to Losers and the Disposition Effect 322
Investor Attention, Mood, and Experience 324 Summary 325 ● Critical Thinking 326 ● Problems 326 ● Data Case 331

PART 3 INTEGRATIVE CASE 333

PART 4 Risk and Return 335

CHAPTER 11 Risk and Return in Capital Markets 337
11.1 A First Look at Risk and Return 338

11.2 Historical Risks and Returns of Stocks 340
Computing Historical Returns 341
Average Annual Returns 343 ● Arithmetic Average Returns Versus Compound Annual Returns 345
The Variance and Volatility of Returns 346 ● COMMON MISTAKE Mistakes When Computing Standard Deviation 348 ● USING EXCEL Computing the Standard Deviation of Historical Returns 348
The Normal Distribution 349

11.3 The Historical Tradeoff Between Risk and Return 351
The Returns of Large Portfolios 351
The Returns of Individual Stocks 351

11.4 Common Versus Independent Risk 353
Theft Versus Earthquake Insurance: An Example 353

Types of Risk 353

11.5 Diversification in Stock Portfolios 355
Unsystematic Versus Systematic Risk 355
• GLOBAL FINANCIAL CRISIS Diversification
 Benefits During Market Crashes 356
Diversifiable Risk and the Risk Premium 358
The Importance of Systematic Risk 358
• COMMON MISTAKE A Fallacy of Long-Run
 Diversification 359
Summary 360 • Critical Thinking 361 • Problems 362 • Data Case 365

CHAPTER 12 Systematic Risk and the Equity Risk Premium 369

12.1 The Expected Return of a Portfolio 370
Portfolio Weights 370
Portfolio Returns 370
Expected Portfolio Return 372

12.2 The Volatility of a Portfolio 373
Diversifying Risks 373
Measuring Stocks’ Co-Movement: Correlation 375
• USING EXCEL Calculating the Correlation
 Between Two Sets of Returns 377
Computing a Portfolio’s Variance and Standard Deviation 377
The Volatility of a Large Portfolio 379
• Nobel Prize Harry Markowitz 380

12.3 Measuring Systematic Risk 381
Role of the Market Portfolio 381
Stock Market Indexes as the Market Portfolio 382
Market Risk and Beta 382
• Index Funds 383
• COMMON MISTAKE Mixing Standard
 Deviation and Beta 385
Estimating Beta from Historical Returns 386
• USING EXCEL Calculating a Stock’s Beta 388

12.4 Putting It All Together: The Capital Asset Pricing Model 388
The CAPM Equation Relating Risk to Expected Return 388
• Why Not Estimate Expected Returns
 Directly? 389
• Nobel Prize William Sharpe 390
The Security Market Line 391
The CAPM and Portfolios 393
Summary of the Capital Asset Pricing Model 394

CHAPTER 12 APPENDIX Alternative Models of Systematic Risk 401

CHAPTER 13 The Cost of Capital 405

13.1 A First Look at the Weighted Average Cost of Capital 406
The Firm’s Capital Structure 406
Opportunity Cost and the Overall Cost of Capital 406
Weighted Averages and the Overall Cost of Capital 407
Weighted Average Cost of Capital Calculations 408

13.2 The Firm’s Costs of Debt and Equity Capital 409
Cost of Debt Capital 409
• COMMON MISTAKE Using the Coupon Rate
 as the Cost of Debt 410
Cost of Preferred Stock Capital 411
Cost of Common Stock Capital 412

13.3 A Second Look at the Weighted Average Cost of Capital 414
WACC Equation 414
Weighted Average Cost of Capital in Practice 415
Methods in Practice 416

13.4 Using the WACC to Value a Project 417
Key Assumptions 418
WACC Method Application: Extending the Life of an AT&T Facility 419
Summary of the WACC Method 420

13.5 Project-Based Costs of Capital 420
• COMMON MISTAKE Using a Single Cost of
 Capital in Multi-Divisional Firms 420
Cost of Capital for a New Acquisition 421
Divisional Costs of Capital 421
• INTERVIEW WITH Shelagh Glaser 422

13.6 When Raising External Capital Is Costly 423
Summary 424 • Critical Thinking 426 • Problems 426 • Data Case 429

PART 4 INTEGRATIVE CASE 431

CHAPTER 14 Long-Term Financing 433

14.1 Equity Financing for Private Companies 436
Sources of Funding 436
• INTERVIEW WITH Kevin Laws 437
Detailed Contents

- **Crowdfunding: The Wave of the Future?** 439
 - Securities and Valuation 439
 - Exiting an Investment in a Private Company 441

14.2 Taking Your Firm Public: The Initial Public Offering 442
 - Advantages and Disadvantages of Going Public 442
 - Primary and Secondary IPO Offerings 442
 - Other IPO Types 448
 - Google’s IPO 449
 - An Alternative to the Traditional IPO: Spotify’s Direct Listing 451

14.3 IPO Puzzles 451
 - Underpriced IPOs 452
 - “Hot” and “Cold” IPO Markets 453
 - **GLOBAL FINANCIAL CRISIS 2008–2009:**
 - A Very Cold IPO Market 454
 - High Cost of Issuing an IPO 454
 - Poor Post-IPO Long-Run Stock Performance 455

14.4 Raising Additional Capital: The Seasoned Equity Offering 456
 - SEO Process 456
 - SEO Price Reaction 458
 - SEO Costs 459
 - Summary 460
 - Problems 461

15.1 Corporate Debt 468
 - Private Debt 468
 - Debt Financing at Hertz: Bank Loans 468
 - Debt Financing at Hertz: Private Placements 469
 - Public Debt 469
 - Debt Financing at Hertz: Public Debt 471

15.2 Other Types of Debt 473
 - Sovereign Debt 473
 - Municipal Bonds 474
 - Detroit’s Art Museum at Risk 475
 - Asset-Backed Securities 475
 - **GLOBAL FINANCIAL CRISIS:**
 - CDOs, Subprime Mortgages, and the Financial Crisis 476

15.3 Bond Covenants 478
 - Types of Covenants 478
 - Advantages of Covenants 478
 - Application: Hertz’s Covenants 479

15.4 Repayment Provisions 479
 - Call Provisions 479
 - New York City Calls Its Municipal Bonds 481
 - Sinking Funds 482
 - Convertible Provisions 482

CHAPTER 15 Debt Financing 467

15.1 Corporate Debt 468
 - Private Debt 468
 - Debt Financing at Hertz: Bank Loans 468
 - Debt Financing at Hertz: Private Placements 469
 - Public Debt 469
 - Debt Financing at Hertz: Public Debt 471

15.2 Other Types of Debt 473
 - Sovereign Debt 473
 - Municipal Bonds 474
 - Detroit’s Art Museum at Risk 475
 - Asset-Backed Securities 475
 - **GLOBAL FINANCIAL CRISIS:**
 - CDOs, Subprime Mortgages, and the Financial Crisis 476

15.3 Bond Covenants 478
 - Types of Covenants 478
 - Advantages of Covenants 478
 - Application: Hertz’s Covenants 479

15.4 Repayment Provisions 479
 - Call Provisions 479
 - New York City Calls Its Municipal Bonds 481
 - Sinking Funds 482
 - Convertible Provisions 482

CHAPTER 15 APPENDIX

PART 6 Capital Structure and Payout Policy 495

15.1 Corporate Debt 468
 - Private Debt 468
 - Debt Financing at Hertz: Bank Loans 468
 - Debt Financing at Hertz: Private Placements 469
 - Public Debt 469
 - Debt Financing at Hertz: Public Debt 471

15.2 Other Types of Debt 473
 - Sovereign Debt 473
 - Municipal Bonds 474
 - Detroit’s Art Museum at Risk 475
 - Asset-Backed Securities 475
 - **GLOBAL FINANCIAL CRISIS:**
 - CDOs, Subprime Mortgages, and the Financial Crisis 476

15.3 Bond Covenants 478
 - Types of Covenants 478
 - Advantages of Covenants 478
 - Application: Hertz’s Covenants 479

15.4 Repayment Provisions 479
 - Call Provisions 479
 - New York City Calls Its Municipal Bonds 481
 - Sinking Funds 482
 - Convertible Provisions 482

PART 5 INTEGRATIVE CASE 491

PART 6 Capital Structure and Payout Policy 495

- **GLOBAL FINANCIAL CRISIS:**
 - Bank Capital Regulation and the ROE Fallacy 508
 - MM and the Real World 509

- **Nobel Prize:**
 - Franco Modigliani and Merton Miller 509

16.1 Capital Structure Choices 498
 - Capital Structure Choices Across Industries 498
 - Capital Structure Choices Within Industries 498

16.2 Capital Structure in Perfect Capital Markets 500
 - Application: Financing a New Business 501
 - Leverage and Firm Value 502
 - The Effect of Leverage on Risk and Return 503
 - Homemade Leverage 505
 - Leverage and the Cost of Capital 505
 - **COMMON MISTAKE:**
 - Capital Structure Fallacies 506

- **GLOBAL FINANCIAL CRISIS:**
 - Bank Capital Regulation and the ROE Fallacy 508
 - MM and the Real World 509

16.3 Debt and Taxes 510
 - The Interest Tax Deduction and Firm Value 510
 - Value of the Interest Tax Shield 511
 - The Interest Tax Shield with Permanent Debt 513
 - Leverage and the WACC with Taxes 514
 - Debt and Taxes: The Bottom Line 514

16.4 The Costs of Bankruptcy and Financial Distress 515
 - Direct Costs of Bankruptcy 516
 - Bankruptcy Can Be Expensive 516
 - Indirect Costs of Financial Distress 516

16.5 Optimal Capital Structure: The Tradeoff Theory 517
 - Differences Across Firms 517
 - Optimal Leverage 518

16.6 Additional Consequences of Leverage: Agency Costs and Information 519
 - Agency Costs 519
 - Airlines Use Financial Distress to Their Advantage 520

- **GLOBAL FINANCIAL CRISIS:**
 - Moral Hazard and Government Bailouts 521
 - Financial Distress and Rolling the Dice, Literally 522
 - Debt and Information 522
16.7 Capital Structure: Putting It All Together 524
 Summary 525 ● Critical Thinking 527 ● Problems 527

CHAPTER 16 APPENDIX The Bankruptcy Code 535

CHAPTER 17 Payout Policy 537

17.1 Cash Distributions to Shareholders 538
 Dividends 539
 Share Repurchases 540

17.2 Dividends Versus Share Repurchases in a Perfect Capital Market 541
 Alternative Policy 1: Pay a Dividend with Excess Cash 542
 Alternative Policy 2: Share Repurchase (No Dividend) 542
 ● COMMON MISTAKE Repurchases and the Supply of Shares 544
 Alternative Policy 3: High Dividend (Equity Issue) 544
 Modigliani-Miller and Dividend Policy Irrelevance 545
 ● COMMON MISTAKE The Bird in the Hand Fallacy 546
 Dividend Policy with Perfect Capital Markets 546

17.3 The Tax Disadvantage of Dividends 547
 Taxes on Dividends and Capital Gains 547
 Optimal Dividend Policy with Taxes 547
 Tax Differences Across Investors 550

17.4 Payout Versus Retention of Cash 552
 Retaining Cash with Perfect Capital Markets 552
 Retaining Cash with Imperfect Capital Markets 553

17.5 Signaling with Payout Policy 556
 Dividend Smoothing 556
 Dividend Signaling 557
 ● Royal & SunAlliance’s Dividend Cut 558
 Signaling and Share Repurchases 558
 ● INTERVIEW WITH John Connors 559

17.6 Stock Dividends, Splits, and Spin-Offs 560
 Stock Dividends and Splits 560
 ● Berkshire Hathaway’s A and B Shares 561
 Spin-Offs 561

17.7 Advice for the Financial Manager 562
 Summary 563 ● Critical Thinking 565 ● Problems 565 ● Data Case 568

PART 6 INTEGRATIVE CASE 570

PART 7 Financial Planning and Forecasting 571

CHAPTER 18 Financial Modeling and Pro Forma Analysis 573

18.1 Goals of Long-Term Financial Planning 574
 Identify Important Linkages 574
 Analyze the Impact of Potential Business Plans 574
 Plan for Future Funding Needs 574

18.2 Forecasting Financial Statements: The Percent of Sales Method 575
 Percent of Sales Method 575
 Pro Forma Income Statement 576
 Pro Forma Balance Sheet 577
 ● COMMON MISTAKE Confusing Stockholders’ Equity with Retained Earnings 578
 Making the Balance Sheet Balance: Net New Financing 578
 Choosing a Forecast Target 580

18.3 Forecasting a Planned Expansion 580
 KMS Designs’ Expansion: Financing Needs 581
 KMS Designs’ Expansion: Pro Forma Income Statement 582
 ● COMMON MISTAKE Treating Forecasts as Fact 584
 Forecasting the Balance Sheet 584

18.4 Growth and Firm Value 585
 Sustainable Growth Rate and External Financing 586

18.5 Valuing the Expansion 589
 Forecasting Free Cash Flows 589
 ● COMMON MISTAKE Confusing Total and Incremental Net Working Capital 591
 KMS Designs’ Expansion: Effect on Firm Value 591
 Optimal Timing and the Option to Delay 594
 Summary 595 ● Critical Thinking 596 ● Problems 596

CHAPTER 18 APPENDIX The Balance Sheet and Statement of Cash Flows 600

CHAPTER 19 Working Capital Management 603

19.1 Overview of Working Capital 604
 The Cash Cycle 604
 Working Capital Needs by Industry 606
 Firm Value and Working Capital 607
19.2 Trade Credit 608
 Trade Credit Terms 609
 Trade Credit and Market Frictions 609
 • COMMON MISTAKE Using APR Instead of EAR to Compute the Cost of Trade Credit 610
 Managing Float 611
19.3 Receivables Management 612
 Determining the Credit Policy 612
 • The 5 C’s of Credit 612
 Monitoring Accounts Receivable 614
19.4 Payables Management 616
 Determining Accounts Payable Days Outstanding 616
 Stretching Accounts Payable 617
19.5 Inventory Management 618
 Benefits of Holding Inventory 618
 Costs of Holding Inventory 619
 • Inventory Management Adds to the Bottom Line at Gap 619
19.6 Cash Management 620
 Motivation for Holding Cash 620
 Alternative Investments 620
 • Hoarding Cash 622
 Summary 622 • Critical Thinking 624 • Problems 624 • Data Case 627

CHAPTER 20 Short-Term Financial Planning 629
20.1 Forecasting Short-Term Financing Needs 630
 Application: Springfield Snowboards, Inc. 630
 Negative Cash Flow Shocks 630
 Positive Cash Flow Shocks 631
 Seasonalities 631
 The Cash Budget 633
20.2 The Matching Principle 635
 Permanent Working Capital 635
 Temporary Working Capital 635
 Permanent Versus Temporary Working Capital 635
 Financing Policy Choices 636
20.3 Short-Term Financing with Bank Loans 638
 Single, End-of-Period Payment Loan 638
 Line of Credit 638
 Bridge Loan 639
 Common Loan Stipulations and Fees 639
20.4 Short-Term Financing with Commercial Paper 641
 • Short-Term Financing and the Financial Crisis of the Fall of 2008 641
20.5 Short-Term Financing with Secured Financing 643
 Accounts Receivable as Collateral 643

CHAPTER 21 Option Applications and Corporate Finance 661
21.1 Option Basics 662
 Option Contracts 662
 Stock Option Quotations 663
 Options on Other Financial Securities 665
 • Options Are for More Than Just Stocks 665
21.2 Option Payoffs at Expiration 665
 The Long Position in an Option Contract 666
 The Short Position in an Option Contract 667
 Profits for Holding an Option to Expiration 669
 Returns for Holding an Option to Expiration 671
21.3 Factors Affecting Option Prices 672
 Strike Price and Stock Price 672
 Option Prices and the Exercise Date 672
 Option Prices and the Risk-Free Rate 673
 Option Prices and Volatility 673
21.4 The Black-Scholes Option Pricing Formula 674
21.5 Put-Call Parity 675
 Portfolio Insurance 676
21.6 Options and Corporate Finance 679
 Summary 681 • Critical Thinking 682 • Problems 682 • Data Case 684

CHAPTER 22 Mergers and Acquisitions 687
22.1 Background and Historical Trends 688
 Merger Waves 689
 Types of Mergers 690
22.2 Market Reaction to a Takeover 690
22.3 Reasons to Acquire 691
 Economies of Scale and Scope 691
 Vertical Integration 692
 Expertise 692
 Monopoly Gains 692
 Efficiency Gains 693
 Tax Savings from Operating Losses 693
Jonathan Berk is the A.P. Giannini Professor of Finance at the Graduate School of Business, Stanford University and is a Research Associate at the National Bureau of Economic Research. Before coming to Stanford, he was the Sylvan Coleman Professor of Finance at Haas School of Business at the University of California, Berkeley. Prior to earning his Ph.D., he worked as an Associate at Goldman Sachs (where his education in finance really began).

Professor Berk’s research interests in finance include corporate valuation, capital structure, mutual funds, asset pricing, experimental economics, and labor economics. His work has won a number of research awards including the Stephen A. Ross Prize in Financial Economics, TIAA-CREF Paul A. Samuelson Award, the Smith Breeden Prize, Best Paper of the Year in *The Review of Financial Studies*, and the FAME Research Prize. His paper, “A Critique of Size-Related Anomalies,” was selected as one of the two best papers ever published in *The Review of Financial Studies*. In recognition of his influence on the practice of finance he has received the Bernstein-Fabozzi/Jacobs Levy Award, the Graham and Dodd Award of Excellence, and the Roger F. Murray Prize. He served two terms as an Associate Editor of the *Journal of Finance*, and a term as a director of the American Finance Association, the Western Finance Association, and academic director of the Financial Management Association. He is a Fellow of the Financial Management Association and a member of the advisory board of the *Journal of Portfolio Management*.

Born in Johannesburg, South Africa, Professor Berk has two daughters, and is an avid skier and biker.

Peter DeMarzo is the Staehelin Family Professor of Finance at the Graduate School of Business, Stanford University and Faculty Director of the Stanford LEAD program. He is past President and Fellow of the American Finance Association and a Research Associate at the National Bureau of Economic Research. He teaches MBA and Ph.D. courses in Corporate Finance and Financial Modeling. In addition to his experience at the Stanford Graduate School of Business, Professor DeMarzo has taught at the Haas School of Business and the Kellogg Graduate School of Management, and he was a National Fellow at the Hoover Institution.

Professor DeMarzo received the Sloan Teaching Excellence Award at Stanford and the Earl F. Cheit Outstanding Teaching Award at U.C. Berkeley. Professor DeMarzo has served as an Associate Editor for *The Review of Financial Studies*, *Financial Management*, and the *B.E. Journals in Economic Analysis and Policy*, as well as President of the Western Finance Association. Professor DeMarzo’s research is in the area of corporate finance, asset securitization, and contracting, as well as market structure and regulation. His recent work has examined issues of the optimal design of contracts and securities,
leverage dynamics and the role of bank capital regulation, and the influence of information asymmetries on stock prices and corporate investment. He has also received numerous awards including the Western Finance Association Corporate Finance Best-Paper Award, the Charles River Associates Best-Paper Award, and the Barclays Global Investors/Michael Brennan Best-Paper of the Year Award from *The Review of Financial Studies*.

Professor DeMarzo was born in Whitestone, New York, and is married with three boys. He and his family enjoy hiking, biking, and skiing.

Jarrad Harford is the Paul Pigott - PACCAR Professor of Finance at the University of Washington’s Foster School of Business. Prior to Washington, Professor Harford taught at the University of Oregon. He received his PhD in Finance with a minor in Organizations and Markets from the University of Rochester. Professor Harford has taught the core undergraduate finance course, Business Finance, for over twenty years, as well as an elective in Mergers and Acquisitions, and “Finance for Non-financial Executives” in the executive education program. He has won numerous awards for his teaching, including the UW Finance Professor of the Year (2010, 2012, 2016), Panhellenic/Interfraternity Council Business Professor of the Year Award (2011, 2013), ISMBA Excellence in Teaching Award (2006), and the Wells Fargo Faculty Award for Undergraduate Teaching (2005). Professor Harford is currently a Managing Editor of the Journal of Financial and Quantitative Analysis, and serves as an Associate Editor for the *Journal of Financial Economics*, and the *Journal of Corporate Finance*. His main research interests are understanding the dynamics of merger and acquisition activity as well as the interaction of corporate cash management policy with governance, payout and global tax considerations. Professor Harford was born in Pennsylvania, is married, and has two sons. He and his family enjoy traveling, hiking, and skiing.
Bridging Theory and Practice

EXAMPLE 7.1
Stock Prices and Returns

PROBLEM
Suppose you expect Longs Drug Stores to pay an annual dividend of $0.56 per share in the coming year and to trade for $45.50 per share at the end of the year. If investments with equivalent risk to Longs' stock have an expected return of 5.50%, what is the most you would pay today for Longs' stock? What dividend yield and capital gain rate would you expect at this price?

SOLUTION

PLAN
We can use Eq. 7.1 to solve for the beginning price we would pay now (P0), given our expectations about dividends (Div1 = $0.56) and future price (P1 = $45.50) and the return we need to expect to earn by being willing to invest (r = 0.0550).

EXECUTE
Using Eq. 7.1, we have

\[P_0 = \frac{\text{Div}_1 + P_1}{1 + r} \]

Referring to Eq. 7.2, we see that at this price, Longs' dividend yield is \(\frac{\text{Div}_1}{P_0} = \frac{0.56}{45.50} = 1.30\% \).

The expected capital gain is \(5.50\% - 1.30\% = 0.37\% \) per share, for a capital gain rate of \(2.37/43.13 = 5.50\% \).

EVALUATE
At a price of $43.13, Longs' expected total return is \(1.30\% + 5.50\% = 6.80\% \), which is equal to its equity cost of capital (the return being paid by investments with equivalent risk to Longs'). This amount is the most we would be willing to pay for Longs' stock. If we paid more, our expected return would be less than 6.8% and we would rather invest elsewhere.

EXAMPLE 4.5
Retirement Savings Plan Annuity

PROBLEM
Ellen is 35 years old and she has decided it is time to plan seriously for her retirement. At the end of each year until she is 65, she will save $10,000 in a retirement account. If the account earns 10% per year, how much will Ellen have in her account at age 65?

SOLUTION

Plan: As always, we begin with a timeline. In this case, it is helpful to keep track of both the dates and Ellen's age:

<table>
<thead>
<tr>
<th>Year</th>
<th>Ellen's Age</th>
<th>Savings Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>35</td>
<td>$10,000</td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td>$10,000</td>
</tr>
<tr>
<td>2</td>
<td>37</td>
<td>$10,000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>30</td>
<td>65</td>
<td>$10,000</td>
</tr>
</tbody>
</table>

Ellen's savings plan looks like an annuity of $10,000 per year for 30 years. (Note: it is easy to become confused when you just look at age, rather than at both dates and age. A common error is to think there are only 30 – 35 = 25 payments. Writing down both dates and age avoids this problem.)

To determine the amount Ellen will have in her account at age 65, we'll need to compute the future value of this annuity.

EXECUTE

\[FV = \text{PV} \times (1 + r)^n \]

\[= 10,000 \times 1.10^{30} \]

\[= 10,000 \times 164.49 \]

\[= $1,644,940 \] at age 65

Using a financial calculator or Excel:

<table>
<thead>
<tr>
<th>N</th>
<th>I/Y</th>
<th>PV</th>
<th>PMT</th>
<th>FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>10</td>
<td>0</td>
<td>-10,000</td>
<td>1,644,940</td>
</tr>
</tbody>
</table>

EVALUATE

By investing $10,000 per year for 30 years (a total of $300,000) and earning interest on those investments, the compounding will allow Ellen to retire with $1.645 million.

Study Aids with a Practical Focus

To be successful, students need to master the core concepts and learn to identify and solve problems that today’s practitioners face.

- **The Valuation Principle** is presented as the foundation of all financial decision making. The central idea is that a firm should take projects or make investments that increase the value of the firm. The tools of finance determine the impact of a project or investment on the firm’s value by comparing the costs and benefits in equivalent terms. The Valuation Principle is first introduced in Chapter 3, revisited in the part openers, and integrated throughout the text.

- **Guided Problem Solutions (GPS)** are Examples that accompany every important concept using a consistent problem-solving methodology that breaks the solution process into three steps: Plan, Execute, and Evaluate. This approach aids student comprehension, enhances their ability to model the solution process when tackling problems on their own, and demonstrates the importance of interpreting the mathematical solution.

- **Personal Finance GPS Examples** showcase the use of financial analysis in everyday life by setting problems in scenarios, such as purchasing a new car or house and saving for retirement.

- **Common Mistake** boxes alert students to frequently made mistakes stemming from misunderstanding of core concepts and calculations—in the classroom and in the field.

COMMON MISTAKE

Summing Cash Flows Across Time

Once you understand the time value of money, our first rule may seem straightforward. However, it is very common, especially for those who have not studied finance, to violate this rule, simply treating all cash flows as comparable regardless of when they are received. One example is in sports contracts. In 2019, Mike Trout signed a contract extension with the Los Angeles Angels that was repeatedly referred to as a “$430 million contract.” The $430 million comes from simply adding up all the payments Trout would receive over the 12 years of the contract—treating dollars received in 12 years the same as dollars received today. The same thing occurred when Lionel Messi signed a contract extension with FC Barcelona in 2017, giving him a “$320 million” contract through 2021, and in 2011 when Albert Pujols agreed to a “$240 million” ten-year contract with the Los Angeles Angels.
The Credit Crisis and Bond Yields

The financial crisis that engulfed the world’s economies in 2008 originated as a credit crisis that first emerged in August 2007. At that time, problems in the housing market had led to the bankruptcy of several large mortgage lenders. The default of these firms, and the downsizing of many of the banks backed by mortgages these firms had made, caused many investors to reassess the risk of other bonds in their portfolios. As perceptions of risk increased, and investors attempted to move into safer U.S. Treasury securities, the prices of corporate bonds fell and so their credit spreads rose relative to Treasuries, as shown in Figure 6.7. Panel (a) shows the yield spreads for long-term corporate bonds, where we can see that spreads of even the highest-rated Aaa bonds increased dramatically, from a typical level of 0.3% to over 2% by the fall of 2008. Panel (b) shows a similar pattern for the rates banks had to pay on short-term loans compared to the yields of short-term Treasury Bills. This increase in borrowing costs made it more costly for firms to raise the capital needed for new investment, slowing economic growth. The decline in these spreads in early 2009 was viewed as an important first step in mitigating the ongoing impact of the financial crisis on the rest of the economy.
Teaching Every Student to Think Finance

Simplified Presentation of Mathematics

Because one of the hardest parts of learning finance for non-majors is mastering the jargon, math, and non-standardized notation, *Fundamentals of Corporate Finance* systematically uses:

- **Notation Boxes.** Each chapter begins with a Notation box that defines the variables and the acronyms used in the chapter and serves as a “legend” for students’ reference.
- **Numbered and Labeled Equations.** The first time a full equation is given in notation form it is numbered. Key equations are titled and revisited in the summary and in end papers.
- **Timelines.** Introduced in Chapter 3, timelines are emphasized as the important first step in solving every problem that involves cash flows over time.
- **Financial Calculator instructions**, including a box in Chapter 4 on solving for future and present values, and appendices to Chapters 4, 6, and 15 with keystrokes for HP-10bII+ and TI BAII Plus calculators, highlight this problem-solving tool.
- **Spreadsheet Tables.** Select tables are available as Excel files, enabling students to change inputs and manipulate the underlying calculations.
- **Using Excel boxes** describe Excel techniques and include screenshots to serve as a guide for students using this technology.

Table 18.18

Pre-Form Statement of Cash Flows for KM, 2019–2024

<table>
<thead>
<tr>
<th>Year</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>$100,000</td>
<td>$105,000</td>
<td>$110,000</td>
<td>$115,000</td>
<td>$120,000</td>
<td>$125,000</td>
</tr>
<tr>
<td>Cost of Goods Sold</td>
<td>$50,000</td>
<td>$52,500</td>
<td>$55,000</td>
<td>$57,500</td>
<td>$60,000</td>
<td>$62,500</td>
</tr>
<tr>
<td>Operating Expenses</td>
<td>$15,000</td>
<td>$16,000</td>
<td>$17,000</td>
<td>$18,000</td>
<td>$19,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>Net Income</td>
<td>$35,000</td>
<td>$36,500</td>
<td>$38,000</td>
<td>$39,500</td>
<td>$40,000</td>
<td>$41,500</td>
</tr>
</tbody>
</table>

Using Excel

Capital budgeting forecasts and analyses are most easily performed in a spreadsheet program. Here, we highlight a few best practices when developing your own capital budgets.

Create a Project Dashboard

All capital budgeting analyses begin with a set of assumptions regarding future revenues and costs associated with the investment. Centralize these assumptions within your spreadsheet in a project dashboard so they are easy to locate, review, and potentially modify. Here, we show an example for the HomeNet project.

NOTES

- **PV**
- **FV**
- **R**
- **N**
- **I/Y**
- **NPER**
- **PMT**

There are a total of five variables: number of periods (N or NPER), present value (PV), cash flow or “payment” (PMT), future value (FV), and the interest rate, denoted R (or I/Y). Each function takes four of these variables as inputs and returns the value of the fifth one that ensures the sum of the present values of the cash flows is zero.

By setting the recurring payments equal to 0, you can compute present and future values of single cash flows such as we have done above using Eqs. 4.2 through 4.4. We can calculate cash flows using the CPT button. The best way to learn to use a financial calculator is by practicing. We present one example below. We will also show the calculator buttons for any additional examples in this chapter that can be solved with financial calculator functions. Finally, the appendix to this chapter contains step-by-step instructions for using the two most popular financial calculators.

Example

Suppose you plan to invest $20,000 in an account paying 8% interest. You will invest an additional $1000 at the end of each year for 15 years. How much will you have in the account at 15 years? We represent this problem with the following timeline:

\[
\begin{align*}
\text{PV} & = -20,000, \\
\text{FV} & = 0, \\
\text{I/Y} & = 8, \\
\text{N} & = 15, \\
\text{PMT} & = -1000.
\end{align*}
\]

To compute this solution, we enter the four variables we know: N = 15, I/Y = 8, PV = -20,000, PMT = -$1000, and solve for the one we want to determine: FV. Specifically, for the HP-10bII+ or TI BAII Plus calculators:

1. Enter 15 and press the N button.
2. Enter 8 and press the I/Y button.
3. Enter -20,000 and press the PV button.
4. Enter -1000 and press the PMT button.
5. Press the CPT button (for the HP calculator) or the CPT button (for the Texas Instruments calculator; press CPT and then FV).

The calculator then shows a future value of $90,595.50.

Note that we entered PV and PMT as negative numbers (the amounts we are putting into the bank), and FV is shown as a positive number (the amount we can take out of the bank). It is important to use signs correctly to indicate the direction in which the money is flowing when using the calculator functions. You will see more examples of getting the sign of the cash flows correct throughout the chapter.

Excel has the same functions, but it calls “N,” “NPER” and “I/Y,” “RATE.” Also, it is important to note that you enter an interest rate of 8% as “8” in a financial calculator, but as “0.08” in Excel.
4.1 Valuing a Stream of Cash Flows

- The present value of a cash flow stream is:

\[
P(V) = C_0 + \frac{C_1}{(1 + r)^1} + \frac{C_2}{(1 + r)^2} + \cdots + \frac{C_N}{(1 + r)^N}
\]

(4.3)

stream of cash flows, p. 94

4.2 Perpetuities

- A perpetuity is a stream of equal cash flows \(C\) paid every period, forever. The present value of a perpetuity is:

\[
P(V \text{ (C in Perpetuity) }) = \frac{C}{r}
\]

(4.4)

consol, p. 98

perpetuity, p. 98

4.3 Annuities

- An annuity is a stream of equal cash flows \(C\) paid every period for \(N\) periods. The present value of an annuity is:

\[
P(V \text{ (C in Annuity) }) = C \times \frac{1}{r} \left(1 - \frac{1}{(1 + r)^N}\right)
\]

(4.5)

annuity, p. 101

- The future value of an annuity at the end of the annuity is:

\[
F(V \text{ (C in Annuity) }) = C \times \frac{1}{r} \left(\frac{1}{1 + r}^N\right) - 1
\]

(4.6)

DATA CASE

This is your second interview with a prestigious brokerage firm for a job as an equity analyst. You survived the morning interviews with the department manager and the vice president of equity. Everything has gone so well that they want to test your ability as an analyst. You are seated in a room with a computer and a list with the names of two companies—Ford (F) and Microsoft (MSFT). You have 90 minutes to complete the following tasks:

1. Download the annual income statements, balance sheets, and cash flow statements for the last four fiscal years from Morningstar (www.morningstar.com) company’s stock symbol and then go to “financials.” Copy and paste the financial statements into Excel.

2. Find historical stock prices for each firm from Yahoo Finance (finance.yahoo.com). Enter the stock symbol, click “Historical Prices” in the left column, and enter the proper date range to cover the last day of the month corresponding to the date of each financial statement. Use the closing stock prices (not the adjusted close). To calculate the firm’s market capitalization at each date, multiply the number of shares outstanding by the firm’s historic stock price. You can find the number of shares by using “Basic” under “Weighted average shares outstanding” at the bottom of the Income Statement.

End-of-Chapter Materials

Reinforce Learning

- The Chapter Summary presents the key points and conclusions from each chapter, provides a list of key terms with page numbers, and indicates online practice opportunities.

- Data Cases present in-depth scenarios in a business setting with questions designed to guide students’ analysis. Many questions involve the use of Internet resources.

- Integrative Cases occur at the end of most parts and present a capstone extended problem for each part with a scenario and data for students to analyze based on that subset of chapters.

Working problems is the proven way to cement and demonstrate an understanding of finance.

- Concept Check questions at the end of each section enable students to test their understanding and target areas in which they need further review.

- End-of-chapter problems written personally by Jonathan Berk, Peter DeMarzo, and Jarrad Harford offer instructors the opportunity to assign first-rate materials to students for homework and practice with the confidence that the problems are consistent with the chapter content. Both the problems and solutions, which were also prepared by the authors, have been class-tested and accuracy checked to ensure quality.
Preface

Finance professors are united by their commitment to shaping future generations of financial professionals as well as instilling financial awareness and skills in non-majors. Our goal with Fundamentals of Corporate Finance is to provide an accessible presentation for both finance and non-finance majors. We know from experience that countless undergraduate students have felt that corporate finance is challenging. It is tempting to make finance seem accessible by de-emphasizing the core principles and instead concentrating on the results. In our over 75 years of combined teaching experience, we have found that emphasizing the core concepts in finance—which are clear and intuitive at heart—is what makes the subject matter accessible. What makes the subject challenging is that it is often difficult for a novice to distinguish between these core ideas and other intuitively appealing approaches that, if used in financial decision making, will lead to incorrect decisions.

The 2007–2009 financial crisis was fueled in part by many practitioners’ poor decision making when they did not understand—or chose to ignore—the core concepts that underlie finance and the pedagogy in this book. With this point in mind, we present finance as one unified whole based on two simple, powerful ideas: (1) valuation drives decision making—the firm should take projects for which the value of the benefits exceeds the value of the costs, and (2) in a competitive market, market prices (rather than individual preferences) determine values. We combine these two ideas with what we call the Valuation Principle, and from it we establish all of the key ideas in corporate finance.

New to This Edition

We have updated all text discussions and figures, tables, data cases, and facts to accurately reflect developments in the field in the last few years. Specific highlights include the following:

• Updates made throughout the text to reflect the Tax Cuts and Jobs Act of 2017. Extensive updates made to Chapter 9 (Fundamentals of Capital Budgeting), Chapter 16 (Capital Structure), and Chapter 23 (International Corporate Finance).
• Added discussion of Finance and Technology (Fintech) in Chapter 1 (Corporate Finance and the Financial Manager).
• Added a new interview with Janet L. Yellen in Chapter 5 (Interest Rates).
• Incorporated new and/or revised features throughout, including Common Mistakes, Global Financial Crisis, Nobel Prize, and General Interest boxes, as well as Examples.
• Extensively revised and updated Data Cases and end-of-chapter problems, once again personally writing and solving each one.
• Updated tables and figures to reflect current data.
Emphasis on Valuation

While the global financial crisis was not a formative experience for many of today’s students, financial topics ranging from speculative start-up valuations to sovereign debt crises continue to dominate the news. As a result, today’s undergraduate students arrive in the classroom with an interest in finance. We strive to use that natural interest and motivation to overcome their fear of the subject and communicate time-tested core principles. Again, we take what has worked in the classroom and apply it to the text: By providing examples involving familiar companies such as Starbucks and Apple, making consistent use of real-world data, and demonstrating personal finance applications of core concepts, we strive to keep both non-finance and finance majors engaged.

By learning to apply the Valuation Principle, students develop the skills to make the types of comparisons—among loan options, investments, projects, and so on—that turn them into knowledgeable, confident financial consumers and managers. When students see how to apply finance to their personal lives and future careers, they grasp that finance is more than abstract, mathematically based concepts.

Table of Contents Overview

Fundamentals of Corporate Finance offers coverage of the major topical areas for introductory-level undergraduate courses. Our focus is on financial decision making related to the corporation’s choice of which investments to make or how to raise the capital required to fund an investment. We designed the book with the need for flexibility and with consideration of time pressures throughout the semester in mind.

<table>
<thead>
<tr>
<th>Part 1</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch. 1: Corporate Finance and the Financial Manager</td>
<td>Introduces the corporation and its governance; updated to include comparison of traditional trading venues, new electronic exchanges, and how the market for trading stocks is changing</td>
</tr>
</tbody>
</table>

| Ch. 2: Introduction to Financial Statement Analysis | Introduces key financial statements; Coverage of financial ratios has been centralized to prepare students to analyze financial statements holistically |

<table>
<thead>
<tr>
<th>Part 2</th>
<th>Interest Rates and Valuing Cash Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch. 3: Time Value of Money: An Introduction</td>
<td>Introduces the Valuation Principle and time value of money techniques for single-period investments</td>
</tr>
</tbody>
</table>

| Ch. 4: Time Value of Money: Valuing Cash Flow Streams | Introduces the mechanics of discounting; Includes examples with non-annual interest rates that provide time value of money applications in a personal loan context |

| Ch. 5: Interest Rates | Presents how interest rates are quoted and compounding for all frequencies; Discusses key determinants of interest rates and their relation to the cost of capital; New discussion of negative interest rates |

| Ch. 6: Bonds | Analyzes bond prices and yields; Discusses credit risk and the effect of the financial crisis on credit spreads |

| Ch. 7: Stock Valuation | Introduces stocks and presents the dividend discount model as an application of the time value of money |
Preface

Part 3 Valuation and the Firm

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Investment Decision Rules</td>
<td>Introduces the NPV rule as the “golden rule” against which we evaluate other investment decision rules</td>
</tr>
<tr>
<td>9</td>
<td>Fundamentals of Capital Budgeting</td>
<td>Provides a clear focus on the distinction between earnings and free cash flow, and shows how to build a financial model to assess the NPV of an investment decision; Using Excel boxes demonstrate best-practices and sensitivity analysis</td>
</tr>
<tr>
<td>10</td>
<td>Stock Valuation: A Second Look</td>
<td>Builds on capital budgeting material by valuing the ownership claim to the firm’s free cash flows and discusses market efficiency and behavioral finance</td>
</tr>
</tbody>
</table>

Part 4 Risk and Return

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Risk and Return in Capital Markets</td>
<td>Establishes the intuition for understanding risk and return; Explains the distinction between diversifiable and systematic risk; New Global Financial Crisis box “Diversification Benefits During Market Crashes”</td>
</tr>
<tr>
<td>12</td>
<td>Systematic Risk and the Equity Risk Premium</td>
<td>Develops portfolio risk, the CAPM, beta and the Security Market Line</td>
</tr>
<tr>
<td>13</td>
<td>The Cost of Capital</td>
<td>Calculates and uses the firm’s overall costs of capital with the WACC method; New Common Mistake box “Using a Single Cost of Capital in Multi-Divisional Firms”</td>
</tr>
</tbody>
</table>

Part 5 Long-Term Financing

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Raising Equity Capital</td>
<td>Chapter-long example of Facebook from founding to SEO; Overview of the stages of equity financing, from venture capital to IPO to seasoned equity offerings; Discussion of crowdfunding and direct listings</td>
</tr>
<tr>
<td>15</td>
<td>Debt Financing</td>
<td>Overview of debt financing, including covenants, convertible bonds and call provisions; Other types of debt; Boxes on “Detroit’s Art Museum at Risk” and “CDOs, Subprime Mortgages, and the Financial Crisis”</td>
</tr>
</tbody>
</table>

Part 6 Capital Structure and Payout Policy

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Capital Structure</td>
<td>Analyzes the tax benefits of leverage, including the debt tax shield; Discusses distress costs and the Tradeoff Theory</td>
</tr>
<tr>
<td>17</td>
<td>Payout Policy</td>
<td>Considers alternative payout policies including dividends and share repurchases; Analyzes the role of market imperfections in determining the firm’s payout policy</td>
</tr>
</tbody>
</table>

Part 7 Financial Planning and Forecasting

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Financial Modeling and Pro Forma Analysis</td>
<td>Demonstrates careful pro forma modeling of an expansion plan</td>
</tr>
<tr>
<td>19</td>
<td>Working Capital Management</td>
<td>Introduces the Cash Conversion Cycle and methods for managing working capital</td>
</tr>
<tr>
<td>20</td>
<td>Short-Term Financial Planning</td>
<td>Develops methods for forecasting and managing short-term cash needs</td>
</tr>
</tbody>
</table>

Part 8 Special Topics

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Option Applications and Corporate Finance</td>
<td>Introduces the concept of financial options, how they are used and exercised</td>
</tr>
<tr>
<td>22</td>
<td>Mergers and Acquisitions</td>
<td>Considers motives and methods for mergers and acquisitions, including leveraged buyouts</td>
</tr>
<tr>
<td>23</td>
<td>International Corporate Finance</td>
<td>Analyzes the valuation of projects with foreign currency cash flows with integrated or segregated capital markets</td>
</tr>
</tbody>
</table>
Acknowledgments

With five editions behind us, we are heartened by the book's success and its impact on the profession by shaping future practitioners. As any textbook writer will tell you, achieving this level of success requires a substantial amount of help. First and foremost we thank Donna Battista, whose leadership, talent, and market savvy are imprinted on all aspects of the project and were central to its more than 10 years of success; Adrienne D'Ambrosio, for her efforts and commitment to the success of the book, and for taking on Donna's leadership role for this edition; Denise Clinton, a friend and a leader in fact not just in name, whose experience and knowledge were indispensable in the earliest stages; Rebecca Ferris-Caruso, for her unparalleled expertise in managing the complex writing, reviewing, and editing processes and patience in keeping us on track—it is impossible to imagine writing the first edition without her; Kate Fernandes, for her energy and fresh perspective as our former editor; Emily Biberger, for her enthusiasm and excellent guidance on this edition; Miguel Leonarte, for his central role on MyLab Finance; and Gina Linko for getting the book from draft pages into print. We were blessed to be approached by the best publisher in the business and we are both truly thankful for the indispensable help provided by these and other professionals, including Catherine Cinque, Meredith Gertz, Melissa Honig, Roxanne McCarley, and Carol Melville.

Updating a textbook like ours requires a lot of painstaking work, and there are many who have provided insights and input along the way. We would especially like to call out Jared Stanfield for his important contributions and suggestions throughout. We're also appreciative of Marlene Bellamy’s work conducting the lively interviews that provide a critically important perspective, and to the interviewees who graciously provided their time and insights.

Given the scope of this project, identifying the many people who made it happen is a tall order. This textbook was the product of the expertise and hard work of many talented colleagues. We are especially gratified with the work of those who revised the supplements that accompany the book: William Chittenden for the PowerPoint presentations; Mary R. Brown, for the Instructor's Manual; Brian Nethercutt, for the Test Bank; James Linck, for serving as advisor for the videos; and our MyLab Finance content development team, including Melissa Honig, Miguel Leonarte, Noel Lotz, and Sarah Peterson. We're also deeply appreciative of Susan White's contributions to the part-ending cases.

Creating a truly error-free text is a challenge we could not have lived up to without our team of expert error checkers. Jared Stanfield subjected the text and problem solutions to his exacting standards. We are also indebted to Jared for his adept research support throughout the writing process and Michael Wittry’s assistance in providing updates.

We are indebted to our colleagues for the time and expertise invested as manuscript reviewers, class testers, and focus group participants. We list all of these contributors on the following pages, but want to single out one group, our First Edition editorial board, for special notice: Tom Berry, DePaul University; Elizabeth Booth, Michigan State University; Julie Dahlquist, the University of Texas–San Antonio; Michaël Dewally, Marquette University; Robert M. Donchez, the University of Colorado–Boulder; Belinda Mucklow, the University of Wisconsin–Madison; Coleen Pantalone, Northeastern University; and Susan White, the University of Maryland. We strived to incorporate every contributor's input and are truly grateful for each comment and suggestion. The book has benefited enormously from this input.
Reviewers

Pankaj Agrawal, University of Maine
Daniel Ahern, California State University–Chico
Paul Asabere, Temple University
Victor Bahhouth, University of North Carolina–Pembroke
Ajeyo Banerjee, University of Colorado–Denver
Michael Bennett, Curry College
Tom Berry, DePaul University
Karan Bhanot, University of Texas–San Antonio
Rafiqul Bhuyan, University of North Carolina–San Bernardino
Eugene Bland, Texas A&M University–Corpus Christi
Matej Blasko, University of Georgia
Elizabeth Booth, Michigan State University
Mary Brown, University of Illinois–Chicago
Bill Brunsen, Eastern New Mexico University
David G. Cazier, Brigham Young University–Provo
Leo Chan, Delaware State University
Cindy Chen, California State University–Long Beach
Haiyu Chen, Youngstown State University
James F. Cotter, Wake Forest University
Vincent Covrig, California State University–Northridge
Julie Dahlquist, University of Texas–San Antonio
Pieter de Jong, University of Texas–Arlington
Andrea L. DeMaskey, Villanova University
Xiaohui Deng, California State University–Fresno
Michael Dewally, Marquette University
Prakash Dheeriya, California State University–Dominguez Hills
Robert M. Donchez, University of Colorado Boulder
Gang Dong, Rutgers University
Dean Drenk, Montana State University
Robert Dubil, University of Utah
Hsing Fang, California State University–Los Angeles
David O. Fricke, University of North Carolina–Pembroke
Scott Fung, California State University–East Bay
Sharon Garrison, University of Arizona
Rakesh Gupta, Central Queensland University
Joseph D. Haley, St. Cloud State University
Thomas Hall, Christopher Newport University
Karen Hallows, University of Maryland
Karen L. Hamilton, Georgia Southern University
Robert Hanson, Eastern Michigan University
Mahfuzul Haque, Indiana State University
Edward C. Howell, Northwood University
Ping Hsiao, San Francisco State University
Xiaoping Hu, University of Illinois at Chicago
Pankaj Jain, University of Memphis
Robert James, Boston College
Susan Ji, Baruch College, City University of New York
Zi Jia, University of Arkansas at Little Rock
Domingo Joaquin, Illinois State University
Fred R. Kaen, University of New Hampshire
Terrill Keasler, Appalachian State University
Howard Keen, Temple University
Brett A. King, University of North Alabama
Daniel Klein, Bowling Green State University
Gregory Kuhlemeyer, Carroll University
Rose Neng Lai, University of Macau
Keith Lam, University of Macau
Reinhold P. Lamb, University of North Florida
Douglas Lamdin, University of Maryland–Baltimore County
Mark J. Laplante, University of Georgia
Sie Ting Lau, Nanyang Technological University
Richard LeCompte, Wichita State University
Adam Y.C. Lei, Midwestern State University
Qian Li, Midwestern State University
Lubomir Litov, University of Oklahoma
Chang Liu, Washington State University
Wei Liu, Texas A&M University
Hugh Marble III, University of Vermont
James Milanes, University of North Carolina at Greensboro
Sunil K. Mohanty, University of St. Thomas
Ted Moorman, Northern Illinois University
Mike Morgan, University of Southern Mississippi
James Morris, University of Colorado–Denver
Belinda Mucklow, University of Wisconsin–Madison
Rick Nelson, University of Minnesota
Tom C. Nelson, University of Colorado–Boulder
Anthony C. Ng, Hong Kong Polytechnic University
Curtis Nicholls, Bucknell University
Coleon Pantalone, Northeastern University
Daniel Park, Azusa Pacific University
Janet Payne, Texas State University
Jay Peroni, College of Charleston
Lynn Pi, Hong Kong University of Science and Technology
J. Michael Pinegar, Brigham Young University
Natalia Piqueira, University of Houston
Michael Portnoy, University of Tampa
Annette Poulsen, University of Georgia
Eric Powers, University of South Carolina
Rose M. Prasad, Central Michigan University
Shoba Premkumar, Iowa State University
Mark K. Pyles, College of Charleston
Jue Ren, Texas Christian University
A.A.B. Resing, Hogeschool Van Amsterdam
Greg Richey, California State University, San Bernardino
Scott Roark, Boise State University
David L. Robbins, University of New Mexico
Rob Ryan, DePaul University
Andrew Sanwick, Dartmouth College
Mukunthan Santhanakrishnan, Southern Methodist University
Salik K. Sarkar, University of Texas–Arlington
Oliver Schnusenberg, University of North Florida
Michael Schor, Ohio University
Kenneth Scislaw, University of Alabama–Huntsville
Roger Severns, Minnesota State University–Mankato
Tatyana Sokolyk, University of Wyoming
Andrew C. Spieler, Hofstra University
Steven Stelk, University of Southern Mississippi
Timothy G. Sullivan, Bentley College
Janikan Supanvanij, St. Cloud State University
Hugo Tang, Purdue University
Oranee Tawatnuntachai, Pennsylvania State University–Harrisburg
Robert Terpstra, University of Macau
Thomas Thomson, University of Texas–San Antonio
Olaf J. Thorp, Babson College
Ed Tiryakian, Duke University
Mary Kathleen Towle, University of New Mexico
Emery Trahan, Northeastern University
Joe Ueng, University of St. Thomas
Mo Vaziri, California State University–San Bernardino
Gautam Vora, University of New Mexico
Premal P. Vora, Pennsylvania State University–Harrisburg
Hefei Wang, University of Illinois–Chicago
Gwendolyn Webb, Baruch College
Paul M. Weinstock, Ohio State University
Susan White, University of Maryland
Annie Wong, Western Connecticut State University
Wentao Wu, Clarkson University
Xiaoyan Xu, San Jose State University
Qianqian Yu, Lehigh University
Zhong-gou Zhou, California State University–Northridge
Kermit C. Zieg, Jr., Florida Institute of Technology

Focus Group Participants
Anne-Marie Anderson, Lehigh University
Sung Bae, Bowling Green State University
H. Kent Baker, American University
Steven Beach, Radford University
Rafiqul Bhuian, California State University–San Bernardino
Deanne Butchey, Florida International University
Leo Chan, Delaware State University
George Chang, Grand Valley State University
Haiwei Chen, California State University–San Bernardino
Haiyu Chen, Youngstown State University
Massimiliano De Santis, Dartmouth College
Jocelyn Evans, College of Charleston
Kathleen Fuller, University of Mississippi
Xavier Garza Gomez, University of Houston–Victoria
William Gentry, Williams College
Axel Grossmann, Radford University
Pankaj Jain, University of Memphis
Zhenhu Jin, Valparaiso University
Steve Johnson, University of Northern Iowa
Steven Jones, Samford University
Yong-Cheol Kim, University of Wisconsin–Milwaukee
Robert Kiss, Eastern Michigan University
Ann Marie Klingenhagen, DePaul University
Thomas J. Krissек, Northeastern Illinois University
Olivier Maisondieu Laforge, University of Nebraska–Omaha
Douglas Lamdin, University of Maryland–Baltimore County
D. Scott Lee, Texas A&M University
Stanley A. Martin, University of Colorado–Boulder
Jamshid Mehran, Indiana University, South Bend
Sunil Mohanty, University of St. Thomas
Karyn L. Neuhauser, State University of New York–Plattsburgh
Thomas O’Brien, University of Connecticut
Hyuna Park, Minnesota State University–Mankato
G. Michael Phillips, California State University–Northridge
Wendy Pirie, Valparaiso University
Antonio Rodriguez, Texas A&M International University
Camelia S. Rotaru, St. Edward’s University
Salil Sarkar, University of Texas at Arlington
Mark Sunderman, University of Wyoming
Chu-Sheng Tai, Texas Southern University
Oranee Tawatnuntachai, Pennsylvania State University–Harrisburg
Benedict Udengha, Alcorn State University
Rahul Verma, University of Houston–Downtown
Angelo P. Vignola, Loyola University–Chicago
Premal Vora, Pennsylvania State University–Harrisburg
Eric Wehrly, Seattle University
Yan A. Xie, University of Michigan–Dearborn
Fang Zhao, Siena College
Sophie Zong, California State University–Stanislaus
Class Testers

Tom Berry, DePaul University
Eugene Bland, Texas A&M University–Corpus Christi
Charles Blaylock, Murray State University
Mary Brown, University of Illinois–Chicago
Bill Brunson, Eastern New Mexico University
Sarah Bryant Bower, Shippensburg University of Pennsylvania
Alva Wright Butcher, University of Puget Sound
David G. Cazier, Brigham Young University–Provo
Asim G. Celik, University of Nevada–Reno
Michaël Dewally, Marquette University
Richard Gaddis, Oklahoma Wesleyan University

TeWhan Hahn, Auburn University–Montgomery
Matthew Hood, University of Southern Mississippi
Zhenhu Jin, Valparaiso University
Travis Jones, Florida Gulf Coast University
Francis E. Laatsch, Bowling Green State University
Diane Lander, Saint Michael’s College
Vance Lesseig, Texas State University
Frances Maloy, University of Washington
Jamshid Mehran, Indiana University–South Bend
Belinda Mucklow, University of Wisconsin–Madison
Kuo-Chung Tseng, California State University–Fresno
Kermit C. Zieg, Jr., Florida Institute of Technology