Prepare for Class: "Read the Book"

Feature

| Every Chapter begins with . . . |
| :--- | :--- |

Chapter-Opening	Each chapter begins with a discussion of a topic of current interest and ends with a related project.
Topic \& Project Internet-Based Projects These projects allow for the integration of spreadsheet technology that you will need to be a productive member of the workforce. Every Section begins with ...	
LEARNING OBJECTIVES	Each section begins with a list of objectives. Individual objectives also appear in the text where they are covered.
2	

Sections contain

PREPARING FOR
THIS SECTION

Most sections begin with a list of key concepts to review, with page numbers.

Now Work the
'Are You Prepared?'
Problems
Now Work
PROBLEMS

These problems assess whether you have the prerequisite knowledge for the upcoming section.

These follow most examples and direct you to a related exercise.

\triangle CAUTION
Explorations and Seeing the Concept
A Calculus
SHOWCASE EXAMPLES
Model It! Examples and Problems
NEW!
Need to Review?

These graphing utility activities foreshadow a concept or reinforce a concept just presented.

This feature provides alternative descriptions of select definitions and theorems.

This symbol appears next to information essential for the study of calculus.

These examples provide "how to" instruction by offering a guided, step-bystep approach to solving a problem.

These examples and problems require you to build a mathematical model from either a verbal description or data. The homework Model It! problems are marked by purple problem numbers.

These margin notes provide a just-intime reminder of a concept needed now, but covered in an earlier section of the book. Each note is back-referenced to the chapter, section and page where the concept was originally discussed.

In the concluding project, you will apply what you have learned to solve a problem related to the topic.

The projects give you an opportunity to 533 collaborate and use mathematics to deal with issues of current interest.
These objectives focus your studying by
emphasizing what's most important and where
to find it. emphasizing what's most important and where to find it.

Ever forget what you've learned? This feature 446 highlights previously learned material to be used in this section. Review it, and you'll always be prepared to move forward.
Work the 'Are You Prepared?' problems. If you 446, 458 get one wrong, you'll know exactly what you need to review and where to review it!

We learn best by doing. You'll solidify your 454, 460 understanding of examples if you try a similar problem right away, to be sure you understand what you've just read.

These point out common mistakes and help 482 you avoid them.

You will obtain a deeper and more intuitive understanding of theorems and definitions.

Why didn't you say that in the first place? This 465 feature translates math into plain English.

Foreshadowing calculus now will make the material easier later.

With each step presented on the left and the mathematics displayed on the right, you can immediately see how each step is employed.

It is rare for a problem to come in the form
"Solve the following equation." Rather, the equation must be developed based on an explanation of the problem. These problems require you to develop models that will enable you to describe the problem mathematically and suggest a solution to the problem.

Sometimes as you read, you encounter a word or concept you know you've seen before, but don't remember exactly what it means. This feature will point you to where you first learned the word or concept. A quick review now will help you see the connection to what you are learning for the first time and make remembering easier the next time.

Practice: "Work the Problems"

Feature	Description	Benefit	Page(s)
'Are You Prepared?' Problems	These problems assess your retention of the prerequisite material. Answers are given at the end of the section exercises. This feature is related to the Preparing for This Section feature.	Do you always remember what you've learned? Working these problems is the best way to find out. If you get one wrong, you'll know exactly what you need to review and where to review it!	446, 458
Concepts and Vocabulary	These short-answer questions, mainly fill-in-the-blank, multiple-choice, and true/ false items, assess your understanding of key definitions and concepts in the current section.	It is difficult to learn math without knowing the language of mathematics. These problems test your understanding of the formulas and vocabulary.	458-459
Skill Building	Correlated with section examples, these problems provide straightforward practice.	These problems give you ample opportunity to dig in and develop your skills.	459-461
Mixed Practice	These problems offer comprehensive assessment of the skills learned in the section by asking problems related to more than one concept or objective. These problems may also require you to utilize skills learned in previous sections.	Learning mathematics is a building process. Many concepts build on each other and are related. These problems help you see how mathematics builds on itself and how the concepts are linked together.	461
Applications and Extensions	These problems allow you to apply your skills to real-world problems. They also enable you to extend concepts learned in the section.	You will see that the material learned within the section has many uses in everyday life.	461-464
NEW! Challenge Problems	These problems have been added in most sections and appear at the end of the Application and Extensions exercises. They are intended to be thought-provoking, requiring some ingenuity to solve.	Challenge problems can be used for group work or to challenge your students. Solutions to Challenge Problems are in the Annotated Instructor's Edition or in the Instructor's Solution Manual (online).	464
Explaining Concepts: Discussion and Writing	"Discussion and Writing" problem numbers are colored red. They support class discussion, verbalization of mathematical ideas, and writing and research projects.	To verbalize an idea, or to describe it clearly in writing, shows real understanding. These problems nurture that understanding. Many are challenging, but you'll get out what you put in.	464
Retain Your Knowledge	These problems allow you to practice content learned earlier in the course.	Remembering how to solve all the different kinds of problems that you encounter throughout the course is difficult. This practice helps you remember previously learned skills.	464
Now Work problems	Many examples refer you to a related homework problem. These related problems are marked by and orange problem numbers.	If you get stuck while working problems, look for the closest Now Work problem, and refer to the related example to see if it helps.	$\begin{array}{r} 454,456, \\ 457 \end{array}$
NEW! Interactive Figure Exercises	Exercises that require you manipulate an interactive figure to solve. These exercises are labeled with the icon	These exercises help you visualize important concepts and develop a "feel" for them. The figures are housed at bit.ly/2MibgaO and were developed in GeoGebra by author Michael Sullivan III.	$\begin{array}{r} 458,459, \\ 473,474 \end{array}$
Review Exercises	Every chapter concludes with a comprehensive list of exercises to practice. Use the list of objectives to determine what objective and examples correspond to each problem.	Work these problems to ensure that you understand all the skills and concepts employed in the chapter. Think of it as a comprehensive review of the chapter. All answers to Chapter Review problems appear in the back of the text.	528-531

Review: "Study for Quizzes and Tests"

Feature	Description	Benefit	Page(s)
Most Sections Contain			
Retain Your Knowledge	Keeps what you have learned at the forefront and see how topics are connected.	These problems allow content to remain fresh so you are more prepared for the final exam.	478
The Chapter Review at the end of each chapter contains ...			
Things to Know	A detailed list of important theorems, formulas, and definitions from the chapter.	Review these and you'll know the most important material in the chapter!	526-527
You Should Be Able to ...	A complete list of objectives by section, examples that illustrate the objective, and practice exercises that test your understanding of the objective.	Do the recommended exercises and you'll have mastered the key material. If you get something wrong, go back and review the example listed, and try again.	527-528
Review Exercises	These provide comprehensive review and practice of key skills, matched to the Learning Objectives for each section.	Practice makes perfect. These problems combine exercises from all sections, giving you a comprehensive review in one place.	528-531
Chapter Test	About 15-20 problems that can be taken as a Chapter Test. Be sure to take the Chapter Test under test conditions-no notes!	Be prepared. Take the sample practice test under test conditions. This will get you ready for your instructor's test. If you get a problem wrong, you can watch the Chapter Test Prep Video.	531-532
Cumulative Review	These problem sets appear at the end of each chapter, beginning with Chapter 2. They combine problems from previous chapters, providing an ongoing cumulative review. When you use them in conjunction with the Retain Your Knowledge problems, you will be ready for the final exam.	These problem sets are really important. Completing them will ensure that you are not forgetting anything as you go. This will go a long way toward keeping you primed for the final exam.	532-533

ANNOTATED INSTRUCTOR'S EDITION

College Algebra Enhanced with Graphing Utilities

Eighth Edition

Michael Sullivan
Chicago State University

Michael Sullivan III

Joliet Junior College

Please contact https://support.pearson.com/getsupport/s/ with any queries on this content.
MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/ or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE services.

THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) described herein at any time. partial screen shots may be viewed in full within the software version specified.

MICROSOFI ${ }^{\circledR}$ AND WINDOWS \circledR A ARE REGISTERED TRADEMARKS OF THE MICROSOFT CORPORATION IN THE U.S.A. AND other countries. this book is not sponsored. Microsofi® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2021, 2017, 2013 by Pearson Education, Inc. or its affiliates, 221 River Street, Hoboken, NJ 07030. All Rights Reserved. Manufactured in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights and Permissions department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third-party content appear on the appropriate page within the text -OR- on page C1, which constitutes an extension of this copyright page.
PEARSON, ALWAYS LEARNING, and MYLAB are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks, logos, or icons that may appear in this work are the property of their respective owners, and any references to third-party trademarks, logos, icons, or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc., or its affiliates, authors, licensees, or distributors.

Cataloging-in-Publication data is on file with the Library of Congress.

ScoutAutomatedPrintCode

In Memory of Mary ... Wife and Mother

Contents

Three Distinct Series xvi
The Enhanced with Graphing Utilities Series xvii
Preface to the Instructor xviii
Applications Index xxvi
To the Student xxxii
R Review 1
R. 1 Real Numbers 2
Work with Sets • Classify Numbers • Evaluate Numerical Expressions - Work with Properties of Real Numbers
R. 2 Algebra Essentials 18
Graph Inequalities • Find Distance on the Real Number Line • Evaluate Algebraic Expressions \bullet Determine the Domain of a Variable • Use the Laws of Exponents • Evaluate Square Roots • Use a Calculator to Evaluate Exponents • Use Scientific Notation
R. 3 Geometry Essentials 31
Use the Pythagorean Theorem and Its Converse \bullet Know Geometry Formulas • Understand Congruent Triangles and Similar Triangles
R. 4 Polynomials 41
Recognize Monomials • Recognize Polynomials • Add and Subtract Polynomial
\bullet Multiply Polynomials \bullet Know Formulas for Special Products • Divide Polynomials Using Long Division • Work with Polynomials in Two Variables
R. 5 Factoring Polynomials 51
Factor the Difference of Two Squares and the Sum and Difference of Two Cubes \bullet Factor Perfect Squares • Factor a Second-Degree Polynomial: $x^{2}+B x+C \bullet$ Factor by Grouping \bullet Factor a Second-Degree Polynomial: $A x^{2}+B x+C, A \neq 1 \bullet$ Complete the Square
R. 6 Synthetic Division 59
Divide Polynomials Using Synthetic Division
R. 7 Rational Expressions 63
Reduce a Rational Expression to Lowest Terms • Multiply and Divide Rational Expressions • Add and Subtract Rational Expressions • Use the Least Common Multiple Method • Simplify Complex Rational Expressions
R. 8 nth Roots; Rational Exponents 74
Work with nth Roots • Simplify Radicals \bullet Rationalize Denominators and Numerators - Simplify Expressions with Rational Exponents
1 Graphs, Equations, and Inequalities 83
1.1 Graphing Utilities; Introduction to Graphing Equations 84
Graph Equations by Plotting Points • Graph Equations Using a Graphing Utility • Use a Graphing Utility to Create Tables • Find Intercepts from a Graph • Use a Graphing Utility to Approximate Intercepts
1.2 Solving Equations Using a Graphing Utility; Linear and Rational Equations 95
Solve Equations Using a Graphing Utility • Solve Linear Equations • Solve Rational Equations • Solve Problems That Can Be Modeled by Linear Equations
1.3 Quadratic Equations 106
Solve a Quadratic Equation by Factoring • Solve a Quadratic Equation Using the Square Root Method • Solve a Quadratic Equation by Completing the Square • Solve a Quadratic Equation Using the Quadratic Formula - Solve Problems That Can Be Modeled by Quadratic Equations
1.4 Complex Numbers; Quadratic Equations in the Complex Number System 118
Add, Subtract, Multiply, and Divide Complex Numbers • Solve Quadratic Equations in the Complex Number System
1.5 Radical Equations; Equations Quadratic in Form; Absolute Value Equations; Factorable Equations 127
Solve Radical Equations • Solve Equations Quadratic in Form • Solve Equations Involving Absolute Value • Solve Equations by Factoring
1.6 Problem Solving: Interest, Mixture, Uniform Motion, Constant Rate Job Applications 135
Translate Verbal Descriptions into Mathematical Expressions • Solve Interest Problems • Solve Mixture Problems • Solve Uniform Motion Problems • Solve Constant Rate Job Problems
1.7 Solving Inequalities 145
Use Interval Notation • Use Properties of Inequalities • Solve Linear Inequalities Algebraically and Graphically • Solve Combined Inequalities Algebraically and Graphically • Solve Absolute Value Inequalities Algebraically and Graphically
Chapter Review 156
Chapter Test 160
Chapter Projects 160
2 Graphs 162
2.1 The Distance and Midpoint Formulas 163
Use the Distance Formula - Use the Midpoint Formula
2.2 Intercepts; Symmetry; Graphing Key Equations 170
Find Intercepts Algebraically from an Equation - Test an Equation for Symmetry with Respect to the x-Axis, the y-Axis, and the Origin •Know How to Graph Key Equations
2.3 Lines 179
Calculate and Interpret the Slope of a Line • Graph Lines Given a Point and the Slope • Find the Equation of a Vertical Line • Use the Point-Slope Form of a Line; Identify Horizontal Lines • Use the Slope-Intercept Form of a Line • Find the Equation of a Line Given Two Points • Graph Lines Written in General Form Using Intercepts • Find Equations of Parallel Lines • Find Equations of Perpendicular Lines
2.4 Circles 195
Write the Standard Form of the Equation of a Circle • Graph a Circle by Hand and by Using a Graphing Utility • Work with the General Form of the Equation of a Circle
2.5 Variation 202
Construct a Model Using Direct Variation • Construct a Model Using Inverse Variation • Construct a Model Using Joint Variation
Chapter Review 208
Chapter Test 210
Cumulative Review 210
Chapter Project 211
3 Functions and Their Graphs 212
3.1 Functions 213
Describe a Relation • Determine Whether a Relation Represents a Function

- Use Function Notation; Find the Value of a Function • Find the Difference Quotient of a Function • Find the Domain of a Function Defined by an Equation • Form the Sum, Difference, Product, and Quotient of Two Functions
3.2 The Graph of a Function 229
Identify the Graph of a Function - Obtain Information from or about the Graph of a Function
3.3 Properties of Functions 239Identify Even and Odd Functions from a Graph • Identify Even and OddFunctions from an Equation • Use a Graph to Determine Where a FunctionIs Increasing, Decreasing, or Constant • Use a Graph to Locate LocalMaxima and Local Minima • Use a Graph to Locate the Absolute Maximumand the Absolute Minimum • Use a Graphing Utility to ApproximateLocal Maxima and Local Minima and to Determine Where a Function IsIncreasing or Decreasing • Find the Average Rate of Change of a Function
3.4 Library of Functions; Piecewise-defined Functions 253
Graph the Functions Listed in the Library of Functions • Analyze a Piecewise-defined Function
3.5 Graphing Techniques: Transformations 265
Graph Functions Using Vertical and Horizontal Shifts • Graph Functions Using Compressions and Stretches • Graph Functions Using Reflections about the x-Axis or y-Axis
3.6 Mathematical Models: Building Functions 279
Build and Analyze Functions
Chapter Review 284
Chapter Test 288
Cumulative Review 289
Chapter Projects 289
4 Linear and Quadratic Functions 291
4.1 Properties of Linear Functions and Linear Models 292
Graph Linear Functions • Use Average Rate of Change to Identify Linear Functions • Determine Whether a Linear Function Is Increasing, Decreasing, or Constant • Build Linear Models from Verbal Descriptions
4.2 Building Linear Models from Data 302
Draw and Interpret Scatter Plots \bullet Distinguish between Linear and Nonlinear Relations • Use a Graphing Utility to Find the Line of Best Fit
4.3 Quadratic Functions and Their Properties 310
Graph a Quadratic Function Using Transformations • Identify the Vertex and Axis of Symmetry of a Parabola • Graph a Quadratic Function Using Its Vertex, Axis, and Intercepts • Find a Quadratic Function Given Its Vertex and One Other Point •Find the Maximum or Minimum Value of a Quadratic Function
4.4 Building Quadratic Models from Verbal Descriptions and from Data 324
Build Quadratic Models from Verbal Descriptions • Build Quadratic Modelsfrom Data
4.5 Inequalities Involving Quadratic Functions 332Solve Inequalities Involving a Quadratic Function
Chapter Review 336
Chapter Test 338
Cumulative Review 339
Chapter Projects 340
5 Polynomial and Rational functions 341
5.1 Polynomial Functions 342
Identify Polynomial Functions and Their Degree • Graph Polynomial Functions Using Transformations • Identify the Real Zeros of a Polynomial Function and Their Multiplicity
5.2 The Graph of a Polynomial Function; Models 357
Analyze the Graph of a Polynomial Function • Build Cubic Models from Data
5.3 The Real Zeros of a Polynomial Function 366
Use the Remainder and Factor Theorems • Use Descartes' Rule of Signs to Determine the Number of Positive and the Number of Negative Real Zeros of a Polynomial Function - Use the Rational Zeros Theorem to List the Potential Rational Zeros of a Polynomial Function • Find the Real Zeros of a Polynomial Function • Solve Polynomial Equations • Use the Theorem for Bounds on Zeros • Use the Intermediate Value Theorem
5.4 Complex Zeros; Fundamental Theorem of Algebra 381
Use the Conjugate Pairs Theorem • Find a Polynomial Function with Specified Zeros • Find the Complex Zeros of a Polynomial Function
5.5 Properties of Rational Functions 388
Find the Domain of a Rational Function • Find the Vertical Asymptotes of a Rational Function • Find the Horizontal or Oblique Asymptote of a Rational Function
5.6 The Graph of a Rational Function 399
Analyze the Graph of a Rational Function • Solve Applied Problems Involving Rational Functions
5.7 Polynomial and Rational Inequalities 411
Solve Polynomial Inequalities Graphically and Algebraically • Solve Rational Inequalities Graphically and Algebraically
Chapter Review 418
Chapter Test 421
Cumulative Review 421
Chapter Projects 423
6 Exponential and Logarithmic Functions 424
6.1 Composite Functions 425
Form a Composite Function • Find the Domain of a Composite Function
6.2 One-to-One Functions; Inverse Functions
Determine Whether a Function Is One-to-One • Determine the Inverse of a Function Defined by a Mapping or a Set of Ordered Pairs - Obtain the Graph of the Inverse Function from the Graph of a One-to-One Function - Verify that a Function Defined by an Equation Is an Inverse Function - Find the Inverse of a Function Defined by an Equation433
6.3 Exponential Functions 446
Evaluate Exponential Functions• Graph Exponential Functions• Define the Number $e \bullet$ Solve Exponential Equations
6.4 Logarithmic Functions 465
Change Exponential Statements to Logarithmic Statements and Logarithmic Statements to Exponential Statements \bullet Evaluate Logarithmic Expressions - Determine the Domain of a Logarithmic Function • Graph Logarithmic Functions • Solve Logarithmic Equations
6.5 Properties of Logarithms 479
Work with the Properties of Logarithms • Write a Logarithmic Expression as a Sum or Difference of Logarithms • Write a Logarithmic Expression as a Single Logarithm • Evaluate Logarithms Whose Base Is Neither 10 Nor e - Graph a Logarithmic Function Whose Base is Neither 10 Nor e
6.6 Logarithmic and Exponential Equations 488
Solve Logarithmic Equations • Solve Exponential Equations • Solve Logarithmic and Exponential Equations Using a Graphing Utility
6.7 Financial Models 497
Determine the Future Value of a Lump Sum of Money •Calculate Effective Rates of Return • Determine the Present Value of a Lump Sum of Money - Determine the Rate of Interest or the Time Required to Double a Lump Sum of Money
6.8 Exponential Growth and Decay Models; Newton's Law; Logistic Growth and Decay Models 507
Model Populations That Obey the Law of Uninhibited Growth • Model Populations That Obey the Law of Uninhibited Decay • Use Newton's Law of Cooling • Use Logistic Models
6.9 Building Exponential, Logarithmic, and Logistic Models from Data 518
Build an Exponential Model from Data \bullet Build a Logarithmic Model from Data • Build a Logistic Model from Data
Chapter Review 526
Chapter Test 531
Cumulative Review 532
Chapter Projects 533
7 Analytic Geometry 534
7.1 Conics 535
Know the Names of the Conics
7.2 The Parabola 536
Analyze Parabolas with Vertex at the Origin • Analyze Parabolas with Vertex at (h, k) • Solve Applied Problems Involving Parabolas
7.3 The Ellipse 546
Analyze Ellipses with Center at the Origin • Analyze Ellipses with Center at $(h, k) \bullet$ Solve Applied Problems Involving Ellipses
7.4 The Hyperbola 559
Analyze Hyperbolas with Center at the Origin • Find the Asymptotes of a Hyperbola • Analyze Hyperbolas with Center at $(h, k) \bullet$ Solve Applied Problems Involving Hyperbolas
Chapter Review 574
Chapter Test 575
Cumulative Review 575
Chapter Projects 576
Systems of Equations and Inequalities 577
8.1 Systems of Linear Equations: Substitution and Elimination 578
Solve Systems of Equations by Substitution • Solve Systems of Equations by Elimination • Identify Inconsistent Systems of Equations Containing Two Variables • Express the Solution of a System of Dependent Equations Containing Two Variables • Solve Systems of Three Equations Containing Three Variables • Identify Inconsistent Systems of Equations Containing Three Variables • Express the Solution of a System of Dependent Equations Containing Three Variables
8.2 Systems of Linear Equations: Matrices 592
Write the Augmented Matrix of a System of Linear Equations • Write the System of Equations from the Augmented Matrix • Perform Row Operations on a Matrix • Solve a System of Linear Equations Using Matrices
8.3 Systems of Linear Equations: Determinants 607
Evaluate 2 by 2 Determinants • Use Cramer's Rule to Solve a System of Two Equations Containing Two Variables \bullet Evaluate 3 by 3 Determinants - Use Cramer's Rule to Solve a System of Three Equations Containing Three Variables •Know Properties of Determinants
8.4 Matrix Algebra 618
Find the Sum and Difference of Two Matrices • Find Scalar Multiples of a Matrix • Find the Product of Two Matrices • Find the Inverse of a Matrix - Solve a System of Linear Equations Using an Inverse Matrix
8.5 Partial Fraction Decomposition 635
Decompose $\frac{P}{Q}$ where Q Has Only Nonrepeated Linear Factors
- Decompose $\frac{P}{Q}$ where Q Has Repeated Linear Factors \bullet Decompose $\frac{P}{Q}$ where Q Has a Nonrepeated Irreducible Quadratic Factor \bullet Decompose $\frac{P}{Q}$
where Q Has a Repeated Irreducible Quadratic Factor
8.6 Systems of Nonlinear Equations 644
Solve a System of Nonlinear Equations Using Substitution • Solve a System of Nonlinear Equations Using Elimination
8.7 Systems of Inequalities 654
Graph an Inequality by Hand • Graph an Inequality Using a Graphing Utility • Graph a System of Inequalities
8.8 Linear Programming 663
Set Up a Linear Programming Problem • Solve a Linear Programming Problem
Chapter Review 670
Chapter Test 674
Cumulative Review 675
Chapter Projects 676
9 Sequences; Induction; the Binomial Theorem 677
9.1 Sequences 678
List the First Several Terms of a Sequence • List the Terms of a Sequence Defined by a Recursive Formula • Use Summation Notation • Find the Sum of a Sequence Algebraically and Using a Graphing Utility • Solve Annuity and Amortization Problems Using Recursive Formulas
9.2 Arithmetic Sequences 692
Determine Whether a Sequence Is Arithmetic • Find a Formula for an Arithmetic Sequence - Find the Sum of an Arithmetic Sequence
9.3 Geometric Sequences; Geometric Series 698
Determine Whether a Sequence Is Geometric • Find a Formula for a Geometric Sequence • Find the Sum of a Geometric Sequence • Determine Whether a Geometric Series Converges or Diverges • Solve Annuity Problems Using Formulas
9.4 Mathematical Induction 710
Prove Statements Using Mathematical Induction
9.5 The Binomial Theorem 714
Evaluate $\binom{n}{j}$ • Use the Binomial Theorem
Chapter Review 721
Chapter Test 723
Cumulative Review 724
Chapter Projects 725
10 Counting and Probability 726
10.1 Counting 727
Find All the Subsets of a Set • Count the Number of Elements in a Set
- Solve Counting Problems Using the Multiplication Principle
10.2 Permutations and Combinations 732
Solve Counting Problems Using Permutations Involving n Distinct Objects
- Solve Counting Problems Using Combinations • Solve Counting Problems Using Permutations Involving n Nondistinct Objects
10.3 Probability 741
Construct Probability Models • Compute Probabilities of Equally Likely Outcomes • Find Probabilities of the Union of Two Events • Use the Complement Rule to Find Probabilities
Chapter Review 751
Chapter Test 753
Cumulative Review 754
Chapter Projects 754
Answers AN1
Challenge Problem Solutions CP1
Photo Credits C1
Subject Index I1

Three Distinct Series to Meet Varied Instructional Needs

Students have different goals, learning styles, and levels of preparation. Instructors have different teaching philosophies, styles, and techniques. Rather than write one series to fit all, the Sullivans have written three distinct series. All share the same goal-to develop a high level of mathematical understanding and an appreciation for the way mathematics can describe the world around us. The manner of reaching that goal, however, differs from series to series.

Enhanced with Graphing Utilities Series

This series provides a thorough integration of graphing utilities into topics, allowing students to explore mathematical concepts and encounter ideas usually studied in later courses. Many examples show solutions using algebra side-by-side with graphing techniques. Using technology, the approach to solving certain problems differs from the Contemporary (Flagship) or Concepts through Functions Series, while the emphasis on understanding concepts and building strong skills is maintained. Texts in this series are College Algebra, Algebra \& Trigonometry, and Precalculus.

Flagship Series

The Flagship Series is the most traditional in approach, yet modern in its treatment of precalculus mathematics. In each text, needed review material is included and is referenced when it is used. Graphing utility coverage is optional and can be included or excluded at the discretion of the instructor. Texts in this series are College Algebra, Algebra \& Trigonometry, Trigonometry: A Unit Circle Approach, and Precalculus.

Concepts through Functions Series

This series differs from the others, utilizing a functions approach that serves as the organizing principle tying concepts together. Functions are introduced early in various formats. This approach supports the Rule of Four, which states that functions are represented symbolically, numerically, graphically, and verbally. Each chapter introduces a new type of function and then develops all concepts pertaining to that particular function. The solutions of equations and inequalities, instead of being developed as stand-alone topics, are developed in the context of the underlying functions. Graphing utility coverage is optional and can be included or excluded at the discretion of the instructor. Texts in this series are College Algebra; Precalculus, with a Unit Circle Approach to Trigonometry; Precalculus, with a Right Triangle Approach to Trigonometry.

The Enhanced with Graphing Utilities Series

College Algebra, Eighth Edition

This text provides an approach to college algebra that completely integrates graphing technology without sacrificing mathematical analysis and conceptualization. The text has three chapters of review material preceding the chapter on functions. Graphing calculator usage is integrated throughout. After completing this text, a student will be prepared for trigonometry, finite mathematics, and business calculus.

Algebra \& Trigonometry, Eighth Edition

This text contains all the material in College Algebra, but it also develops the trigonometric functions using a right triangle approach and shows how that approach is related to the unit circle approach. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Vectors in the plane, including the dot product, sequences, induction, and the binomial theorem are also presented. After completing this text, a student will be prepared for finite mathematics, business calculus, and engineering calculus.

Precalculus, Eighth Edition

This text contains a review chapter before covering the traditional precalculus topics of functions and their graphs, polynomial and rational functions, and exponential and logarithmic functions. The trigonometric functions are introduced using a unit circle approach and show how it is related to the right triangle approach. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Vectors in the plane and in space, including the dot and cross products, sequences, induction, and the binomial theorem are also presented. Graphing calculator usage is integrated throughout. The final chapter provides an introduction to calculus, with a discussion of the limit, the derivative, and the integral of a function. After completing this text, a student will be prepared for finite mathematics, business calculus, and engineering calculus.

P Sullivan \& Sullivan

Preface to the Instructor

As professors at an urban university (Michael Sullivan) and a community college (Michael Sullivan III), we are aware of the varied needs of students in this course. Such students range from those who have little mathematical background and are fearful of mathematics courses to those with a strong mathematical education and a high level of motivation. For some of your students, this will be their last course in mathematics, whereas others will further their mathematical education. We have written this text with both groups in mind.

As a teacher, and as an author of precalculus, engineering calculus, finite mathematics, and business calculus texts, Michael Sullivan understands what students must know if they are to be focused and successful in upper-level math courses. As an instructor and an author of a developmental mathematics series, Michael's son and co-author, Michael Sullivan III, understands the trepidations and skills that students bring to the College Algebra course. As the father of current college students, Michael III realizes that today's college students demand a variety of media to support their education. This text addresses that demand by providing technology and video support that enhances understanding without sacrificing math skills. Together, we have taken great pains to ensure that the text offers solid, student-friendly examples and problems, as well as a clear and seamless writing style.

A tremendous benefit of authoring a successful series is the broad-based feedback we receive from teachers and students. We are sincerely grateful for their support. Virtually every change in this edition is the result of their thoughtful comments and suggestions. We are confident that, building on the success of the first seven editions and incorporating many of these suggestions, we have made College Algebra Enhanced with Graphing Utilities, 8th Edition, an even better tool for learning and teaching. We continue to encourage you to share with us your experiences teaching from this text.

Features in the Eighth Edition

A descriptive list of the many special features of College Algebra can be found in the front of this text. This list places the features in their proper context as building blocks of an overall learning system that has been carefully crafted over the years to help students get the most out of the time they put into studying. Please take the time to review this and to discuss it with your students at the beginning of your course. Our experience is that when students utilize these features, they are more successful in the course.

New to the Eighth Edition

New Within the Textbook

All of the exercises and examples in the text have been reviewed and analyzed, and we have incorporated feedback from users of the text. All time-sensitive problems have been updated to the most recent information available. Here are the new features of this edition:

- Challenge Problems - These problems appear in the Applications and Extensions part of the section exercises and are designed to challenge students. Full solutions are in the back of the Annotated Instructor's Edition and in the Instructor's Solution Manual.
- "Need to Review?" feature - We placed reminders in the margin for key review topics. The reminders point students to the location of the review material in the textbook.
- Chapter Projects - The projects have been enhanced to give students an up-to-the-minute experience. Many of these projects require the student to research information online in order to solve problems.
- Interactive Figure Exercises - We have added this new category of exercises that require students to manipulate an interactive figure to solve. The interactive figures may be found at bit. ly/2MibgaO or in the Video and Resource Library of MyLab Math, and were created by author Michael Sullivan III in GeoGebra. These exercises are labeled with the icon
- Expanded! Retain Your Knowledge Problems - These problems, which were new to the previous edition, are based on learning research, including a study of precalculus students at University of Louisville entitled "Spaced retrieval practice increases college students' short- and long-term retention of mathematics knowledge" (Hopkins et al, 2016). The Retain Your Knowledge problems were so well received that we have expanded them in this edition. Moreover, while the focus remains to help students maintain their skills, in most sections, problems were chosen that preview skills required to succeed in subsequent sections or in calculus ($\$$). All answers to Retain Your Knowledge problems are given in the back of the text and these problems are available in the prebuilt assignments in the Assignment Manager in MyLab Math.
- Key to Exercise Types - To help you navigate the features of the exercise sets, we've included a key at the bottom of the first page of each section's exercises.
Now Work

1. Modeling
2. Writing/Discussion

- Graphing Utility Screen Captures - In several instances we have added Desmos screen captures along with the TI-84 Plus CE screen captures. These updated screen captures provide alternative ways of visualizing concepts and making connections between equations, data, and graphs in full color.

Content Changes

Chapter R

- Section R. 8 Objective 3 now includes rationalizing the numerator. Problems 69-76 provide practice.

Chapter 1

- Section 1.1 has been reorganized to only include an introduction to graphing and graphing utilities.

Chapter 2

- NEW Section 2.1 The Distance and Midpoint Formulas
- NEW Section 2.2 Example 5 Testing an Equation for Symmetry

Chapter 3

- NEW Section 3.1 Objective 1 Describe a Relation
- NEW Example 1 Describing a Relation demonstrates using the Rule of Four to express a relation numerically, as a mapping, and graphically given a verbal description.
- NEW Section 3.2 Example 4 Expending Energy

Chapter 4

- Section 4.3 now introduces the concept of concavity for a quadratic function.
- NEW Section 4.3 Example 3 Graphing a Quadratic Function Using Its Vertex, Axis, and Intercepts
- Section 4.3 Example 8 Analyzing the Motion of a Projectile (formerly in Section 4.4)
- NEW Section 4.4 Example 4 Fitting a Quadratic Function to Data

Chapter 5

- Previous Section 5.1 has been revised and split into two sections:
- 5.1 Polynomial Functions
- 5.2 Graphing Polynomial Functions; Models
- NEW Section 5.2 Example 2 Graphing a Polynomial Function (a 4th degree polynomial function)

Chapter 6

- NEW Section 6.2 Objective Verify a Function Defined by an Equation is an Inverse Function

Chapter 8

- NEW Section 8.5 Example 1 Identifying Proper and Improper Rational Expressions

Chapter 9

- NEW Section 9.3 Objective 5 Solving Annuity Problems Using Formulas

New Within MyLab Math

- Setup \& Solve Exercises require students to show how they set up a problem as well as the solution, better mirroring what is required of them on tests. We have included both the "traditional" and Setup \& Solve versions of exercise within MyLab to provide you with more options for assessing students.
- Integrated Review content and assessments help you provide students with the remediation they need, when they need it. Integrated Review consists of:
- Skills Check Quizzes by chapter assess the prerequisite skills students need for that chapter.
- Skills Review Homework, again by chapter, is personalized (based on the results of the Skills Check Quiz) to provide students with help on the prerequisite skills they are lacking. Students receive just the help they need-no more, no less.
- Intermediate Algebra eText, Exercises, Videos, and Worksheets-For students who need more help (or for co-requisite courses), we've included the contents of a streamlined Intermediate Algebra course within this MyLab course. There's no need to go elsewhere for remediation.
- Interactive Figures (formerly titled Guided Visualizations) have been expanded to support teaching and learning. The figures (created in GeoGebra by author Michael Sullivan III) illustrate key concepts and allow manipulation. They have been designed to be used in lecture as well as by students independently.
- Enhanced Sample Assignments are pre-made sectionlevel assignments that address key concepts within the section and help keep previously learned skills fresh with RetainYour Knowledge questions. They are assignable and editable.

Using the Eighth Edition Effectively with Your Syllabus

To meet the varied needs of diverse syllabi, this text contains more content than is likely to be covered in a College Algebra course. As the chart illustrates, this text has been organized with flexibility of use in mind. Within a given chapter, certain sections are optional (see the details that follow the accompanying figure) and can be omitted without loss of continuity.

Chapter R Review

This chapter consists of review material. It may be used as the first part of the course or later as a just-in-time review when the content is required. Specific references to this chapter occur throughout the text to assist in the review process.

Chapter 1 Equations and Inequalities

Primarily a review of intermediate algebra topics, this material is a prerequisite for later topics. The coverage of complex numbers and quadratic equations with a negative discriminant is optional and may be postponed or skipped entirely without loss of continuity.

Chapter 2 Graphs

This chapter lays the foundation for functions. Section 2.5 is optional.

Chapter 3 Functions and Their Graphs

This is perhaps the most important chapter. Section 3.6 is optional.

Chapter 4 Linear and Quadratic Functions

Topic selection depends on your syllabus. Sections 4.2 and 4.4 may be omitted without loss of continuity.

Chapter 5 Polynomial and Rational Functions

Topic selection depends on your syllabus.

Acknowledgments

Texts are written by authors, but they evolve from idea to final form through the efforts of many people.

Thanks are due to the following people for their assistance and encouragement during the preparation of this edition:

- From Pearson Education: Dawn Murrin, for her substantial support, dedication, and energy; Jeff Weidenaar for his attention to detail, experience, editorial expertise, and genuine interest in this project; Peggy McMahon for directing the always difficult production process; Rose Kernan for handling liaison between the compositor and author; Stacey Sveum and Jordan Longoria for their creative and enthusiastic marketing this text; Marcia Horton for her continued support and genuine interest; Paul Corey for his leadership and commitment to excellence; and Peggy Lucas and the Pearson sales team

Chapter 6 Exponential and Logarithmic Functions
Sections 6.1-6.6 follow in sequence. Sections 6.7, 6.8, and 6.9 are optional.

Chapter 7 Analytic Geometry

Sections 7.1-7.4 follow in sequence.

Chapter 8 Systems of Equations and Inequalities

Sections 8.2-8.7 may be covered in any order, but each requires Section 8.1. Section 8.8 requires Section 8.7.

Chapter 9 Sequences; Induction; The Binomial Theorem

There are three independent parts: Sections 9.1-9.3, Section 9.4, and Section 9.5.

Chapter 10 Counting and Probability

The sections follow in sequence.
for their continued confidence and personal support of our texts.

- Accuracy checkers: Roger Lipsett read the entire manuscript and checked the accuracy of answers. Timothy Britt created the Solutions Manuals and accuracy-checked answers.
- Michael Sullivan III would like to thank his colleagues at Joliet Junior College for their support and feedback.
Finally, we offer our sincere thanks to the dedicated users and reviewers of our texts, whose collective insights form the backbone of each text revision.

The list of those to whom we are indebted continues to grow. If we've forgotten anyone, please accept our apology. Thank you to all.

James Africh, College of DuPage
Steve Agronsky, Cal Poly State University
Gererdo Aladro, Florida International University
Grant Alexander, Joliet Junior College Dave Anderson, South Suburban College
Wes Anderson, Northwest Vista College
Richard Andrews, Florida A\&M University
Joby Milo Anthony, University of Central Florida
James E. Arnold, University of Wisconsin-Milwaukee
Adel Arshaghi, Center for Educational Merit Carolyn Autray, University of West Georgia
Agnes Azzolino, Middlesex County College
Wilson P. Banks, Illinois State University Sudeshna Basu, Howard University
Timothy Bayer, Virginia Western CC
Dale R. Bedgood, East Texas State University
Beth Beno, South Suburban College
Carolyn Bernath, Tallahassee Community College
Rebecca Berthiaume, Edison State College
William H. Beyer, University of Akron
Annette Blackwelder, Florida State University

Richelle Blair, Lakeland Community College Kevin Bodden, Lewis and Clark College Jeffrey Boerner, University of Wisconsin-Stout Connie Booker, Owensboro Community and Technical College
Barry Booten, Florida Atlantic University
Laurie Boudreaux, Nicholls State University Larry Bouldin, Roane State Community College
Bob Bradshaw, Ohlone College
Trudy Bratten, Grossmont College
Tim Bremer, Broome Community College Tim Britt, Jackson State Community College Holly Broesamle, Oakland CC-Auburn Hills Michael Brook, University of Delaware Timothy Brown, Central Washington University Joanne Brunner, Joliet Junior College Warren Burch, Brevard Community College Mary Butler, Lincoln Public Schools Melanie Butler, West Virginia University Jim Butterbach, Joliet Junior College Roberto Cabezas, Miami Dade College William J. Cable, University of

Wisconsin-Stevens Point Lois Calamia, Brookdale Community College

Jim Campbell, Lincoln Public Schools
Roger Carlsen, Moraine Valley Community College
Elena Catoiu, Joliet Junior College Mathews Chakkanakuzhi, Palomar College
Tim Chappell, Penn Valley Community College
John Collado, South Suburban College
Amy Collins, Northwest Vista College
Alicia Collins, Mesa Community College
Nelson Collins, Joliet Junior College
Rebecca Connell, Troy University
Jim Cooper, Joliet Junior College
Denise Corbett, East Carolina University
Carlos C. Corona, San Antonio College
Theodore C. Coskey, South Seattle Community College
Rebecca Connell, Troy University
Donna Costello, Plano Senior High School
Rebecca Courter, Pasadena City College
Garrett Cox, The University of Texas at San Antonio
Paul Crittenden, University of Nebraska at Lincoln
John Davenport, East Texas State University Faye Dang, Joliet Junior College

Antonio David, Del Mar College
Stephanie Deacon, Liberty University
Duane E. Deal, Ball State University
Jerry DeGroot, Purdue North Central
Timothy Deis, University of
Wisconsin-Platteville
Joanna DelMonaco, Middlesex Community College
Vivian Dennis, Eastfield College
Deborah Dillon, R. L. Turner High School
Guesna Dohrman, Tallahassee Community College
Cheryl Doolittle, Iowa State University
Karen R. Dougan, University of Florida
Jerrett Dumouchel, Florida Community College at Jacksonville
Louise Dyson, Clark College
Paul D. East, Lexington Community College
Don Edmondson, University of Texas-Austin
Erica Egizio, Joliet Junior College
Jason Eltrevoog, Joliet Junior College
Christopher Ennis, University of Minnesota
Kathy Eppler, Salt Lake Community College Ralph Esparza, Jr., Richland College Garret J. Etgen, University of Houston Scott Fallstrom, Shoreline Community College Pete Falzone, Pensacola Junior College Arash Farahmand, Skyline College Said Fariabli, San Antonio College W.A. Ferguson, University of Illinois-Urbana/ Champaign
Iris B. Fetta, Clemson University
Mason Flake, student at Edison Community College
Timothy W. Flood, Pittsburg State University
Robert Frank, Westmoreland County
Community College
Merle Friel, Humboldt State University
Richard A. Fritz, Moraine Valley
Community College
Dewey Furness, Ricks College
Mary Jule Gabiou, North Idaho College
Randy Gallaher, Lewis and Clark College
Tina Garn, University of Arizona
Dawit Getachew, Chicago State University
Wayne Gibson, Rancho Santiago College
Loran W. Gierhart, University of Texas at San Antonio and Palo Alto College
Robert Gill, University of Minnesota Duluth
Nina Girard, University of Pittsburgh at Johnstown
Sudhir Kumar Goel, Valdosta State University
Adrienne Goldstein, Miami Dade College, Kendall Campus
Joan Goliday, Sante Fe Community College
Lourdes Gonzalez, Miami Dade College, Kendall Campus
Frederic Gooding, Goucher College Donald Goral, Northern Virginia Community College
Sue Graupner, Lincoln Public Schools
Mary Beth Grayson, Liberty University
Jennifer L. Grimsley, University of Charleston
Ken Gurganus, University of North Carolina
Igor Halfin, University of Texas-San Antonio
James E. Hall, University of WisconsinMadison
Judy Hall, West Virginia University
Edward R. Hancock, DeVry Institute of Technology
Julia Hassett, DeVry Institute, Dupage Christopher Hay-Jahans, University of South Dakota
Michah Heibel, Lincoln Public Schools LaRae Helliwell, San Jose City College Celeste Hernandez, Richland College
Gloria P. Hernandez, Louisiana State University at Eunice
Brother Herron, Brother Rice High School

Robert Hoburg, Western Connecticut State University
Lynda Hollingsworth, Northwest Missouri State University
Deltrye Holt, Augusta State University
Charla Holzbog, Denison High School
Lee Hruby, Naperville North High School
Miles Hubbard, St. Cloud State University
Kim Hughes, California State College-San Bernardino
Stanislav, Jabuka, University of Nevada, Reno
Ron Jamison, Brigham Young University
Richard A. Jensen, Manatee Community College
Glenn Johnson, Middlesex Community College
Sandra G. Johnson, St. Cloud State University
Tuesday Johnson, New Mexico State University
Susitha Karunaratne, Purdue University North Central
Moana H. Karsteter, Tallahassee Community College
Donna Katula, Joliet Junior College
Arthur Kaufman, College of Staten Island
Thomas Kearns, North Kentucky University
Jack Keating, Massasoit Community College
Shelia Kellenbarger, Lincoln Public Schools
Rachael Kenney, North Carolina State University
Penelope Kirby, Florida State University
John B. Klassen, North Idaho College
Debra Kopcso, Louisiana State University
Lynne Kowski, Raritan Valley Community College
Yelena Kravchuk, University of Alabama at Birmingham
Ray S. Kuan, Skyline College
Keith Kuchar, Manatee Community College
Tor Kwembe, Chicago State University
Linda J. Kyle, Tarrant Country Jr. College
H.E. Lacey, Texas A \& M University

Darren Lacoste, Valencia College-West Campus
Harriet Lamm, Coastal Bend College
James Lapp, Fort Lewis College
Matt Larson, Lincoln Public Schools
Christopher Lattin, Oakton Community College
Julia Ledet, Lousiana State University
Wayne Lee, St. Phillips CC
Adele LeGere, Oakton Community College
Kevin Leith, University of Houston
JoAnn Lewin, Edison College
Jeff Lewis, Johnson County Community College
Janice C. Lyon, Tallahassee Community College
Jean McArthur, Joliet Junior College
Virginia McCarthy, Iowa State University
Karla McCavit, Albion College
Michael McClendon, University of Central Oklahoma
Tom McCollow, DeVry Institute of Technology
Marilyn McCollum, North Carolina State University
Jill McGowan, Howard University
Will McGowant, Howard University
Angela McNulty, Joliet Junior College
Lisa Meads, College of the Albemarle
Laurence Maher, North Texas State University
Jay A. Malmstrom, Oklahoma City Community College
Rebecca Mann, Apollo High School
Lynn Marecek, Santa Ana College
Sherry Martina, Naperville North High School
Ruby Martinez, San Antonio College

Alec Matheson, Lamar University
Nancy Matthews, University of Oklahoma
James Maxwell, Oklahoma State
University-Stillwater
Marsha May, Midwestern State University
James McLaughlin, West Chester University
Judy Meckley, Joliet Junior College
David Meel, Bowling Green State University
Carolyn Meitler, Concordia University
Samia Metwali, Erie Community College
Rich Meyers, Joliet Junior College
Eldon Miller, University of Mississippi
James Miller, West Virginia University
Michael Miller, Iowa State University
Kathleen Miranda, SUNY at Old Westbury
Chris Mirbaha, The Community College of Baltimore County
Val Mohanakumar, Hillsborough Community College
Thomas Monaghan, Naperville North High School
Miguel Montanez, Miami Dade College, Wolfson Campus
Maria Montoya, Our Lady of the Lake University
Susan Moosai, Florida Atlantic University
Craig Morse, Naperville North High School
Samad Mortabit, Metropolitan State University
Pat Mower, Washburn University
Tammy Muhs, University of Central Florida
A. Muhundan, Manatee Community College

Jane Murphy, Middlesex Community College
Richard Nadel, Florida International University
Gabriel Nagy, Kansas State University
Bill Naegele, South Suburban College
Karla Neal, Lousiana State University
Lawrence E. Newman, Holyoke Community College
Dwight Newsome, Pasco-Hernando Community College
Denise Nunley, Maricopa Community Colleges
James Nymann, University of Texas-El Paso
Mark Omodt, Anoka-Ramsey Community College
Seth F. Oppenheimer, Mississippi State University
Leticia Oropesa, University of Miami
Linda Padilla, Joliet Junior College
Sanja Pantic, University of Illinois at Chicago
E. James Peake, Iowa State University

Kelly Pearson, Murray State University
Dashamir Petrela, Florida Atlantic University
Philip Pina, Florida Atlantic University
Charlotte Pisors, Baylor University
Michael Prophet, University of Northern Iowa
Laura Pyzdrowski, West Virginia University
Carrie Quesnell, Weber State University
Neal C. Raber, University of Akron
Thomas Radin, San Joaquin Delta College
Aibeng Serene Radulovic, Florida Atlantic University
Ken A. Rager, Metropolitan State College
Traci Reed, St. Johns River State College
Kenneth D. Reeves, San Antonio College
Elsi Reinhardt, Truckee Meadows Community College
Jose Remesar, Miami Dade College, Wolfson Campus
Jane Ringwald, Iowa State University
Douglas F. Robertson, University of Minnesota, MPLS
Stephen Rodi, Austin Community College
William Rogge, Lincoln Northeast High School
Howard L. Rolf, Baylor University
Mike Rosenthal, Florida International University

Phoebe Rouse, Lousiana State University Edward Rozema, University of Tennessee at Chattanooga
Dennis C. Runde, Manatee Community College
Paul Runnion, Missouri University of Science and Technology
Amit Saini, University of Nevada-Reno
Laura Salazar, Northwest Vista College
Alan Saleski, Loyola University of Chicago
Susan Sandmeyer, Jamestown Community College
Brenda Santistevan, Salt Lake Community College
Linda Schmidt, Greenville Technical College Ingrid Scott, Montgomery College
A.K. Shamma, University of West Florida

Zachery Sharon, University of Texas at San Antonio
Joshua Shelor, Virginia Western CC
Martin Sherry, Lower Columbia College
Carmen Shershin, Florida International University
Tatrana Shubin, San Jose State University
Anita Sikes, Delgado Community College
Timothy Sipka, Alma College
Charlotte Smedberg, University of Tampa
Lori Smellegar, Manatee Community College
Gayle Smith, Loyola Blakefield
Cindy Soderstrom, Salt Lake Community College
Leslie Soltis, Mercyhurst College
John Spellman, Southwest Texas State University

Karen Spike, University of North Carolina Rajalakshmi Sriram, Okaloosa-Walton Community College
Katrina Staley, North Carolina Agricultural and Technical State University
Becky Stamper, Western Kentucky University Judy Staver, Florida Community College-South
Robin Steinberg, Pima Community College Neil Stephens, Hinsdale South High School Sonya Stephens, Florida A\&M Univeristy
Patrick Stevens, Joliet Junior College
John Sumner, University of Tampa
Matthew TenHuisen, University of North Carolina, Wilmington
Christopher Terry, Augusta State University
Diane Tesar, South Suburban College
Tommy Thompson, Brookhaven College
Martha K. Tietze, Shawnee Mission Northwest High School
Richard J. Tondra, Iowa State University
Florentina Tone, University of West Florida
Suzanne Topp, Salt Lake Community College
Marilyn Toscano, University of Wisconsin, Superior
Marvel Townsend, University of Florida
Jim Trudnowski, Carroll College
David Tseng, Miami Dade College, Kendall Campus
Robert Tuskey, Joliet Junior College
Mihaela Vajiac, Chapman University-Orange
Julia Varbalow, Thomas Nelson Community College-Leesville

Richard G. Vinson, University of South Alabama
Jorge Viola-Prioli, Florida Atlantic University
Mary Voxman, University of Idaho
Jennifer Walsh, Daytona Beach Community College
Donna Wandke, Naperville North High School Timothy L.Warkentin, Cloud County Community College
Melissa J. Watts, Virginia State University Hayat Weiss, Middlesex Community College Kathryn Wetzel, Amarillo College
Darlene Whitkenack, Northern Illinois University
Suzanne Williams, Central Piedmont Community College
Larissa Williamson, University of Florida Christine Wilson, West Virginia University Brad Wind, Florida International University Anna Wiodarczyk, Florida International University
Mary Wolyniak, Broome Community College Canton Woods, Auburn University Tamara S. Worner, Wayne State College Terri Wright, New Hampshire Community Technical College, Manchester Rob Wylie, Carl Albert State College Aletheia Zambesi, University of West Florida
George Zazi, Chicago State University Loris Zucca, Lone Star College-Kingwood Steve Zuro, Joliet Junior College

Michael Sullivan
Chicago State University
Michael Sullivan III
Joliet Junior College

Get the most out of MyLab Math

P Pearson MyLab

MyLab Math for College Algebra Enhanced with Graphing Utilities 8 e by Michael Sullivan \& Michael Sullivan III (access code required)

MyLab Math is tightly integrated with each author's style, offering a range of author-created resources, so your students have a consistent experience.

Preparedness

Preparedness is one of the biggest challenges in many math courses. Pearson offers a variety of content and course options to support students with just-in-time remediation and key-concept review as needed.

Integrated Review in MyLab Math

Integrated Review can be used in corequisite courses or simply to help students who enter a course without a full understanding of prerequisite skills and concepts. Premade, editable Integrated Review assignments are available to assign in the Assignment Manager.

- Students begin each chapter by completing a Skills Check to pinpoint which topics, if any, they need to review.
- Personalized review homework provides extra support for students who need it on just the topics they didn't master in the preceding Skills Check.
- Additional review

materials including videos featuring Michael Sullivan III, worksheets, and Sullivan's Algebra Review text, are available.

Get the most out of MyLab Math

P
 Pearson MyLab

New! Interactive Figures

Interactive Figures, created in GeoGebra by Michael
Sullivan III, bring mathematical concepts to life, helping students visualize the concept through guided exploration and purposeful manipulation. Assignable in MyLab Math with assessment questions to check students' conceptual understanding.

Video Program and Resources

Author in Action Videos are actual classroom lectures by Michael Sullivan III with fully worked-out examples.

- Video assessment questions are available to assign in MyLab Math for key videos.
- Updated! The corresponding Guided Lecture Notes assist students in taking thorough, organized, and understandable notes while watching Author in Action Videos.

Enhanced Sample Assignments
The Sullivans make course set-up easier by giving instructors a starting point for each section. Enhanced Sample Assignments use a thoughtful mix of Sullivan hallmark practice problems that are geared to maximize students' performanceincluding Retain Your Knowledge exercises that improve students' recall of concepts learned earlier in the course.

EXAMPLE

Finding the Exact Value of a Logarithmic Expression

pearson.com/mylab/math

Resources for Success

Instructor Resources

Online resources can be downloaded at pearson.com/mylab/math or from www.pearson.com.

Annotated Instructor's Edition

ISBN: 0135812577 / 9780135812570
Shorter answers are on the page beside the exercises. Longer answers are in the back of the text.

Instructor's Solution Manual

Includes fully worked solutions to all exercises in the text.

Learning Catalytics Question Library

Questions written by Michael Sullivan III are available to deliver through Learning Catalytics to engage students in your course.

PowerPoint ${ }^{\circledR}$ Lecture Slides

Fully editable slides correlate to the textbook and include alternate classroom examples for every textbook objective.

Mini Lecture Notes

This guide includes additional examples and helpful teaching tips, by section.

TestGen®

TestGen (www.pearsoned.com/testgen) enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text.

Online Chapter Projects

Additional projects that give students an opportunity to apply what they learned in the chapter.

Student Resources

Additional resources to enhance student success.

Lecture Video

Author in Action videos are actual classroom lectures with fully worked-out examples presented by Michael Sullivan III. Videos are assignable within MyLab Math.

Chapter Test Prep Videos

Students can watch instructors work through step-bystep solutions to all chapter test exercises from the text.

Student's Solutions Manual

ISBN: 013581202X / 9780135812020
Provides detailed worked-out solutions to oddnumbered exercises. Available within MyLab Math and in print.

Guided Lecture Notes

ISBN: 0136434754 / 9780136434757
These lecture notes assist students in taking thorough, organized, and understandable notes while watching Author in Action videos. Students actively participate in learning the how and why of important concepts through explorations and activities. The Guided Lecture Notes are available as PDF's and customizable Word files in MyLab Math. They are also available in print format.

Algebra Review

ISBN: 0131480065 / 9780131480063
Four chapters of Intermediate Algebra review. Perfect for a corequisite course or for individual review. Available in print form; PDFs are also available within MyLab Math.

Applications Index

Acoustics

amplifying sound, 530
loudness of sound, 477,532
whispering galleries, 554

Agriculture

farm management, 668-669
farm workers in U.S., 517
field enclosure, 652
watering a field, 116

Air travel

cost of transatlantic, 228, 236
distance between two planes, 280-281
intersection point for two planes, 280-281
parking at O'Hare International
Airport, 262

Archaeology

age of ancient tools, 510
age of fossil, 516
age of tree, 516
date of prehistoric man's
death, 530

Architecture

brick staircase, 697, 723
Burj Khalifa building, 33
floor design, 695, 723
football stadium seating, 697
mosaic design, 697, 723
Norman window, 39, 329
parabolic arch, 329
racetrack design, 557
special window, 330,337
stadium construction, 697
vertically circular building, 201
window design, 329-330
window dimensions, 116

Art

framing a painting, 159

Astronomy

distance from Earth to its moon, 31
distances of planets from Sun, 690
light-year, 31
planetary orbits, 554
Earth, 557
elliptical, 557
Jupiter, 557
Mars, 557
Neptune, 576
Pluto, 557, 576

Aviation

orbital launches, 589
sonic boom, 573

Biology

alcohol and driving, 472, 477-478
bacterial growth, 508-509
E. coli, 251, 293, 522
blood types, 731
bone length, 337-338
cancer, 462,523
cricket chirp rate and temperature, 330-331
healing of wounds, 462,476
maternal age versus Down syndrome, 308
yeast biomass as function of
time, 521-522

Business

advertising, 193, 309, 338
automobile production, 431, 605
blending coffee, 142, 159
candy bar size, 117
checkout lines, 750
clothing store, 753
cookie orders, 673-674
cost
of can, 406-407, 409
of charter bus, 159
of commodity, 431
of manufacturing, 30, 142, 236, 417, 662
marginal, 322,337
minimizing, 669-670
of printing textbooks, 362-363
of production, 251, 431, 633, 674
of theater ticket per student, 417
of transporting goods, 263
cost equation, 192, 206
cost function, 300,301
demand
for candy, 207
demand equation, $337,338,422$
depreciation, 424, 707
straight-line, 296-297, 301
discounts, 105-106, 432
drive-thru rate
at Burger King, 457
at Citibank, 462, 476
at McDonald's, 462
expense computation, 143
inventory management, 284
Jiffy Lube's car arrival rate, 462, 477
managing a meat market, 669
milk production, 523
mixing candy, 142
mixing nuts, 142
online purchases, 750
orange juice production, 605
precision ball bearings, 30
presale order, 590
price markup, 105
product design, 669
production scheduling, 669
product promotion, 193
profit, 633
maximizing, $667,668,669$
profit function, 228
rate of return on, 504
restaurant management, 590
revenue, 142, 322, 335
airline, 670
of clothing store, 623
daily, 322
from digital music, 278
maximizing, 322, 328-329
monthly, 322
online advertising, 524-525
from seating, 708
of Tesla, Inc., 523
theater, 591
revenue equation, 206
RV rental, 338
salary, 697
gross, 227, 432
increases in, 707, 723
sales
commission on, 155, 337
of movie theater ticket, 578, 583, 589
net, 169
salvage value, 530
supply and demand, 297-298, 300
tax, 417
theater attendance, 105
toy truck manufacturing, 662
transporting goods, 662
truck rentals, 192
unemployment, 753
wages
of car salesperson, 192
hourly, 102-103, 105

Calculus

area under a curve, 278
area under graph, $251,574,635,751$
average rate of change, $366,446,478,496$, 546, 592, 606, 691
concavity test, 323
critical numbers, 691
difference quotient, $279,331,335,387,446$, 464, 506, 558, 606, 653, 709
discontinuities, 410
exact value calculations, 546
factoring expressions, $59,169,252,331$, 478, 592, 670
$f(x)=e^{x}, 690$
increasing/decreasing/constant function, 323, 663
inequalities, 416, 464
Intermediate Value Theorem, 380-381, 410, 663
maximum-minimum problems, 302, 399, 518

Mean Value Theorem, 252
Newton's Method, 398
normal line, 643
odd-even functions, 366
partial fraction decomposition, 698, 714, 732, 741, 751
points of intersection, 399, 432
polynomial functions, 380
rationalizing numerator, 310, 496, 618
real zeros, 698
rectangular equation of plane curve, 709
reduction of expressions to lowest terms, 73
rewriting expressions, 284, 310, 323, 518, 741
secant line equation, 302,506
simplifying expressions, 229, 264, 284, 323, 335, 410, 432, 653
Simpson's rule, 331
slope of perpendicular line, 229
turning points, 417

Carpentry. See also Construction

 pitch, 194Chemistry, 105
alpha particles, 573
antifreeze solution, 202
decomposition reactions, 516
drug concentration, 408-409
gas laws, 207
pH, 476
purity of gold, 143
radioactive decay, 515-516, 523, 530, 532, 670
radioactivity from Chernobyl, 516
reactions
self-catalytic, 322
solutions, 590
salt, 143, 144, 159
sugar molecules, 143
volume of gas, 155

Combinatorics

airport codes, 733
binary codes, 753
birthday permutations, $735,740,747$, 751,753
blouses and skirts combinations, 731
book arrangements, 740
box stacking, 739
code formation, 739
combination locks, 740
committee formation, 737, 739-740, 753
Senate committees, 740
flag arrangement, 738, 753
letter codes, 733-734
license plate possibilities, 740,753
lining up people, 734, 739
number formation, 731, 739, 740, 753
objects selection, 740
seating arrangements, 753
shirts and ties combinations, 731
telephone numbers, 753
two-symbol codewords, 730
word formation, $738,740,753$

Communications

data plan, 212, 237, 289-290
installing cable TV, 283
phone charges, 300
satellite dish, 542,545
smartphones, 106, 516
social networking, 106, 517, 524
spreading of rumors, 462,477
texting speed, 410

Computers and computing

graphics, 634
laser printers, 143
tablets, 117, 262, 517
website design, 634
website map, 634

Construction

of border around a garden, 117
of border around a pool, 117
of box, 113-114, 116, 652
closed, 288
open, 283
of brick staircase, 723
of can, 420
of coffee can, 144
of cylindrical tube, 652
of enclosures
around garden, 143
around pond, 143
maximizing area of, 325-326, 329, 337
of fencing, 325-326, 329, 337, 652
minimum cost for, 409
of flashlight, 545
of headlight, 545
installing cable TV, 283
patio dimensions, 117
of rain gutter, 329
of ramp
access ramp, 193
of rectangular field enclosure, 329
of stadium, 329-330, 697
of steel drum, 409
of swimming pool, 39, 40
TV dish, 545
vent pipe installation, 557

Cryptography

matrices in, 634
passwords, 740

Decorating

Christmas tree, 34

Demographics

birth rate(s), 331, 725
of unmarried women, 322
death rates, 725
diversity index, 476
living at parents' home, 117
marital status, 732
mosquito colony growth, 515
population. See Population
poverty rates, 364
rabbit colony growth, 689

Design

of box with minimum surface area, 409

Direction

of fireworks display, 572
of lightning strikes, 572

Distance

Bermuda Triangle, 40
bicycle riding, 238
depth of pool, 264
of explosion, 572
height
of bouncing ball, 707,723
of Great Pyramid of Cheops, 40
of Mt. Everest, 31
from home, 238
of hot-air balloon
from intersection, 168
from intersection, 280-281, 282
limiting magnitude of telescope, 530
pendulum swings, 703, 707
range of airplane, 144
of search and rescue, 159
sound to measure, 134-135
of storm, 159
traveled by wheel, 39
between two moving vehicles, 168
toward intersection, 282
visibility of Gibb's Hill Lighthouse beam, 40
visual, 40
walking, 238

Economics

Consumer Price Index (CPI), 506
demand equations, 422
inflation, 505
IS-LM model in, 590
marginal propensity to consume, 708
multiplier, 708
participation rate, 228
per capita federal debt, 505
poverty rates, 364
poverty threshold, 169
relative income of child, 634
supply-side, 252
unemployment, 753

Education

age distribution of community college, 754
college costs, 505, 633
college value, 117
computing grades, 156
degrees awarded, 729 doctorates, 750
education savings account, 689
faculty composition, 751
field trip, 417
funding a college education, 530
grades, 105
learning curve, 463, 477
maximum level achieved, 676
multiple-choice test, 740
spring break, 669, 686
student loan
interest on, 633
true/false test, 739
tuition, 530
video games and grade-point average, 308
working students and GPA, 117

Electricity, 105

cost of, 260
current in RC circuit, 463
current in RL circuit, 463, 477
impedance, 127
Kirchhoff's Rules, 591, 605
parallel circuits, 127
resistance in, 398
rates for, 155,193
resistance, 71, 74, 207,210, 398
voltage
foreign, 30
U.S., 30

Electronics

comparing tablets, 117
keyboard layout, 410
microphones, 178

Energy

expended while walking, 232-233
nuclear power plant, 572
solar, 178
solar heat, 545
thermostat control, 278

Engineering

bridges
Golden Gate, 326-327
parabolic arch, 337,545
semielliptical arch, 557,575
suspension, 329,545
crushing load, 135
Gateway Arch (St. Louis), 545
grade of road, 194
horsepower, 207
maximum weight supportable
by pine, 204
safe load for a beam, 207
searchlight, 545, 575
tolerances, 155
whispering galleries, 557

Entertainment

Demon Roller Coaster customer rate, 462-463
movie theater, 94
theater revenues, 591

Environment

endangered species, 462
invasive species, 517
lake pollution control laws, 689
oil leakage, 431
Finance, 105. See also Investment(s)
annuity, 704-705, 707
balancing checking account, 30
bills in wallet, 753
clothes shopping, 675
comparing bank accounts, 505
computer system purchase, 504
concession markup, 105
cost
of car, 105
of car rental, 263
of college, 505
of data plan, 237, 289-290
of driving a car, 192
of electricity, 260
of fast food, 590
minimizing, 409
of natural gas, 262
of pizza, 106
of printing textbooks, 362-363
of transatlantic travel, 228, 236
cost equation, 206
cost function, 300, 301
cost minimization, 322
credit cards
balance on, 643
debt, 689
interest on, 504
payment, 263, 689
depreciation, 462
of car, $478,495,533$
discounts, 432
discretionary income, 117
division of money, 105, 137-138
electricity rates, 193
expenditures, average annual, 327-328
federal debt, 251
financial planning, 137-138, 159, 590, 602, 605-606, 660, 662, 663-664, 669
foreign exchange, 432
fraternity purchase, 117
funding a college education, 530
fundraising lottery, 408
future value of money, 365
gross salary, 227
growth of investment, 519-520
inheritance, 106
life cycle hypothesis, 330
loans, 142
amortization schedule, 161
car, 689
home, 689
interest on, 137, 158, 160-161, 633
repayment of, 504
student, 633
mortgages
fees, 263
interest rates on, 505, 506
payments, 203, 206, 210, 687
second, 505
natural gas rates, 193
price appreciation of homes, 504
prices of fast food, 591
price vs. quantity demanded, 300
refunds, 590
revenue equation, 206
revenue maximization, $322,324-325$, 328-329
rich man's promise, 708
salary options, 709
sales commission, 155
saving
for a car, 504
for a computer, 723
for a home, 707
for spring break, 686
savings accounts interest, 504
selling price, 211
sewer bills, 155
sinking fund, 707
taxes, 300
federal income, 263,445
withholding, 432
used-car purchase, 504

Food and nutrition

animal, 670
candy, 307
color mix of candy, 753
cooler contents, 754
cooling time of pizza, 516
fast food, 408, 590, 591
fat content, 155
Girl Scout cookies, 750
hospital diet, 591, 605
hot dog and soda combinations, 301
ice cream, 669
number of possible meals, 729-730
sodium content, 155
warming time of beer stein, 516
wine, 495

Forensics

height as function of femur length, 300
height as function of humerus length, 300
height as function of tibia length, 478

Forestry

wood product classification, 514-515

Games

die rolling, 743, 744-745, 754
grains of wheat on a chess board, 708
lottery, 754,755
Gardens and gardening. See also Landscaping
border around, 117
enclosure for, 143

Geography

inclination of mountain trail, 653

Geology

earthquakes, 477-478
geysers, 697

Geometry

balloon volume, 431
circle
area of, 142
circumference of, 30,142
equation of, 617
inscribed in square, 282
radius of, 652
collinear points, 617
cone volume, 207, 432
cube
length of edge of, 380
surface area of, 30
volume of, 30
cylinder
inscribing in cone, 283
inscribing in sphere, 282
volume of, 207, 432
Descartes's method of equal roots, 652-653
equation of line, 617
polygon
area of, 617
diagonals of, 117
Pythagorean Theorem, 116
rectangle
area of, 30, 227, 280, 288, 337
dimensions of, 106, 116, 158, 652
inscribed in a circle, 282
inscribed in ellipse, 557
inscribed in semicircle, 282
perimeter of, 30
pleasing proportion for, 159
semicircle inscribed in, 282
sphere
surface area of, 30
volume of, 30
square
area of, 142
perimeter of, 142
surface area
of balloon, 431
of cube, 30
of sphere, 30
tetrahedron, 617
triangle
area of, 30,617
equilateral, 30, 168
inscribed in circle, 282
isosceles, 168, 227, 652
lengths of the legs, 159
medians of, 168
Pascal's, 690, 720

Government

federal debt, 251
federal income tax, 228, 263, 445
federal tax withholding, 155
first-class mail, 264
per capita federal debt, 505
Health. See also Medicine
age versus total cholesterol, 525
elliptical trainer, 558
exercising, 155
expenditures on, 228
heartbeats during exercise, 294
ideal body weight, 445
life cycle hypothesis, 330
life expectancy, 155
weight-height relation, 226
Home improvement. See also Construction
painting a house, 591
Housing. See also Real estate
apartment rental, 330
price appreciation of homes, 504
prices for, 420
Investment(s), 105, 142, 159, 532
allocation, 102, 264
in bonds, 669
Treasuries, 605, 606, 660, 662, 663-664
zero-coupon, 502, 505
in CDs, 501, 669
comparing, 505
compound interest on, 497-498, 499, 501
diversified, 591
doubling of, 502,505
education savings account, 689
finance charges, 504
in fixed-income securities, 669
401(k), 707, 723
growth of, 519-520
IRA, 505, 689, 707
Roth, 689
return on, 504, 669
in stock
analyzing, 340
appreciation, 504
NASDAQ stocks, 739
NYSE stocks, 739
portfolios of, 732
price of, 708
time to reach goal, 504, 506
tripling of, 503, 505
Landscaping, 144. See also Gardens and gardening
enclosures, 337
tree planting, 605

Law and law enforcement

motor vehicle thefts, 750
violent crimes, 228
Leisure and recreation
cable TV, 283
community skating rink, 289

Ferris wheel, 201
field trip, 417
video games and grade-point average, 308

Mechanics, 105. See also Physics

Media

fake news, 155
YouTube usage, 750
Medicine. See also Health
age versus total cholesterol, 525
cancer, 462, 523
drug concentration, 251, 408-409
drug medication, 462, 477
healing of wounds, 462,476
lithotripsy, 558
spreading of disease, 531

Meteorology

weather balloon height and atmospheric pressure, 520-521

Miscellaneous

banquet seating, 669
bending wire, 652
citrus ladders, 697
coffee container, 533
cross-sectional area of beam, 228, 236
curve fitting, 587-588, 590, 605, 673
diameter of wire, 31
drafting error, 168
Droste Effect, 690
Koch's snowflake, 708
lamp shadow, 573
mineral deposits in water pipe, 178
motor, 31
paper creases, 713
pet ownership, 750
surface area of balloon, 431
volume of balloon, 431
wire enclosure area, 282
Mixtures. See also Chemistry
blending coffees, 138-139, 142, 159, 662, 673
blending teas, 142
cement, 144
mixed nuts, 142, 589, 662, 674
mixing candy, 142
solutions, 590
water and antifreeze, 143
Motion. See also Physics
of golf ball, 236
revolutions of circular disk, 39
tortoise and the hare race, 652
uniform, 139-140, 142

Motor vehicles

alcohol and driving, 472, 477-478
automobile production, 431, 605
average car speed, 144
brake repair with tune-up, 753
cost of driving a car, 192
depreciation, 424, 478, 495, 533
with Global Positioning System
(GPS), 530
loans for, 689
runaway car, 335
stopping distance, 228, 322, 445
towed, 300
used-car purchase, 504
Music
revenues from, 278

Optics

intensity of light, 207
lensmaker's equation, 74
light obliterated through glass, 461
mirrors, 573, 691
parabolic reflector, 575
reflecting telescope, 545

Pediatrics

height vs. head circumference, 445

Pharmacy

vitamin intake, 590, 606
Physics, 105
bouncing balls, 723
density of a gas, 226
diameter of atom, 31
Doppler effect, 409
effect of elevation on weight, 236
falling objects, 206
force, 142
of wind on a window, 205, 207
gravity, 398, 417
on Earth, 227, 445
on Jupiter, 228
heat loss, 204, 210
Hooke's Law, 301
horsepower, 207
intensity of light, 159, 207
kinetic energy, 142, 207
maximum weight supportable by pine, 204
missile trajectory, 340
Newton's laws, 206, 511, 516
pendulum motion, 135, 703
period, $82,278,445$
simple pendulum, 206
pressure, 142, 207
projectile motion, 116, 279, 322,335
artillery, 335
rotational inertia, 229
safe load for a beam, 207
sound
to measure distance, 134-135
sonic boom, 573
speed of, 155
strain, 365
stress of materials, 207
stretching a spring, 206
tension, 714
thrown object, 159
ball, 330, 335
uniform motion, 139-140, 142, 144, 159, 282
velocity down inclined planes, 82
vertically propelled object, 335
vibrating string, 206
wavelength of visible light, 31
weight, 207, 210
work, 142
Population. See also Demographics
bacterial, 515
decline in, 515
E. coli growth, 251,293
of endangered species, 517
of fruit fly, 513-514
as function of age, 228
growth in, 515, 517
insect, 398, 515, 517
of trout, 688
of United States, 495, 524, 725
of world, $495,524,530,677$

Probability

checkout lines, 750
coin toss, 743
colored candy, 742
exponential, 457, 462, 476-477
household annual income, 750
Poisson, 462-463
Price is Right games, 750
of same birthday in roomful of people, 517
standard normal density function, 278
of winning lottery, 726, 751

Publishing

textbook printing cost, 362-363

Pyrotechnics

fireworks display, 572
Rate. See also Speed
current of stream, 590
of emptying
oil tankers, 144
a pool, 144
of filling, 144, 159
of water consumption during
shower, 279

Real estate

commission, 155
mortgage fees, 263
saving for a home, 707
selling price of, 211
value of, 162

Recreation

bungee jumping, 417
Demon Roller Coaster customer rate, 462-463

Seismology

calibrating instruments, 575
Sequences. See also Combinatorics
ceramic tile floor design, 695
Drury Lane Theater, 696
football stadium seating, 697
seats in amphitheater, 696

Society

ideal mate, 478
Speed. See also Rate
of aircraft, 144
average, 144
of current, 142, 674
of cyclists going in opposite directions, 144
as function of time, 238, 282
of motorboat, 142
of moving walkways, 142
of sound, 155
wind, 590

Sports

baseball, 740, 753
diamond, 168
homeruns, 309
Little League, 168
on-base percentage, 302-303
World Series, 740
basketball, 740
free throws, 235-236
granny shots, 235
biathlon, 144
bungee jumping, 417
cycling, 94-95, 144
discus throw, 94
exacta betting, 753
football, 143, 557, 740
field design, 117
golf, 236, 525
marathon runners, 279
Olympic heroes, 144
races, 143, 159, 649-650, 652
relay runners, 753
shot-put throw, 94
tennis, 143, 365, 409

Surveys

of appliance purchases, 731
data analysis, 728,731
stock portfolios, 732
of summer session attendance, 731
of TV sets in a house, 750

Temperature

of air parcel, 697
body, 31, 155
conversion of, 432, 445
cooling time of pizza, 516
cricket chirp rate and, 330-331
measuring, 193
after midnight, 364-365
relationship between scales, 278 of skillet, 530
warming time of beer stein, 516 wind chill factor, 531

Time

for beer stein to warm, 516
to go from an island to a town, 283
hours of daylight, 423
for pizza to cool, 516
for rescue at sea, 159
waiting, for fast food, 408

Transportation

high-speed walkways, 143

Travel. See also Air travel
drivers stopped by the
police, 532-533
driving to school, 207
parking at O'Hare International Airport, 262

Volume

of gasoline in tank, 82
of ice in skating rink, 289
of water in cone, 283

Weapons

artillery, 335
cannons, 340

Weather

atmospheric pressure, 462, 476
cooling air, 697
forecasting, 746
hurricanes, 308, 364
lightning and thunder, 159
lightning strikes, 569-570, 572
relative humidity, 463
tornadoes, 307
wind chill, 263-264, 531

Work

constant rate jobs, 674
working together, 141, 143, 144, 159

To the Student

As you begin, you may feel anxious about the number of theorems, definitions, procedures, and equations you encounter. You may wonder if you can learn it all in time. Don't worry, your concerns are normal. This text was written with you in mind. If you attend class, work hard, and read and study effectively, you will build the knowledge and skills you need to be successful. Here's how you can use the text to your benefit.

Read Carefully

When you get busy, it's easy to skip reading and go right to the problems. Don't! The text provides a large number of examples and clear explanations to help you break down the mathematics into easy-to-understand steps. Reading will provide you with a clearer understanding, beyond simple memorization. Read before class (not after) so you can ask questions about anything you didn't understand. You'll be amazed at how much more you'll get out of class when you do this.

Use the Features

We use many different methods in the classroom to communicate. Those methods, when incorporated into the text, are called "features." The features serve many purposes, from supplying a timely review of material you learned before (just when you need it), to providing organized review sessions to help you prepare for quizzes and tests. Take advantage of the features and you will master the material.

To make this easier, we've provided a brief guide to getting the most from this book. Refer to the "Prepare for Class," "Practice," and "Review" guidelines on the first three pages of this book. Spend fifteen minutes reviewing the guide and familiarizing yourself with the features by flipping to the page numbers provided. Then, as you read, use them. This is the best way to make the most of your text. In this edition, we've also added a handy key to the labeling of the homework exercises so that you know what the colors and icons mean:

```
Now Work @1. Modeling 1. Writing/Discussion \(\backslash\) Calculus Preview 㩆 Interactive Figure
```

Please do not hesitate to contact us via Math@Pearson.com with any questions, comments, or suggestions about ways to improve this text. We look forward to hearing from you, and good luck with all of your studies.

Best Wishes!
Michael Sullivan
Michael Sullivan III

