Essential Statistics: Exploring the World Through Data
Third Edition

Robert Gould
University of California, Los Angeles

Rebecca Wong
West Valley College

Colleen Ryan
Moorpark Community College
Dedication

To my parents and family, my friends, and my colleagues who are also friends. Without their patience and support, this would not have been possible.

—Rob

To Nathaniel and Allison, to my students, colleagues, and friends. Thank you for helping me be a better teacher and a better person.

—Rebecca

To my teachers and students, and to my family who have helped me in many different ways.

—Colleen
About the Authors

Robert Gould

Robert L. Gould (Ph.D., University of California, Los Angeles) is a leader in the statistics education community. He has served as chair of the American Statistical Association’s (ASA) Statistics Education Section, chair of the American Mathematical Association of Two-Year Colleges/ASA Joint Committee, and has served on the National Council of Teacher of Mathematics/ASA Joint Committee. He served on a panel of co-authors for the 2005 Guidelines for Assessment and Instruction in Statistics Education (GAISE) College Report and is co-author on the revision for the GAISE K-12 Report. As lead principal investigator of the NSF-funded Mobilize Project, he led the development of the first high school level data science course, which is taught in the Los Angeles Unified School District and several other districts. Rob teaches in the Department of Statistics at UCLA, where he directs the undergraduate statistics program and is director of the UCLA Center for Teaching Statistics. In recognition for his activities in statistics education, in 2012 Rob was elected Fellow of the American Statistical Association. He is the 2019 recipient of the ASA Waller Distinguished Teaching Award and the USCOTS Lifetime Achievement Award.

In his free time, Rob plays the cello and enjoys attending concerts of all types and styles.

Rebecca Wong

Rebecca K. Wong has taught mathematics and statistics at West Valley College for more than twenty years. She enjoys designing activities to help students explore statistical concepts and encouraging students to apply those concepts to areas of personal interest.

Rebecca earned a B.A. in mathematics and psychology from the University of California, Santa Barbara, an M.S.T. in mathematics from Santa Clara University, and an Ed.D. in Educational Leadership from San Francisco State University. She has been recognized for outstanding teaching by the National Institute of Staff and Organizational Development and the California Mathematics Council of Community Colleges.

When not teaching, Rebecca is an avid reader and enjoys hiking trails with friends.

Colleen Ryan

Colleen N. Ryan has taught statistics, chemistry, and physics to diverse community college students for decades. She taught at Oxnard College from 1975 to 2006, where she earned the Teacher of the Year Award. Colleen currently teaches statistics part-time at Moorpark Community College. She often designs her own lab activities. Her passion is to discover new ways to make statistical theory practical, easy to understand, and sometimes even fun.

Colleen earned a B.A. in physics from Wellesley College, an M.A.T. in physics from Harvard University, and an M.A. in chemistry from Wellesley College. Her first exposure to statistics was with Frederick Mosteller at Harvard.

In her spare time, Colleen sings, has been an avid skier, and enjoys time with her family.
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>Index of Applications</td>
<td>xix</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>Introduction to Data</td>
<td>1</td>
</tr>
<tr>
<td>Case Study</td>
<td>Dangerous Habit?</td>
<td>2</td>
</tr>
<tr>
<td>1.1</td>
<td>What Are Data?</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Classifying and Storing Data</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Investigating Data</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Organizing Categorical Data</td>
<td>13</td>
</tr>
<tr>
<td>1.5</td>
<td>Collecting Data to Understand Causality</td>
<td>18</td>
</tr>
<tr>
<td>Data Project</td>
<td>Downloading and Uploading Data</td>
<td>28</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>Picturing Variation with Graphs</td>
<td>40</td>
</tr>
<tr>
<td>Case Study</td>
<td>Student-to-Teacher Ratio at Colleges</td>
<td>41</td>
</tr>
<tr>
<td>2.1</td>
<td>Visualizing Variation in Numerical Data</td>
<td>42</td>
</tr>
<tr>
<td>2.2</td>
<td>Summarizing Important Features of a Numerical Distribution</td>
<td>47</td>
</tr>
<tr>
<td>2.3</td>
<td>Visualizing Variation in Categorical Variables</td>
<td>57</td>
</tr>
<tr>
<td>2.4</td>
<td>Summarizing Categorical Distributions</td>
<td>60</td>
</tr>
<tr>
<td>2.5</td>
<td>Interpreting Graphs</td>
<td>64</td>
</tr>
<tr>
<td>Data Project</td>
<td>Asking Questions</td>
<td>67</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>Numerical Summaries of Center and Variation</td>
<td>90</td>
</tr>
<tr>
<td>Case Study</td>
<td>Living in a Risky World</td>
<td>91</td>
</tr>
<tr>
<td>3.1</td>
<td>Summaries for Symmetric Distributions</td>
<td>92</td>
</tr>
<tr>
<td>3.2</td>
<td>What’s Unusual? The Empirical Rule and z-Scores</td>
<td>101</td>
</tr>
<tr>
<td>3.3</td>
<td>Summaries for Skewed Distributions</td>
<td>107</td>
</tr>
<tr>
<td>3.4</td>
<td>Comparing Measures of Center</td>
<td>114</td>
</tr>
<tr>
<td>3.5</td>
<td>Using Boxplots for Displaying Summaries</td>
<td>119</td>
</tr>
<tr>
<td>Data Project</td>
<td>The Statistical Investigation Cycle</td>
<td>126</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>Regression Analysis: Exploring Associations between Variables</td>
<td>149</td>
</tr>
<tr>
<td>Case Study</td>
<td>Forecasting Home Prices</td>
<td>150</td>
</tr>
<tr>
<td>4.1</td>
<td>Visualizing Variability with a Scatterplot</td>
<td>151</td>
</tr>
<tr>
<td>4.2</td>
<td>Measuring Strength of Association with Correlation</td>
<td>156</td>
</tr>
<tr>
<td>4.3</td>
<td>Modeling Linear Trends</td>
<td>164</td>
</tr>
<tr>
<td>4.4</td>
<td>Evaluating the Linear Model</td>
<td>178</td>
</tr>
<tr>
<td>Data Project</td>
<td>Data Moves</td>
<td>186</td>
</tr>
</tbody>
</table>
CONTENTS

CHAPTER 5 Modeling Variation with Probability 213
CASE STUDY SIDS or Murder? 214
5.1 What Is Randomness? 215
5.2 Finding Theoretical Probabilities 218
5.3 Associations in Categorical Variables 228
5.4 Finding Empirical and Simulated Probabilities 240
DATA PROJECT Subsetting Data 248

CHAPTER 6 Modeling Random Events: The Normal and Binomial Models 266
CASE STUDY You Sometimes Get More Than You Pay for 267
6.1 Probability Distributions Are Models of Random Experiments 267
6.2 The Normal Model 273
6.3 The Binomial Model 287
DATA PROJECT Generating Random Numbers 301

CHAPTER 7 Survey Sampling and Inference 321
CASE STUDY Spring Break Fever: Just What the Doctors Ordered? 322
7.1 Learning about the World through Surveys 323
7.2 Measuring the Quality of a Survey 330
7.3 The Central Limit Theorem for Sample Proportions 339
7.4 Estimating the Population Proportion with Confidence Intervals 346
7.5 Comparing Two Population Proportions with Confidence 354
DATA PROJECT Coding Categories 362

CHAPTER 8 Hypothesis Testing for Population Proportions 380
CASE STUDY Dodging the Question 381
8.1 The Essential Ingredients of Hypothesis Testing 382
8.2 Hypothesis Testing in Four Steps 390
8.3 Hypothesis Tests in Detail 399
8.4 Comparing Proportions from Two Populations 406
DATA PROJECT Dates as Data 414
CHAPTER 9

Inferring Population Means 433
CASE STUDY ▶ You Look Sick! Are You Sick? 434
 9.1 Sample Means of Random Samples 435
 9.2 The Central Limit Theorem for Sample Means 438
 9.3 Answering Questions about the Mean of a Population 446
 9.4 Hypothesis Testing for Means 456
 9.5 Comparing Two Population Means 462
 9.6 Overview of Analyzing Means 477

DATA PROJECT ▶ Stacking Data 482

CHAPTER 10

Analyzing Categorical Variables and Interpreting Research 505
CASE STUDY ▶ Popping Better Popcorn 506
 10.1 The Basic Ingredients for Testing with Categorical Variables 507
 10.2 Chi-Square Tests for Associations between Categorical Variables 516
 10.3 Reading Research Papers 525

DATA PROJECT ▶ Think Small 534

Appendix A Tables A-1
Appendix B Answers to Odd-Numbered Exercises A-9
Appendix C Credits C-1
Index I-1
Preface

About This Book

We believe firmly that analyzing data to uncover insight and meaning is one of the most important skills to prepare students for both the workplace and civic life. This is not a book about “statistics,” but is a book about understanding our world and, in particular, understanding how statistical inference and data analysis can improve the world by helping us see more clearly.

Since the first edition, we’ve seen the rise of a new science of data and been amazed by the power of data to improve our health, predict our weather, connect long-lost friends, run our households, and organize our lives. But we’ve also been concerned by data breaches, by a loss of privacy that can threaten our social structures, and by attempts to manipulate opinion.

This is not a book meant merely to teach students to interpret the statistical findings of others. We do teach that; we all need to learn to critically evaluate arguments, particularly arguments based on data. But more importantly, we wish to inspire students to examine data and make their own discoveries. This is a book about doing. We are not interested in a course to teach students to memorize formulas or to mindlessly carry out procedures. Students must learn to think critically with and about data, to communicate their findings to others, and to carefully evaluate others’ arguments.

What’s New in the Third Edition

As educators and authors, we were strongly inspired by the spirit that created the Guidelines for Assessment and Instruction in Statistics Education (GAISE) (http://amstat.org/asa/education/Guidelines-for-Assessment-and-Instruction-in-Statistics-Education-Reports.aspx), which recommends that we

• Teach statistical thinking, which includes teaching statistics as an investigative process and providing opportunities for students to engage in multivariate thinking;
• Focus on conceptual understandings;
• Integrate real data with a context and purpose;
• Foster active learning;
• Use technology to explore concepts and to analyze data;
• Use assessments to improve and evaluate student learning.

These have guided the first two editions of the book. But the rise of data science has led us to rethink how we engage students with data, and so, in the third edition, we offer some new features that we hope will prepare students for working with the complex data that surrounds us.

More precisely, you’ll find:

• An emphasis on what we call the Data Cycle, a device to guide students through the statistical investigation process. The Data Cycle includes four phases: Ask Questions, Consider Data, Analyze Data, and Interpret Data. A new marginal icon indicates when the Data Cycle is particularly relevant.
• An increased emphasis on formulating “statistical investigative questions” as an important first step in the Data Cycle. Previous editions have emphasized the other three steps, but we feel students need practice in formulating questions that will help them interpret data. To formulate questions is to engage in mathematical and statistical modeling, and this edition spends more time teaching this important skill.
• The end-of-chapter activities have been replaced by a series of “Data Projects.” These are self-guided activities that teach students important “data moves” that will help them navigate through the large and complex data sets that are so often found in the real world.

• The addition of a “Data Moves” icon. Some examples are based on extracts of data from much larger data sets. The Data Moves icon points students to these data sets and also indicate the “data moves” used to extract the data. We are indebted to Tim Erickson for the phrase “data moves” and the ideas that motivate it.

• A smoother and more refined approach to simulations in Chapter 5.

• Updated technology guides to match current hardware and software.

• Hundreds of new exercises.

• New and updated examples in each chapter.

• New and updated data sets, with the inclusion of more large data.

Approach

Our text is concept-based, as opposed to method-based. We teach useful statistical methods, but we emphasize that applying the method is secondary to understanding the concept.

In the real world, computers do most of the heavy lifting for statisticians. We therefore adopt an approach that frees the instructor from having to teach tedious procedures and leaves more time for teaching deeper understanding of concepts. Accordingly, we present formulas as an aid to understanding the concepts, rather than as the focus of study.

We believe students need to learn how to:

• Determine which statistical procedures are appropriate.
• Instruct the software to carry out the procedures.
• Interpret the output.

We understand that students will probably see only one type of statistical software in class. But we believe it is useful for students to compare output from several different sources, so in some examples we ask them to read output from two or more software packages.

Coverage

The first two-thirds of this book are concept-driven and cover exploratory data analysis and inferential statistics—fundamental concepts that every introductory statistics student should learn. The final third of the book builds on that strong conceptual foundation and is more methods-based. It presents several popular statistical methods and more fully explores methods presented earlier, such as regression and data collection.

Our ordering of topics is guided by the process through which students should analyze data. First, they explore and describe data, possibly deciding that graphics and numerical summaries provide sufficient insight. Then they make generalizations (inferences) about the larger world.

Chapters 1–4: Exploratory Data Analysis. The first four chapters cover data collection and summary. Chapter 1 introduces the important topic of data collection and compares and contrasts observational studies with controlled experiments. This chapter also teaches students how to handle raw data so that the data can be uploaded to their
statistical software. Chapters 2 and 3 discuss graphical and numerical summaries of single variables based on samples. We emphasize that the purpose is not just to produce a graph or a number but, instead, to explain what those graphs and numbers say about the world. Chapter 4 introduces simple linear regression and presents it as a technique for providing graphical and numerical summaries of relationships between two numerical variables.

We feel strongly that introducing regression early in the text is beneficial in building student understanding of the applicability of statistics to real-world scenarios. After completing the chapters covering data collection and summary, students have acquired the skills and sophistication they need to describe two-variable associations and to generate informal hypotheses. Two-variable associations provide a rich context for class discussion and allow the course to move from fabricated problems (because one-variable analyses are relatively rare in the real world) to real problems that appear frequently in everyday life.

Chapters 5–8: Inference. These chapters teach the fundamental concepts of statistical inference. The main idea is that our data mirror the real world, but imperfectly; although our estimates are uncertain, under the right conditions we can quantify our uncertainty. Verifying that these conditions exist and understanding what happens if they are not satisfied are important themes of these chapters.

Chapters 9–10: Methods. Here we return to important concepts covered in the earlier chapters, and apply them to comparing means and analyzing categorical variables. The final section helps students learn to analyze findings in research papers.

Organization

Our preferred order of progressing through the text is reflected in the Contents, but there are some alternative pathways as well.

10-week Quarter. The first eight chapters provide a full, one-quarter course in introductory statistics. If time remains, cover Sections 9.1 and 9.2 as well, so that students can solidify their understanding of confidence intervals and hypothesis tests by revisiting the topic with a new parameter.

Proportions First. Ask two statisticians, and you will get three opinions on whether it is best to teach means or proportions first. We have come down on the side of proportions for a variety of reasons. Proportions are much easier to find in popular news media (particularly around election time), so they can more readily be tied to students’ everyday lives. Also, the mathematics and statistical theory are simpler; because there’s no need to provide a separate estimate for the population standard deviation, inference is based on the Normal distribution, and no further approximations (that is, the t-distribution) are required. Hence, we can quickly get to the heart of the matter with fewer technical diversions.

The basic problem here is how to quantify the uncertainty involved in estimating a parameter and how to quantify the probability of making incorrect decisions when posing hypotheses. We cover these ideas in detail in the context of proportions. Students can then more easily learn how these same concepts are applied in the new context of means (and any other parameter they may need to estimate).

Means First. Conversely, many people feel that there is time for only one parameter and that this parameter should be the mean. For this alternative presentation, cover Chapters 6, 7, and 9, in that order. On this path, students learn about survey sampling and the terminology of inference (population vs. sample, parameter vs. statistic) and then tackle inference for the mean, including hypothesis testing.

To minimize the coverage of proportions, you might choose to cover Chapter 6, Section 7.1 (which treats the language and framework of statistical inference in detail),
and then Chapter 9. Chapters 7 and 8 develop the concepts of statistical inference more slowly than Chapter 9, but essentially, Chapter 9 develops the same ideas in the context of the mean.

If you present Chapter 9 before Chapters 7 and 8, we recommend that you devote roughly twice as much time to Chapter 9 as you have devoted to previous chapters, because many challenging ideas are explored in this chapter. If you have already covered Chapters 7 and 8 thoroughly, Chapter 9 can be covered more quickly.

Features

We’ve incorporated into this text a variety of features to aid student learning and to facilitate its use in any classroom.

Integrating Technology

Modern statistics is inseparable from computers. We have worked to make this textbook accessible for any classroom, regardless of the level of in-class exposure to technology, while still remaining true to the demands of the analysis. We know that students sometimes do not have access to technology when doing homework, so many exercises provide output from software and ask students to interpret and critically evaluate that given output.

Using technology is important because it enables students to handle real data, and real data sets are often large and messy. The following features are designed to guide students.

- **TechTips** outline steps for performing calculations using TI-84® (including TI-84 + C®) graphing calculators, Excel®, Minitab®, and StatCrunch®. We do not want students to get stuck because they don’t know how to reproduce the results we show in the book, so whenever a new method or procedure is introduced, an icon, Tech, refers students to the TechTips section at the end of the chapter. Each set of TechTips contains at least one mini-example, so that students are not only learning to use the technology but also practicing data analysis and reinforcing ideas discussed in the text. Most of the provided TI-84 steps apply to all TI-84 calculators, but some are unique to the TI-84 + C calculator. Throughout the text, screenshots of TI calculators are labeled “TI-84” but are, in fact, from a TI-84 Plus C Silver Edition.
- All **data sets** used in the exposition and exercises are available at http://www.pearsonhighered.com/mathstatsresources/.

Guiding Students

- Each chapter opens with a **Theme**. Beginners have difficulty seeing the forest for the trees, so we use a theme to give an overview of the chapter content.
- Each chapter begins by posing a real-world **Case Study**. At the end of the chapter, we show how techniques covered in the chapter helped solve the problem presented in the Case Study.
- **Margin Notes** draw attention to details that enhance student learning and reading comprehension.
 - **Caution** notes provide warnings about common mistakes or misconceptions.
 - **Looking Back** reminders refer students to earlier coverage of a topic.
 - **Details** clarify or expand on a concept.
• **Key Points** highlight essential concepts to draw special attention to them. Understanding these concepts is essential for progress.

• **Snapshots** break down key statistical concepts introduced in the chapter, quickly summarizing each concept or procedure and indicating when and how it should be used.

• **New! Data Moves** point students toward more complete source data.

• An abundance of worked-out **examples** model solutions to real-world problems relevant to students’ lives. Each example is tied to an end-of-chapter exercise so that students can practice solving a similar problem and test their understanding. Within the exercise sets, the icon **TRY** indicates which problems are tied to worked-out examples in that chapter, and the numbers of those examples are indicated.

• The **Chapter Review** that concludes each chapter provides a list of important new terms, student learning objectives, a summary of the concepts and methods discussed, and sources for data, articles, and graphics referred to in the chapter.

Active Learning

• Each chapter ends in a **Data Project**. These are activities designed for students to work alone or in pairs. Data analysis requires practice, and these sections, which grow increasingly more complex, are intended to guide students through basic “data moves’” to help them find insight in complex data.

• All exercises are located at the end of the chapter. **Section Exercises** are designed to begin with a few basic problems that strengthen recall and assess basic knowledge, followed by mid-level exercises that ask more complex, open-ended questions. **Chapter Review Exercises** provide a comprehensive review of material covered throughout the chapter.

 The exercises emphasize good statistical practice by requiring students to verify conditions, make suitable use of graphics, find numerical values, and interpret their findings in writing. All exercises are paired so that students can check their work on the odd-numbered exercise and then tackle the corresponding even-numbered exercise. The answers to all odd-numbered exercises appear in the back of the student edition of the text.

 Challenging exercises, identified with an asterisk (*), ask open-ended questions and sometimes require students to perform a complete statistical analysis.

• Most chapters include select exercises, marked with a **g** within the exercise set, to indicate that problem-solving help is available in the **Guided Exercises** section. If students need support while doing homework, they can turn to the Guided Exercises to see a step-by-step approach to solving the problem.
Acknowledgments

We are grateful for the attention and energy that a large number of people devoted to making this a better book. We extend our gratitude to Chere Beemelms, who handled production, and to Tamela Ambush, content producer. Many thanks to John Norbutas for his technical advice and help with the TechTips. We thank Deirdre Lynch, editor-in-chief, for signing us up and sticking with us, and we are grateful to Alicia Wilson for her market development efforts.

We extend our sincere thanks for the suggestions and contributions made by the following reviewers of this edition:

Beth Burns, Bowling Green State University
Rod Elmore, Mid Michigan Community College
Carl Petterrell, Western New England University
Elizabeth Flynn, College of the Canyons
David French, Tidewater Community College
Terry Fuller, California State University, Northridge
Kimberly Gardner, Kennesaw State University
Ryan Girard, Kauai Community College
Carrie Grant, Flagler College
Deborah Hanus, Brookhaven College
Kristin Harvey, The University of Texas at Austin
Abbas Jaffary, Moraine Valley Community College
Tony Jenkins, Northwestern Michigan College
Jonathan Kalk, Kauai Community College
Joseph Kudrle, University of Vermont
Matt Lathrop, Heartland Community College
Raymond E. Lee, The University of North Carolina at Pembroke
Karen McNeal, Moraine Valley Community College
Tejal Naik, West Valley College
Hadley Priddgen, Gulf Coast State College
J. M. Russell, Old Dominion University
Amy Salvati, Adirondack Community College
Marcia Siderow, California State University, Northridge
Kenneth Strazzieri, George Mason University
Amy Vu, West Valley College
Rebecca Walker, Guttman Community College

We would also like to extend our sincere thanks for the suggestions and contributions made by the following reviewers, class testers, and focus group attendees of the previous editions.

Arun Agarwal, Grambling State University
Anne Albert, University of Findlay
Michael Allen, Glendale Community College
Eugene Allevato, Woodbury University
Dr. Jerry Allison, Trident Technical College
Polly Amstutz, University of Nebraska
Patricia Anderson, Southern Adventist University
Mary Anne Anthony-Smith, Santa Ana College
David C. Ashley, Florida State College at Jacksonville
Diana Asmus, Greenville Technical College
Kathy Autrey, Northwestern State University of Louisiana
Wayne Barber, Chemeketa Community College
Roxane Barrows, Hocking College
Jennifer Beinke, Western New England College
Diane Benner, Harrisburg Area Community College
Norma Biscula, University of Maine, Augusta
K.B. Boomer, Bucknell University
Mario Bohta, Loyola University of Chicago
David Bosworth, Hutchinson Community College
Diana Boyette, Seminole Community College
Elizabeth Paulus Brown, Wauskeha County Technical College
Leslie Buck, Suffolk Community College
R.B. Campbell, University of Northern Iowa
Stephanie Campbell, Mineral Area College
Ann Cannon, Cornell College
Rao Chagutty, Old Dominion University
Carolyn Chapel, Western Technical College
Christine Cole, Moorpark College
Linda Brant Collins, University of Chicago
James A. Condor, Manatee Community College
Carolyn Cuff, Westminster College
Phyllis Curtiss, Grand Valley State University
Monica Dabos, University of California, Santa Barbara
Greg Davis, University of Wisconsin, Green Bay
Bob Denton, Orange Coast College
Julie DePree, University of New Mexico–Valencia
Jill DeWitt, Baker Community College of Muskegon
Paul Drelles, West Shore Community College
Keith Driscoll, Clayton State University
Rob Eby, Blinn College
Nancy Eschen, Florida Community College at Jacksonville
Karen Estes, St. Petersburg College
Mariah Evans, University of Nevada, Reno
Harshini Fernando, Purdue University–North Central
Stephanie Fitchett, University of Northern Colorado
Elaine B. Fitt, Bucks County Community College
Michael Flesch, Metropolitan Community College
Melinda Fox, Ivy Tech Community College, Fairbanks
Joshua Francis, Defiance College
Michael Frankel, Kennesaw State University
Heather Gamber, Lone Star College
Debbie Garrison, Valencia Community College, East Campus
Kim Gilbert, University of Georgia
Stephen Gold, Cypress College
Nick Gomersall, Luther College
Mary Elizabeth Gore, Community College of Baltimore County–Essex
ACKNOWLEDGMENTS

Ken Grace, Anoka Ramsey Community College
Larry Green, Lake Tahoe Community College
Jeffrey Grell, Baltimore City Community College
Albert Groccia, Valencia Community College, Osceola Campus
David Gurney, Southeastern Louisiana University
Chris Hakenkamp, University of Maryland, College Park
Melodie Hallet, San Diego State University
Donnie Hallstone, Green River Community College
Cecil Hallum, San Houston State University
Josephine Hamer, Western Connecticut State University
Mark Harbison, Sacramento City College
Beverly J. Hartter, Oklahoma Wesleyan University
Laura Heath, Palm Beach State College
Greg Henderson, Hillsborough Community College
Susan Herring, Sonoma State University
Carla Hill, Marist College
Michael Huber, Muhlenberg College
Kelly Jackson, Camden County College
Bridgette Jacob, Onondaga Community College
Robert Jerminian, American University
Chun Jin, Central Connecticut State University
Jim Johnston, Concord University
Maryann Justinger, Ed.D., Erie Community College
Joseph Karnowski, Norwalk Community College
Susitha Karunaratne, Purdue University, North Central
Mona Dadkhah Kazemi, University of North Carolina–Charlotte
Robert Keller, Loraz Community College
Omar Keshk, Ohio State University
Raja Khoury, Collin County Community College
Brianna Killian, Daytona State College
Yoon G. Kim, Humboldt State University
Greg Knofczynski, Armstrong Atlantic University
Jeffrey Kollath, Oregon State University
Erica Kwiatkowski-Egizio, Joliet Junior College
Sister Jean A. Lanahan, OP, Molloy College
Katie Larkin, Lake Tahoe Community College
Michael LaValle, Rochester Community College
Deann Leoni, Edmonds Community College
Lenore Lerer, Bergen Community College
Quan Li, Texas A&M University
Doug Mace, Kirkland Community College
Walter H. Mackey, Owens Community College
Keith McCoy, Wilbar Wright College
Elaine McDonald-Newman, Sonoma State University
William McGregor, Rockland Community College
Bill Meisel, Florida State College at Jacksonville
Bruno Mendes, University of California, Santa Cruz
Wendy Miao, El Camino College
Robert Mignone, College of Charleston
Ashod Minasian, El Camino College
Megan Mocko, University of Florida
Sumona Mondal, Clarkson University
Kathy Mowers, Owensboro Community and Technical College
Mary Moynihan, Cape Cod Community College
Junaly Navarra-Madsen, Texas Woman’s University
Azarina Nazanin, Santa Fe College
Stacey O. Nicholls, Anne Arundel Community College
Helen Noble, San Diego State University
Lyn Noble, Florida State College at Jacksonville
Keith Oberlander, Pasadena City College
Pamela Omer, Western New England College
Ralph Padgett Jr., University of California – Riverside
Nabenda Pal, University of Louisiana at Lafayette
Irene Palacios, Grossmont College
Ron Palcic, Johnson County Community College
Adam Pennell, Greensboro College
Patrick Perry, Hawaii Pacific University
Joseph Pick, Palm Beach State College
Philip Pickering, Geneseo Community College
Victor I. Piercey, Ferris State University
Robin Powell, Greenville Technical College
Nicholas Pritchard, Coastal Carolina University
Linda Quinn, Caldwell Community College at Asheville
William Radulovich, Florida State College at Jacksonville
Munmun Rashid, Indiana University of Pennsylvania
Fred J. Rispohl, Dowling College
Danielle Rivard, Post University
Nancy Rivers, Wake Technical Community College
Corliss Robe, East Tennessee State University
Thomas Roe, South Dakota State University
Alex Rolon, North Hampton Community College
Dan Rowe, Heartland Community College
Ali Saadat, University of California – Riverside
Kelly Sakkinen, Lake Land College
Carol Saltsgaver, University of Illinois–Springfield
Radha Sankaran, Passaic County Community College
Delray Schultz, Millersville University
Jenny Shook, Pennsylvania State University
Danya Smithers, Northeast State Technical Community College
Larry Southard, Florida Gulf Coast University
Dianna L. Spence, North Georgia College & State University
René Sporer, Diablo Valley College
Jeganathan Sriskandarajah, Madison Area Technical College–Troy
David Stewart, Community College of Baltimore County–Canton
Linda Strauss, Penn State University
John Stroyles, Georgia Southwestern State University
Joseph Sukta, Moraine Valley Community College
Sharon I. Sullivan, Catawba College
Lori Thomas, Midland College
Malissa Trent, Northeast State Technical Community College
Ruth Trygstad, Salt Lake Community College
Gail Tudor, Husson University
Manuel T. Uy, College of Alameda
Lewis Van Brackle, Kennesaw State University
Mahbobeh Yezvaei, Kent State University
Joseph Villalobos, El Camino College
Barbara Wainwright, Sailsbury University
Henry Wanghongu, Indiana University
Jerimi Ann Walker, Moraine Valley Community College
Dottie Walton, Cayhoga Community College
Jen-ting Wang, SUNY, Oneonta
Jane West, Trident Technical College
Michelle White, Terra Community College
Bonnie-Lou Wicklund, Mount Wachusett Community College
Sandra Williams, Front Range Community College
Rebecca Wong, West Valley College
Alan Worley, South Plains College
Jane-Marie Wright, Suffolk Community College
Haishen Yao, CUNY, Queensborough Community College
Lynda Zenati, Robert Morris Community College
Yan Zheng-Araujo, Springfield Community Technical College
Cathleen Zucco-Teveloff, Rider University
Mark A. Zuiker, Minnesota State University, Mankato

(Access Code Required)

MyLab™ Statistics is available to accompany Pearson’s market-leading text offerings. To give students a consistent tone, voice, and teaching method, each text’s flavor and approach is tightly integrated throughout the accompanying MyLab Statistics course, making learning the material as seamless as possible.

NEW! Integrated Review
This MyLab includes a full suite of supporting Integrated Review resources for the Gould, Essential Statistics course, including pre-made, assignable (and editable) quizzes to assess the prerequisite skills needed for each chapter, and personalized remediation for any gaps in skills that are identified. Each student, therefore, receives just the help that he or she needs—no more, no less.

NEW! Data Projects
Data Projects from the text are assignable in MyLab Statistics and provide opportunities for students to practice statistical thinking beyond the classroom. StatCrunch Projects that either span the entire curriculum or focus on certain key concepts are also assignable in MyLab Statistics and encourage students to apply concepts to real situations and make data-informed decisions.

UPDATED! Conceptual Questions
The Conceptual Question Library in MyLab Statistics includes 1,000 assignable questions that assess conceptual understanding. These questions are now correlated by chapter to make it easier than ever to navigate and assign these types of questions.

pearson.com/mylab/statistics
Resources for Success

Student Resources

StatCrunch
StatCrunch® is powerful web-based statistical software that allows users to collect, crunch, and communicate with data. The vibrant online community offers tens of thousands of shared data sets for students and instructors to analyze, in addition to all of the data sets in the text or online homework. StatCrunch is integrated directly into MyLab Statistics or it can be purchased separately. Learn more at www.statcrunch.com.

Video Resources
Chapter Review videos walk students through solving some of the more complex problems and review key concepts from each chapter. Data Cycle of Everyday Things videos demonstrate for students that data collection and data analysis can be applied to answer questions about everyday life. StatTalk Videos, hosted by fun-loving statistician Andrew Vickers, demonstrate important statistical concepts through interesting stories and real-life events. Assessment questions for each video are also available.

Data Sets
All data sets from the textbook are available in MyLab Statistics. They can be analyzed in StatCrunch or downloaded for use in other statistical software programs.

Statistical Software Support
Instructors and students can copy data sets from the text and MyLab Statistics exercises directly into software such as StatCrunch or Excel®. Students can also access instructional support tools including tutorial videos, Study Cards, and manuals for a variety of statistical software programs including, StatCrunch, Excel, Minitab®, JMP®, R, SPSS, and TI 83/84 calculators.

Student Solutions Manual

Instructor Resources

Instructor’s Edition

Instructor Solutions Manual
Written by James Lapp, the Instructor Solutions Manual contains worked-out solutions to all text exercises. It can be downloaded from MyLab Statistics or from www.pearson.com.

PowerPoint Slides
PowerPoint slides provide an overview of each chapter, stressing important definitions and offering additional examples. They can be downloaded from MyLab Statistics or from www.pearson.com.

TestGen
TestGen® (www.pearson.com/testgen) enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text. TestGen is algorithmically based, allowing instructors to create multiple but equivalent versions of the same question or test, and modify test bank questions or add new questions. It is available for download from Pearson’s online catalog, www.pearson.com. The questions are also assignable in MyLab Statistics.

Learning Catalytics
Now included in all MyLab Statistics courses, this student response tool uses students’ smartphones, tablets, or laptops to engage them in more interactive tasks and thinking during lecture. Learning Catalytics™ fosters student engagement and peer-to-peer learning with real-time analytics. Access pre-built exercises created specifically for statistics.

Question Libraries
In addition to StatCrunch Projects and the Conceptual Question Library, MyLab Statistics also includes a Getting Ready for Statistics library that contains more than 450 exercises on prerequisite topics.

pearson.com/mylab/statistics
Statistical Software
Bundle Options

Minitab and Minitab Express™
Bundling Minitab software with educational materials ensures students have access to the software they need in the classroom, around campus, and at home. And having 12-month access to Minitab and Minitab Express ensures students can use the software for the duration of their course. ISBN 13: 978-0-13-445640-9 ISBN 10: 0-13-445640-8

JMP Student Edition

XLSTAT™
An Excel add-in that enhances the analytical capabilities of Excel. XLSTAT is used by leading businesses and universities around the world. It is available to bundle with this text. For more information go to www.pearsonhighered.com/xlistatupdate. (ISBN-13: 978-0-321-75940-5; ISBN-10: 0-321-75940-0)
Index of Applications

BIOLOGY
- age and weight, 197, 206
- animal gestation periods, 75
- animal longevity, 75
- arm spans, 71, 308–309
- baby seal length, 278, 279–280, 282, 283
- birthdays, 252, 259
- birth lengths, 130, 308, 312, 314
- birth weights, 308, 313, 486
- blood types, 369
- body temperature, 312, 494
- boys’ foot length, 308, 314
- boys’ heights, 310
- brain size, 496
- caloric restriction of monkeys, 520–521
- cats’ birth weights, 310
- children’s ages and heights, 208
- color blindness, 369
- cousins, 194
- elephants’ birth weights, 310
- eye color, 261
- finger length, 32–33, 538
- gender of children, 252, 256, 304, 310
- grandparents, 258
- hand and foot length, 196–197
- handedness, 33, 258
- height and arm spans, 195–196, 197
- heights and weights, 160–162, 191, 204
- heights of adults, 139
- heights of children, 112–113
- heights of college women, 132
- heights of females, 490
- heights of men, 132–133, 309, 310, 490, 495
- heights of sons and dads, 135
- heights of students and their parents, 497–498
- heights of 12th graders, 488–489
- heights of women, 133, 305–306, 309, 310, 495
- heights of youths, 134
- hippopotamus gestation periods, 309
- human body temperatures, 490, 498–499
- life on Mars, 237–238
- mother and daughter heights, 195
- newborn hippo weights, 309
- pregnancy length, 305
- siblings, 72
- smell, sense of, 482
- St. Bernard dogs’ weights, 307
- stem cell research, 81
- whales’ gestation periods, 307
- women’s foot length, 308

BUSINESS AND ECONOMICS
- baseball salaries, 493
- baseball strike, 134
- CEO salaries, 82
- consumer price index, 135, 143
- earnings and gender, 128, 195
- economic class, 60–61, 62
- fast food employee wages, 116
- food security, 539–540
- gas prices, 95, 100–101, 109
- gas taxes, 138–138
- grocery delivery, 497
- home prices, 130–131, 134, 150, 184–185, 190, 194, 195
- houses with swimming pools, 128
- income in Kansas, 486
- industrial energy consumption, 133
- Internet advertising, 384–385, 386
- law school tuition, 75–76
- movie budgets, 207
- post office customers, 70
- poverty, 20–21, 136, 207–208
- rents in San Francisco, 74
- shrinking middle class, 62
- wedding costs, 129

CLIMATE AND ENVIRONMENT
- Chicago weather, 309
- city temperatures, 130, 313
- climate change, 261, 519–520
- daily temperatures, 106
- environmental quality, 424
- environment vs. energy development, 369
- global warming, 80, 259, 421
- New York City weather, 309
- opinions on nuclear energy, 81
- pollution index, 132, 142
- pollution reduction, 496
- river lengths, 129
- satisfaction with, 373, 427
- smog levels, 96, 99, 102–103
- snow depth, 304

CRIME AND CORRECTIONS
- arrest records, 534
- capital punishment, 134–135, 259, 366
- FBI, 371
- gender and type of crime, 537–538
- incarceration rates, 33
- jury duty, 258
- marijuana legalization, 260, 313, 370, 541–542
- parental training and criminal behavior of children, 545
- recidivism rates, 261, 292–293
- “Scared Straight” programs, 37
- stolen bicycles, 291–292
- stolen cars, 17

EDUCATION
- ACT scores, 141, 191
- age and credits, 189
- age and gender of psychology majors, 78
- bar exam pass rates, 45–46, 53, 206, 260–261
- college enrollment, 369, 373, 455
- college graduation rates, 136–137, 357, 358–360, 367, 368
- college majors, 79
- college tours, 542–543
- community college applicants, 77
- course enrollment rates, 34
- credits and GPA, 190
- educational attainment, 140, 426
- embedded tutors, 417, 418, 419
- employment after law school, 80–81, 206, 418
- entry-level education, 77
- exam scores, 105, 141, 203, 206, 209, 253, 485, 497
- exercise and language learning, 35
- final exam grades, 159
- grades and student employment, 202
- guesswork on tests, 252
- height and test scores, 206
- high school graduation rates, 207–208, 311, 372, 375, 540–541
- high school selectivity and employment, 206
- law school tuition, 75–76
- life expectancy and education, 194
- LSAT scores, 191, 206
- marital status and education, 223, 224–225, 226, 231, 235
- math scores, 93–94
- MCAT scores, 309
- medical licensing, 312
- medical school acceptance, 192, 488
- medical school GPAs, 309, 488
- multiple-choice exams, 253, 254, 256, 262, 419
- music practice, 79
- opinion about college, 260
- party affiliation and education, 540
- passing bar exam, 206–207
- poverty, 539–540
- post office customers, 70
- poverty and high school graduation rates, 207–208
XX INDEX OF APPLICATIONS

Professor evaluation, 194
relevance, 539

Salary and education, 190, 207
SAT scores, 74, 141, 168–170, 175–176, 194, 203, 305, 306–307, 308, 310, 313
school bonds, 374
spring break, 322, 361
student ages, 141, 485, 487, 491
student gender, 425
student loans, 418, 426, 538
student-to-teacher ratio at colleges, 41–42, 66
study hours, 208
teacher effectiveness, 251
teacher pay, 201–202
travel time to school, 489
true/false tests, 256, 423, 427, 428
tutoring and math grades, 34
vacations and education, 252
years of formal education, 72

Employment

age and value of cars, 177–178
Broadway ticket prices, 141, 491
car insurance and age, 198
financial incentives, 423
gas prices, 95, 100–101, 109
health insurance, 33–34
home prices, 130–131, 134, 150, 184–185, 190, 194, 195
investing, 200
life insurance and age, 198
millionaires, 199
movie ticket prices, 491
professional sport ticket prices, 136, 140–141
retirement income, 486
tax rates, 75
textbook prices, 493, 494
train ticket prices, 194

Food and Drink
alcoholic drinks, 76, 131, 201, 494–495, 497
beer, 76, 494–495, 497
bottled vs. tap water, 417
breakfast habits, 538–539
butter taste test, 425
butter vs. margarine, 422
caloric restriction of monkeys, 520–521
carrots, 488
cereals, 70–71, 142
chain restaurant calories, 139–140
coffee, 2, 27, 36–37
Coke vs. Pepsi, 418, 420
cola taste test, 425
diet and depression, 36
dieting, 473–474, 491, 540
drink size, 489
eating out, 495
fast food calories, carbs, and sugar, 70, 71, 204–205
fast food employee wages, 116
fast food habits, 539
fat in sliced turkey, 109–110
fish oil and asthma risk, 35
food security, 539–540
French fries, 496
granola bars, 205
grocery delivery, 497
ice cream cones, 267, 300, 496
ice cream preference, 77
mercury in freshwater fish, 422
milk and cartilage, 35
mixed nuts, 418
no-carb diet, 423
nutrition labels, 371
orange juice prices, 130
oranges, 488
organic products, 370, 373
picky eaters, 371
pizza size, 452–453
popcorn, 506, 533
potatoes, 489, 490
salad and stroke, 36
skipping breakfast and weight gain, 25–26
snack food calories, 206
soda, 262–263, 354, 418
sugary beverages, 36, 372
tomatoes, 490
turkey costs, 201
vegetarians, 417, 418, 419
vitamin C and cancer, 34
water taste test, 425
wine, 201

Games
blackjack, 209
brain games, 23–24, 529–530
cards, 234, 251–252
coin flips, 236–237, 241–242, 252, 255, 257, 258, 260, 310, 368, 422, 425, 539
coin spinning, 393, 400
dice, 220–221, 227, 243–244, 253, 255, 256, 257, 258, 262, 270–271, 304, 310
drawing cubes, 260
gambling, 257–258
roller coaster endurance, 50

General Interest
book width, 167
boys’ heights, 141
caring responsibilities, 424
children of first ladies, 129
children’s heights, 141
ergy consumption, 133
etnicity of active military, 545
exercise hours, 128
frequency of e in English language, 344–345, 352–353
gun availability, 77
hand folding, 255, 263
hand washing, 374, 427
home ownership, 387–388, 389, 391–392
houses with garages, 78
houses with swimming pools, 128
improving tips, 527
libraries, 137, 311
marijuana, 252–253, 370–371, 541–542
numbers of siblings, 190
open data, 28
passports, 311
pet ownership, 75, 310, 338, 342
population density, 136
proportion of a’s in English language, 422
proportion of e’s in English language, 422
reading habits, 259, 260, 368, 424
renting vs. buying a home, 352
residential energy consumption, 132
roller coaster heights, 128, 138
seesaw heights, 197
shoe sizes, 82, 205
shower duration, 485, 496
INDEX OF APPLICATIONS

college athletes’ weights, 493
college athletics, 369
deflated footballs, 490–491
exercise and study hours, 208
fitness, 539
GPA and gym use, 194
heights of basketball players, 498
marathon finishing times, 51, 118, 126, 139, 186, 248
MLB pitchers, 199–200, 301
MLB player ages, 134
Olympics, 129, 130, 370
Olympic viewing, 421
predicting home runs, 202
predicting 3-point baskets, 202
professional basketball player weights, 142
professional sport ticket prices, 136, 140–141
race times, 141–142
RBIs, 489
Super Bowl, 369
surfing, 129–130, 495
tennis winning percentage, 197
weights of athletes, 74, 497
working out, 420–421

SURVEYS AND OPINION POLLS

age and Internet, 324
alien life, 370
artificial intelligence, 371
baseball, 259–260
cell phone security, 260
college graduation rates, 357, 358–360
common ground between political parties, 408–409
data security and age, 230
diabetes, 370
embryonic stem cell use, 355
environmental satisfaction, 373
environment vs. energy development, 369
equal rights for women, 254–255, 259
FBI, 371
freedom of religion, 424
freedom of the press, 370, 424
happiness, 371
marijuana legalization, 252–253, 313, 370
marijuana use, 370–371
news sources, 255, 373
nutrition labels, 371
online presence, 254
opinion about college, 260
opinion on same-sex marriage, 511
opinions on nuclear energy, 81
organic products, 370, 373
picky eaters, 371
presidential elections, 343–344, 426
reading habits, 259, 260, 313, 368
reiring vs. buying a home, 352
satisfaction with environment, 427
sexual harassment, 330
social media use, 425
streaming TV, 259
stress, 255, 313, 368
sugary sodas, 354
teachers and digital devices, 350
technology anxiety, 373
television viewing, 426
trade by Americans, 311
trust in executive branch, 374
trust in judiciary, 371
trust in legislative branch, 374
unpopular views in a democracy, 370
vaccinations, 256
voters polls, 374
watching winter Olympics, 370

TECHNOLOGY

audio books, 424
cell phones, 79, 256, 260, 311, 486
diet apps, 540
drones, 311
employment and, 373
Facebook, 32, 227–228, 425
fitness apps, 540, 547
gender discrimination in tech industry, 253, 263
Instagram, 369
Internet advertising, 384–385, 386
Internet browsers, 78
Internet usage, 324
iPad batteries, 450
iTunes music, 438
landlines, 311
Netflix cheating, 368
news sources, 421, 427
online dating, 259, 260
online presence, 254
online shopping, 259
reading electronics, 470–472
social media, 32, 83, 227–228, 369, 422, 425
streaming TV, 368
teachers and digital devices, 350
texting/text messages, 76, 200, 311, 427, 539
TV ownership, 491, 492, 499
TV viewing, 497
Twitter, 422
virtual reality and fall risk, 37
voice-controlled assistants, 313

TRANSPORTATION

age and value of cars, 177–178, 487
airline arrival times, 310
airline ticket prices, 193–194, 198–199
airport screeners, 239–240
car insurance and age, 198
car MPG, 72, 201
crash-test results, 7
driver’s licenses, 367, 368, 375
driving exam, 254, 259, 261, 312
flight times/distances, 209
fuel-efficient cars, 207
gas prices, 95, 100–101
gas taxes, 138
hybrid car sales, 418
miles driven, 486
monthly car costs, 72
MPH, 82
parking tickets, 71
pedestrian fatalities, 34
plane crashes, 422
red cars and stop signs, 538
right of way, 410–412
seat belt use, 14–16, 420
self-driving cars, 419, 495
speeding, 37, 139
stolen cars, 17
teen drivers, 417
texting while driving, 311, 427, 539
traffic cameras, 81
traffic lights, 262
train ticket prices, 194
tavel time to school, 489
turn signal use, 372–373
used cars, 155
waiting for a bus, 272–273