To Maggie, the love of my life.
Brief Contents

Part One
What Is Biopsychology?

1. **Biopsychology as a Neuroscience**
 What Is Biopsychology, Anyway?

Part Two
Foundations of Biopsychology

2. **Evolution, Genetics, and Experience**
 Thinking about the Biology of Behavior

3. **Anatomy of the Nervous System**
 Systems, Structures, and Cells That Make Up Your Nervous System

4. **Neural Conduction and Synaptic Transmission**
 How Neurons Send and Receive Signals

5. **The Research Methods of Biopsychology**
 Understanding What Biopsychologists Do

Part Three
Sensory and Motor Systems

6. **The Visual System**
 How We See

7. **Mechanisms of Perception: Hearing, Touch, Smell, Taste, and Attention**
 How You Know the World

8. **The Sensorimotor System**
 How You Move

Part Four
Brain Plasticity

9. **Development of the Nervous System**
 From Fertilized Egg to You

10. **Brain Damage and Neuroplasticity**
 Can the Brain Recover from Damage?

11. **Learning, Memory, and Amnesia**
 How Your Brain Stores Information

Part Five
Biopsychology of Motivation

12. **Hunger, Eating, and Health**
 Why Do Many People Eat Too Much?

13. **Hormones and Sex**
 What's Wrong with the Mamawawa?

14. **Sleep, Dreaming, and Circadian Rhythms**
 How Much Do You Need to Sleep?

15. **Drug Addiction and the Brain's Reward Circuits**
 Chemicals That Harm with Pleasure

Part Six
Disorders of Cognition and Emotion

16. **Lateralization, Language, and the Split Brain**
 The Left Brain and the Right Brain

17. **Biopsychology of Emotion, Stress, and Health**
 Fear, the Dark Side of Emotion

18. **Biopsychology of Psychiatric Disorders**
 The Brain Unhinged
Contents

Preface xvi
To the Student xxiii
About the Author xxiii

Part One
What Is Biopsychology?

1 Biopsychology as a Neuroscience 1
What Is Biopsychology, Anyway?

The Case of Jimmie G., the Man Frozen in Time 3
Four Major Themes of This Text 3
1.1 What Is Biopsychology? 4
1.2 What Is the Relation between Biopsychology and the Other Disciplines of Neuroscience? 4
1.3 What Types of Research Characterize the Biopsychological Approach? 4
Human and Nonhuman Subjects 5
Experiments and Nonexperiments 5
Pure and Applied Research 7
1.4 What Are the Divisions of Biopsychology? 8
Physiological Psychology 8
Psychopharmacology 9
Neuropsychology 9
The Case of Mr. R., the Brain-Damaged Student Who Switched to Architecture 9
Psychophysiology 9
Cognitive Neuroscience 10
Comparative Psychology 11
1.5 Converging Operations: How Do Biopsychologists Work Together? 12
1.6 Scientific Inference: How Do Biopsychologists Study the Unobservable Workings of the Brain? 13
1.7 Critical Thinking about Biopsychological Claims 14
Case 1: José and the Bull 15

Case 2: Becky, Moniz, and Prefrontal Lobotomy 15
Themes Revisited 17
Think about It 18
Key Terms 18
Quick Review 18

Part Two
Foundations of Biopsychology

2 Evolution, Genetics, and Experience 20
Thinking about the Biology of Behavior

2.1 Thinking about the Biology of Behavior: From Dichotomies to Interactions 21
Is It Physiological, or Is It Psychological? 21
Is It Inherited, or Is It Learned? 22
Problems with Thinking about the Biology of Behavior in Terms of Traditional Dichotomies 22
The Case of the Man Who Fell Out of Bed 23
Case of the Chimps with Mirrors 23
The Case of the Thinking Student 24
2.2 Human Evolution 24
Evolution and Behavior 26
Course of Human Evolution 27
Thinking about Human Evolution 30
Evolution of the Human Brain 32
Evolutionary Psychology: Understanding Mate Bonding 33
Thinking about Evolutionary Psychology 34
2.3 Fundamental Genetics 35
Mendelian Genetics 35
Chromosomes: Reproduction and Recombination 36
Chromosomes: Structure and Replication 37
Sex Chromosomes and Sex-Linked Traits 38
Genetic Code and Gene Expression 38
Mitochondrial DNA 40
Human Genome Project 41
Modern Genetics: Growth of Epigenetics 41

2.4 Epigenetics of Behavioral Development: Interaction of Genetic Factors and Experience 43
Selective Breeding of “Maze-Bright” and “Maze-Dull” Rats 43
Phenylketonuria: A Single-Gene Metabolic Disorder 44
Development of Birdsong 45

2.5 Genetics of Human Psychological Differences 46
Development of Individuals versus Development of Differences among Individuals 46
Minnesota Study of Twins Reared Apart 47
A Look into the Future: Two Kinds of Twin Studies 47
Themes Revisited 49
Think about It 49
Key Terms 49
Quick Review 50

3 Anatomy of the Nervous System 51
Systems, Structures, and Cells That Make Up Your Nervous System

3.1 General Layout of the Nervous System 52
Divisions of the Nervous System 52
Meninges, Ventricles, and Cerebrospinal Fluid 53
Blood–Brain Barrier 54

3.2 Cells of the Nervous System 56
Anatomy of Neurons 56
Glia: The Forgotten Cells 56

3.3 Neuroanatomical Techniques and Directions 61
Neuroanatomical Techniques 61
Directions in the Vertebrate Nervous System 62

3.4 Spinal Cord 64
3.5 Five Major Divisions of the Brain 64

3.6 Major Structures of the Brain 65
Myelencephalon 65
Metencephalon 65
Mesencephalon 66
Diencephalon 66
Telencephalon 68
Limbic System and the Basal Ganglia 70
Themes Revisited 74
Think about It 74
Key Terms 75
Quick Review 75

4 Neural Conduction and Synaptic Transmission 76
How Neurons Send and Receive Signals
The Lizard, a Case of Parkinson’s Disease 77

4.1 Resting Membrane Potential 78
Recording the Membrane Potential 78
Ionic Basis of the Resting Potential 78

4.2 Generation and Conduction of Postsynaptic Potentials 79

4.3 Integration of Postsynaptic Potentials and Generation of Action Potentials 79

4.4 Conduction of Action Potentials 82
Ionic Basis of Action Potentials 82
Refractory Periods 83
Axonal Conduction of Action Potentials 83
Conduction in Myelinated Axons 83
The Velocity of Axonal Conduction 84
Conduction in Neurons without Axons 84
The Hodgkin-Huxley Model in Perspective 85

4.5 Synaptic Transmission: Chemical Transmission of Signals among Neurons 85
Structure of Synapses 85
Synthesis, Packaging, and Transport of Neurotransmitter Molecules 86
Release of Neurotransmitter Molecules 87
Activation of Receptors by Neurotransmitter Molecules 87
Reuptake, Enzymatic Degradation, and Recycling 89
Glia, Gap Junctions, and Synaptic Transmission 90
4.6 Neurotransmitters 92
 Amino Acid Neurotransmitters 92
 Monoamine Neurotransmitters 92
 Acetylcholine 93
 Unconventional Neurotransmitters 93
 Neuropeptides 94

4.7 Pharmacology of Synaptic Transmission and Behavior 94
 How Drugs Influence Synaptic Transmission 95
 Behavioral Pharmacology: Three Influential Lines of Research 96
 Themes Revisited 98
 Think about It 98
 Key Terms 99
 Quick Review 99

5 The Research Methods of Biopsychology 100
 Understanding What Biopsychologists Do
 The Ironic Case of Professor P. 101

PART ONE Methods of Studying the Nervous System

5.1 Methods of Visualizing and Stimulating the Living Human Brain 102
 Contrast X-Rays 102
 X-Ray Computed Tomography 102
 Magnetic Resonance Imaging 103
 Positron Emission Tomography 103
 Functional MRI 104
 Diffusion Tensor Imaging 105
 Transcranial Magnetic Stimulation 106

5.2 Recording Human Psychophysiological Activity 106
 Scalp Electroencephalography 106
 Magnetoencephalography 108
 Muscle Tension 108
 Eye Movement 108
 Skin Conductance 109
 Cardiovascular Activity 109

5.3 Invasive Physiological Research Methods 109
 Stereotaxic Surgery 110
 Lesion Methods 110
 Electrical Stimulation 111
 Invasive Electrophysiological Recording Methods 111

5.4 Pharmacological Research Methods 113
 Routes of Drug Administration 113
 Selective Chemical Lesions 113
 Measuring Chemical Activity of the Brain 113
 Locating Neurotransmitters and Receptors in the Brain 113

5.5 Genetic Engineering 115
 Gene Knockout Techniques 115
 Gene Replacement Techniques 115
 Fantastic Fluorescence and the Brainbow 115

PART TWO Behavioral Research Methods of Biopsychology

5.6 Neuropsychological Testing 117
 Modern Approach to Neuropsychological Testing 117
 Tests of the Common Neuropsychological Test Battery 118
 Tests of Specific Neuropsychological Function 119
 Frontal-Lobe Function 120

5.7 Behavioral Methods of Cognitive Neuroscience 121

5.8 Biopsychological Paradigms of Animal Behavior 122
 Paradigms for Assessment of Species-Common Behaviors 122
 Traditional Conditioning Paradigms 123
 Seminatural Animal Learning Paradigms 124
 Themes Revisited 126
 Think about It 126
 Key Terms 127
 Quick Review 128

Part Three Sensory and Motor Systems

6 The Visual System 129
 How We See
 The Case of Mrs. Richards: Fortification Illusions and the Astronomer 130

6.1 Light Enters the Eye and Reaches the Retina 131
 Pupil and the Lens 132
 Eye Position and Binocular Disparity 133
6.2 Retina and Translation of Light into Neural Signals 133
Cone and Rod Vision 135
Spectral Sensitivity 137
Eye Movement 138
Visual Transduction: The Conversion of Light to Neural Signals 139
6.3 From Retina to Primary Visual Cortex 140
Retinotopic Organization 141
The M and P Channels 141
6.4 Seeing Edges 142
Lateral Inhibition and Contrast Enhancement 142
Receptive Fields of Visual Neurons 143
Receptive Fields: Neurons of the Retina-Geniculate-Striate System 144
Receptive Fields: Simple Cortical Cells 145
Receptive Fields: Complex Cortical Cells 146
Organization of Primary Visual Cortex 146
The Case of Mrs. Richards, Revisited 147
Changing Concept of Visual Receptive Fields: Contextual Influences in Visual Processing 147
6.5 Seeing Color 147
Component and Opponent Processing 148
Color Constancy and the Retinex Theory 149
6.6 Cortical Mechanisms of Vision and Conscious Awareness 151
Damage to Primary Visual Cortex: Scotomas and Completion 152
The Case of the Physiological Psychologist Who Made Faces Disappear 152
Damage to Primary Visual Cortex: Scotomas, Blindsight, and Conscious Awareness 152
The Case of D.B., the Man Confused by His Own Blindsight 153
Functional Areas of Secondary and Association Visual Cortex 153
Dorsal and Ventral Streams 154
The Case of D.F., the Woman Who Could Grasp Objects She Did Not Consciously See 156
The Case of A.T., the Woman Who Could Not Accurately Grasp Unfamiliar Objects That She Saw 156
Prosopagnosia 156
R.P., a Typical Prosopagnosic 157
Akinetopsia 157
Two Cases of Drug-Induced Akinetopsia 157
Conclusion 158
6.7 Themes Revisited 158
Think about It 159
Key Terms 159
Quick Review 160
7 Mechanisms of Perception: Hearing, Touch, Smell, Taste, and Attention 161
7.1 Principles of Sensory System Organization 162
Hierarchical Organization 163
The Case of the Man Who Mistook His Wife for a Hat 163
Functional Segregation 163
Parallel Processing 163
Summary Model of Sensory System Organization 164
7.2 The Auditory System 164
The Ear 165
From the Ear to the Primary Auditory Cortex 167
Subcortical Mechanisms of Sound Localization 168
Auditory Cortex 168
Effects of Damage to the Auditory System 170
7.3 Somatosensory System: Touch and Pain 171
Cutaneous Receptors 171
Dermatomes 172
Two Major Somatosensory Pathways 173
Cortical Areas of Somatosensation 174
Effects of Damage to the Primary Somatosensory Cortex 175
Somatosensory System and Association Cortex 175
The Case of W.M., Who Reduced His Scotoma with His Hand 175
Somatosensory Agnosias 176
The Case of Aunt Betty, Who Lost Half of Her Body 176
Rubber-Hand Illusion 177
Perception of Pain 177
The Case of Miss C., the Woman Who Felt No Pain 177
Neuropathic Pain 179
Contents

7.4 Chemical Senses: Smell and Taste
- Olfactory System 179
- Gustatory System 180
- Brain Damage and the Chemical Senses 181
- Broad Tuning vs. Narrow Tuning 182

7.5 Selective Attention
- Change Blindness 184
- Neural Mechanisms of Attention 185
- Simultanagnosia 186
- Themes Revisited 186
- Think about It 186
- Key Terms 187
- Quick Review 187

8 The Sensorimotor System
- How You Move 188
- The Case of Rhonda, the Dexterous Cashier 189

8.1 Three Principles of Sensorimotor Function
- The Sensorimotor System Is Hierarchically Organized 190
- Motor Output Is Guided by Sensory Input 190
- The Case of G.O., the Man with Too Little Feedback 190
- Learning Changes the Nature and Locus of Sensorimotor Control 191
- General Model of Sensorimotor System Function 191

8.2 Sensorimotor Association Cortex
- Posterior Parietal Association Cortex 191
- The Case of Mrs. S., the Woman Who Turned in Circles 192
- Dorsolateral Prefrontal Association Cortex 193

8.3 Secondary Motor Cortex
- Identifying the Areas of Secondary Motor Cortex 194
- Mirror Neurons 195

8.4 Primary Motor Cortex
- Belle: The Monkey That Controlled a Robot with Her Mind 197

8.5 Cerebellum and Basal Ganglia
- Cerebellum 198
- Basal Ganglia 198

8.6 Descending Motor Pathways
- Dorsolateral Corticospinal Tract and Dorsolateral Corticorubrospinal Tract 199

8.7 Sensorimotor Spinal Circuits
- Muscles 202
- Receptor Organs of Tendons and Muscles 203
- Stretch Reflex 204
- Withdrawal Reflex 205
- Reciprocal Innervation 205
- Recurrent Collateral Inhibition 205
- Walking: A Complex Sensorimotor Reflex 206

8.8 Central Sensorimotor Programs and Learning
- Central Sensorimotor Programs Are Capable of Motor Equivalence 208
- Sensory Information That Controls Central Sensorimotor Programs Is Not Necessarily Conscious 208
- Central Sensorimotor Programs Can Develop without Practice 209
- Practice Can Create Central Sensorimotor Programs 209
- Functional Brain Imaging of Sensorimotor Learning 209
- The Case of Rhonda, Revisited 211
- Themes Revisited 211
- Think about It 211
- Key Terms 211
- Quick Review 212

Part Four Brain Plasticity

9 Development of the Nervous System
- From Fertilized Egg to You 213
- The Case of Genie 214

9.1 Phases of Neurodevelopment
- Induction of the Neural Plate 214
- Neural Proliferation 215
- Migration and Aggregation 216
- Axon Growth and Synapse Formation 217
- Neuron Death and Synapse Rearrangement 220
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>Postnatal Cerebral Development in Human Infants</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Postnatal Growth of the Human Brain</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Development of the Prefrontal Cortex</td>
<td>222</td>
</tr>
<tr>
<td>9.3</td>
<td>Effects of Experience on Postnatal Development of Neural Circuits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Early Studies of Experience and Neurodevelopment: Deprivation and Enrichment</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Competitive Nature of Experience and Neurodevelopment: Ocular Dominance Columns</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Effects of Experience on Topographic Sensory Cortex Maps</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Experience Fine-Tunes Neurodevelopment</td>
<td>224</td>
</tr>
<tr>
<td>9.4</td>
<td>Neuroplasticity in Adults</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neurogenesis in Adult Mammals</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Effects of Experience on the Reorganization of the Adult Cortex</td>
<td>226</td>
</tr>
<tr>
<td>9.5</td>
<td>Disorders of Neurodevelopment: Autism and Williams Syndrome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Autism</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>The Case of Alex: Are You Ready to Rock?</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>Cases of Amazing Savant Abilities</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>Williams Syndrome</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>The Case of Anne Louise McGarrah: Uneven Abilities</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Epilogue</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Themes Revisited</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Think about It</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Key Terms</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Quick Review</td>
<td>231</td>
</tr>
<tr>
<td>10</td>
<td>Brain Damage and Neuroplasticity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Can the Brain Recover from Damage?</td>
<td>233</td>
</tr>
<tr>
<td>10.1</td>
<td>Causes of Brain Damage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brain Tumors</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Cerebrovascular Disorders: Strokes</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Closed-Head Injuries</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>The Case of Jerry Quarry, Ex-Boxer</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Infections of the Brain</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Neurotoxins</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>Genetic Factors</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>Programmed Cell Death</td>
<td>239</td>
</tr>
<tr>
<td>10.2</td>
<td>Neurological Diseases</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Epilepsy</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>The Subtlety of Complex Partial Seizures: Two Cases</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Parkinson’s Disease</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Huntington’s Disease</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Multiple Sclerosis</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Alzheimer’s Disease</td>
<td>244</td>
</tr>
<tr>
<td>10.3</td>
<td>Animal Models of Human Neurological Diseases</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>Kindling Model of Epilepsy</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>Transgenic Mouse Model of Alzheimer’s Disease</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>MPTP Model of Parkinson’s Disease</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>The Cases of the Frozen Addicts</td>
<td>247</td>
</tr>
<tr>
<td>10.4</td>
<td>Responses to Nervous System Damage: Degeneration, Regeneration, Reorganization, and Recovery</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Neural Degeneration</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Neural Regeneration</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Neural Reorganization</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Recovery of Function after CNS Damage</td>
<td>251</td>
</tr>
<tr>
<td>10.5</td>
<td>Neuroplasticity and the Treatment of CNS Damage</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Neurotransplantation as a Treatment for CNS Damage: Early Research</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>The Case of Roberto Garcia d’Orta: The Lizard Gets an Autotransplant</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Modern Research on Neurotransplantation</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Promoting Recovery from CNS Damage by Rehabilitative Training</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>The Cases of Tom and Philip: Phantom Limbs and Ramachandran</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>The Ironic Case of Professor P.: Recovery</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>Themes Revisited</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Think about It</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Key Terms</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>Quick Review</td>
<td>258</td>
</tr>
<tr>
<td>11</td>
<td>Learning, Memory, and Amnesia</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>How Your Brain Stores Information</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Amnesic Effects of Bilateral Medial Temporal Lobectomy</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>The Case of H.M., the Man Who Changed the Study of Memory</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Formal Assessment of H.M.’s Anterograde Amnesia: Discovery of Unconscious Memories</td>
<td>261</td>
</tr>
</tbody>
</table>
Contents

Three Major Scientific Contributions of H.M.’s Case 262
Medial Temporal Lobe Amnesia 263
Semantic and Episodic Memories 264
The Case of K.C., the Man Who Can’t Time Travel 264
The Case of the Clever Neuropsychologist: Spotting Episodic Memory Deficits 265
Effects of Global Cerebral Ischemia on the Hippocampus and Memory 265
The Case of R.B., Product of a Bungled Operation 265

11.2 Amnesia of Korsakoff’s Syndrome 266
The Up-Your-Nose Case of N.A. 267

11.3 Amnesia of Alzheimer’s Disease 267

11.4 Amnesia after Concussion: Evidence for Consolidation 267
Posttraumatic Amnesia 267
Gradients of Retrograde Amnesia and Memory Consolidation 268
Hippocampus and Consolidation 269
Reconsolidation 269

11.5 Evolving Perspective of the Role of the Hippocampus in Memory 270
Monkey Model of Object-Recognition Amnesia: The Delayed Nonmatching-to-Sample Test 270
Delayed Nonmatching-to-Sample Test for Rats 271
Neuroanatomical Basis of the Object-Recognition Deficits Resulting from Medial Temporal Lobectomy 272

11.6 Neurons of the Medial Temporal Lobes and Memory 273
Two Tests of Rodent Spatial Memory 274
Hippocampal and Entorhinal Grid Cells 275
Comparative Studies of the Hippocampus and Spatial Memory 276
Jennifer Aniston Neurons: Concept Cells 277

11.7 Where Are Memories Stored? 277
Inferotemporal Cortex 278
Amygdala 278
Prefrontal Cortex 279
The Case of the Cook Who Couldn’t Cerebellum and Striatum 279

11.8 Synaptic Mechanisms of Learning and Memory 280
Long-Term Potentiation 280
Induction of LTP: Learning 281
Maintenance and Expression of LTP: Storage and Recall 282
Variability of LTP 283

11.9 Conclusion: Biopsychology of Memory and You 284
Infantile Amnesia 284
Smart Drugs: Do They Work? 284
Posttraumatic Amnesia and Episodic Memory 285
The Case of R.M., the Biopsychologist Who Remembered H.M. 285
Themes Revisited 285
Think about It 285
Key Terms 286
Quick Review 286

Part Five
Biopsychology of Motivation

12. Hunger, Eating, and Health 287
Why Do Many People Eat Too Much?
The Case of the Man Who Forgot Not to Eat 289

12.1 Digestion, Energy Storage, and Energy Utilization 289
Digestion 289
Energy Storage in the Body 289
Three Phases of Energy Metabolism 289

12.2 Theories of Hunger and Eating: Set Points versus Positive Incentives 291
Set-Point Assumption 291
Glucostatic and Lipostatic Set-Point Theories of Hunger and Eating 291
Problems with Set-Point Theories of Hunger and Eating 293
Positive-Incentive Perspective 293

12.3 Factors That Determine What, When, and How Much We Eat 294
Factors That Determine What We Eat 294
Factors That Influence When We Eat 294
Factors That Influence How Much We Eat 295

12.4 Physiological Research on Hunger and Satiety 297
Role of Blood Glucose Levels in Hunger and Satiety 297
Myth of Hypothalamic Hunger and Satiety Centers 297
Role of the Gastrointestinal Tract in Satiety 299
Hunger and Satiety Peptides 299
Serotonin and Satiety 301
Prader-Willi Syndrome: Patients with Insatiable Hunger 301
Prader-Willi Syndrome: The Case of Miss A. 301

12.5 Body Weight Regulation: Set Points versus Settling Points 301
Set-Point Assumptions about Body Weight and Eating 302
Set Points and Settling Points in Weight Control 303

12.6 Human Obesity: Causes, Mechanisms, and Treatments 305
Who Needs to Be Concerned about Obesity? 306
Why Is There an Epidemic of Obesity? 306
Why Do Some People Become Obese While Others Do Not? 306
Why Are Weight-Loss Programs Often Ineffective? 307
Leptin and the Regulation of Body Fat 307
The Case of the Child with No Leptin 309
Treatment of Obesity 309

12.7 Anorexia and Bulimia Nervosa 309
Relation between Anorexia and Bulimia 310
Anorexia and Positive Incentives 311
Anorexia Nervosa: A Hypothesis 312
The Case of the Anorexic Student 312
Themes Revisited 312
Think about It 312
Key Terms 313
Quick Review 313

13 Hormones and Sex 314
What’s Wrong with the Mamawawa? 314
Men-Are-Men-and-Women-Are-Women Assumption 315
Developmental and Activational Effects of Sex Hormones 315

13.1 The Neuroendocrine System 315
Glands 316
Gonads 316
Classes of Hormones 316
Sex Steroids 317
Hormones of the Pituitary 317
Female Gonadal Hormone Levels Are Cyclic; Male Gonadal Hormone Levels Are Steady 318
Neural Control of the Pituitary 318
Control of the Anterior and Posterior Pituitary by the Hypothalamus 318
Discovery of Hypothalamic Releasing Hormones 319
Regulation of Hormone Levels 320
Pulsatile Hormone Release 320
Summary Model of Gonadal Endocrine Regulation 320

13.2 Hormones and Sexual Development of the Body 320
Puberty: Hormones and Development of Secondary Sex Characteristics 323

13.3 Hormones and Sexual Development of Brain and Behavior 324
Sex Differences in the Brain 324
Development of Sex Differences in Behavior 326

13.4 Three Cases of Exceptional Human Sexual Development 328
The Case of Anne S., the Woman Who Wasn’t 328
The Case of the Little Girl Who Grew into a Boy 328
The Case of the Twin Who Lost His Penis 329
Do the Exceptional Cases Prove the Rule? 330

13.5 Effects of Gonadal Hormones on Adults 330
Male Reproduction-Related Behavior and Testosterone 330
The Case of the Man Who Lost and Regained His Manhood 331
Female Reproduction-Related Behavior and Gonadal Hormones 331
Anabolic Steroid Abuse 333

13.6 Brain Mechanisms of Sexual Behavior 334
Cortex and Sexual Activity 334
Hypothalamus and Sexual Activity 334
Amygdala and Sexual Activity 335
Ventral Striatum and Sexual Activity 336

13.7 Sexual Orientation and Sexual Identity 336
Sexual Orientation and Genes 336
Sexual Orientation and Early Hormones 336
Contents

What Triggers the Development of Sexual Attraction? 337
Is There a Difference in the Brains of Homosexuals and Heterosexuals? 337
Sexual Identity 337
Independence of Sexual Orientation and Sexual Identity 338
Themes Revisited 339
Think about It 339
Key Terms 339
Quick Review 340

14 Sleep, Dreaming, and Circadian Rhythms 341
How Much Do You Need to Sleep?

The Case of the Woman Who Wouldn’t Sleep 342

14.1 Stages of Sleep 343
Three Standard Psychophysiological Measures of Sleep 343
Four Stages of Sleep EEG 343
REM Sleep and Dreaming 344
Testing Common Beliefs about Dreaming 345
The Interpretation of Dreams 345

14.2 Why Do We Sleep, and Why Do We Sleep When We Do? 346
Comparative Analysis of Sleep 346

14.3 Effects of Sleep Deprivation 347
Interpretation of the Effects of Sleep Deprivation: The Stress Problem 347
Predictions of Recuperation Theries about Sleep Deprivation 348
Two Classic Sleep-Deprivation Case Studies 348
The Case of the Sleep-Deprived Students 348
The Case of Randy Gardner 348
Experimental Studies of Sleep Deprivation in Humans 348
Sleep-Deprivation Studies with Laboratory Animals 349
REM-Sleep Deprivation 350
Sleep Deprivation Increases the Efficiency of Sleep 351

14.4 Circadian Sleep Cycles 352
Free-Running Circadian Sleep–Wake Cycles 352
Jet Lag and Shift Work 353
A Circadian Clock in the Suprachiasmatic Nuclei 354
Neural Mechanisms of Entrainment 354
Genetics of Circadian Rhythms 354
The Case of Constantin von Economo, the Insightful Neurologist 355

14.5 Four Areas of the Brain Involved in Sleep 355
Two Areas of the Hypothalamus Involved in Sleep 355
Reticular Formation and Sleep 356
Reticular REM-Sleep Nuclei 357

14.6 Drugs That Affect Sleep 358
Hypnotic Drugs 358
Antihypnotic Drugs 359
Melatonin 359

14.7 Sleep Disorders 360
Insomnia 360
Mr. B., the Case of Iatrogenic Insomnia 360
Hypersomnia 361
REM-Sleep–Related Disorders 362
The Case of the Sleeper Who Ran Over Tackle 362

14.8 Effects of Long-Term Sleep Reduction 362
Differences Between Short and Long Sleepers 362
Long-Term Reduction of Nightly Sleep 363
Long-Term Sleep Reduction by Napping 363
Effects of Shorter Sleep Times on Health 364
Long-Term Sleep Reduction: A Personal Case Study 364
The Case of the Author Who Reduced His Sleep 365
Conclusion 365
Themes Revisited 366
Think about It 366
Key Terms 366
Quick Review 367

15 Drug Addiction and the Brain’s Reward Circuits 368
Chemicals That Harm with Pleasure

The Case of the Drugged High School Teachers 369

15.1 Basic Principles of Drug Action 369
Drug Administration and Absorption 369
Drug Penetration of the Central Nervous System 370
Mechanisms of Drug Action 370
Drug Metabolism and Elimination 370
Drug Tolerance 370
Drug Withdrawal Effects and Physical Dependence 371

15.2 Role of Learning in Drug Tolerance 372
Contingent Drug Tolerance 372
Conditioned Drug Tolerance 372
Thinking about Drug Conditioning 374

15.3 Five Commonly Abused Drugs 374
Tobacco 374
Alcohol 375
Marijuana 377
Cocaine and Other Stimulants 379
The Opiates: Heroin and Morphine 380
"Interpreting Studies of the Health Hazards of Drugs" 382
Comparison of the Hazards of Tobacco, Alcohol, Marijuana, Cocaine, and Heroin 382

15.4 Early Biopsychological Research on Addictions 384
Physical-Dependence and Positive-Incentive Perspectives of Addiction 384
Intracranial Self-Stimulation and the Mesotelencephalic Dopamine System 384
Early Evidence of the Involvement of Dopamine in Drug Addiction 385
Nucleus Accumbens and Drug Addiction 386

15.5 Current Approaches to the Mechanisms of Addiction 387
Initial Drug Taking 387
Habitual Drug Taking 388
Drug Craving and Addiction Relapse 389
Current Concerns about the Drug Self-Administration Paradigm 390

15.6 A Noteworthy Case of Addiction 390
The Case of Sigmund Freud 390
Themes Revisited 391
Think about It 391
Key Terms 392
Quick Review 392

Part Six
Disorders of Cognition and Emotion

16.1 Cerebral Lateralization of Function: Introduction 395
Discovery of the Specific Contributions of Left-Hemisphere Damage to Aphasia and Apraxia 395
Tests of Cerebral Lateralization 395
Discovery of the Relation between Speech Laterality and Handedness 396
Sex Differences in Brain Lateralization 396

16.2 The Split Brain 397
Groundbreaking Experiment of Myers and Sperry 397
Commissurotomy in Human Epileptics 399
Evidence That the Hemispheres of Split-Brain Patients Can Function Independently 400
Cross-Cuing 400
Doing Two Things at Once 401
The Z Lens 401
Dual Mental Functioning and Conflict in Split-Brain Patients 402
The Case of Peter, the Split-Brain Patient Tormented by Conflict 402
Independence of Split Hemispheres: Current Perspective 403

16.3 Differences between the Left and Right Hemispheres 403
Examples of Cerebral Lateralization of Function 404
What Is Lateralized—Broad Clusters of Abilities or Individual Cognitive Processes? 405
Anatomical Asymmetries of the Brain 406

16.4 Evolutionary Perspective of Cerebral Lateralization and Language 407
Theories of the Evolution of Cerebral Lateralization 407
The Case of W.L., the Man Who Experienced Aphasia for Sign Language 408
When Did Cerebral Lateralization Evolve? 408
What Are the Survival Advantages of Cerebral Lateralization? 408
Evolution of Human Language 409

16.5 Cortical Localization of Language: Wernicke-Geschwind Model 410
Historical Antecedents of the Wernicke-Geschwind Model 410
The Wernicke-Geschwind Model 411

16.6 Wernicke-Geschwind Model: The Evidence 412
Effects of Cortical Damage on Language Abilities 413
Contents

16.7 Cognitive Neuroscience of Language 416
 Functional Brain Imaging and the Localization of Language

16.8 Cognitive Neuroscience of Dyslexia 418
 Developmental Dyslexia: Causes and Neural Mechanisms
 Developmental Dyslexia and Culture
 Cognitive Neuroscience of Deep and Surface Dyslexia
 The Case of N.I., the Woman Who Read with Her Right Hemisphere

Themes Revisited 420
 Think about It 421
 Key Terms 421
 Quick Review 421

17 Biopsychology of Emotion, Stress, and Health 423
 Fear, the Dark Side of Emotion

17.1 Biopsychology of Emotion: Introduction 424
 Early Landmarks in the Biopsychological Investigation of Emotion
 The Mind-Blowing Case of Phineas Gage
 A Human Case of Kluver-Bucy Syndrome
 Emotions and the Autonomic Nervous System
 Emotions and Facial Expression

17.2 Fear, Defense, and Aggression 431
 Types of Aggressive and Defensive Behaviors
 Aggression and Testosterone

17.3 Neural Mechanisms of Fear Conditioning 433
 Amygdala and Fear Conditioning
 Contextual Fear Conditioning and the Hippocampus
 Amygdala Complex and Fear Conditioning

17.4 Brain Mechanisms of Human Emotion 435
 Cognitive Neuroscience of Emotion
 Amygdala and Human Emotion
 The Case of S.P., the Woman Who Couldn’t Perceive Fear
 Medial Prefrontal Lobes and Human Emotion

Lateralization of Emotion 437
 Neural Mechanisms of Human Emotion: Current Perspectives 438

17.5 Stress and Health 438
 The Stress Response 438
 Animal Models of Stress 439
 Psychosomatic Disorders: The Case of Gastric Ulcers 439
 Psychoneuroimmunology: Stress, the Immune System, and the Brain 440
 Early Experience of Stress 442
 Stress and the Hippocampus 443
 Conclusion 443
 The Case of Charles Whitman, the Texas Tower Sniper 443

Themes Revisited 444
 Think about It 444
 Key Terms 445
 Quick Review 445

18 Biopsychology of Psychiatric Disorders 446
 The Brain Unhinged

18.1 Schizophrenia 447
 The Case of Lena, the Catatonic Schizophrenic 447
 What Is Schizophrenia? 448
 Causal Factors in Schizophrenia 448
 Discovery of the First Antischizophrenic Drugs 449
 Dopamine Theory of Schizophrenia 449
 Schizophrenia: Current Research and Treatment 451
 Conclusions 453

18.2 Affective Disorders: Depression and Mania 453
 The Case of P.S., the Weeping Widow 454
 Major Categories of Affective Disorders 454
 Causal Factors in Affective Disorders 455
 Discovery of Antidepressant Drugs 455
 Brain Pathology and Affective Disorders 457
 Theories of Depression 458
 Treatment of Depression with Brain Stimulation 458
 Conclusion 459

18.3 Anxiety Disorders 459
 The Case of M.R., the Woman Who Was Afraid to Go Out 460
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five Classes of Anxiety Disorders</td>
<td>460</td>
</tr>
<tr>
<td>Etiology of Anxiety Disorders</td>
<td>460</td>
</tr>
<tr>
<td>Pharmacological Treatment of Anxiety Disorders</td>
<td>461</td>
</tr>
<tr>
<td>Animal Models of Anxiety</td>
<td>461</td>
</tr>
<tr>
<td>Neural Bases of Anxiety Disorders</td>
<td>462</td>
</tr>
<tr>
<td>18.4 Tourette Syndrome</td>
<td>462</td>
</tr>
<tr>
<td>The Case of R.G.—Barking Mad</td>
<td>462</td>
</tr>
<tr>
<td>What Is Tourette Syndrome?</td>
<td>463</td>
</tr>
<tr>
<td>Neuropathology of Tourette Syndrome</td>
<td>463</td>
</tr>
<tr>
<td>Treatment of Tourette Syndrome</td>
<td>464</td>
</tr>
<tr>
<td>The Case of P.H., the Neuroscientist with Tourette Syndrome</td>
<td>464</td>
</tr>
<tr>
<td>18.5 Clinical Trials: Development of New Psychotherapeutic Drugs</td>
<td>465</td>
</tr>
<tr>
<td>Clinical Trials: The Three Phases</td>
<td>465</td>
</tr>
<tr>
<td>Controversial Aspects of Clinical Trials</td>
<td>466</td>
</tr>
<tr>
<td>Effectiveness of Clinical Trials</td>
<td>467</td>
</tr>
<tr>
<td>Conclusion</td>
<td>468</td>
</tr>
<tr>
<td>The Case of S.B., the Biopsychology Student Who Took Control</td>
<td>468</td>
</tr>
<tr>
<td>Themes Revisited</td>
<td>469</td>
</tr>
<tr>
<td>Think about It</td>
<td>469</td>
</tr>
<tr>
<td>Key Terms</td>
<td>470</td>
</tr>
<tr>
<td>Quick Review</td>
<td>470</td>
</tr>
</tbody>
</table>

- Epilogue: 471
- Appendixes: 472
- Glossary: 478
- References: 498
- Credits: 533
- Name Index: 535
- Subject Index: 542
Welcome to the Ninth Edition of Biopsychology! This edition builds on the strengths of its predecessors, but it also takes important new steps: In addition to covering many new cutting-edge research topics, it sharpens its focus on the human element of biopsychology and on promoting student thinking. Most importantly, this is the first edition of Biopsychology to focus on epigenetics. It introduces this new field, summarizes current knowledge, and most importantly stresses the relevance of epigenetic concepts to issues of human brain and behavior.

The Ninth Edition of Biopsychology is a clear, engaging introduction to current biopsychological theory and research. It is intended for use as a primary text in one- or two-semester courses in biopsychology—variously titled Biopsychology, Physiological Psychology, Brain and Behavior, Psychobiology, Behavioral Neuroscience, or Behavioral Neurobiology.

The defining feature of Biopsychology is its unique combination of biopsychological science and personal, reader-oriented discourse. It is a textbook that is “un-textbooklike.” Instead of presenting the concepts of biopsychology in the usual textbook fashion, it addresses students directly and interweaves the fundamentals of the field with clinical case studies, social issues, personal implications, useful metaphors, and memorable anecdotes.

Key Features Maintained in the Ninth Edition

The following are features that have characterized recent editions of Biopsychology and have been maintained or expanded in this edition.

Emphasis on Broad Themes The emphasis of Biopsychology is “the big picture.” Four broad themes are highlighted throughout the text by distinctive tabs: (1) thinking creatively, (2) clinical implications, (3) evolutionary perspective, and (4) neuroplasticity. A Themes Revisited section at the end of each chapter briefly summarizes how each theme was developed in that chapter. The four major themes provide excellent topics for essay assignments and exam questions.

Effective Use of Case Studies Biopsychology features many carefully selected case studies, which are highlighted in the text. These provocative cases stimulate interest, promote retention, and allow students to learn how biopsychological principles apply to the diagnosis and treatment of brain disorders.

Remarkable Illustrations The illustrations in Biopsychology are special. Each one was conceptualized and meticulously designed to clarify and reinforce the text by a uniquely qualified scientist–artist team: Pinel and his artist/designer wife, Maggie Edwards.

Focus on Behavior In some biopsychological textbooks, the coverage of neurophysiology, neurochemistry, and neuroanatomy subverts the coverage of behavioral research. Biopsychology gives top billing to behavior: It stresses that neuroscience is a team effort and that the unique contribution made by biopsychologists to this effort is their behavioral expertise.

Emphasis on the Scientific Method Biopsychology emphasizes the scientific method. It portrays the scientific method as a means of answering questions that is applicable in daily life as in the laboratory. And Biopsychology emphasizes that being a scientist is fun.

Discussion of Personal and Social Implications Several chapters of Biopsychology—particularly those on eating, sleeping, sex, and drug addiction—carry strong personal and social messages. In these chapters, students are encouraged to consider the relevance of biopsychological research to their lives outside the classroom.

Engaging, Inspiring Voice Arguably the strongest pedagogical feature of Biopsychology is its personal tone. Pinel addresses students directly and talks to them with warmth, enthusiasm, and good humor about recent advances in biopsychological science. Many students report being engaged and inspired by this approach.

Additions to the Ninth Edition

Four new or expanded features appear in the Ninth Edition of Biopsychology.

NEW! Chapter-Opening Study Objectives Each chapter begins with a list of study objectives designed to direct students’ reading and studying.
NEW! Blog-On! *Biopsychology* now comes with an accompanying author-run blog and website (www.biopsyc.com). The blog contains discussions of exciting new biopsychological research and theoretical issues not covered in the text. In addition to the blog, the website also contains a wide variety of links and materials to help students in their studying.

NEW! Even More MyPsychLab (www.mypsychlab.com) MyPsychLab is an online study resource that offers a wealth of animations and practice tests as well as additional study and research tools. This edition adds even more exciting content to MyPsychLab for students.

NEW! More Illustrations and Brain Images Building on *Biopsychology*’s strong art package, a number of new illustrations and brain images have been added. These have been carefully selected, designed, and positioned to support interest, clarity, and memorability.

New Coverage in the Ninth Edition
Biopsychology remains one of the most rapidly progressing scientific fields. Like previous editions, the Ninth Edition of *Biopsychology* has meticulously incorporated recent developments in the field—it contains more than 750 citations of articles or books that did not appear in the preceding edition. These recent developments have dictated changes to many parts of the text. The following list presents some of the content changes to this edition, organized by chapter.

Chapter 1: Biopsychology as a Neuroscience
- 3 new citations

Chapter 2: Evolution, Genetics, and Experience
- New section on epigenetics
- A figure illustrating and emphasizing epigenetic mechanisms
- Summary of important recent discoveries of hominin fossils
- New summary of the human genome project, emphasizing the small number of human genes
- Clear statement of the failure to find major links between genes and neurological disorders
- Updated coverage of heritability estimates
- 50 new citations

Chapter 3: Anatomy of the Nervous System
- Updated coverage of glial function
- 15 new citations

Chapter 4: Neural Conduction and Synaptic Transmission
- Simplified explanation of the resting potential
- Recent discovery that action potentials originate in the axon initial segment
- Role of glia in synaptic transmission
- Additional coverage of gap junctions
- 22 new citations

Chapter 5: The Research Methods of Biopsychology
- Use of PET to determine the distribution in the brain of particular molecules
- Introduction of diffusion tensor imaging with a new illustration
- Simplified coverage of reversible brain lesions
- Updated coverage of gene replacement
- 19 new citations

Chapter 6: The Visual System
- Simplified coverage of the organization of neurons in the primary visual cortex
- Explanation of the role of context on the responses of visual neurons
- Improved discussion of dorsal and ventral streams
- Comparison of MT and fusiform face area
- 24 new citations

Chapter 7: Mechanisms of Perception: Hearing, Touch, Smell, Taste, and Attention
- Updated coverage of primary auditory cortex
- Statement of the role of cutaneous receptors in particular sensations
- More comparisons of auditory and visual cortex
- Discussion of rubber-hand illusion and bimodal neurons
- Improved coverage of the olfactory system
- Updated and clearer coverage of the gustatory system
- Updated coverage of attention
- 62 new citations

Chapter 8: The Sensorimotor System
- Shorter but clearer coverage of contralateral neglect
- Recent research on mirror neurons
- Discussion of evidence for mirror neurons in humans
- Updated discussion of functions of the cerebellum
- Simplified discussion of functional brain imaging studies of sensorimotor learning
- 37 new citations

Chapter 9: Development of the Nervous System
- Updated description of increased cell fate specification and related stem cell terminology
Preface

• New description of interaction of glial and neural development
• Discovery that radial glial cells develop into neurons
• Overall editing designed to shorten and simplify
• 59 new citations

Chapter 10: Brain Damage and Neuroplasticity

• Definition of gliomas
• Improved coverage of strokes
• Updated discussion of genetic factors and neurological disorders
• Introduction of the term absence seizures
• More concise coverage of the etiology of multiple sclerosis
• Concise summary of genes linked to Alzheimer’s disease
• Role of microbleeds in Alzheimer’s disease
• Importance of early diagnosis in the treatment of Alzheimer’s disease
• Improved coverage of MPTP model
• Revised coverage of recovery of function
• Neurotransplantation is revised, updated, and out in a historical perspective
• 95 new citations

Chapter 11: Learning, Memory, and Amnesia

• Tightened up coverage of HM
• New discussion of transient global amnesia
• Tightened up and updated discussion of consolidation
• New section on evolving perspectives of the role of the hippocampus in memory
• New section on neurons of the medial temporal lobes and memory
• Updated coverage of place cells and grid cells
• Introduction and focus on Jennifer Aniston neurons
• Tightened up coverage of LTP
• 35 new citations

Chapter 12: Hunger, Eating, and Health

• Shortened and simplified by aggressive editing
• 10 new citations

Chapter 13: Hormones and Sex

• New section on the modern perspective of sex differences in the brain
• New section on development of sex differences in human behavior
• Discussion of sex differences in susceptibility to disease
• Updated coverage of anabolic steroid use
• New coverage of human sexual arousal and the brain
• 56 new citations

Chapter 14: Sleep, Dreaming, and Circadian Rhythms

• Updated coverage of the relationship between REM sleep and dreaming
• Circadian activity cycles of SCN neurons
• 33 new citations

Chapter 15: Drug Addiction and the Brain’s Reward Circuits

• International statistics of drug use
• Increased coverage of the therapeutic effects of THC
• Increased coverage of the effects of MDMA
• Updated description of the treatment of heroin addiction
• Section on critical thinking about illegal drugs
• Major revision of discussion of early theories of addiction
• Major update of current approaches to the study of addiction
• 102 new citations

Chapter 16: Lateralization, Language, and the Split Brain

• Discussion of the interactions between the hemispheres of split brains
• Current status of the theory that right hemispheres are specialized for emotion
• Update of research on neuroanatomical asymmetries in the brain
• Improved coverage of the motor theory of speech perception
• 24 new citations

Chapter 17: Biopsychology of Emotion, Stress, and Health

• Chapter reorganized by moving Stress and Health to the end
• Reference to bullying
• Updated and simplified coverage of the neural mechanisms of emotion
• New section on current perspectives of neural mechanism of human emotion
• New description of the immune system
• 45 new citations

Chapter 18: Biopsychology of Psychiatric Disorders

• Introduction of the anticipated DSM-V and the need for continual refinement of diagnoses
• New section on the current research and treatment of schizophrenia
• Updated coverage of treatments for depression
• Updated discussion of the monoamine theory of depression
• New description of the neuroplasticity theory of depression
• Discussion of current treatments for anxiety
• Discussion of problems with current system of diagnosis
Themes Revisited

- Introduction to the idea that pharmaceutical companies suppress negative findings
- 60 new research citations

Pedagogical Learning Aids

Biopsychology has several features expressly designed to help students learn and remember the material:

- **Scan Your Brain** study exercises appear within chapters at key transition points, where students can benefit most from pausing to consolidate material before continuing.

```
Scan Your Brain

If you have not previously studied the gross anatomy of the brain, your own brain is probably staring under the burden of new terms. To determine whether you are ready to proceed, scan your brain by filling in the following intellectual view of a real human. You may find it challenging to match your internal diagram to a photograph of a real brain.

The correct answers are provided at the end of the exercise. Before proceeding, review material related to your scans and scan here. Notice that Figure 3.29 includes all the brain anatomy terms that have appeared in bold type in this section and thus is an excellent review tool.
```

- **Think about It** discussion questions at the end of each chapter challenge students to think critically and creatively about the content.

- **Check It Out** demonstrations apply biopsychological phenomena and concepts for students to experience themselves.

```
Check It Out

The Position of Eyes

Here you see three animals whose eyes are on the front of their heads (a human, an owl, and a bird); and three whose eyes are on the sides of their heads (an antelope, a caracal, and a squirrel). Why do a few vertebrates have their eyes side by side on the front of the head while most mammals have one eye on each side?

In general, predators tend to have the ability to see predators approaching from more directions. Humans and other primates have the ability to see predators approaching from more directions.
```

- **Themes Revisited** section at the end of each chapter summarizes the ways in which the book's four major themes relate to that chapter's subject matter.

- **Key Terms** appear in **boldface**, and other important terms of lesser significance appear in **italics**.

- **Appendices** serve as convenient sources of additional information for students who want to expand their knowledge of selected biopsychology topics.

Ancillary Materials Available with Biopsychology

For Instructors

Pearson Education is pleased to offer the following supplements to qualified adopters.

Test Bank (0205979823) The test bank for the Ninth Edition of Biopsychology comprises more than 2,000 multiple-choice questions, including questions about accompanying brain images. The difficulty of each item is rated—easy (1), moderate (2), or difficult (3)—to assist instructors with test construction. Each item is also labeled with a topic and a page reference so that instructors can easily select appropriate questions for their tests. Textbook authors rarely prepare their own test banks; the fact that Pinel insists on preparing the Biopsychology test bank attests to its consistency with the text—and his commitment to helping students learn.

MyTest Test Bank (0205986153) This test bank is available in computerized format, which allows instructors to create and print quizzes and exams. Questions and tests can be authored online, allowing instructors maximum flexibility and the ability to efficiently manage assessments anytime, anywhere. Instructors can easily access existing questions and edit, create, and store questions using simple drag-and-drop controls. For more information, go to www.PearsonMyTest.com.

Instructor’s Manual (0205987710) The instructor’s manual contains helpful teaching tools, including at-a-glance grids, activities and demonstrations for the classroom, handouts, lecture notes, chapter outlines, and other valuable course organization material for new and experienced instructors. Additional resources have been added for the Ninth Edition, including information on MyPsychLab video assets and the Visual Brain.

Interactive PowerPoint Slides These slides, available on the Instructor’s DVD (0205986129), bring highlights of this edition of Biopsychology right into the classroom, drawing students into the lecture and providing engaging interactive activities, visuals, and videos.

Standard Lecture PowerPoint Slides (0205986145) These slides have a more traditional format, with excerpts of the text material and artwork, and are available on the Instructor’s DVD (0205986129) as well as online at www.pearsonhighered.com/irc.
NEW! MyPsychLab (www.mypsychlab.com)
MyPsychLab is an online homework, tutorial, and assessment program that truly engages students in learning. It helps students better prepare for class, quizzes, and exams—resulting in better performance in the course. It provides educators a dynamic set of tools for gauging individual and class performance.

NEW! The Visual Brain
Available within MyPsychLab, the new Visual Brain is an interactive virtual brain designed to help students better understand neuroanatomy, physiology, and human behavior. Fifteen new modules bring to life many of the most difficult topics typically covered in the biopsychology course. Every module includes sections that explore relevant anatomy, physiological animations, and engaging case studies that bring behavioral neuroscience to life. At the end of each module, students can take an assessment that will help measure their understanding. This hands-on experience engages students and helps make course content and terminology relevant. References throughout the text direct students to content in MyPsychLab, and a new feature at the end of each chapter directs students to MyPsychLab Brain modules.

For Students
MyPsychLab (0205988288) With this exciting new tool, students are able to self-assess using embedded diagnostic tests and instantly view results along with a customized study plan.

The customized study plan will focus on the student’s strengths and weaknesses, based on the results of the diagnostic testing, and present a list of activities and resources for review and remediation, organized by chapter section. Some study resources intended for use with portable electronic devices, such as key terms flashcards and video clips, are made available exclusively through MyPsychLab. Students will be able to quickly and easily analyze their own comprehension level of the course material and study more efficiently, leading to exceptional exam results! An access code is required and can be purchased at www.pearsonhighered.com or at www.mypsychlab.com.

CourseSmart eTextbook (ISBN: 0205987931)
CourseSmart offers students an online subscription to The World of Children, 3/e, at up to 60% savings. With the CourseSmart eTextbook, students can search the text, make notes online, print reading assignments that incorporate lecture notes, and bookmark important passages. Ask your Pearon sales representative for details or visit www.coursesmart.com.

Acknowledgments

Two people deserve special credit for helping me create this edition of *Biopsychology*: Maggie Edwards and Steven Barnes. Maggie is an artist/designer/writer/personal trainer, who is my partner in life. She is responsible for the design of most of the illustrations in this book. Steven is a colleague/artist/computer wizard, whose contributions to this edition were immense. He kept my writing on schedule, prepared the manuscripts, compiled the reference list, did some editing and writing, designed all the new illustrations, created the author-run blog and website, and compiled all of the electronic links. It exhausts me just thinking about it.

Pearson Education did a remarkable job of producing this book. They shared my dream of a textbook that meets the highest standards of pedagogy but is also personal, attractive, and enjoyable. Thank you to Bill Barke, Stephen Frail, Susan Hartman, and other executives for having faith in *Biopsychology* and providing the financial and personal support necessary for it to stay at the forefront of its field. Special thanks also go to Joan Foley, Amber Chow, Diane Szulecki, and Judy Casillo at Pearson and Angel Chavez at Integra for coordinating the production—an excruciatingly difficult and often thankless job.

I thank the following instructors for providing me with reviews of various editions of *Biopsychology*. Their comments have contributed substantially to the evolution of this edition:

L. Joseph Acher, Baylor University
Nelson Adams, Winston-Salem State University
Marwa Azab, Golden West College
Michael Babcock, Montana State University–Bozeman
Ronald Baenninger, College of St. Benedict
Mark Basham, Regis University
Carol Batt, Sacred Heart University
Noel Jay Bean, Vassar College
Patricia Bellas, Irvine Valley College
Danny Benbasset, George Washington University
Thomas Bennett, Colorado State University
Linda Brannon, McNeese State University
Peter Brunjes, University of Virginia
John Bryant, Bowie State University
Michelle Butler, United States Air Force Academy
Donald Peter Cain, University of Western Ontario
Deborah A. Carroll, Southern Connecticut State University
John Conklin, Camosun College
Sherry Dingman, Marist College
Michael A. Dowdle, Mt. San Antonio College
Doug Engwall, Central Connecticut State University
Gregory Ervin, Brigham Young University
Robert B. Fischer, Ball State University
Allison Fox, University of Wollongong
Michael Foy, Loyola Marymount University
Ed Fox, Purdue University
Thomas Goetttsche, SAS Institute, Inc.
Arnold M. Golub, California State University–Sacramento
Nokia Gordon, Marquette University
Mary Gotch, Solano College
Jeffrey Grimm, Western Washington University
Kenneth Gutman, Citrus College
Melody Smith Harrington, St. Gregory's University
Theresa D. Hernandez, University of Colorado
Cindy Ellen Herzog, Frostburg State University
Peter Hickmott, University of California–Riverside
Michael Jarvinen, Emmanuel College
Tony Jelsma, Atlantic Baptist University
Roger Johnson, Ramapo College
John Jonides, University of Michigan
Jon Kahane, Springfield College
Craig Kinsley, University of Richmond
Ora Kofman, Ben-Gurion University of the Negev
Louis Koppel, Utah State University
Maria J. Lavoooy, University of Central Florida
Victoria Littlefield, Augsburg College
Eric Littman, University of Cincinnati
Linda Lockwood, Metropolitan State College of Denver
Charles Malsbury, Memorial University
Michael R. Markham, Florida International University
Vincent Markowski, State University of New York–Geneseo
Michael P. Matthews, Drury College
Lin Meyers, California State University–Stanislaus
Maura Mitrushina, California State University, Northridge
Russ Morgan, Western Illinois University
Henry Morlock, SUNY–Plattsburgh
Caroline Olko, Nassau Community College
Lauretta Park, Clemson University
Ted Parsons, University of Wisconsin–Platteville
Jim H. Patton, Baylor University
Edison Perdorno, Minnesota State University
Michael Peters, University of Guelph
Michelle Pilati, Rio Hondo College
Joseph H. Porter, Virginia Commonwealth University
David Robbins, Ohio Wesleyan University
Dennis Rodriguez, Indiana University–South Bend
Margaret G. Ruddy, College of New Jersey
Jeanne P. Ryan, SUNY–Plattsburgh
Jerome Siegel, David Geffen School of Medicine, UCLA
Angela Sikorski, Texas A&M University–Texarkana
xxii Preface

Patti Simone, Santa Clara University
Ken Sobel, University of Central Arkansas
David Soderquist, University of North Carolina at Greensboro
Michael Stoloff, James Madison University
Stuart Tousman, Rockford College
Dallas Treit, University of Alberta
Margaret Upchurch, Transylvania University

Dennis Vincenzi, University of Central Florida
Ashkat Vyas, Hunter College
Charles Weaver, Baylor University
Linda Walsh, University of Northern Iowa
David Widman, Juniata College
Jon Williams, Kenyon College
David Yager, University of Maryland
H.P. Ziegler, Hunter College
In the 1960s, I was, in the parlance of the times, “turned on” by an undergraduate course in biopsychology. I could not imagine anything more interesting than a field of science dedicated to studying the relation between psychological processes and the brain. My initial fascination led to a long career as a student, researcher, teacher, and writer of biopsychological science. *Biopsychology* is my attempt to share my fascination with you.

I have tried to make *Biopsychology* a different kind of textbook, a textbook that includes clear, concise, and well-organized explanations of the key points but is still interesting to read—a book from which you might suggest suitable sections to an interested friend or relative. To accomplish this goal, I thought about what kind of textbook I would have liked when I was a student, and I decided to avoid the stern formality and ponderous style of conventional textbook writing and to focus on ideas of relevance to your personal life.

I wanted *Biopsychology* to have a relaxed and personal style. In order to accomplish this, I imagined that you and I were chatting as I wrote, and that I was telling you—usually over a glass of something—about the interesting things that go on in the field of biopsychology. Imagining these chats kept my writing from drifting back into conventional “textbookese,” and it never let me forget that I was writing this book for you.

Creative thinking is one of the major themes of this edition. Often science and creativity are considered to be opposites, but in my experience many of the major advances in biopsychological science have resulted from creative thinking. These major advances have been made by biopsychologists who have recognized that there are alternatives to the conventional ways of thinking about biopsychological issues that have been engrained in them by their culture and training and who have adopted creative new approaches. Two things in particular have fascinated me about the interplay between creative thinking and biopsychological science: how difficult it is to identify and shed conventional approaches even when they clearly haven’t been working, and how often solutions to long-standing problems become apparent when approached from a new perspective. The focus of this edition on creative thinking is intended to make the study of biopsychology more interesting for you and to encourage you become a more creative thinker.

I hope that *Biopsychology* teaches you much of relevance to your personal life and that reading it generates in you the same positive feelings that writing it did in me.

To the Student

About the Author

John Pinel, the author of *Biopsychology*, obtained his Ph.D. from McGill University in Montreal and worked briefly at the Massachusetts Institute of Technology before taking a faculty position at the University of British Columbia in Vancouver, where he is currently Professor Emeritus. Professor Pinel is an award-winning teacher and the author of more than 200 scientific papers. However, he feels that *Biopsychology* is his major career-related accomplishment: “It ties together everything I love about my job: students, teaching, writing, and research.”

Pinel attributes much of his success to his wife, Maggie, who has at various times been a professional artist, designer, and personal trainer. Over the years, they have collaborated on many projects, and the high quality of *Biopsychology*’s illustrations is largely attributable to her skill and effort.

Pinel is an enthusiastic West African drummer who performs at local clubs, festivals, and drum circles with Nigerian drum master Kwasi Iruoje. For relaxation, he loves to cuddle his three cats: Rastaman, Sambala, and Squeak.