CMOS VLSI Design
A Circuits and Systems Perspective
Fourth Edition
CMOS VLSI Design
A Circuits and Systems Perspective
Fourth Edition

Neil H. E. Weste
Macquarie University and
The University of Adelaide

David Money Harris
Harvey Mudd College

Addison-Wesley
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo
Credits and acknowledgments borrowed from other sources and reproduced with permission in this textbook appear on appropriate page within text or on page 838.

The interior of this book was set in Adobe Caslon and Trade Gothic.

Copyright © 2011, 2005, 1993, 1985 Pearson Education, Inc., publishing as Addison-Wesley. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Cataloging-in-Publication Data is on file with the Library of Congress.
To Avril, Melissa, Tamara, Nicky, Jocelyn, Makayla, Emily, Danika, Dan and Simon
N. W.

To Jennifer, Samuel, and Abraham
D. M. H.
Preface xxv

Chapter 1 Introduction

1.1 A Brief History .. 1
1.2 Preview ... 6
1.3 MOS Transistors .. 6
1.4 CMOS Logic .. 9
 1.4.1 The Inverter 9
 1.4.2 The NAND Gate 9
 1.4.3 CMOS Logic Gates 9
 1.4.4 The NOR Gate 11
 1.4.5 Compound Gates 11
 1.4.6 Pass Transistors and Transmission Gates 12
 1.4.7 Tristates 14
 1.4.8 Multiplexers 15
 1.4.9 Sequential Circuits 16
1.5 CMOS Fabrication and Layout 19
 1.5.1 Inverter Cross-Section 19
 1.5.2 Fabrication Process 20
 1.5.3 Layout Design Rules 24
 1.5.4 Gate Layouts 27
 1.5.5 Stick Diagrams 28
1.6 Design Partitioning ... 29
 1.6.1 Design Abstractions 30
 1.6.2 Structured Design 31
 1.6.3 Behavioral, Structural, and Physical Domains 31
1.7 Example: A Simple MIPS Microprocessor 33
 1.7.1 MIPS Architecture 33
 1.7.2 Multicycle MIPS Microarchitectures 34
1.8 Logic Design .. 38
 1.8.1 Top-Level Interfaces 38
 1.8.2 Block Diagrams 38
 1.8.3 Hierarchy 40
 1.8.4 Hardware Description Languages 40
1.9 Circuit Design .. 42
Chapter 2 MOS Transistor Theory

2.1 Introduction .. 61
2.2 Long-Channel I-V Characteristics 64
2.3 C-V Characteristics .. 68
 2.3.1 Simple MOS Capacitance Models 68
 2.3.2 Detailed MOS Gate Capacitance Model 70
 2.3.3 Detailed MOS Diffusion Capacitance Model 72
2.4 Nonideal I-V Effects ... 74
 2.4.1 Mobility Degradation and Velocity Saturation 75
 2.4.2 Channel Length Modulation 78
 2.4.3 Threshold Voltage Effects 79
 2.4.4 Leakage 80
 2.4.5 Temperature Dependence 85
 2.4.6 Geometry Dependence 86
 2.4.7 Summary 86
2.5 DC Transfer Characteristics 87
 2.5.1 Static CMOS Inverter DC Characteristics 88
 2.5.2 Beta Ratio Effects 90
 2.5.3 Noise Margin 91
 2.5.4 Pass Transistor DC Characteristics 92
2.6 Pitfalls and Fallacies ... 93
Summary 94
Exercises 95

Chapter 3 CMOS Processing Technology

3.1 Introduction ... 99
3.2 CMOS Technologies .. 100
 3.2.1 Wafer Formation 100
 3.2.2 Photolithography 101
3.2.3 Well and Channel Formation 103
3.2.4 Silicon Dioxide (SiO2) 105
3.2.5 Isolation 106
3.2.6 Gate Oxide 107
3.2.7 Gate and Source/Drain Formations 108
3.2.8 Contacts and Metallization 110
3.2.9 Passivation 112
3.2.10 Metrology 112

3.3 Layout Design Rules .. 113
3.3.1 Design Rule Background 113
3.3.2 Scribe Line and Other Structures 116
3.3.3 MOSIS Scalable CMOS Design Rules 117
3.3.4 Micron Design Rules 118

3.4 CMOS Process Enhancements .. 119
3.4.1 Transistors 119
3.4.2 Interconnect 122
3.4.3 Circuit Elements 124
3.4.4 Beyond Conventional CMOS 129

3.5 Technology-Related CAD Issues 130
3.5.1 Design Rule Checking (DRC) 131
3.5.2 Circuit Extraction 132

3.6 Manufacturing Issues ... 133
3.6.1 Antenna Rules 133
3.6.2 Layer Density Rules 134
3.6.3 Resolution Enhancement Rules 134
3.6.4 Metal Slotting Rules 135
3.6.5 Yield Enhancement Guidelines 135

3.7 Pitfalls and Fallacies .. 136
3.8 Historical Perspective ... 137

Summary 139
Exercises 139

Chapter 4 Delay

4.1 Introduction ... 141
4.1.1 Definitions 141
4.1.2 Timing Optimization 142

4.2 Transient Response ... 143

4.3 RC Delay Model ... 146
4.3.1 Effective Resistance 146
4.3.2 Gate and Diffusion Capacitance 147
4.3.3 Equivalent RC Circuits 147
4.3.4 Transient Response 148
4.3.5 Elmore Delay 150
4.3.6 Layout Dependence of Capacitance 153
4.3.7 Determining Effective Resistance 154

4.4 Linear Delay Model ... 155
4.4.1 Logical Effort 156
4.4.2 Parasitic Delay 156
4.4.3 Delay in a Logic Gate 158
4.4.4 Drive 159
4.4.5 Extracting Logical Effort from Datasheets 159
4.4.6 Limitations to the Linear Delay Model 160

4.5 Logical Effort of Paths ... 163
4.5.1 Delay in Multistage Logic Networks 163
4.5.2 Choosing the Best Number of Stages 166
4.5.3 Example 168
4.5.4 Summary and Observations 169
4.5.5 Limitations of Logical Effort 171
4.5.6 Iterative Solutions for Sizing 171

4.6 Timing Analysis Delay Models .. 173
4.6.1 Slope-Based Linear Model 173
4.6.2 Nonlinear Delay Model 174
4.6.3 Current Source Model 174

4.7 Pitfalls and Fallacies ... 174

4.8 Historical Perspective ... 175

Summary 176
Exercises 176

Chapter 5 Power

5.1 Introduction ... 181
5.1.1 Definitions 182
5.1.2 Examples 182
5.1.3 Sources of Power Dissipation 184

5.2 Dynamic Power .. 185
5.2.1 Activity Factor 186
5.2.2 Capacitance 188
5.2.3 Voltage 190
5.2.4 Frequency 192
5.2.5 Short-Circuit Current 193
5.2.6 Resonant Circuits 193

5.3 Static Power .. 194
5.3.1 Static Power Sources 194
5.3.2 Power Gating 197
5.3.3 Multiple Threshold Voltages and Oxide Thicknesses 199
Chapter 7 Robustness

7.1 Introduction ... 241

7.2 Variability ... 241
 7.2.1 Supply Voltage 242
 7.2.2 Temperature 242
 7.2.3 Process Variation 243
 7.2.4 Design Corners 244

7.3 Reliability ... 246
 7.3.1 Reliability Terminology 246
 7.3.2 Oxide Wearout 247
 7.3.3 Interconnect Wearout 249
 7.3.4 Soft Errors 251
 7.3.5 Overvoltage Failure 252
 7.3.6 Latchup 253

7.4 Scaling ... 254
 7.4.1 Transistor Scaling 255
 7.4.2 Interconnect Scaling 257
 7.4.3 International Technology Roadmap for Semiconductors 258
 7.4.4 Impacts on Design 259

7.5 Statistical Analysis of Variability 263
 7.5.1 Properties of Random Variables 263
 7.5.2 Variation Sources 266
 7.5.3 Variation Impacts 269

7.6 Variation-Tolerant Design 274
 7.6.1 Adaptive Control 275
 7.6.2 Fault Tolerance 275

7.7 Pitfalls and Fallacies 277

7.8 Historical Perspective 278

Summary 284
Exercises 284

Chapter 8 Circuit Simulation

8.1 Introduction ... 287

8.2 A SPICE Tutorial 288
 8.2.1 Sources and Passive Components 288
 8.2.2 Transistor DC Analysis 292
 8.2.3 Inverter Transient Analysis 292
 8.2.4 Subcircuits and Measurement 294
 8.2.5 Optimization 296
 8.2.6 Other HSPICE Commands 298
8.3 Device Models ... 298
 8.3.1 Level 1 Models 299
 8.3.2 Level 2 and 3 Models 300
 8.3.3 BSIM Models 300
 8.3.4 Diffusion Capacitance Models 300
 8.3.5 Design Corners 302
8.4 Device Characterization .. 303
 8.4.1 I-V Characteristics 303
 8.4.2 Threshold Voltage 306
 8.4.3 Gate Capacitance 308
 8.4.4 Parasitic Capacitance 308
 8.4.5 Effective Resistance 310
 8.4.6 Comparison of Processes 311
 8.4.7 Process and Environmental Sensitivity 313
8.5 Circuit Characterization .. 313
 8.5.1 Path Simulations 313
 8.5.2 DC Transfer Characteristics 315
 8.5.3 Logical Effort 315
 8.5.4 Power and Energy 318
 8.5.5 Simulating Mismatches 319
 8.5.6 Monte Carlo Simulation 319
8.6 Interconnect Simulation ... 319
8.7 Pitfalls and Fallacies ... 322
 Summary 324
 Exercises 324

Chapter 9 Combinational Circuit Design

9.1 Introduction ... 327
9.2 Circuit Families ... 328
 9.2.1 Static CMOS 329
 9.2.2 Ratioed Circuits 334
 9.2.3 Cascode Voltage Switch Logic 339
 9.2.4 Dynamic Circuits 339
 9.2.5 Pass-Transistor Circuits 349
9.3 Circuit Pitfalls .. 354
 9.3.1 Threshold Drops 355
 9.3.2 Ratio Failures 355
 9.3.3 Leakage 356
 9.3.4 Charge Sharing 356
 9.3.5 Power Supply Noise 356
 9.3.6 Hot Spots 357
9.3.7 Minority Carrier Injection 357
9.3.8 Back-Gate Coupling 358
9.3.9 Diffusion Input Noise Sensitivity 358
9.3.10 Process Sensitivity 358
9.3.11 Example: Domino Noise Budgets 359

9.4 More Circuit Families 360
9.5 Silicon-On-Insulator Circuit Design 360
 9.5.1 Floating Body Voltage 361
 9.5.2 SOI Advantages 362
 9.5.3 SOI Disadvantages 362
 9.5.4 Implications for Circuit Styles 363
 9.5.5 Summary 364

9.6 Subthreshold Circuit Design 364
 9.6.1 Sizing 365
 9.6.2 Gate Selection 365

9.7 Pitfalls and Fallacies 366
9.8 Historical Perspective 367
Summary 369
Exercises 370

Chapter 10 Sequential Circuit Design

10.1 Introduction ... 375
10.2 Sequencing Static Circuits 376
 10.2.1 Sequencing Methods 376
 10.2.2 Max-Delay Constraints 379
 10.2.3 Min-Delay Constraints 383
 10.2.4 Time Borrowing 386
 10.2.5 Clock Skew 389

10.3 Circuit Design of Latches and Flip-Flops 391
 10.3.1 Conventional CMOS Latches 392
 10.3.2 Conventional CMOS Flip-Flops 393
 10.3.3 Pulsed Latches 395
 10.3.4 Retestable Latches and Flip-Flops 396
 10.3.5 Enabled Latches and Flip-Flops 397
 10.3.6 Incorporating Logic into Latches 398
 10.3.7 Klass Semidynamic Flip-Flop (SDFF) 399
 10.3.8 Differential Flip-Flops 399
 10.3.9 Dual Edge-Triggered Flip-Flops 400
 10.3.10 Radiation-Hardened Flip-Flops 401
 10.3.11 True Single-Phase-Clock (TSPC) Latches and Flip-Flops 402

10.4 Static Sequencing Element Methodology 402
 10.4.1 Choice of Elements 403
 10.4.2 Characterizing Sequencing Element Delays 405
10.4.3 State Retention Registers 408
10.4.4 Level-Converter Flip-Flops 408
10.4.5 Design Margin and Adaptive Sequential Elements 409
10.4.6 Two-Phase Timing Types 411
10.5 Sequencing Dynamic Circuits .. 411
10.6 Synchronizers ... 411
10.6.1 Metastability 412
10.6.2 A Simple Synchronizer 415
10.6.3 Communicating Between Asynchronous Clock Domains 416
10.6.4 Common Synchronizer Mistakes 417
10.6.5 Arbiters 419
10.6.6 Degrees of Synchrony 419
10.7 Wave Pipelining .. 420
10.8 Pitfalls and Fallacies ... 422
10.9 Case Study: Pentium 4 and Itanium 2 Sequencing Methodologies .. 423
Summary 423
Exercises 425

Chapter 11 Datapath Subsystems

11.1 Introduction ... 429
11.2 Addition/Subtraction ... 429
11.2.1 Single-Bit Addition 430
11.2.2 Carry-Propagate Addition 434
11.2.3 Subtraction 458
11.2.4 Multiple-Input Addition 458
11.2.5 Flagged Prefix Adders 459
11.3 One/Zero Detectors ... 461
11.4 Comparators ... 462
11.4.1 Magnitude Comparator 462
11.4.2 Equality Comparator 462
11.4.3 \(K = A + B \) Comparator 463
11.5 Counters ... 463
11.5.1 Binary Counters 464
11.5.2 Fast Binary Counters 465
11.5.3 Ring and Johnson Counters 466
11.5.4 Linear-Feedback Shift Registers 466
11.6 Boolean Logical Operations ... 468
11.7 Coding ... 468
11.7.1 Parity 468
11.7.2 Error-Correcting Codes 468
11.7.3 Gray Codes 470
11.7.4 XOR/XNOR Circuit Forms 471
11.8 Shifters ... 472
 11.8.1 Funnel Shifter 473
 11.8.2 Barrel Shifter 475
 11.8.3 Alternative Shift Functions 476
11.9 Multiplication .. 476
 11.9.1 Unsigned Array Multiplication 478
 11.9.2 Two’s Complement Array Multiplication 479
 11.9.3 Booth Encoding 480
 11.9.4 Column Addition 485
 11.9.5 Final Addition 489
 11.9.6 Fused Multiply-Add 490
 11.9.7 Serial Multiplication 490
 11.9.8 Summary 490
11.10 Parallel-Prefix Computations .. 491
11.11 Pitfalls and Fallacies .. 493
Summary 494
Exercises 494

Chapter 12 **Array Subsystems**

12.1 Introduction ... 497
12.2 SRAM ... 498
 12.2.1 SRAM Cells 499
 12.2.2 Row Circuity 506
 12.2.3 Column Circuity 510
 12.2.4 Multi-Ported SRAM and Register Files 514
 12.2.5 Large SRAMS 515
 12.2.6 Low-Power SRAMS 517
 12.2.7 Area, Delay, and Power of RAMs and Register Files 520
12.3 DRAM ... 522
 12.3.1 Subarray Architectures 523
 12.3.2 Column Circuity 525
 12.3.3 Embedded DRAM 526
12.4 Read-Only Memory .. 527
 12.4.1 Programmable ROMs 529
 12.4.2 NAND ROMs 530
 12.4.3 Flash 531
12.5 Serial Access Memories ... 533
 12.5.1 Shift Registers 533
 12.5.2 Queues (FIFO, LIFO) 533
12.6 Content-Addressable Memory 535
12.7 Programmable Logic Arrays .. 537
12.8 Robust Memory Design .. 541
 12.8.1 Redundancy 541
 12.8.2 Error Correcting Codes (ECC) 543
 12.8.3 Radiation Hardening 543
12.9 Historical Perspective .. 544
Summary 545
Exercises 546

Chapter 13 Special-Purpose Subsystems

13.1 Introduction .. 549
13.2 Packaging and Cooling .. 549
 13.2.1 Package Options 549
 13.2.2 Chip-to-Package Connections 551
 13.2.3 Package Parasitics 552
 13.2.4 Heat Dissipation 552
 13.2.5 Temperature Sensors 553
13.3 Power Distribution ... 555
 13.3.1 On-Chip Power Distribution Network 556
 13.3.2 IR Drops 557
 13.3.3 L di/dt Noise 558
 13.3.4 On-Chip Bypass Capacitance 559
 13.3.5 Power Network Modeling 560
 13.3.6 Power Supply Filtering 564
 13.3.7 Charge Pumps 564
 13.3.8 Substrate Noise 565
 13.3.9 Energy Scavenging 565
13.4 Clocks .. 566
 13.4.1 Definitions 566
 13.4.2 Clock System Architecture 568
 13.4.3 Global Clock Generation 569
 13.4.4 Global Clock Distribution 571
 13.4.5 Local Clock Gaters 575
 13.4.6 Clock Skew Budgets 577
 13.4.7 Adaptive Deskewing 579
13.5 PLLs and DLLs ... 580
 13.5.1 PLLs 580
 13.5.2 DLLs 587
 13.5.3 Pitfalls 589
13.6 I/O .. 590
 13.6.1 Basic I/O Pad Circuits 591
 13.6.2 Electrostatic Discharge Protection 593
 13.6.3 Example: MOSIS I/O Pads 594
 13.6.4 Mixed-Voltage I/O 596
13.7 High-Speed Links ... 597
 13.7.1 High-Speed I/O Channels 597
 13.7.2 Channel Noise and Interference 600
 13.7.3 High-Speed Transmitters and Receivers 601
 13.7.4 Synchronous Data Transmission 606
 13.7.5 Clock Recovery in Source-Synchronous Systems 606
 13.7.6 Clock Recovery in Mesochronous Systems 608
 13.7.7 Clock Recovery in Pleisochronous Systems 610
13.8 Random Circuits ... 610
 13.8.1 True Random Number Generators 610
 13.8.2 Chip Identification 611
13.9 Pitfalls and Fallacies ... 612
Summary 613
Exercises 614

Chapter 14 Design Methodology and Tools

14.1 Introduction .. 615
14.2 Structured Design Strategies ... 617
 14.2.1 A Software Radio—A System Example 618
 14.2.2 Hierarchy 620
 14.2.3 Regularity 623
 14.2.4 Modularity 625
 14.2.5 Locality 626
 14.2.6 Summary 627
14.3 Design Methods .. 627
 14.3.1 Microprocessor/DSP 627
 14.3.2 Programmable Logic 628
 14.3.3 Gate Array and Sea of Gates Design 631
 14.3.4 Cell-Based Design 632
 14.3.5 Full Custom Design 634
 14.3.6 Platform-Based Design—System on a Chip 635
 14.3.7 Summary 636
14.4 Design Flows ... 636
 14.4.1 Behavioral Synthesis Design Flow (ASIC Design Flow) 637
 14.4.2 Automated Layout Generation 641
 14.4.3 Mixed-Signal or Custom-Design Flow 645
14.5 Design Economics .. 646
 14.5.1 Non-Recurring Engineering Costs (NREs) 647
 14.5.2 Recurring Costs 649
 14.5.3 Fixed Costs 650
 14.5.4 Schedule 651
 14.5.5 Personpower 653
 14.5.6 Project Management 653
 14.5.7 Design Reuse 654
14.6 Data Sheets and Documentation .. 655
 14.6.1 The Summary 655
 14.6.2 Pinout 655
 14.6.3 Description of Operation 655
 14.6.4 DC Specifications 655
 14.6.5 AC Specifications 656
 14.6.6 Package Diagram 656
 14.6.7 Principles of Operation Manual 656
 14.6.8 User Manual 656

14.7 CMOS Physical Design Styles .. 656

14.8 Pitfalls and Fallacies ... 657

Exercises 657

Chapter 15 Testing, Debugging, and Verification

15.1 Introduction ... 659
 15.1.1 Logic Verification 660
 15.1.2 Debugging 662
 15.1.3 Manufacturing Tests 664

15.2 Testers, Test Fixtures, and Test Programs 666
 15.2.1 Testers and Test Fixtures 666
 15.2.2 Test Programs 668
 15.2.3 Handlers 669

15.3 Logic Verification Principles .. 670
 15.3.1 Test Vectors 670
 15.3.2 Testbenches and Harnesses 671
 15.3.3 Regression Testing 671
 15.3.4 Version Control 672
 15.3.5 Bug Tracking 673

15.4 Silicon Debug Principles .. 673

15.5 Manufacturing Test Principles .. 676
 15.5.1 Fault Models 677
 15.5.2 Observability 679
 15.5.3 Controllability 679
 15.5.4 Repeatability 679
 15.5.5 Survivability 679
 15.5.6 Fault Coverage 680
 15.5.7 Automatic Test Pattern Generation (ATPG) 680
 15.5.8 Delay Fault Testing 680

15.6 Design for Testability .. 681
 15.6.1 Ad Hoc Testing 681
 15.6.2 Scan Design 682
 15.6.3 Built-In Self-Test (BIST) 684
 15.6.4 IDDQ Testing 687
 15.6.5 Design for Manufacturability 687
15.7 Boundary Scan ... 688
15.8 Testing in a University Environment 689
15.9 Pitfalls and Fallacies .. 690
Summary 697
Exercises 697

Appendix A Hardware Description Languages

A.1 Introduction .. 699
A.1.1 Modules 700
A.1.2 Simulation and Synthesis 701
A.2 Combinational Logic .. 702
A.2.1 Bitwise Operators 702
A.2.2 Comments and White Space 703
A.2.3 Reduction Operators 703
A.2.4 Conditional Assignment 704
A.2.5 Internal Variables 706
A.2.6 Precedence and Other Operators 708
A.2.7 Numbers 708
A.2.8 Zs and Xs 709
A.2.9 Bit Swizzling 711
A.2.10 Delays 712
A.3 Structural Modeling ... 713
A.4 Sequential Logic .. 717
A.4.1 Registers 717
A.4.2 Resettable Registers 718
A.4.3 Enabled Registers 719
A.4.4 Multiple Registers 720
A.4.5 Latches 721
A.4.6 Counters 722
A.4.7 Shift Registers 724
A.5 Combinational Logic with Always / Process Statements 724
A.5.1 Case Statements 726
A.5.2 If Statements 729
A.5.3 SystemVerilog Casez 731
A.5.4 Blocking and Nonblocking Assignments 731
A.6 Finite State Machines ... 735
A.6.1 FSM Example 735
A.6.2 State Enumeration 736
A.6.3 FSM with Inputs 738
A.7 Type Idiosyncracies .. 740
A.8 Parameterized Modules ... 742
A.9 Memory ... 745
 A.9.1 RAM 745
 A.9.2 Multiported Register Files 747
 A.9.3 ROM 748
A.10 Testbenches ... 749
A.11 SystemVerilog Netlists ... 754
A.12 Example: MIPS Processor ... 755
 A.12.1 Testbench 756
 A.12.2 SystemVerilog 757
 A.12.3 VHDL 766

Exercises 776

References 785

Index 817

Credits 838
Preface

In the two-and-a-half decades since the first edition of this book was published, CMOS technology has claimed the preeminent position in modern electrical system design. It has enabled the widespread use of wireless communication, the Internet, and personal computers. No other human invention has seen such rapid growth for such a sustained period. The transistor counts and clock frequencies of state-of-the-art chips have grown by orders of magnitude.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>1985</td>
<td>1993</td>
<td>2004</td>
<td>2010</td>
</tr>
<tr>
<td>Transistor Counts</td>
<td>10^5–10^6</td>
<td>10^6–10^7</td>
<td>10^8–10^9</td>
<td>10^9–10^{10}</td>
</tr>
<tr>
<td>Clock Frequencies</td>
<td>10^7</td>
<td>10^8</td>
<td>10^9</td>
<td>10^9</td>
</tr>
<tr>
<td>Worldwide Market</td>
<td>$25B$</td>
<td>$60B$</td>
<td>$170B$</td>
<td>$250B$</td>
</tr>
</tbody>
</table>

This edition has been heavily revised to reflect the rapid changes in integrated circuit design over the past six years. While the basic principles are largely the same, power consumption and variability have become primary factors for chip design. The book has been reorganized to emphasize the key factors: delay, power, interconnect, and robustness. Other chapters have been reordered to reflect the order in which we teach the material.

How to Use This Book

This book intentionally covers more breadth and depth than any course would cover in a semester. It is accessible for a first undergraduate course in VLSI, yet detailed enough for advanced graduate courses and is useful as a reference to the practicing engineer. You are encouraged to pick and choose topics according to your interest. Chapter 1 previews the entire field, while subsequent chapters elaborate on specific topics. Sections are marked with the “Optional” icon (shown here in the margin) if they are not needed to understand subsequent sections. You may skip them on a first reading and return when they are relevant to you.

We have endeavored to include figures whenever possible (“a picture is worth a thousand words”) to trigger your thinking. As you encounter examples throughout the text, we urge you to think about them before reading the solutions. We have also provided extensive references for those who need to delve deeper into topics introduced in this text. We
have emphasized the best practices that are used in industry and warned of pitfalls and fallacies. Our judgments about the merits of circuits may become incorrect as technology and applications change, but we believe it is the responsibility of a writer to attempt to call out the most relevant information.

Supplements

Numerous supplements are available on the Companion Web site for the book, www_cmosvlsi.com. Supplements to help students with the course include:

* A lab manual with laboratory exercises involving the design of an 8-bit microprocessor covered in Chapter 1.
* A collection of links to VLSI resources including open-source CAD tools and process parameters.
* A student solutions manual that includes answers to odd-numbered problems.
* Certain sections of the book moved online to shorten the page count. These sections are indicated by the “Web Enhanced” icon (shown here in the margin).

Supplements to help instructors with the course include:

* A sample syllabus.
* Lecture slides for an introductory VLSI course.
* An instructor’s manual with solutions.

These materials have been prepared exclusively for professors using the book in a course. Please send email to computing@aw.com for information on how to access them.

Acknowledgments

We are indebted to many people for their reviews, suggestions, and technical discussions. These people include: Bharadwaj “Birdy” Amrutur, Mark Anders, Adnan Aziz, Jacob Baker, Kaustav Banerjee, Steve Biblyk, David Blaauw, Erik Brunvand, Neil Burgess, Wayne Burleson, Robert Drost, Jo Ebergen, Sarah Harris, Jacob Herbold, Ron Ho, David Hopkins, Mark Horowitz, Steven Hsu, Tanay Karnik, Omid Kaveh, Matthew Keeter, Ben Keller, Ali Keshavarzi, Brucek Khailany, Jaeha Kim, Volkan Kursun, Simon Knowles, Ram Krishnamurthy, Austin Lee, Ana Sonia Leon, Shih-Lien Lu, Sanu Mathew, Alexander Milenkovic, Sam Naffziger, Braden Phillips, Stefan Rusu, Justin Schauer, James Stine, Jason Stinson, Aaron Stratton, Ivan Sutherland, Jim Tschanz, Alice Wang, Gu-Yeon Wei, and Peiyi Zhao. We apologize in advance to anyone we overlooked.

MOSIS and IBM kindly provided permission to use nanometer SPICE models for many examples. Nathaniel Pinckney spent a summer revising the laboratory exercises and updating simulations. Jaeha Kim contributed new sections on phase-locked loops and high-speed I/O for Chapter 13. David would like to thank Bharadwaj Amrutur of the Indian Institute of Science and Braden Phillips of the University of Adelaide for hosting him during two productive summers of writing.
Addison-Wesley has done an admirable job with the grueling editorial and production process. We would particularly like to thank our editor, Matt Goldstein, and our compositor, Gillian Hall.

Sally Harris has been editing family books since David was an infant on her lap. She read the page proofs with amazing attention to detail and unearthed hundreds of errors.

This book would not have existed without the support of our families. David would particularly like to thank his wife Jennifer and sons Abraham and Samuel for enduring two summers of absence while writing, and to our extended family for their tremendous assistance.

We have become painfully aware of the ease with which mistakes creep into a book. Scores of 3rd edition readers have reported bugs that are now corrected. Despite our best efforts at validation, we are confident that we have introduced a similar number of new errors. Please check the errata sheet at www_cmosvlsi.com/errata.pdf to see if the bug has already been reported. Send your reports to bugs@cmosvlsi.com.

N. W.
D. M. H.
January 2010