Most of my students are training to become allied health professionals, so I wanted a textbook that was specifically built from the ground up for their chosen careers. But it didn’t exist! The books available have either been retrofitted with features that target these students or they were built by pulling art and wording from existing non–allied health texts. This is the very first microbiology text completely designed from scratch to train allied health students—art, media ancillaries, wording, assessments, everything you see is just for them.

The First Microbiology Textbook Aligned with ASM’s New Microbiology Nursing Learning Outcomes

In 2012 the American Society for Microbiology (ASM) drafted a document called “Recommended Curriculum Guidelines for Undergraduate Microbiology Education.” Today, most microbiology textbooks are aligned to these guidelines. Unfortunately, the guidelines are not at all clinical—you won’t find the words “pathogen” or “infection” anywhere in them. Based on this, it’s no wonder that anyone looking from the outside in would conclude that microbiology courses are for science majors, not allied health students. That’s exactly why some nursing programs are removing microbiology courses from their curriculum and prerequisites. Most microbiology faculty would agree that this is a tremendous disservice to students and patients. Preventable medical errors are the third leading cause of death in the United States, and healthcare-acquired infections affect over 1.7 million U.S. patients annually and cost $35 billion dollars per year in the United States alone. Clearly, allied health students need microbiology. However, their training in microbiology is not the same as general microbiology. Allied health students need microbiology from an allied health perspective every bit as much as science majors need training from a research perspective.

To address the issue, ASM convened a task force, of which I was one of many faculty participants. The task force drafted nursing-centric microbiology learning outcomes and showed how they align with NCLEX learning outcomes. This textbook is the first on the market that directly aligns with ASM’s nursing-centric learning outcomes and NCLEX learning outcomes. And this textbook is the first to have assignable, auto-graded content specifically tagged with these outcomes. Faculty can review this content in Mastering Microbiology and track student progress on these outcomes—along with ASM’s original outcomes.

The First Microbiology Textbook that Overtly Teaches Critical Thinking

Allied healthcare workers have the potential to either save lives or end them based on how they perform in their careers. Our students are studying for more than a grade; there are lives at stake. This means that they need to learn the course content, but they also must be able to think clinically and critically. Knowing this, faculty may infuse case studies and other critical thinking exercises into their courses. But, there are challenges to this. Many students lack prerequisite knowledge and struggle with critical thinking; class time is limited and there is so much to cover. Also, most microbiology case studies require students to be diagnosticians—an arguably unreasonable expectation to have for an introductory microbiology student. Most books include critical thinking exercises and case studies, but none overtly provide a framework for students to approach higher order questions. This book does, and here’s why . . .
I used to believe that students would pick up on how to think critically if I assigned them readings, gave them critical thinking questions, and modeled critical thinking for them. But time after time I had students come to me in a daze of frustration. They’d routinely say things like, “The answer’s not in the book,” or “I don’t even know where to begin.” I eventually realized I had to overtly teach critical thinking—not just model it and assign it as a task. It has to be expressly taught, just like the course content. But I don’t have unlimited time with my students and I can’t hold their hands through all of their course work or into their next program. This is how the S.M.A.R.T. framework was born.

I thought about how trained clinicians and scientists approach problems. I also followed the literature on the neurological aspects of how we learn and how we develop critical thinking skills. Years of teaching and experimenting with thousands of my own students led me to distill the process into the five formulaic steps in S.M.A.R.T. (Summarize, Make connections, Avoid distractors, Reread, and Thoroughly answer). These steps are easy to teach, model, and evaluate students on—and students can readily remember them. These steps help students begin to think like the healthcare providers they are seeking to become.

A Book Focused on Students

Learning science is tough enough without introducing a communication barrier into the mix. This is an accessible textbook that breaks away from stuffy “textbook-speak.” That does not mean it’s “dumbed down”; it means it’s conversational, easy to read, focuses on details allied health students need, and uses memorable analogies and learning devices to bring the content to life. When learning a new subject, that last thing anyone needs is to get bogged down in passive voice prose, odd jargon-filled language, and overly busy figures. Having an accessible text is also increasingly important as we shift from traditional face-to-face courses to hybrid and online platforms where students are expected to engage in more independent learning.

Student and Instructor Tested—and Approved

The development process for this book involved substantial numbers of reviews to ensure that my approach works well for allied health instructors and students. Over one hundred professors and 5,000 students participated in product testing. Of these, 1,700 students took part in both class tests and focus groups. Some key student statistics from this research:

- 97% of students felt that the illustrations and photos in this book were more effective in helping them learn the concepts than the illustrations and photos in their current book.
- 86% of students felt this book’s writing style was clearer and more engaging than their current book.
- 87% of students said that, if they were a microbiology instructor, they would choose Norman-McKay for their text.
- 91% of the students said that the S.M.A.R.T. case studies helped improve their understanding of the topics and, of those who said they improved their understanding, 54% said that they significantly improved their understanding.
Contents

1 Introduction to Microbiology 1

A Brief History of Microbiology 2

What Is Microbiology? 2

Great Advances Occurred in and Around the Golden Age of Microbiology 3

The Scientific Method Is the Guiding Investigative Principle for Microbiology 7

Classifying Microbes and Their Interactions 8

Morphology and Physiology Are Central to Bacterial Classification 8

Taxonomy Groups Organisms 9

Microbes May Be Friends or Foes 11

Growing, Staining, and Viewing Microbes 16

We Culture Microbes So We Can Study Them 16

Specimens Are Often Stained Before Viewing with a Microscope 18

Microscopy Is Central to Microbiology 22

CONCEPT COACH: THE S.M.A.R.T. APPROACH 2

VISUAL SUMMARY 29 = CHAPTER 1 OVERVIEW 30

COMPREHENSIVE CASE 31 = END OF CHAPTER QUESTIONS 33

2 Biochemistry Basics 36

From Atoms to Macromolecules 37

What Are Atoms? 37

What Are Molecules? 39

Chemical Bonds 43

Electrons Determine What Bonds Can Form 43

Water Prefers to Interact with Polar Molecules 46

Chemical Reactions 48

Chemical Reactions Make and Break Chemical Bonds 48

Chemical Reactions Consume or Release Energy 50

Biologically Important Macromolecules 51

There Are Four Main Classes of Biomolecules 51

Carbohydrates Include Simple Sugars and Polysaccharides 51

Lipids Include Fats, Oils, Waxes, and Steroids 52

Nucleic Acids Include DNA and RNA 54

Proteins Are Cellular Workhorses 55

VISUAL SUMMARY 61 = CHAPTER 2 OVERVIEW 62

COMPREHENSIVE CASE 63 = END OF CHAPTER QUESTIONS 64

3 Introduction to Prokaryotic Cells 67

Prokaryotic Cell Basics 68

Bacteria and Archaea Are Different Types of Prokaryotic Cells 68

Prokaryotes Have Unique Sizes, Shapes, and Arrangements 69

Prokaryotic Cells Primarily Divide by Binary Fission 70

Extracellular Structures 72

Prokaryotic Cells Rely on Their Plasma Membrane and Cell Wall as Barriers 72

Knowing a Bacterium’s Gram and Acid-Fast Properties Is Clinically Useful 74

Prokaryotic Cells Transport Substances Across Their Cell Wall and Plasma Membrane 78

Many Prokaryotic Cells Have External Structures for Adhesion, Movement, and Protection 80

Intracellular Structures 84

Prokaryotes Lack Membrane-Bound Organelles, But Still Have Intracellular Structures 84

Some Bacterial Species Make Endospores to Survive Harsh Conditions 86

VISUAL SUMMARY 88 = CHAPTER 3 OVERVIEW 89

COMPREHENSIVE CASE 90 = END OF CHAPTER QUESTIONS 90

4 Introduction to Eukaryotic Cells 93

Overview of Eukaryotes 94

The Endosymbiotic Theory Proposes How Eukaryotes Evolved 94

Eukaryotic Cell Structures, as Well as Processes for Cell Division and Transport, Differ from Prokaryotic Cells 94

Classification of Eukaryotes 99

Eukaryotic Organisms Fall into Four Different Kingdoms 99

Extracellular Structures 105

All Eukaryotes Have a Plasma Membrane 105

Certain Eukaryotes Have a Cell Wall 105

Many Eukaryotes Have Structures for Protection, Adhesion, and Movement 106

Intracellular Structures 108

Ribosomes Can Be Free or Membrane Associated 108

The Cytoskeleton Shapes Cells and Coordinates Cell Cargo Movement 108

Eukaryotes Have a Variety of Membrane-Bound Organelles 109

VISUAL SUMMARY 115 = CHAPTER 4 OVERVIEW 116

COMPREHENSIVE CASE 117 = END OF CHAPTER QUESTIONS 118
5 Genetics 121

Heredity Basics 122
Genotype Determines Phenotype 122
Prokaryotic and Eukaryotic Genomes Differ in Size and Organization 122
The Nucleic Acids DNA and mRNA Govern Cell Life 123
Genetic Information Typically Flows from DNA, to RNA, to Protein 125
DNA Replication 127
DNA Replication Allows Cells to Copy Their DNA 127
Leading and Lagging Strand Replication Differs 128
Prokaryotes and Eukaryotes Replicate DNA Somewhat Differently 130
Protein Synthesis (Gene Expression) 131
Protein Synthesis Entails Reading the Genomic Instruction Manual Using Transcription and Translation 131
Transcription Makes RNA 131
Three Main Types of RNA Are Involved in Protein Synthesis 133
Ribosomes Translate mRNA to Build Proteins 134
Regulating Protein Synthesis 139
Controlling Protein Synthesis Is Essential for All Cells 139
Pre-Transcriptional Regulation Impacts When and How Often Transcription Occurs 140
Operons Are One form of Pre-Transcriptional Regulation 140
Cells Alter Their Epigenome as a Means of Pre-Transcriptional Regulation 142
Many Bacteria Use Quorum Sensing to Pre-Transcriptionally Control Protein Synthesis 143
Post-Transcriptional Regulation Impacts How Often mRNA Is Translated into Protein 143
Mutations 144
There Are Three Main Categories of Mutations: Substitutions, Insertions, and Deletions 144
Mutation Effects Differ 145
Mutations Can Be Spontaneous or Induced 147
DNA Proofreading and Repair Mechanisms Protect the Stability of the Genome 148
Genetic Variation Without Sexual Reproduction 150
Horizontal Gene Transfer Allows Bacteria to Share Genes Without a Cell Division Event 150

6 Viruses and Prions 164

General Virus Characteristics 165
Viruses Are Nonliving Pathogens 165
Viruses Exhibit Diverse Structural and Genomic Features 166
Viral Genomes Change over Time 169
Classifying and Naming Viruses 171
Diverse Features Are Used to Classify and Name Viruses 171

7 Fundamentals of Microbial Growth 193

Microbial Growth Basics 194
Microbes Show Dynamic and Complex Growth in Nature, and More Distinct Growth Stages in the Laboratory 194
Bacteria Usually Divide by Binary Fission, But Some May Use Budding or Spore Formation 194
Bacteria Have Four Distinct Growth Phases When Cultured Using a Closed Pure Batch System 196
Prokaryotic Growth Requirements 198
Prokaryotes Adapt to Various Growth Conditions 198
Microbes Require Nutrients, Growth Factors, and a Source of Energy 202
Growing, Isolating, and Counting Microbes 204
Microbes Are Grown Using Various Media 204
Collecting, Isolating, Counting, and Identifying Microbes Are Important in Microbiology 208
Controlling Microbial Growth 212
Control Strategies Aim to Reduce or Eliminate Microbial Contamination 212
Temperature, Radiation, and Filtration Are All Physical Methods to Control Microbial Growth 212
Germicides Are Chemical Controls That Limit Microbes 215
Many Factors Must Be Considered to Select an Appropriate Germicide 220
Different Control Methods Work for Different Microbes 221

8 Microbial Metabolism 228

Defining Metabolism 229
Catabolic and Anabolic Reactions Are the Yin and Yang of Metabolism 229
ATP Is Like Metabolic Money 229
Enzymes 231
Cells Rely on Enzymes for Metabolism 231
Many Factors Affect Enzyme Activity 234
Obtaining and Using Energy 239
Redox Reactions Fuel the Recharging of ADP to ATP 239
Three General Mechanisms Make Recharging ADP to ATP Possible 241

The Catabolic Process of Cellular Respiration 242
Cellular Respiration Is One Way Cells Harvest Energy from Nutrients 242
Oxidative Phosphorylation Uses Chemiosmosis to Recharge ADP to ATP 249
Aerobic Cellular Respiration Uses Oxygen as the Final Electron Receptor, While Anaerobic Cellular Respiration Does Not 249

Other Catabolic Pathways for Oxidizing
Nutrients 251
Glycolysis Is Not the Only Pathway to Oxidize Sugars 251
Fermentation Catabolizes Nutrients Without Using a Respiratory Chain 252
In Summary, All Cells Depend on Redox Reactions to Make ATP 254
Cells Also Catabolize Lipids, Proteins, and Nucleic Acids 254

Anabolic Reactions: Biosynthesis 256
Polysaccharide Biosynthesis Starts with Simple Sugars 256
Lipid Biosynthesis Starts with Fatty Acids and Glycerol 257
Cells Use Anabolic Reactions to Make Amino Acids 258
Purines and Pyrimidines Are Not Usually Made from Scratch 258

The Interconnected Web of Metabolism 259
Amphibolic Pathways Simultaneously Function in Catabolism and Anabolism 259
Organisms Are Metabolically Diverse 259
Autotrophs Fix Carbon; Heterotrophs Cannot 259
The Initial Source of Electrons for Redox Reactions Sorts Lithotrophs from Organotrophs 260
How a Cell Obtains Energy to Make ATP Defines Phototrophs and Chemotrophs 260

Using Metabolic Properties to Identify Bacteria 261
There Are Many Tests to Identify Bacterial Samples 261

Five General Stages of Disease Occur During Infections 275

Epidemiology Essentials 277
The Epidemiological Triangle Links Host, Etiological Agent, and Environment 278
There Are Strategies to Break the Epidemiological Triangle 278
Public Health Aims to Improve Overall Health in a Population 280

Epidemiological Measures and Studies 280
Epidemiological Measures Are Often Presented as Ratios, Proportions, or Rates 280
Measures of Frequency Include Disease Prevalence and Incidence Data 281
Measures of Association May Reveal Risk Factors for a Disease 281
Epidemiological Studies Can Be Categorized as Either Descriptive or Analytical 282

Epidemiology in Clinical Settings 284
In the 1840s, Ignaz Semmelweis First Showed That Hand Washing Prevents Disease 284
Healthcare-Acquired Infections Are Dangerous, Expensive, and an Increasing Problem 284

Surveillance, Eradication, and Ethics in Epidemiology 287
Surveillance Programs Monitor, Control, and Prevent Disease 287
Eradication Is the Ultimate Triumph over an Infectious Disease 289
Conducting Epidemiology Involves Weighing Ethical Issues 289

Visual Summary 292 = Chapter 8 Overview 293
Comprehensive Case 294 = End of Chapter Questions 295

Host–Microbe Interactions and Pathogenesis 297

Basics of Host–Microbe Interactions 298
Host–Microbe Interactions May Be Benign or Cause Disease 298

Introduction to Virulence 300
Host–Microbe Interactions Influence Virulence 300
Not All Pathogens Are Equally Virulent 301
Toxins Are Major Virulence Factors 302

Five Steps to Infection 305
First, a Pathogen Must Enter a Host 305
Second, a Pathogen Must Adhere to Host Tissues 307
Third, a Pathogen Must Invade Tissues and Obtain Nutrients 308
Fourth, a Pathogen Must Evade Host Immune Defenses So It Can Replicate 310
Fifth, a Pathogen Must Be Transmitted to a New Host to Repeat the Cycle 312

Safety and Health Care 313
Biosafety Levels Dictate Appropriate on-the-Job Behaviors in Healthcare 313
Infection Control Practices Protect Both Workers and Patients in Healthcare Facilities 314
Innate Immunity 324

Overview of the Immune System and Responses 325
Immune Responses Are Classified as Either Innate or Adaptive 325
Normal Microbiota Has a Role in Shaping Immune Responses and Conferring Protection 326
Introduction to First-Line Defenses 327
First-Line Defenses Aim to Prevent Pathogen Entry 327
Introduction to Second-Line Defenses and the Lymphatic System 329
Second-Line Defenses Kick in When First-Line Defenses Are Breached 329
The Lymphatic System Collects, Circulates, and Filters Body Fluids 329
Leukocytes Are Essential in All Immune Responses 330
Leukocytes Work with Molecular Factors as a Part of Second-Line Defenses 331
Cellular Second-Line Defenses 332
Granulocytes Include Neutrophils, Eosinophils, Basophils, and Mast Cells 332
Agranulocytes Associated with Innate Immunity Include Monocytes (Macrophage Precursors), Dendritic Cells, and Certain Lymphocytes 333
Molecular Second-Line Defenses 334
A Number of Defense Molecules Mediate Innate Immune Responses 334
Complement Cascades Boost the Effectiveness of Other Innate Immune Responses 337
Inflammation and Fever 339
Inflammation and Fever Are Key Protective Innate Immune Responses 339
Inflammation Is Essential to Healing and Immunity, But if Unregulated It Damages Our Own Tissues 339
Fever Is a Systemic Innate Immune Response 344

Concept Coach: Overview of Innate Immunity 326
Concept Coach: Inflammation 344

Humoral Response of Adaptive Immunity 364
Stage 1: B Cells Are Antigen-Presenting Cells 364
Stage 2: B Cells Are Activated by T-Dependent and T-Independent Antigens 364
Stage 3: Activated B Cells Proliferate and Differentiate into Plasma Cells and Memory Cells 365
Stage 4: Antibodies Help Eliminate Antigens 366

A Deeper Exploration of Humoral Memory 369
Memory Cells Allow for Fast, Amplified Response upon Re-Exposure to an Antigen 369
Humoral Immunity Is Acquired Naturally or Artificially, and Is Either Passive or Active 370

Multicyclone Foy: An Overview of Adaptive Immunity 352
Multicyclone Foy: Antigen Presentation 359

Adaptive Immunity 350

Introduction to Third-Line Defenses 351
The Adaptive Response Is the Body’s Third and Final Line of Defense 351
T Cells and B Cells, the Main Lymphocytes of Adaptive Immunity, Can Recognize Practically Any Natural or Man-Made Antigen 352
T Cells Fall into Two Main Classes: Helper or Cytotoxic Cells 354
T Cells and B Cells Are Screened for Self-Tolerance 356
Cellular Branch of Adaptive Immunity 357
In the Cellular Response, T Cells Mobilize Against Diverse Antigens 357

Stage 1: Antigen-Presenting Cells Use Major Histocompatibility Complexes I or II to Present Antigens to T Cells 357
Stage 2: T Cells Are Activated by Antigen-Presenting Cells in Lymphatic Tissues 360
Stage 3: Activated T Cells Undergo Proliferation and Differentiation 362
Stage 4: Effector T Cells Eliminate Antigens and Memory T Cells Remain in Lymphatic Tissues 363

Immune System Disorders 378

Immune Deficiencies and Autoimmunity 379
Genetic Defects May Lead to Primary Immune Deficiencies 379
Aging, Chronic Disease, and Various External Factors Can Cause Secondary Immune Deficiencies 379
Immune System Deficiencies May Lead to Cancer 381
Lack of Self-Tolerance Leads to Autoimmune Disorders 381

Introduction to Hypersensitivities 383
Hypersensitivities Are Defined by an Inappropriate Immune Response 383
There Are Four Classes of Hypersensitivities 383

Type I Hypersensitivities 384
Allergy and Certain Forms of Asthma Are Also Called Type I Hypersensitivities 384

Type II Hypersensitivities 390
Type II Hypersensitivities Are Often Characterized by Cytotoxic Reactions, and Include Blood Transfusion Reactions and Hemolytic Disease of the Newborn 390
Rh Factor Incompatibility During Pregnancy May Lead to Hemolytic Disease of the Newborn (HDN) 392

Type III Hypersensitivities 395
Type III Hypersensitivities Are Characterized by Immune Complexes Depositing in Tissues 395

Type IV Hypersensitivities 396
Type IV Hypersensitivities Are Mediated by T Cells 396

Concept Coach: How Allergies Develop 384
14 Vaccines and Biotechnology-Based Diagnostics and Therapeutics 405

A Brief History of Vaccines 406
Vaccine History Includes Triumphs As Well As Controversies 406

Overview of Vaccines 409
Immunity Is Acquired in a Number of Ways 409
There Are Many Vaccine Types, All With Different Pros and Cons 411
New Vaccines Are in Development For Persistent and Emerging Diseases 413

Immunological Diagnostic Testing 414
Immunological Diagnostic Tests Often Rely on Antigen–Antibody Interactions 414
Enzyme-Linked Immunosorbent Assays (ELISAs) Leverage Antigen–Antibody Interaction For Rapid Diagnosis 418
Fluorescent-Tagged Antibodies Can Detect Antigens or Antibodies in a Sample 421
Interferon Gamma Release Assays (IGRAs) Detect Tuberculosis Infections 421
Western Blotting and Complement Fixation Assays Are Immunodiagnostic Techniques That Are Now Less Common in Clinical Settings 422

Selected Genetics Applications in Medicine 423
The Polymerase Chain Reaction (PCR) Can Help Diagnose Infections and Genetic Disorders 423
Drug Development Often Relies on Recombinant DNA Techniques 424
CRISPR Can Edit Any Genetic Material 426
Viruses Can Deliver Genes to Human Cells 427
Genome Maps Reveal Valuable Information 428
Gene Microarray Technology Provides a Global View of Cellular Functions 429

VISUAL SUMMARY 430 = CHAPTER 14 OVERVIEW 431
COMPREHENSIVE CASE 432 = END OF CHAPTER QUESTIONS 432

15 Antimicrobial Drugs 434

Introduction to Antimicrobial Drugs 435
Antimicrobial Drugs Radically Changed Modern Medicine 435
Antimicrobial Drugs Are Described by the Pathogens They Target and Their Mechanisms of Action 435
Antimicrobial Drugs May Be Natural, Synthetic, or Semisynthetic 436
A Number of Factors Impact Antimicrobial Drug Development 437

Survey of Antibacterial Drugs 440
Antibacterial Drugs May Be Grouped by Their Cellular Targets 440
Many Antimicrobial Drugs Disrupt Bacterial Cell Wall Production 440

Quinolones and Rifamycins Target Nucleic Acids 445
Antifolate Drugs Target Folic Acid Production 446
Some Drugs Target Prokaryotic Ribosomes 446
Certain Polypeptide Drugs Target Membrane Structures 448

Drugs for Viral and Eukaryotic Infections 449
Developing Selectively Toxic Drugs Against Eukaryotic Pathogens and Viruses Is Challenging 449
Antiviral Drugs Target Specific Points in Viral Replication 449
Antifungal Drugs Often Target Cell Wall and Membrane Structures 449
Antiprotozoan and Antihelminthic Drugs Often Target Intracellular Components 450

Assessing Sensitivity to Antimicrobial Drugs 452
Assessing a Bacterium's Susceptibility to Antimicrobial Drugs Is Essential For Proper Treatment 452

Drug Resistance and Proper Antimicrobial Drug Stewardship 455
Pathogens May Have Intrinsic and/or Acquired Antimicrobial Resistance 455
There Are Three Main Ways Microbes Evade Antimicrobial Drugs 456
Human Behaviors Can Accelerate Drug Resistance Emergence 458
Combating Drug Resistance Requires Proper Drug Stewardship 460

VISUAL SUMMARY 462 = CHAPTER 15 OVERVIEW 463
COMPREHENSIVE CASE 464 = END OF CHAPTER QUESTIONS 465

16 Respiratory System Infections 467

Overview of the Respiratory System 468
Inhalation Is the Most Common Way Microbes Gain Access to the Body 468

Viral Infections of the Respiratory System 471
Viruses Are the Most Common Cause of Respiratory Infections 471
RSV, HPIV, and Adenoviruses Produce Cold-Like Symptoms But Have Other Clinical Features Worth Noting 472
Influenza Is the Second-Most-Common Viral Respiratory Illness in Humans 474
Severe Acute Respiratory Syndrome (SARS) Is Caused by a Coronavirus 476
Hantavirus Pulmonary Syndrome Is a Rare But Dangerous Illness 477

Bacterial Infections of the Respiratory System 478
Otitis Media Is a Common Bacterial Complication of Colds 478
Streptococcus pyogenes Primarily Causes Strep Throat 480
Corynebacterium diphtheriae Causes Diphtheria 481
Pertussis (Whooping Cough) Is an Acute Infection of the Respiratory Tract 482
Tuberculosis (TB) Is One of the Top Infectious Disease Killers in the World 483
Pneumonia Is the Leading Infectious Disease Killer in the United States Today 486
Pneumococcal Pneumonia Is the Standard for Classifying Typical Pneumonia Syndrome 487
Skin and Eye Infections 504

Overview of Skin Structure, Defenses, and Afflictions 505
• The Skin, Our Largest Organ, Has Specialized Defenses 505
• Rashes and Lesions Are Typical Skin Afflictions 506

Viral Skin Infections 507
• Vesicular or Pustular Rashes Characterize a Variety of Viral Infections 507
• Maculopapular Rashes Are Typical of Several Viral Infections 511
• Certain Viruses Cause Warts 513

Bacterial Skin Infections 515
• Acne Is a Common Skin Infection Mainly Caused by Propionibacterium acnes 515
• Staphylococcus aureus Causes a Spectrum of Skin Diseases 516
• Streptococcus pyogenes Primarily Causes Strep Throat, But Can Cause Skin Infections 518
• Pseudomonads Can Cause Opportunistic Infections as Well as Serious Wound Infections 520
• Gas Gangrene and Cutaneous Anthrax Are Both Bacterial Infections Characterized by Tissue Necrosis 521

Fungal Skin Infections 523
• Fungal Skin Infections Are Usually Superficial 523

Parasitic Skin Infections 525
• Cutaneous Leishmaniasis Is a Protozoan Infection 525

Structure, Defenses, and Infections of the Eyes 526
• The Eye Has Specialized Structures and Defense Mechanisms 526
• Bacteria, Viruses, Fungi, and Parasites Can All Cause Eye Infections 527

Viral Nervous System Infections 541
• Viruses Cause the Most Common Nervous System Infections 541

Bacterial Nervous System Infections 545
• Bacteria Can Infect the Central Nervous System, Causing Meningitis 545
• Bacteria Can Infect the Peripheral Nervous System 549
• Bacterial Toxins Can Damage the Nervous System 550

Fungal Nervous System Infections 549
• Fungi Can Infect the Central Nervous System 553
• Protozoans Cause Rare But Serious Nervous System Infections 554
• Infectious Proteins Called Prions Can Damage the Central Nervous System 557

Gastrointestinal Infection Symptoms and Diagnostic Tools 566
• Digestive System Infections May Result in Dysentery, Gastroenteritis, or Other GI Symptoms 566

Viral Digestive System Infections 567
• Mumps Is a Viral Infection of the Salivary Glands 567
• Many Viruses Cause Gastroenteritis 568
• Hepatitis Is a Liver Infection Most Commonly Caused by Three Unrelated Viruses 569

Bacterial Digestive System Infections 573
• Dental Caries Are Prevalent in Children and Periodontal Disease Is Prevalent in Adults 573
• Helicobacter pylori Can Cause Gastritis and Stomach Ulcers 575
• Bacteria Are Common Causes of Foodborne Illnesses 576
• Campylobacter jejuni Is a Leading Cause of Bacterial Foodborne Illness 578
• Dysentery and Fever May Occur During Shigella Infections 579
• Various Escherichia coli Strains Cause Gastroenteritis 581
• Some Salmonella Cause Common Foodborne Gastroenteritis, While Others Cause Typhoid Fever 582
Overview of the Urinary and Reproductive Systems 601

Urinary and Reproductive System Infections 601

Overview of the Urinary and Reproductive Systems 602
Our Urinary System Includes Kidneys, Ureters, the Bladder, and the Urethra 602
The Female Reproductive System Includes Ovaries, Fallopian Tubes, Uterus, Cervix, Vagina, and External Genitalia 603
The Female Reproductive System Has Built-In Innate Protections, Including a Specialized Microbiome 606
The Male Reproductive System Consists of the Scrotum, Testes, Spermatic Ducts, Sex Glands, and Penis 608

Urinary System Infections 610
Urinary Tract Infections Are Described by the Part of the Urinary Tract Affected 610
Bacteria Are the Most Common Cause of Urinary Tract Infections 610
Viruses Occasionally Cause UTIs 614
Fungi Can Cause UTIs 614

Reproductive System Viral Infections 615
Many Sexually Transmitted Pathogens Do Not Target the Reproductive System 615
Genital Herpes Is an STI That Affects the Reproductive System and Can Cause Serious Neonatal Complications 615
Human Papilloma Viruses Are the Most Common STI in the World 617

Reproductive System Bacterial Infections 619
Vaginosis and Vaginitis Describe Different Vaginal Conditions 619
Chlamydia trachomatis Is a Common Cause of Bacterial STIs 620
Gonorrhea Incidence Is on the Rise in the United States and Increased Antibiotic Resistance Is Making It Harder to Treat 623
Syphilis Killed Millions for Centuries, and Remains a Common But Curable Infection Today 625
Chancroid Is an STI That Is Mainly Found in Developing Nations 626

Reproductive System Eukaryotic Infections 627
Candidiasis Is the Most Common Fungal Infection of the Reproductive System 627

Caused by a Parasite, Trichomoniais Is Often Undiagnosed and Underreported 629

VISUAL SUMMARY 630 = CHAPTER 20 OVERVIEW 631
COMPREHENSIVE CASE 632 = END OF CHAPTER QUESTIONS 634

21 Cardiovascular and Lymphatic Infections 634

Overview of the Cardiovascular and Lymphatic Systems 635
Cardiovascular and Lymphatic System Infections Are Often Called Systemic Infections 635
The Cardiovascular System Includes the Heart and Blood Vessels 636
Recent Microbiome Studies Indicate That, Contrary to Common Belief, Normal Blood isn’t Completely Sterile 636
Lymphatic Vessels Collect Lymph from Tissues and Convey It Back to the Venous Blood Supply 637
Sepsis Is a Potentially Deadly Immune Response Syndrome 637

Systemic Viral Infections 640
Vectorborne Systemic Viral Infections Include Dengue Fever, Yellow Fever, Chikungunya, and Zika 640
At Least Four Viral Families Are Known to Cause Hemorrhagic Fevers 645
Epstein-Barr Virus Is the Most Common Cause of Mononucleosis, and Can Also Lead to Burkitt’s Lymphoma 647
Chronic Retroviral Infections Can Lead to Cancer and Immunodeficiencies 649

Systemic Bacterial Infections 653
Systemic Infections May Develop When Bacteria Enter the Circulatory or Lymphatic Systems 653
Yersinia pestis Causes Plague 653
Bacterial Endocarditis Can Cause Heart Valve Damage 654
Highly Infectious, Tularemia Is Notable for Being a Potential Bioterrorism Agent 655
Ticks Are Common Vectors for Transmitting Diverse Systemic Bacterial Infections to Humans 655

Systemic Fungal Infections 658
Candidemia (Invasive Candidasis) Is the Most Common Systemic Fungal Infection 658

Systemic Protozoan Infections 659
The Ancient Disease Malaria Still Impacts Millions 659

VISUAL SUMMARY 662 = CHAPTER 21 OVERVIEW 663
COMPREHENSIVE CASE 664 = END OF CHAPTER QUESTIONS 664

Appendix A: Answers to End of Chapter Questions A-1
Appendix B: Credits A-9
Appendix C: Abridged Microbiology in Nursing and Allied Health Undergraduate Curriculum Guidelines A-13
Glossary G-1
Index I-1