Preface

Most of my students are training to become allied health professionals, so I wanted a textbook that was specifically built from the ground up for their chosen careers. But it didn’t exist! The books available have either been retrofitted with features that target these students or they were built by pulling art and wording from existing non-allied health texts. This is the very first microbiology text completely designed from scratch to train allied health students—art, media ancillaries, wording, assessments, everything you see is just for them.

The First Microbiology Textbook Aligned with ASM’s New Microbiology Nursing Learning Outcomes

In 2012 the American Society for Microbiology (ASM) drafted a document called “Recommended Curriculum Guidelines for Undergraduate Microbiology Education.” Today, most microbiology textbooks are aligned to these guidelines. Unfortunately, the guidelines are not at all clinical—you won’t find the words “pathogen” or “infection” anywhere in them. Based on this, it’s no wonder that anyone looking from the outside in would conclude that microbiology courses are for science majors, not allied health students. That’s exactly why some nursing programs are removing microbiology courses from their curriculum and prerequisites. Most microbiology faculty would agree that this is a tremendous disservice to students and patients. Preventable medical errors are the third leading cause of death in the United States, and healthcare-acquired infections affect over 1.7 million U.S. patients annually and cost $35 billion dollars per year in the United States alone. Clearly, allied health students need microbiology. However, their training in microbiology is not the same as general microbiology. Allied health students need microbiology from an allied health perspective every bit as much as science majors need training from a research perspective.

To address the issue, ASM convened a task force, of which I was one of many faculty participants. The task force drafted nursing-centric microbiology learning outcomes and showed how they align with NCLEX learning outcomes. This textbook is the first on the market that directly aligns with ASM’s nursing-centric learning outcomes and NCLEX learning outcomes. And this textbook is the first to have assignable, auto-graded content specifically tagged with these outcomes. Faculty can review this content in Mastering Microbiology and track student progress on these outcomes—along with ASM’s original outcomes.

The First Microbiology Textbook that Overtly Teaches Critical Thinking

Allied healthcare workers have the potential to either save lives or end them based on how they perform in their careers. Our students are studying for more than a grade; there are lives at stake. This means that they need to learn the course content, but they also must be able to think clinically and critically. Knowing this, faculty may infuse case studies and other critical thinking exercises into their courses. But, there are challenges to this. Many students lack prerequisite knowledge and struggle with critical thinking; class time is limited and there is so much to cover. Also, most microbiology case studies require students to be diagnosticians—an arguably unreasonable expectation to have for an introductory microbiology student. Most books include critical thinking exercises and case studies, but none overtly provide a framework for students to approach higher order questions. This book does, and here’s why . . .
I used to believe that students would pick up on how to think critically if I assigned them readings, gave them critical thinking questions, and modeled critical thinking for them. But time after time I had students come to me in a daze of frustration. They’d routinely say things like, “The answer’s not in the book,” or “I don’t even know where to begin.” I eventually realized I had to overtly teach critical thinking—not just model it and assign it as a task. It has to be expressly taught, just like the course content. But I don’t have unlimited time with my students and I can’t hold their hands through all of their course work or into their next program. This is how the S.M.A.R.T. framework was born.

I thought about how trained clinicians and scientists approach problems. I also followed the literature on the neurological aspects of how we learn and how we develop critical thinking skills. Years of teaching and experimenting with thousands of my own students led me to distill the process into the five formulaic steps in S.M.A.R.T. (Summarize, Make connections, Avoid distractors, Reread, and Thoroughly answer). These steps are easy to teach, model, and evaluate students on—and students can readily remember them. These steps help students begin to think like the healthcare providers they are seeking to become.

A Book Focused on Students

Learning science is tough enough without introducing a communication barrier into the mix. This is an accessible textbook that breaks away from stuffy “textbook-speak.” That does not mean it’s “dumbed down”; it means it’s conversational, easy to read, focuses on details allied health students need, and uses memorable analogies and learning devices to bring the content to life. When learning a new subject, that last thing anyone needs is to get bogged down in passive voice prose, odd jargon-filled language, and overly busy figures. Having an accessible text is also increasingly important as we shift from traditional face-to-face courses to hybrid and online platforms where students are expected to engage in more independent learning.

Student and Instructor Tested—and Approved

The development process for this book involved substantial numbers of reviews to ensure that my approach works well for allied health instructors and students. Over one hundred professors and 5,000 students participated in product testing. Of these, 1,700 students took part in both class tests and focus groups. Some key student statistics from this research:

- 97% of students felt that the illustrations and photos in this book were more effective in helping them learn the concepts than the illustrations and photos in their current book.
- 86% of students felt this book’s writing style was clearer and more engaging than their current book.
- 87% of students said that, if they were a microbiology instructor, they would choose Norman-McKay for their text.
- 91% of the students said that the S.M.A.R.T. case studies helped improve their understanding of the topics and, of those who said they improved their understanding, 54% said that they significantly improved their understanding.
Introduction to Microbiology 1

Prokaryotes Have Unique Sizes, Shapes, and Arrangements 69
Prokaryotic Cells Primarily Divide by Binary Fission 70

Extracellular Structures 72
Prokaryotic Cells Rely on Their Plasma Membrane and Cell Wall as Barriers 72
Knowing a Bacterium's Gram and Acid-Fast Properties Is Clinically Useful 74
Prokaryotic Cells Transport Substances Across Their Cell Wall and Plasma Membrane 78
Many Prokaryotic Cells Have External Structures for Adhesion, Movement, and Protection 80

Intracellular Structures 84
Prokaryotes Lack Membrane-Bound Organelles, But Still Have Intracellular Structures 84
Some Bacterial Species Make Endospores to Survive Harsh Conditions 86

Contents
5 Genetics 121

Heredity Basics 122
- Genotype Determines Phenotype 122
- Prokaryotic and Eukaryotic Genomes Differ in Size and Organization 122
- The Nucleic Acids DNA and mRNA Govern Cell Life 123
- Genetic Information Typically Flows from DNA, to RNA, to Protein 125

DNA Replication 127
- DNA Replication Allows Cells to Copy Their DNA 127
- Leading and Lagging Strand Replication Differs 128
- Prokaryotes and Eukaryotes Replicate DNA Somewhat Differently 130

Protein Synthesis (Gene Expression) 131
- Protein Synthesis Entails Reading the Genomic Instruction Manual Using Transcription and Translation 131
- Transcription Makes RNA 131
- Three Main Types of RNA Are Involved in Protein Synthesis 133
- Ribosomes Translate mRNA to Build Proteins 134

Regulating Protein Synthesis 139
- Controlling Protein Synthesis Is Essential for All Cells 139
- Pre-Transcriptional Regulation Impacts When and How Often Transcription Occurs 140
- Operons Are One form of Pre-Transcriptional Regulation 140
- Cells Alter Their Epigenome as a Means of Pre-Transcriptional Regulation 142
- Many Bacteria Use Quorum Sensing to Pre-Transcriptionally Control Protein Synthesis 143
- Post-Transcriptional Regulation Impacts How Often mRNA Is Translated into Protein 143

Mutations 144
- There Are Three Main Categories of Mutations: Substitutions, Insertions, and Deletions 144
- Mutation Effects Differ 145
- Mutations Can Be Spontaneous or Induced 147
- DNA Proofreading and Repair Mechanisms Protect the Stability of the Genome 148

Genetic Variation Without Sexual Reproduction 150
- Horizontal Gene Transfer Allows Bacteria to Share Genes Without a Cell Division Event 150

6 Viruses and Prions 164

General Virus Characteristics 165
- Viruses Are Nonliving Pathogens 165
- Viruses Exhibit Diverse Structural and Genomic Features 166
- Viral Genomes Change over Time 169

Classifying and Naming Viruses 171
- Diverse Features Are Used to Classify and Name Viruses 171

Viruses Are Named Using Standardized Rules 174

Introduction to Viral Replication Pathways 175
- Viruses Hijack Host Cell Machinery to Multiply 175
- Some Animal Viruses Have Unique Replication Mechanisms That Cause Persistent Infections 178

Clinical Aspects of Viruses and Prions 182
- Viruses Can Be Grown in the Laboratory 182
- Diagnostic Tests Determine the Presence of Certain Viruses 183
- Antiviral Drugs Treat Infections, But Don’t Typically Cure Them 185
- Prions Are Infectious Proteins 187

CONCEPT COACH: LYtic AND Lysogenic Replication 175

7 Fundamentals of Microbial Growth 193

Microbial Growth Basics 194
- Microbes Show Dynamic and Complex Growth in Nature, and More Distinct Growth Stages in the Laboratory 194
- Bacteria Usually Divide by Binary Fission, But Some May Use Budding or Spore Formation 194
- Bacteria Have Four Distinct Growth Phases When Cultured Using a Closed Pure Batch System 196

Prokaryotic Growth Requirements 198
- Prokaryotes Adapt to Various Growth Conditions 198
- Microbes Require Nutrients, Growth Factors, and a Source of Energy 202

Growing, Isolating, and Counting Microbes 204
- Microbes Are Grown Using Various Media 204
- Collecting, Isolating, Counting, and Identifying Microbes Are Important in Microbiology 208

Controlling Microbial Growth 212
- Control Strategies Aim to Reduce or Eliminate Microbial Contamination 212
- Temperature, Radiation, and Filtration Are All Physical Methods to Control Microbial Growth 212
- Germicides Are Chemical Controls That Limit Microbes 215
- Many Factors Must Be Considered to Select an Appropriate Germicide 220
- Different Control Methods Work for Different Microbes 221

Microbial Metabolism 228

Defining Metabolism 229
- Catabolic and Anabolic Reactions Are the Yin and Yang of Metabolism 229
- ATP Is Like Metabolic Money 229

Enzymes 231
- Cells Rely on Enzymes for Metabolism 231
- Many Factors Affect Enzyme Activity 234
Organisms Are Metabolically Diverse

The interconnected web of metabolism is vast and includes both catabolic and anabolic pathways. Anabolic reactions, which are biosynthesis pathways, are essential for building complex molecules from simpler ones. Other catabolic pathways, such as fermentation or oxidative phosphorylation, are crucial for oxidizing nutrients.

Other Catabolic Pathways for Oxidizing

Cells also catabolize lipids, proteins, and nucleic acids. Glycolysis is not the only pathway to oxidize sugars, and fermentation can occur without the use of oxygen. Polysaccharide biosynthesis starts with simple sugars, while lipid biosynthesis begins with fatty acids and glycerol.

The Catabolic Process of Cellular Respiration

Cellular respiration is one way cells harvest energy from nutrients. Oxidative phosphorylation utilizes chemiosmosis to recharge ADP to ATP. Aerobic cellular respiration uses oxygen as the final electron acceptor, while anaerobic cellular respiration does not.

Anabolic Reactions: Biosynthesis

Purines and pyrimidines are not usually made from scratch. Amphibolic pathways simultaneously function in catabolism and anabolism. Phototrophs and chemotrophs are examples of autotrophs that fix carbon, while heterotrophs cannot.

The Interconnected Web of Metabolism

Amphibolic pathways are key in linking anabolism and catabolism. Organisms are metabolically diverse, with autotrophs fixing carbon and heterotrophs obtaining it from organotrophs. Cells use anabolic reactions to make amino acids, and cells also catabolize lipids, proteins, and nucleic acids.

Using Metabolic Properties to Identify Bacteria

There are many tests to identify bacterial samples, including those specific to glycolysis, the Krebs cycle, and electron transport chain. Understanding these pathways is crucial for translational research.

Principles of Infectious Disease and Epidemiology

Causes of Infectious Diseases

Disease terminology is the foundation of understanding modern health care and epidemiology. Koch's postulates reveal the cause of some infectious diseases, but have limitations.

Infectious Disease Transmission and Stages

Pathogens come from different sources, some of which are reservoirs. Transmission is the spread of a pathogen from a source to a new host.

Host–Microbe Interactions and Pathogenesis

Basics of Host–Microbe Interactions

Host–microbe interactions may be benign or cause disease.

Introduction to Virulence

Host–microbe interactions influence virulence. Not all pathogens are equally virulent, and toxins are major virulence factors.

Five Steps to Infection

First, a pathogen must enter a host. Second, a pathogen must adhere to host tissues. Third, a pathogen must invade tissues and obtain nutrients. Fourth, a pathogen must evade host immune defenses so it can replicate. Fifth, a pathogen must be transmitted to a new host to repeat the cycle.

Safety and Health Care

Biosafety levels dictate appropriate on-the-job behaviors in healthcare. Infection control practices protect both workers and patients in healthcare facilities.
Innate Immunity 324

Overview of the Immune System and Responses 325
 Immune Responses Are Classified as Either Innate or
 Adaptive 325
 Normal Microbiota Has a Role in Shaping Immune
 Responses and Conferring Protection 326

Introduction to First-Line Defenses 327
 First-Line Defenses Aim to Prevent Pathogen Entry 327

Introduction to Second-Line Defenses and the
 Lymphatic System 329
 Second-Line Defenses Kick in When First-Line Defenses
 Are Breached 329
 The Lymphatic System Collects, Circulates, and Filters
 Body Fluids 329
 Leukocytes Are Essential in All Immune Responses 330
 Leukocytes Work with Molecular Factors as a Part of
 Second-Line Defenses 331

Cellular Second-Line Defenses 332
 Granulocytes Include Neutrophils, Eosinophils, Basophils,
 and Mast Cells 332
 Agranulocytes Associated with Innate Immunity Include
 Monocytes (Macrophage Precursors), Dendritic Cells,
 and Certain Lymphocytes 333

Molecular Second-Line Defenses 334
 A Number of Defense Molecules Mediate Innate Immune
 Responses 334
 Complement Cascades Boost the Effectiveness of Other
 Innate Immune Responses 337

Inflammation and Fever 339
 Inflammation and Fever Are Key Protective Innate
 Immune Responses 339
 Inflammation Is Essential to Healing and Immunity,
 But if Unregulated It Damages Our Own Tissues 339
 Fever Is a Systemic Innate Immune Response 344

A Deeper Exploration of Humoral Memory 369
 Memory Cells Allow for Fast, Amplified Response upon
 Re-Exposure to an Antigen 369
 Humoral Immunity Is Acquired Naturally or Artificially,
 and Is Either Passive or Active 370

Type I Hypersensitivities
 Allergy and Certain Forms of Asthma Are Also Called
 Type I Hypersensitivities 384

Type II Hypersensitivities 390
 Type II Hypersensitivities Are Often Characterized
 by Cytotoxic Reactions, and Include Blood
 Transfusion Reactions and Hemolytic Disease
 of the Newborn 390
 Rh Factor Incompatibility During Pregnancy May Lead to
 Hemolytic Disease of the Newborn (HDN) 392

Type III Hypersensitivities 395
 Type III Hypersensitivities Are Characterized by Immune
 Complexes Depositing in Tissues 395

Type IV Hypersensitivities 396
 Type IV Hypersensitivities Are Mediated by T Cells 396
14 Vaccines and Biotechnology-Based Diagnostics and Therapeutics 405

A Brief History of Vaccines 406
Vaccine History Includes Triumphs as Well as Controversies 406

Overview of Vaccines 409
Immunity Is Acquired in a Number of Ways 409
There Are Many Vaccine Types, All with Different Pros and Cons 411
New Vaccines Are in Development for Persistent and Emerging Diseases 413

Immunological Diagnostic Testing 414
Immunological Diagnostic Tests Often Rely on Antigen–Antibody Interactions 414
Enzyme-Linked Immunosorbent Assays (ELISAs) Leverage Antigen–Antibody Interaction for Rapid Diagnosis 418
Fluorescent-Tagged Antibodies Can Detect Antigens or Antibodies in a Sample 421
Interferon Gamma Release Assays (IGRAs) Detect Tuberculosis Infections 421
Western Blotting and Complement Fixation Assays Are Immunodiagnostic Techniques That Are Now Less Common in Clinical Settings 422

Selected Genetics Applications in Medicine 423
The Polymerase Chain Reaction (PCR) Can Help Diagnose Infections and Genetic Disorders 423
Drug Development Often Relies on Recombinant DNA Techniques 424
CRISPR Can Edit Any Genetic Material 426
Viruses Can Deliver Genes to Human Cells 427
Genome Maps Reveal Valuable Information 428
Gene Microarray Technology Provides a Global View of Cellular Functions 429

VISUAL SUMMARY 430 = CHAPTER 14 OVERVIEW 431
COMPREHENSIVE CASE 432 = END OF CHAPTER QUESTIONS 432

15 Antimicrobial Drugs 434

Introduction to Antimicrobial Drugs 435
Antimicrobial Drugs Radically Changed Modern Medicine 435
Antimicrobial Drugs Are Described by the Pathogens They Target and Their Mechanisms of Action 435
Antimicrobial Drugs May Be Natural, Synthetic, or Semisynthetic 436
A Number of Factors Impact Antimicrobial Drug Development 437

Survey of Antibacterial Drugs 440
Antibacterial Drugs May Be Grouped by Their Cellular Targets 440
Many Antimicrobial Drugs Disrupt Bacterial Cell Wall Production 440

Quinolones and Rifamycins Target Nucleic Acids 445
Antifolate Drugs Target Folic Acid Production 446
Some Drugs Target Prokaryotic Ribosomes 446
Certain Polypeptide Drugs Target Membrane Structures 448

Drugs for Viral and Eukaryotic Infections 449
Developing Selectively Toxic Drugs Against Eukaryotic Pathogens and Viruses Is Challenging 449
Antiviral Drugs Target Specific Points in Viral Replication 449
Antifungal Drugs Often Target Cell Wall and Membrane Structures 449
Antiprotozoan and Antihelminthic Drugs Often Target Intracellular Components 450

Assessing Sensitivity to Antimicrobial Drugs 452
Assessing a Bacterium’s Susceptibility to Antimicrobial Drugs Is Essential for Proper Treatment 452

Drug Resistance and Proper Antimicrobial Drug Stewardship 455
Pathogens May Have Intrinsic and/or Acquired Antimicrobial Resistance 455
There Are Three Main Ways Microbes Evade Antimicrobial Drugs 456
Human Behaviors Can Accelerate Drug Resistance Emergence 458
Combating Drug Resistance Requires Proper Drug Stewardship 460

VISUAL SUMMARY 462 = CHAPTER 15 OVERVIEW 463
COMPREHENSIVE CASE 464 = END OF CHAPTER QUESTIONS 465

16 Respiratory System Infections 467

Overview of the Respiratory System 468
Inhalation Is the Most Common Way Microbes Gain Access to the Body 468

Viral Infections of the Respiratory System 471
Viruses Are the Most Common Cause of Respiratory Infections 471
RSV, HPIV, and Adenoviruses Produce Cold-Like Symptoms But Have Other Clinical Features Worth Noting 472
Influenza Is the Second-Most-Common Viral Respiratory Illness in Humans 474
Severe Acute Respiratory Syndrome (SARS) Is Caused by a Coronavirus 476
Hantavirus Pulmonary Syndrome Is a Rare But Dangerous Illness 477

Bacterial Infections of the Respiratory System 478
Otitis Media Is a Common Bacterial Complication of Colds 478
Streptococcus pyogenes Primarily Causes Strep Throat 480
Corynebacterium diphtheriae Causes Diphtheria 481
Pertussis (Whooping Cough) Is an Acute Infection of the Respiratory Tract 482
Tuberculosis (TB) Is One of the Top Infectious Disease Killers in the World 483
Pneumonia Is the Leading Infectious Disease Killer in the United States Today 486
Pneumococcal Pneumonia Is the Standard for Classifying Typical Pneumonia Syndrome 487
Many Other Bacteria Can Cause Typical Pneumonia Syndrome
There Are Six Leading Causes of Atypical Bacterial Pneumonia
Fungal Respiratory System Infections
Fungal Respiratory Infections Are Becoming More Common
Ubiquitous Fungi Are Found Throughout Larger Regions of the World, and Can Cause Serious Infections in Immune-Compromised Patients

VISUAL SUMMARY 499 = CHAPTER 16 OVERVIEW 500
COMPREHENSIVE CASE 501 = END OF CHAPTER QUESTIONS 502

17 Skin and Eye Infections

Overview of Skin Structure, Defenses, and Afflictions
The Skin, Our Largest Organ, Has Specialized Defenses
Rashes and Lesions Are Typical Skin Afflictions

Viral Skin Infections
Vesicular or Pustular Rashes Characterize a Variety of Viral Infections
Maculopapular Rashes Are Typical of Several Viral Infections
Certain Viruses Cause Warts

Bacterial Skin Infections
Acne Is a Common Skin Infection Mainly Caused by Propionibacterium acnes
Staphylococcus aureus Causes a Spectrum of Skin Diseases
Streptococcus pyogenes Primarily Causes Strep Throat, But Can Cause Skin Infections
Pseudomonads Can Cause Opportunistic Infections as Well as Serious Wound Infections
Gas Gangrene and Cutaneous Anthrax Are Both Bacterial Infections Characterized by Tissue Necrosis

Fungal Skin Infections
Fungal Skin Infections Are Usually Superficial

Parasitic Skin Infections
Cutaneous Leishmaniasis Is a Protozoan Infection

Structure, Defenses, and Infections of the Eyes
The Eye Has Specialized Structures and Defense Mechanisms
Bacteria, Viruses, Fungi, and Parasites Can All Cause Eye Infections

VISUAL SUMMARY 531 = CHAPTER 17 OVERVIEW 532
COMPREHENSIVE CASE 533 = END OF CHAPTER QUESTIONS 533

18 Nervous System Infections

Overview of Nervous System Structure and Defenses
The Nervous System Includes Two Main Segments

The Nervous System Contains Specialized Cells for Transmitting Signals
The Nervous System Contains No Normal Microbiota, But Organisms Living in the GI Tract May Impact This System
Unique Defenses Protect the Nervous System from Infection
Both the CNS and PNS May Become Infected When Defenses Break Down

Viral Nervous System Infections
Viruses Cause the Most Common Nervous System Infections

Bacterial Nervous System Infections
Bacteria Can Infect the Central Nervous System, Causing Meningitis
Bacteria Can Infect the Peripheral Nervous System
Bacterial Toxins Can Damage the Nervous System

Other Nervous System Infections
Fungi Can Infect the Central Nervous System
Protozoans Cause Rare But Serious Nervous System Infections
Infectious Proteins Called Prions Can Damage the Central Nervous System

VISUAL SUMMARY 559 = CHAPTER 18 OVERVIEW 560
COMPREHENSIVE CASE 561 = END OF CHAPTER QUESTIONS 561

19 Digestive System Infections

Digestive System Anatomy and Defenses
The Digestive System Includes the GI Tract and Accessory Organs
A Variety of GI Tract Features Limit Digestive System Infections

Gastrointestinal Infection Symptoms and Diagnostic Tools
Digestive System Infections May Result in Dysentery, Gastroenteritis, or Other GI Symptoms

Viral Digestive System Infections
Mumps Is a Viral Infection of the Salivary Glands
Many Viruses Cause Gastroenteritis
Hepatitis Is a Liver Infection Most Commonly Caused by Three Unrelated Viruses

Bacterial Digestive System Infections
Dental Caries Are Prevalent in Children and Periodontal Disease Is Prevalent in Adults
Helicobacter pylori Can Cause Gastritis and Stomach Ulcers
Bacteria Are Common Causes of Foodborne Illnesses
Campylobacter jejuni Is a Leading Cause of Bacterial Foodborne Illness
Dysentery and Fever May Occur During Shigella Infections
Various Escherichia coli Strains Cause Gastroenteritis
Some Salmonella Cause Common Foodborne Gastroenteritis, While Others Cause Typhoid Fever

Contents
Urinary and Reproductive System Infections 601

Overview of the Urinary and Reproductive Systems 602
Our Urinary System Includes Kidneys, Ureters, the Bladder, and the Urethra 602
The Female Reproductive System Includes Ovary, Fallopian Tubes, Uterus, Cervix, Vagina, and External Genitalia 603
The Female Reproductive System Has Built-In Innate Protections, Including a Specialized Microbiome 606
The Male Reproductive System Consists of the Scrotum, Testes, Spermatic Ducts, Sex Glands, and Penis 608

Urinary System Infections 610
Urinary Tract Infections Are Described by the Part of the Urinary Tract Affected 610
Bacteria Are the Most Common Cause of Urinary Tract Infections 610
Viruses Occasionally Cause UTIs 614
Fungi Can Cause UTIs 614

Reproductive System Viral Infections 615
Many Sexually Transmitted Pathogens Do Not Target the Reproductive System 615
Genital Herpes Is an STI That Affects the Reproductive System and Can Cause Serious Neonatal Complications 615
Human Papilloma Viruses Are the Most Common STI in the World 617

Reproductive System Bacterial Infections 619
Vaginosis and Vaginitis Describe Different Vaginal Conditions 619
Chlamydia trachomatis Is a Common Cause of Bacterial STIs 620
Gonorrhea Incidence Is on the Rise in the United States and Increased Antibiotic Resistance Is Making It Harder to Treat 623
Syphilis Killed Millions for Centuries, and Remains a Common But Curable Infection Today 625
Chancroid Is an STI That Is Mainly Found in Developing Nations 626

Reproductive System Eukaryotic Infections 627
Candidiasis Is the Most Common Fungal Infection of the Reproductive System 627

Cardiovascular and Lymphatic Infections 634

Overview of the Cardiovascular and Lymphatic Systems 635
Cardiovascular and Lymphatic System Infections Are Often Called Systemic Infections 635
The Cardiovascular System Includes the Heart and Blood Vessels 636
Recent Microbiome Studies Indicate That, Contrary to Common Belief, Normal Blood Isn’t Completely Sterile 636
Lymphatic Vessels Collect Lymph from Tissues and Convey It Back to the Venous Blood Supply 637
Sepsis Is a Potentially Deadly Immune Response Syndrome 637
Chronic Retroviral Infections Can Lead to Cancer and Immunodeficiencies 649

Systemic Viral Infections 640
Vectorborne Systemic Viral Infections Include Dengue Fever, Yellow Fever, Chikungunya, and Zika 640
At Least Four Viral Families Are Known to Cause Hemorrhagic Fevers 645
Epstein-Barr Virus Is the Most Common Cause of Mononucleosis, and Can Also Lead to Burkitt’s Lymphoma 647
Chronic Retroviral Infections Can Lead to Cancer and Immunodeficiencies 649

Systemic Bacterial Infections 653
Systemic Infections May Develop When Bacteria Enter the Circulatory or Lymphatic Systems 653
Yersinia pestis Causes Plague 653
Bacterial Endocarditis Can Cause Heart Valve Damage 654
Highly Infectious, Tularemia Is Notable for Being a Potential Bioterrorism Agent 655
Ticks Are Common Vectors for Transmitting Diverse Systemic Bacterial Infections to Humans 655

Systemic Fungal Infections 658
Candidiasis (Invasive Candidiasis) Is the Most Common Systemic Fungal Infection 658

Systemic Protozoan Infections 659
The Ancient Disease Malaria Still Impacts Millions 659

Appendix A: Answers to End of Chapter Questions A-1
Appendix B: Credits A-9
Appendix C: Abridged Microbiology in Nursing and Allied Health Undergraduate Curriculum Guidelines A-13
Glossary G-1
Index I-1