//\ %‘fm Page 3 Wednesday, February 27, 2002 10:21 PM
FOR PUBLIC
N
RELEASE

NET Framework

icrosoft’s popular programming language, Visual Basic, has
been a favorite choice of programmers for many years. The ease
with which Windows applications may be built, coupled with its
wealth of database capabilities, bas entrenched it in the bearts of
many programmers. In its latest version, Microsoft bas revamped
Visual Basic, now called Visual Basic.NET (or simply VB.NET), to
include full object-oriented capabilities and bas provided support
to work with the .NET Framework. We examine some of these
issues throughout the book as we learn of the powerful services
that are provided to the VB.NET programmer by the .NET Frame-
work. In this chapter, we introduce the .NET Framework in suffi-
cient detail so that you can immediately begin programming in
VB.NET. For more in-depth information about .NET, you can refer
to other books in The Integrated .NET Series from Object Innova-
tions and Prentice Hall PTR. Of particular interest to VB.NET pro-
grammers will be Application Development Using Visual Basic and
NET (Oberg, Thorsteinson, Wyait), which delves into many
important topics that are beyond the scope of this book.

NET: What You Need to Know

A beautiful thing about .NET is that, from a programmer’s perspective, you
scarcely need to know anything about it to start writing programs for the .NET
environment. You write a program in a high-level language such as VB.NET, a

3

4~ 9|

e

Prentice Hall PTR
This is a sample chapter of Introduction to Visual Basic Using .NET
ISBN: 0-13-041804-8

For the full text, visit http://www.phptr.com

©2002 Pearson Education. All Rights Reserved.

* chOl.fm Page 4 Wednesday, February 27, 2002 10:21 PM

4 Chapter 1 .NET Framework

compiler creates an executable (EXE) file, and you run that EXE file. We
show you exactly how to do that in just a few pages. Naturally, as the scope
of what you want to do expands, you will need to know more. But to get
started, you need to know very little.

Even very simple programs, if they perform any input or output, will
generally require the use of the services found in library code. A large library,
called the .NET Framework Class Library, comes with .NET, and you can use
all of the services of this library in your programs.

What is really happening in a .NET program is somewhat elaborate. The
EXE file that is created does not contain executable code, but rather Interme-
diate Language code, or IL (sometimes called Microsoft Intermediate Lan-
guage or MSIL). In the Windows environment, this IL code is packaged up in
a standard portable executable (PE) file format, so you will see the familiar
EXE extension (or, if you are building a component, the DLL extension).
When you run the EXE, a special runtime environment (the Common Lan-
guage Runtime or CLR) is launched, and the IL instructions are executed by
the CLR. Unlike some runtimes, where the IL would be interpreted each time
it is executed, the CLR comes with a just-in-time (JIT) compiler that translates
the IL to native machine code the first time it is encountered. On subsequent
calls, the code segment runs as native code.

Thus, in a nutshell, the process of programming in the .NET environ-
ment goes like this:

1. Write your program in a high-level .NET language such as VB.NET.

2. Compile your program into IL.

3. Run your IL program, which launches the CLR to execute your IL, using
its JIT to translate your program into native code as it executes.

Installing the .NET SDK

All you need to compile and run the programs in this book is the .NET Frame-
work SDK. This SDK is available on CD, or it can be downloaded for free
from the Microsoft .NET Web site at hitp.//msdn.microsoft.com/net/. Follow
the installation directions for the SDK, and make sure that your computer
meets the hardware requirements. (Generally, for the SDK, you need a fast
Pentium processor and at least 128M of RAM.) Part of the installation is a Win-
dows Component Update, which will update your system, if necessary, to
recent versions of programs such as Internet Explorer. The SDK will install
tools such as compilers, documentation, sample programs, and the CLR.

The starting place for the SDK documentation is the .NET Framework
SDK Overview (see Figure 1-1).

4~ ~3

%%%

chOl.fm Page 5 Wednesday, February 27, 2002 10:21 PM

Code
Example

NET: What You Need to Know 5

2 .NET Framework SDK Documentation - .NET Framework SDK =]

File Edit Wew Tools Window Help
=0 | ms-help:/{MS. NETFrameworkSDK fsdkstartf » |) | ¢ £ I &8 ®?.

Contents % || NET Framework SDK | 4B x
Filtered by:

WET Frarnework SOV Home Page
I.NET Framewaork SOK Document ation j NET Framework SDK

EQ& .MET Framewark SDK welcome to the inaugural release of the Microsoft

-
% Getting Started Microsoft \MET Framework Software -
A Inside the .MET Framewark, Development Kit (SDK), The SDK contains a
% wealth of resources, such as an extensive °

Programming with the \NET Fran) . ?

7 - collection of tools, samples, and compilers,
4 Buiding Applications designed to help you build powerful applications and services based
% Debugging and Profiling Applicat on MET Framework technology. For a brief introduction to the NET
% Dieploying Applications Framework architecture and its key components, which include the
cornmon language runtime and the MET Framewoarlk class library,
see Dverview of the \MET Framewark.

% Configuring Applications

% Reference))
4 Tools and Debugger The .MET Framework SDK also includes documentation that

% icks provides a wide range of instructive and practical infarmation, In
QuickStarts addition to a comnprehensive class library reference, the
% Samples documentation offers conceptual overviews, step-by-step
Q Tutarials procedun_as, information about the set of tools con_t@ined in the SDK,
-4 Glossar and tutorials that demaonstrate how to create specific types of
% b applications, As an aid to help you locate the information that
‘I - _ I 4 interests you mast, the following section lists the main areas of the
@C... @ n.. |@Se...|Fa...| documentation, j
| Ready I I | 4

m Homepage of .NET Framework SDK.

Installing the Book Software

The example programs found in this book are available on the Web at htip./
www.objectinnovations.com/dotnet.btm/. Download the file Install IntroVb.exe
and run this self-extracting file. If you accept the suggested installation directory,
the software will be installed in the directory OINIntroVb on your C: drive. There
are subdirectories for each chapter of the book. The directory for Chapter 1 is
Chap01. Sample programs are in named subdirectories of the chapter directory,
and we will refer to these sample programs simply by name, such as Hello.

Your First VB.NET Program

Although we won’t actually start to examine the structure of VB.NET pro-
grams until Chapter 2, you don’t have to wait to compile and run your first
VB.NET program. Start at the command prompt, and navigate to the Hello
directory for this chapter. (If you accepted the default installation, the direc-
tory is C:\OI\IntroVb\Chap01\Hello.) The source file is Hello.vb. To com-
pile this program, enter the following command:

>vbc hello.vb

&

.

é\b chOl.fm Page 6 Wednesday, February 27, 2002 10:21 PM

6 Chapter 1 .NET Framework

The file Hello.exe will be created, which you can now run.

>hello
Hello World!

Setting Environment Variable

In order to run command line tools such as the VB.NET compiler using the name vbc rather
than the complete path, certain environment variables must be set. The environment vari-
ables can be set using the batch file vsvars32.bat, which can be found in the Common\Tools
directory of the Framework SDK.

If you have Visual Studio.NET installed, you can ensure that the environment variables are
set up by starting your command prompt session from Start | Programs | Microsoft Visual
Studio.NET 7.0 | Microsoft Visual Studio Tools | Microsoft Visual Studio.NET Command
Prompt.

Visual Studio.NET

Although the .NET Framework SDK is all you need to compile and run
VB.NET programs, the process will be much easier and more pleasant if you
use the Visual Studio.NET integrated development environment (IDE). The
IDE provides an easy-to-use editor, access to the compiler and debugger, and
access to online help. We will discuss Visual Studio.NET in Chapter 3.

Understanding .NET

If you are eager to start learning the VB.NET programming language right
away, by all means proceed directly to Chapter 2. The nice thing about a
high-level programming language is that, for the most part, you do not need
to be concerned with the platform on which the program executes (unless
you are making use of services provided by the platform). You can work with
the abstractions provided by the language and with functions provided by
libraries.

However, you will better appreciate the VB.NET programming language
and its potential for creating sophisticated applications if you have a general
understanding of .NET. The rest of this chapter is concerned with helping you
to achieve such an understanding. We address three broad topics:

e What Is Microsoft .NET?
e NET Framework
e Common Language Runtime

%

ﬁ

4

7

* chOl.fm Page 7 Wednesday, February 27, 2002 10:21 PM

What Is Microsoft .NET? 7

What Is Microsoft NET?

In this section, we answer the high-level question “What is .NET?” In brief,
.NET represents Microsoft’s vision of the future of applications in the Internet
age. .NET provides enhanced interoperability features based upon open Inter-
net standards.

The classic Windows desktop has been plagued by robustness issues.
NET represents a great improvement. For developers, .NET offers a new pro-
gramming platform and superb tools.

XML plays a fundamental role in .NET. Enterprise servers (such as SQL
2000) expose .NET features through XML.

Microsoft .NET is a new platform at a higher level than the operating
system. Three years in the making before public announcement, .NET is a
major investment by Microsoft. .NET draws on many important ideas, includ-
ing XML, the concepts underlying Java, and Microsoft's Component Object
Model (COM). Microsoft .NET provides the following:

A robust runtime platform, the CLR

Multiple language development

An extensible programming model, the .NET Framework, which pro-
vides a large class library of reusable code available from multiple
languages

A networking infrastructure built on top of Internet standards that
supports a high level of communication among applications

A new mechanism of application delivery, the Web service, that sup-
ports the concept of an application as a service

Powerful development tools

Microsoft and the Web

The World Wide Web has been a big challenge to Microsoft. It did not
embrace it early. But the Web actually coexists quite well with Microsoft’s tra-
ditional strength, the PC. Using the PC’s browser application, a user can gain
access to a whole world of information. The Web relies on standards such as
HTML, HTTP, and XML, which are essential for communication among diverse
users on a variety of computer systems and devices.

The Windows PC and the Internet, although complex, are quite stan-
dardized. However, a Tower of Babel exists with respect to the applications
that try to build on top of them: multiple languages, databases, and develop-
ment environments. The rapid introduction of new technologies has created a
gap in the knowledge of workers who must build systems using these tech-
nologies. This provides an opening for Microsoft, and some of the most talked
about parts of .NET are indeed directed toward the Internet.

4~ ~3

* chOl.fm Page 8 Wednesday, February 27, 2002 10:21 PM

8 Chapter 1 .NET Framework

.NET provides many features to greatly enhance our ability to program
Web applications, but this topic is beyond the scope of this book. For more
information, please consult the following two books in The Integrated .NET

Series:
Application Development Using Visual Basic and .NET (Oberg,
Thorsteinson, Wyatt)
Fundamentals of Web Applications Using .NET and XML (Bell, Feng,
Soong, Zhang, Zhu)

Windows on the Desktop

Microsoft began with the desktop, and the company has achieved much. The
modern Windows environment has become ubiquitous. Countless applica-
tions are available, and most computer users are at least somewhat at home
with Windows. There is quite a rich user interface experience, and applica-
tions can work together. But there are also significant problems.

PROBLEMS WITH WINDOWS

One of the most troublesome problems is the maintenance of applications on
the Windows PC. Applications consist of many files, registry entries, shortcuts,
and so on. Different applications can share certain DLLs. Installing a new
application can overwrite a DLL that an existing application depends on, pos-
sibly breaking the older application (which is known as “DLL hell”). Remov-
ing an application is complex and often is imperfectly done. Over time, a PC
can become less stable, and the cure eventually becomes reformatting the
hard disk and starting from scratch.

There is tremendous economic benefit to using PCs, because standard
applications are inexpensive and powerful, the hardware is cheap, and so on.
But the savings are reduced by the cost of maintenance.

A ROBUST WINDOWS ENVIRONMENT

.NET has many features that will result in a much more robust Windows oper-
ating system. Applications no longer rely on storing extensive configuration
data in the registry. In .NET, applications are self-describing, containing meta-
data within the program executable files themselves. Different versions of an
application can be deployed side-by-side.

Applications run managed code. Managed code is not executed directly
by the operating system, but rather by the special runtime—the CLR. The CLR
can perform checks for type safety, such as for array out-of-bounds and mem-
ory overwrites. The CLR performs memory management, including automatic
garbage collection, resulting in sharp reduction of memory leaks and similar
problems.

4~ ~3

* chOl.fm Page 9 Wednesday, February 27, 2002 10:21 PM

*

.NET Framework Overview 9

Languages such as VB.NET and C# (pronounced “C sharp”), but not
C++, can produce managed code that is verifiably secure. Managed code that
is not verifiable can run if the security policy allows the code to ignore the
verification process.

A New Programming Platform

.NET provides a new programming platform at a higher level than the operat-
ing system. This level of abstraction has many advantages:

Code can be validated to prevent unauthorized actions

It is much easier to program than the Win32 API or COM

All or parts of the platform can be implemented on many different

kinds of computers (as has been done with Java)

All the languages use one class library

Languages can interoperate with each other

We outline the features of this new platform, the .NET Framework, in the
next section.

NET Framework Qverview

The .NET Framework consists of the CLR, the .NET Framework Class Library,
the Common Language Specification (CLS), a number of .NET languages, and
Visual Studio.NET. The overall architecture of the .NET Framework is depicted
in Figure 1-2.

C# VB.NET C++ Other

Common Language Specification

Visual Studio.NET
.NET Framework Class Library

Common Language Runtime

m Overall block diagram of .NET Framework.

%

ﬁ

%@%

7

* chOl.fm Page 10 Wednesday, February 27, 2002 10:21 PM

*

10

Chapter 1 .NET Framework

Common Language Runtime

A runtime provides services to executing programs. Traditionally, different
programming environments have different runtimes. Examples of runtimes
include the standard C library, MFC, the Visual Basic runtime, and the Java
Virtual Machine (JVM).

The runtime environment provided by .NET, the CLR, manages the exe-
cution of code and provides useful services. The services of the CLR are
exposed through programming languages. The syntax for these services varies
from language to language, but the underlying execution engine providing
the services is the same.

Not all languages expose all the features of the CLR. The language with
the best mapping to the CLR is the new language C#. VB.NET, however, does
an admirable job of exposing the functionality.

NET Framework Class Library

The .NET Framework class library is huge, comprising more than 2,500
classes. All this functionality is available to all the .NET languages. The library
(see Figure 1-3) consists of four main parts:

1. Base class library (which includes networking, security, diagnostics, 1/O,
and other types of operating system services)

2. Data and XML classes

3. Windows UI

4. Web services and Web Ul

Web Services

and Web Ul Windows Ul

Data and XML

Base Class Library

m Block diagram of .NET Framework Class Library.

%

ﬁ

%@%

7

* chOl.fm Page 11 Wednesday, February 27, 2002 10:21 PM

*

Common Language Runtime ”

Common Language Specification

An important goal of the .NET Framework is to support multiple languages.
But all languages are not created equal, so it is important to agree upon a
common subset that all languages will support. The CLS is an agreement
among language designers and class library designers about those features
and usage conventions that can be relied upon.

CLS rules apply to public features that are visible outside the assembly
where they are defined. (An assembly can be thought of as a logical EXE or
DLL and will be discussed later in this chapter.) For example, the CLS requires
that public names do not rely on case for uniqueness, because some lan-
guages are not case sensitive. For more information, see “Cross Language
Interoperability” in “Inside the .NET Framework” in the .NET Framework SDK
documentation.

Languages in .NET

A language is a CLS-compliant consumer if it can use any CLS-compliant
type—that is, if it can call methods, create instances of types, and so on. (A
type is basically a class in most object-oriented languages, providing an
abstraction of data and behavior, grouped together.) A language is a CLS-com-
pliant extender if it is a consumer and can also extend any CLS-compliant
base class, implement any CLS-compliant interface, and so on.

Microsoft itself is providing four CLS-compliant languages. VB.NET, C#,
and C++ with Managed Extensions are extenders. JScript.NET is a consumer.

Third parties are providing additional languages (more than a dozen so
far). Active-State is implementing Perl and Python. Fujitsu is implementing
COBOL. It should be noted that at present some of these languages are not
.NET languages in the strict sense. For example, ActiveState provides a tool
called PerINET that will create a .NET component from a Perl class. This facil-
ity enables .NET applications to call the wealth of Perl modules, but it does
not make Perl into either a consumer or an extender. For more information on
PerINET, see the book Programming Perl in the NET Environment (Saltzman,
Oberg), another book in The Integrated .NET Series.

Common Language Runtime

In this section, we delve more deeply into the structure of .NET by examining
the CLR. We look at the design goals of the CLR and discuss the rationale for
using managed code and a runtime. We outline the design of the CLR, includ-
ing the concepts of MSIL, metadata, and JIT compilation. We compare the CLR
with the Java Virtual Machine. We discuss the key concept in .NET of assem-

%

ﬁ

.

7

* chOl.fm Page 12 Wednesday, February 27, 2002 10:21 PM

] 2 Chapter 1 .NET Framework

bly, which is a logical grouping of code. We explore the central role of types
in .NET and look at the Common Type System (CTS). We explain the role of
managed data and garbage collection. Finally, we use the Intermediate Lan-
guage Disassembler (ILDASM) tool to gain some insight into the structure of
assemblies.

Design Goals of the (LR

The CLR has the following design goals:
Simplify application development
Support multiple programming languages
Provide a safe and reliable execution environment
Simplify deployment and administration
Provide good performance and scalability

SIMPLE APPLICATION DEVELOPMENT

With more than 2,500 classes, the .NET Framework class library provides
enormous functionality that the programmer can reuse. The object-oriented
and component features of NET enable organizations to create their own
reusable code. Unlike COM, the programmer does not have to implement any
plumbing code to gain the advantages of components. Automatic garbage col-
lection greatly simplifies memory management in applications. The CLR facili-
tates powerful tools such as Visual Studio.NET that can provide common
functionality and the same UI for multiple languages.

MULTIPLE LANGUAGES

The CLR was designed from the ground up to support multiple languages.
This feature is the most significant difference between .NET and Java, which
share a great deal in philosophy.

The CTS makes interoperability between languages virtually seamless.
The same built-in data types can be used in multiple languages. Classes
defined in one language can be used in another language. A class in one lan-
guage can even inherit from a class in another language. Exceptions can be
thrown from one language to another.

Programmers do not have to learn a new language in order to use .NET.
The same tools can work for all NET languages. You can debug from one
language into another.

SAFE EXECUTION ENVIRONMENT

With the CLR, a compiler generates MSIL instructions, not native code. It is
this managed code that runs. Hence, the CLR can perform runtime validations
on this code before it is translated into native code. Types are verified. Sub-

%@%

4~ 9|

* chOl.fm Page 13 Wednesday, February 27, 2002 10:21 PM

Common Language Runtime]3

scripts are verified to be in range. Unsafe casts and uninitialized variables are
prevented.

The CLR performs memory management. Managed code cannot access
memory directly. No pointers are allowed. This means that your code cannot
inadvertently write over memory that does not belong to it, possibly causing a
crash or other bad behavior.

The CLR can enforce strong security. One of the challenges of the soft-
ware world of third party components and downloadable code is that you
open your system to damage from executing code from unknown sources.
You might want to restrict Word macros from accessing anything other than
the document that contains them. You want to stop potentially malicious Web
scripts. You even want to shield your system from bugs of software from
known vendors. To handle these situations, .NET security includes Code
Access Security (CAS).

SIMPLER DEPLOYMENT AND ADMINISTRATION

With the CLR, the unit of deployment becomes an assembly, which is typically
an EXE or a DLL. The assembly contains a manifest, which allows much more
information to be stored.

An assembly is completely self-describing. No information needs to be
stored in the registry. All the information is in one place, and the code cannot
get out of sync with information stored elsewhere, such as in the registry, a
type library, or a header file.

The assembly is the unit of versioning, so that multiple versions can be
deployed side by side in different folders. These different versions can exe-
cute at the same time without interfering with each other.

Assemblies can be private or shared. For private assembly deployment,
the assembly is copied to the same directory as the client program that refer-
ences it. No registration is needed, and no fancy installation program is
required. When the component is removed, no registry cleanup is needed,
and no uninstall program is required. Just delete it from the hard drive.

In shared assembly deployment, an assembly is installed in the Global
Assembly Cache (or GAC). The GAC contains shared assemblies that are glo-
bally accessible to all .NET applications on the machine. A download assem-
bly cache is accessible to applications such as Internet Explorer that
automatically download assemblies over the network.

PERFORMANCE

You may like the safety and ease-of-use features of managed code, but you
may be concerned about performance. It is somewhat analogous to the con-
cerns of early assembly language programmers when high-level languages
came out.

4~ ~3

* chOl.fm Page 14 Wednesday, February 27, 2002 10:21 PM

] 4 Chapter 1 .NET Framework

The CLR is designed with high performance in mind. JIT compilation is
designed into the CLR. The first time a method is encountered, the CLR per-
forms verifications and then compiles the method into native code (which will
contain safety features, such as array bounds checking). The next time the
method is encountered, the native code executes directly.

Memory management is designed for high performance. Allocation is
almost instantaneous, just taking the next available storage from the managed
heap. Deallocation is done by the garbage collector, which Microsoft has
tweaked for efficiency.

Why Use a CLR?

Why did Microsoft create a CLR for .NET? Let’s look at how well the goals just
discussed could have been achieved without a CLR, focusing on the two main
goals of safety and performance. Basically, there are two philosophies. The
first is compile-time checking and fast native code at runtime. The second is
runtime checking.

Without a CLR, we must rely on the compiler to achieve safety. This
places a high burden on the compiler. Typically, there are many compilers for
a system, including third-party compilers. It is not robust to trust that every
compiler from every vendor will adequately perform all safety checking. Not
every language has features supporting adequate safety checking. Compila-
tion speed is slow with complex compilation. Compilers cannot conveniently
optimize code based on enhanced instructions available on some platforms
but not on others. What's more, many features (such as security) cannot be
detected until runtime.

Design of Common Language Runtime

So we want a runtime. How do we design it? One extreme is to use an inter-
preter and not a compiler at all. All the work is done at runtime. We have
safety and fast builds, but runtime performance is very slow. Modern systems
divide the load between the front-end compiler and the back-end runtime.

INTERMEDIATE LANGUAGE

The front-end compiler does all the checking it can do and generates an inter-
mediate language. Examples include

P-code for Pascal
Bytecode for Java

The runtime does further verification based on the actual runtime char-
acteristics, including security checking.

With JIT compilation, native code can be generated when needed and
subsequently reused. Runtime performance becomes much better. The native

4~ ~3

S chOl.fm Page 15 Wednesday, February 27, 2002 10:21 PM

Common Language Runtime]5

code generated by the runtime can be more efficient, because the runtime
knows the precise characteristics of the target machine.

MICROSOFT INTERMEDIATE LANGUAGE

All managed code compilers for Microsoft .NET generate MSIL. MSIL is
machine-independent and can be efficiently compiled into native code.
MSIL has a wide variety of instructions:

e Standard operations such as load, store, arithmetic and logic, branch,
etc.

e Calling methods on objects

o Exceptions

Before executing on a CPU, MSIL must be translated by a JIT compiler.
There is a JIT compiler for each machine architecture supported. The same
MSIL will run on any supported machine.

METADATA

Besides generating MSIL, a managed code compiler emits metadata. Metadata
contains very complete information about the code module, including the fol-
lowing:

e Version and locale information
All the types
Details about each type, including name, visibility, etc.
Details about the members of each type, such as methods, the signa-
tures of methods, etc.

Types are at the heart of the programming model for the CLR. A type is analogous to a class
in most object-oriented programming languages, providing an abstraction of data and behav-
ior, grouped together. A type in the CLR contains the following:

o Fields (data members)

e Methods

o Properties

o Events

There are also built-in primitive types, such as integer and floating point numeric types,
strings, etc. In the CLR, there are no functions outside of types, but all behavior is provided
via methods or other members. We discuss types under the guise of classes and value types

when we cover VB.NET.

Metadata is the “glue” that binds together the executing code, the CLR,
and tools such as compilers, debuggers, and browsers. On Windows, MSIL

4~ 9|

* chOl.fm Page 16 Wednesday, February 27, 2002 10:21 PM

] 6 Chapter 1 .NET Framework

and metadata are packaged together in a standard Windows PE file. Metadata
enables “Intellisense” in Visual Studio. In .NET, you can call from one lan-
guage to another, and metadata enables types to be converted transparently.
Metadata is ubiquitous in the .NET environment.

JIT COMPILATION

Before executing on the target machine, MSIL is translated by a JIT compiler
to native code. Some code typically will never be executed during a program
run. Hence, it may be more efficient to translate MSIL as needed during exe-
cution, storing the native code for reuse.

When a type is loaded, the loader attaches a stub to each method of the
type. On the first call, the stub passes control to the JIT, which translates to
native code and modifies the stub to save the address of the translated native
code. On subsequent calls to the method, the native code is called directly.

As part of JIT compilation, code goes through a verification process.
Type safety is verified, using both the MSIL and metadata. Security restrictions
are checked.

(OMMON TYPE SYSTEM

At the heart of the CLR is the Common Type System (CTS). The CTS provides
a wide range of types and operations that are found in many programming
languages. The CTS is shared by the CLR and by compilers and other tools.

The CTS provides a framework for cross-language integration and
addresses a number of issues:

Similar, but subtly different, types (for example, Integer is 16 bits in
VB6, but int is 32 bits in C++; strings in VB6 are represented as
BSTRs and in C++ as char pointers or a string class of some sort;
and so on)

Limited code reuse (for example, you can’t define a new type in one
language and import it into another language)

Inconsistent object models

Not all CTS types are available in all languages. The CLS establishes
rules that must be followed for cross-language integration, including which
types must be supported by a CLS-compliant language. Built-in types can be
accessed through the System class in the Base Class Library (BCL) and
through reserved keywords in the .NET languages.

In Chapter 4, we begin our discussion of data types with the simple data
types. We continue the discussion of types in Chapter 11, where we introduce
reference types such as class and interface. At all times, you should bear in
mind that there is a mapping between types in VB.NET, represented by key-
words, and the types defined by the CTS, as implemented by the CLR.

%@%

4~ 9|

* chOl.fm Page 17 Wednesday, February 27, 2002 10:21 PM

*

Summary]7

Managed Data and Garbage Collection

Managed code is only part of the story of the CLR. A significant simplification
of the programming model is provided through managed data. When an
application domain is initialized, the CLR reserves a contiguous block of stor-
age known as the managed beap. Allocation from the managed heap is
extremely fast. The next available space is simply returned, in contrast to the
C runtime, which must search its heap for space that is large enough.

Deallocation is not performed by the user program but by the CLR,
using a process known as garbage collection. The CLR tracks the use of mem-
ory allocated on the managed heap. When memory is low, or in response to
an explicit call from a program, the CLR “garbage collects” (or frees up all
unreferenced memory) and compacts the space that is now free into a large
contiguous block.

Summary

VB.NET does not exist in isolation, but has a close connection with the under-
lying .NET Framework. In this chapter, you received an orientation to the
overall architecture and features of .NET.

Microsoft .NET is a new platform that sits on top of the operating system
and provides many capabilities for building and deploying desktop and Web-
based applications. .NET has many features that will create a much more
robust Windows operating system.

The .NET Framework includes the Common Language Runtime (CLR),
the .NET Framework Class Library, the Common Type System (CTS), the .NET
languages, and Visual Studio.NET.

The CLR manages the execution of code and provides useful services.
The design goals of the CLR included simple application development, safety,
simple deployment, support of multiple languages, and good performance.

.NET uses managed code that runs in a safe environment under the CLR.
.NET compilers translate source code into Microsoft Intermediate Language
(MSIL), which is translated at runtime into native code by a just-in-time (JIT)
compiler.

An assembly is a grouping of types and resources that work together as
a logical unit. Types and the CTS are the heart of the CLR. Garbage collection
is used by the CLR to automatically reclaim unreferenced data.

In Chapter 2, we will take our first steps in VB.NET programming.

%

ﬁ

%@%

7

.
D chOl.fm Page 18 Wednesday, February 27, 2002 10:21 PM

|
2

