
1

chapter

1
Introduction to
UNIX Shells

1.1 Definition and Function

The shell is a special program used as an interface between the user and the heart of the
UNIX operating system, a program called the kernel, as shown in Figure 1.1. The kernel
is loaded into memory at boot-up time and manages the system until shutdown. It cre-
ates and controls processes, and manages memory, file systems, communications, and so
forth. All other programs, including shell programs, reside out on the disk. The kernel
loads those programs into memory, executes them, and cleans up the system when they
terminate. The shell is a utility program that starts up when you log on. It allows users
to interact with the kernel by interpreting commands that are typed either at the com-
mand line or in a script file.

When you log on, an interactive shell starts up and prompts you for input. After you
type a command, it is the responsibility of the shell to (a) parse the command line; (b)
handle wildcards, redirection, pipes, and job control; and (c) search for the command,
and if found, execute that command. When you first learn UNIX, you spend most of
your time executing commands from the prompt. You use the shell interactively.

If you type the same set of commands on a regular basis, you may want to automate
those tasks. This can be done by putting the commands in a file, called a script file, and
then executing the file. A shell script is much like a batch file: It is a list of UNIX com-
mands typed into a file, and then the file is executed. More sophisticated scripts contain
programming constructs for making decisions, looping, file testing, and so forth. Writ-
ing scripts not only requires learning programming constructs and techniques, but
assumes that you have a good understanding of UNIX utilities and how they work.
There are some utilities, such as grep, sed, and awk, that are extremely powerful tools
used in scripts for the manipulation of command output and files. After you have
become familiar with these tools and the programming constructs for your particular
shell, you will be ready to start writing useful scripts. When executing commands from
within a script, you are using the shell as a programming language.

quigley.book Page 1 Friday, September 28, 2001 10:00 AM

Prentice Hall PTR
This is a sample chapter of UNIX Shells by Example, 3rd edition ISBN: 0-13-066538-XFor the full text, visit http://www.phptr.com©2001 Pearson Education. All Rights Reserved.

2 Chapter 1 • Introduction to UNIX Shells

1.1.1 The Three Major UNIX Shells

The three prominent and supported shells on most UNIX systems are the Bourne shell
(AT&T shell), the C shell (Berkeley shell), and the Korn shell (superset of the Bourne
shell). All three of these behave pretty much the same way when running interactively,
but have some differences in syntax and efficiency when used as scripting languages.

The Bourne shell is the standard UNIX shell, and is used to administer the system. Most
of the system administration scripts, such as the rc start and stop scripts and shutdown are
Bourne shell scripts, and when in single user mode, this is the shell commonly used by the
administrator when running as root. This shell was written at AT&T and is known for
being concise, compact, and fast. The default Bourne shell prompt is the dollar sign ($).

The C shell was developed at Berkeley and added a number of features, such as com-
mand line history, aliasing, built-in arithmetic, filename completion, and job control.
The C shell has been favored over the Bourne shell by users running the shell interac-
tively, but administrators prefer the Bourne shell for scripting, because Bourne shell
scripts are simpler and faster than the same scripts written in C shell. The default C shell
prompt is the percent sign (%).

The Korn shell is a superset of the Bourne shell written by David Korn at AT&T. A
number of features were added to this shell above and beyond the enhancements of the
C shell. Korn shell features include an editable history, aliases, functions, regular expres-
sion wildcards, built-in arithmetic, job control, coprocessing, and special debugging fea-
tures. The Bourne shell is almost completely upward-compatible with the Korn shell, so
older Bourne shell programs will run fine in this shell. The default Korn shell prompt is
the dollar sign ($).

1.1.2 The Linux Shells

Although often called “Linux” shells, Bash and TC shells are freely available and can be
compiled on any UNIX system; in fact, the shells are now bundled with Solaris 8 and Sun’s

Figure 1.1 The kernel, the shell, and you.

quigley.book Page 2 Friday, September 28, 2001 10:00 AM

1.1 Definition and Function 3

UNIX operating system. But when you install Linux, you will have access to the GNU
shells and tools, and not the standard UNIX shells and tools. Although Linux supports a
number of shells, the Bourne Again shell (bash) and the TC shell (tcsh) are by far the most
popular. The Z shell is another Linux shell that incorporates a number of features from the
Bourne Again shell, the TC shell, and the Korn shell. The Public Domain Korn shell
(pdksh) a Korn shell clone, is also available, and for a fee you can get AT&T’s Korn shell,
not to mention a host of other unknown smaller shells.

To see what shells are available under your version of Linux, look in the file, /etc/shell.
To change to one of the shells listed in /etc/shell, type the chsh command and the name

of the shell. For example, to change permanently to the TC shell, use the chsh command.
At the prompt, type:

chsh /bin/tcsh

1.1.3 History of the Shell

The first significant, standard UNIX shell was introduced in V7 (seventh edition of
AT&T) UNIX in late 1979, and was named after its creator, Stephen Bourne. The Bourne
shell as a programming language is based on a language called Algol, and was primarily
used to automate system administration tasks. Although popular for its simplicity and
speed, it lacks many of the features for interactive use, such as history, aliasing, and job
control. Enter bash, the Bourne Again shell, which was developed by Brian Fox of the
Free Software Foundation under the GNU copyright license and is the default shell for
the very popular Linux operating system. It was intended to conform to the IEEE POSIX
P1003.2/ISO 9945.2 Shell and Tools standard. Bash also offers a number of new features
(both at the interactive and programming level) missing in the original Bourne shell (yet
Bourne shell scripts will still run unmodified). It also incorporates the most useful fea-
tures of both the C shell and Korn shell. It’s big. The improvements over Bourne shell
are: command line history and editing, directory stacks, job control, functions, aliases,
arrays, integer arithmetic (in any base from 2 to 64), and Korn shell features, such as
extended metacharacters, select loops for creating menus, the let command, etc.

The C shell, developed at the University of California at Berkeley in the late 1970s, was
released as part of 2BSD UNIX. The shell, written primarily by Bill Joy, offered a number
of additional features not provided in the standard Bourne shell. The C shell is based on
the C programming language, and when used as a programming language, it shares a sim-
ilar syntax. It also offers enhancements for interactive use, such as command line history,
aliases, and job control. Because the shell was designed on a large machine and a number
of additional features were added, the C shell has a tendency to be slow on small machines
and sluggish even on large machines when compared to the Bourne shell.

 The TC shell is an expanded version of the C shell. Some of the new features are:
command line editing (emacs and vi), scrolling the history list, advanced filename, vari-
able, and command completion, spelling correction, scheduling jobs, automatic locking
and logout, time stamps in the history list, etc. It’s also big.

With both the Bourne shell and the C shell available, the UNIX user now had a
choice, and conflicts arose over which was the better shell. David Korn, from AT&T,

quigley.book Page 3 Friday, September 28, 2001 10:00 AM

4 Chapter 1 • Introduction to UNIX Shells

invented the Korn shell in the mid-1980s. It was released in 1986 and officially became
part of the SVR4 distribution of UNIX in 1988. The Korn shell, really a superset of the
Bourne shell, runs not only on UNIX systems, but also on OS/2, VMS, and DOS. It pro-
vides upward-compatibility with the Bourne shell, adds many of the popular features of
the C shell, and is fast and efficient. The Korn shell has gone through a number of revi-
sions. The most widely used version of the Korn shell is the 1988 version, although the
1993 version is gaining popularity. Linux users may find they are running the free ver-
sion of the Korn shell, called The Public Domain Korn shell, or simply pdksh, a clone of
David Korn’s 1988 shell. It is free and portable and currently work is underway to make
it fully compatible with its namesake, Korn shell, and to make it POSIX compliant. Also
available is the Z shell (zsh), another Korn shell clone with TC shell features, written by
Paul Falsted, and freely available at a number of Web sites.

1.1.4 Uses of the Shell

One of the major functions of a shell is to interpret commands entered at the command
line prompt when running interactively. The shell parses the command line, breaking it
into words (called tokens), separated by whitespace, which consists of tabs, spaces, or a
newline. If the words contain special metacharacters, the shell evaluates them. The shell
handles file I/O and background processing. After the command line has been pro-
cessed, the shell searches for the command and starts its execution.

Another important function of the shell is to customize the user’s environment, nor-
mally done in shell initialization files. These files contain definitions for setting terminal
keys and window characteristics; setting variables that define the search path, permis-
sions, prompts, and the terminal type; and setting variables that are required for specific
applications such as windows, text-processing programs, and libraries for programming
languages. The Korn shell and C shell also provide further customization with the addi-
tion of history and aliases, built-in variables set to protect the user from clobbering files
or inadvertently logging out, and to notify the user when a job has completed.

The shell can also be used as an interpreted programming language. Shell programs,
also called scripts, consist of commands listed in a file. The programs are created in an
editor (although on-line scripting is permitted). They consist of UNIX commands inter-
spersed with fundamental programming constructs such as variable assignment, condi-
tional tests, and loops. You do not have to compile shell scripts. The shell interprets each
line of the script as if it had been entered from the keyboard. Because the shell is respon-
sible for interpreting commands, it is necessary for the user to have an understanding of
what those commands are. See Appendix A for a list of useful commands.

1.1.5 Responsibilities of the Shell

The shell is ultimately responsible for making sure that any commands typed at the
prompt get properly executed. Included in those responsibilities are:

1. Reading input and parsing the command line.
2. Evaluating special characters.

quigley.book Page 4 Friday, September 28, 2001 10:00 AM

1.2 System Startup and the Login Shell 5

3. Setting up pipes, redirection, and background processing.
4. Handling signals.
5. Setting up programs for execution.

Each of these topics is discussed in detail as it pertains to a particular shell.

1.2 System Startup and the Login Shell

When you start up your system, the first process is called init. Each process has a process
identification number associated with it, called the PID. Since init is the first process, its
PID is 1. The init process initializes the system and then starts another process to open
terminal lines and set up the standard input (stdin), standard output (stdout), and stan-
dard error (stderr), which are all associated with the terminal. The standard input nor-
mally comes from the keyboard; the standard output and standard error go to the screen.
At this point, a login prompt would appear on your terminal.

After you type your login name, you will be prompted for a password. The /bin/login
program then verifies your identity by checking the first field in the passwd file. If your
username is there, the next step is to run the password you typed through an encryption
program to determine if it is indeed the correct password. Once your password is veri-
fied, the login program sets up an initial environment consisting of variables that define
the working environment that will be passed on to the shell. The HOME, SHELL, USER,
and LOGNAME variables are assigned values extracted from information in the passwd
file. The HOME variable is assigned your home directory; the SHELL variable is assigned
the name of the login shell, which is the last entry in the passwd file. The USER and/or
LOGNAME variables are assigned your login name. A search path variable is set so that
commonly used utilities may be found in specified directories. When login has finished,
it will execute the program found in the last entry of the passwd file. Normally, this pro-
gram is a shell. If the last entry in the passwd file is /bin/csh, the C shell program is exe-
cuted. If the last entry in the passwd file is /bin/sh or is null, the Bourne shell starts up.
If the last entry is /bin/ksh, the Korn shell is executed. This shell is called the login shell.

After the shell starts up, it checks for any systemwide initialization files set up by the
system administrator and then checks your home directory to see if there are any shell-
specific initialization files there. If any of these files exist, they are executed. The initial-
ization files are used to further customize the user environment. After the commands in
those files have been executed, a prompt appears on the screen. The shell is now waiting
for your input.

1.2.1 Parsing the Command Line

When you type a command at the prompt, the shell reads a line of input and parses the
command line, breaking the line into words, called tokens. Tokens are separated by
spaces and tabs and the command line is terminated by a newline.1 The shell then

1. The process of breaking the line up into tokens is called lexical analysis.

quigley.book Page 5 Friday, September 28, 2001 10:00 AM

6 Chapter 1 • Introduction to UNIX Shells

checks to see whether the first word is a built-in command or an executable program
located somewhere out on disk. If it is built-in, the shell will execute the command
internally. Otherwise, the shell will search the directories listed in the path variable to
find out where the program resides. If the command is found, the shell will fork a new
process and then execute the program. The shell will sleep (or wait) until the program
finishes execution and then, if necessary, will report the status of the exiting program. A
prompt will appear and the whole process will start again. The order of processing the
command line is as follows:

1. History substitution is performed (if applicable).
2. Command line is broken up into tokens, or words.
3. History is updated (if applicable).
4. Quotes are processed.
5. Alias substitution and functions are defined (if applicable).
6. Redirection, background, and pipes are set up.
7. Variable substitution ($user, $name, etc.) is performed.
8. Command substitution (echo for today is ‘date‘) is performed.
9. Filename substitution, called globbing (cat abc.??, rm *.c, etc.) is performed.

10. Program execution.

1.2.2 Types of Commands

When a command is executed, it is an alias, a function, a built-in command, or an exe-
cutable program on disk. Aliases are abbreviations (nicknames) for existing commands
and apply to the C, TC, Bash, and Korn shells. Functions apply to the Bourne (intro-
duced with AT&T System V, Release 2.0), Bash, and Korn shells. They are groups of
commands organized as separate routines. Aliases and functions are defined within the
shell’s memory. Built-in commands are internal routines in the shell, and executable pro-
grams reside on disk. The shell uses the path variable to locate the executable programs
on disk and forks a child process before the command can be executed. This takes time.
When the shell is ready to execute the command, it evaluates command types in the fol-
lowing order:2

1. Aliases
2. Keywords
3. Functions (bash)
4. Built-in commands
5. Executable programs

If, for example, the command is xyz the shell will check to see if xyz is an alias. If not,
is it a built-in command or a function? If neither of those, it must be an executable com-
mand residing on the disk. The shell then must search the path for the command.

2. Numbers 3 and 4 are reversed for Bourne and Korn(88) shells. Number 3 does not apply for C and TC
shells.

quigley.book Page 6 Friday, September 28, 2001 10:00 AM

1.3 Processes and the Shell 7

1.3 Processes and the Shell
A process is a program in execution and can be identified by its unique PID (process
identification) number. The kernel controls and manages processes. A process consists
of the executable program, its data and stack, program and stack pointer, registers, and
all the information needed for the program to run. When you start the shell, it is a pro-
cess. The shell belongs to a process group identified by the group’s PID. Only one pro-
cess group has control of the terminal at a time and is said to be running in the
foreground. When you log on, your shell is in control of the terminal and waits for you
to type a command at the prompt.

The shell can spawn other processes. In fact, when you enter a command at the
prompt or from a shell script, the shell has the responsibility of finding the command
either in its internal code (built-in) or out on the disk and then arranging for the com-
mand to be executed. This is done with calls to the kernel, called system calls. A system
call is a request for kernel services and is the only way a process can access the system’s
hardware. There are a number of system calls that allow processes to be created, executed,
and terminated. (The shell provides other services from the kernel when it performs redi-
rection and piping, command substitution, and the execution of user commands.)

The system calls used by the shell to cause new processes to run are discussed in the
following sections. See Figure 1.2.

Figure 1.2 The shell and command execution.

quigley.book Page 7 Friday, September 28, 2001 10:00 AM

8 Chapter 1 • Introduction to UNIX Shells

1.3.1 What Processes Are Running?

The ps Command. The ps command with its many options displays a list of the pro-
cesses currently running in a number of formats. Example 1.1 shows all processes that
are running by users on a Linux system. (See Appendix A for ps and its options.)

1.3.2 Creating Processes

The fork System Call. A process is created in UNIX with the fork system call. The
fork system call creates a duplicate of the calling process. The new process is called the
child and the process that created it is called the parent. The child process starts running
right after the call to fork, and both processes initially share the CPU. The child process
has a copy of the parent’s environment, open files, real and user identifications, umask,
current working directory, and signals.

When you type a command, the shell parses the command line and determines
whether the first word is a built-in command or an executable command that resides out
on the disk. If the command is built-in, the shell handles it, but if on the disk, the shell
invokes the fork system call to make a copy of itself (Figure 1.3). Its child will search the
path to find the command, as well as set up the file descriptors for redirection, pipes,
command substitution, and background processing. While the child shell works, the
parent normally sleeps. (See wait, below.)

EXAMPLE 1.1

$ ps au (BSD/Linux ps) (use ps -ef for SVR4)
USER PID %CPU %MEM SIZE RSS TTY STAT START TIME COMMAND
ellie 456 0.0 1.3 1268 840 1 S 13:23 0:00 -bash
ellie 476 0.0 1.0 1200 648 1 S 13:23 0:00 sh /usr/X11R6/bin/sta
ellie 478 0.0 1.0 2028 676 1 S 13:23 0:00 xinit /home/ellie/.xi
ellie 480 0.0 1.6 1852 1068 1 S 13:23 0:00 fvwm2
ellie 483 0.0 1.3 1660 856 1 S 13:23 0:00 /usr/X11R6/lib/X11/fv
ellie 484 0.0 1.3 1696 868 1 S 13:23 0:00 /usr/X11R6/lib/X11/fv
ellie 487 0.0 2.0 2348 1304 1 S 13:23 0:00 xclock -bg #c0c0c0 -p
ellie 488 0.0 1.1 1620 724 1 S 13:23 0:00 /usr/X11R6/lib/X11/fv
ellie 489 0.0 2.0 2364 1344 1 S 13:23 0:00 xload -nolabel -bg gr
ellie 495 0.0 1.3 1272 848 p0 S 13:24 0:00 -bash
ellie 797 0.0 0.7 852 484 p0 R 14:03 0:00 ps au
root 457 0.0 0.4 724 296 2 S 13:23 0:00 /sbin/mingetty tty2
root 458 0.0 0.4 724 296 3 S 13:23 0:00 /sbin/mingetty tty3
root 459 0.0 0.4 724 296 4 S 13:23 0:00 /sbin/mingetty tty4
root 460 0.0 0.4 724 296 5 S 13:23 0:00 /sbin/mingetty tty5
root 461 0.0 0.4 724 296 6 S 13:23 0:00 /sbin/mingetty tty6
root 479 0.0 4.5 12092 2896 1 S 13:23 0:01 X :0
root 494 0.0 2.5 2768 1632 1 S 13:24 0:00 nxterm -ls -sb -fn

quigley.book Page 8 Friday, September 28, 2001 10:00 AM

1.3 Processes and the Shell 9

Figure 1.3 The fork system call.

The wait System Call. The parent shell is programmed to go to sleep (wait) while
the child takes care of details such as handling redirection, pipes, and background pro-
cessing. The wait system call causes the parent process to suspend until one of its chil-
dren terminates. If wait is successful, it returns the PID of the child that died and the
child’s exit status. If the parent does not wait and the child exits, the child is put in a
zombie state (suspended animation) and will stay in that state until either the parent
calls wait or the parent dies.3 If the parent dies before the child, the init process adopts
any orphaned zombie process. The wait system call, then, is not just used to put a parent
to sleep, but also to ensure that the process terminates properly.

The exec System Call. After you enter a command at the terminal, the shell nor-
mally forks off a new shell process: the child process. As mentioned earlier, the child
shell is responsible for causing the command you typed to be executed. It does this by
calling the exec system call. Remember, the user command is really just an executable
program. The shell searches the path for the new program. If it is found, the shell calls
the exec system call with the name of the command as its argument. The kernel loads
this new program into memory in place of the shell that called it. The child shell, then,
is overlaid with the new program. The new program becomes the child process and
starts executing. Although the new process has its own local variables, all environment
variables, open files, signals, and the current working directory are passed to the new
process. This process exits when it has finished, and the parent shell wakes up.

The exit System Call. A new program can terminate at any time by executing the
exit call. When a child process terminates, it sends a signal (sigchild) and waits for the
parent to accept its exit status. The exit status is a number between 0 and 255. An exit
status of zero indicates that the program executed successfully, and a nonzero exit status
means that the program failed in some way.

For example, if the command ls had been typed at the command line, the parent shell
would fork a child process and go to sleep. The child shell would then exec (overlay) the

3. To remove zombie processes, the system must be rebooted.

quigley.book Page 9 Friday, September 28, 2001 10:00 AM

10 Chapter 1 • Introduction to UNIX Shells

ls program in its place. The ls program would run in place of the child, inheriting all the
environment variables, open files, user information, and state information. When the
new process finished execution, it would exit and the parent shell would wake up. A
prompt would appear on the screen, and the shell would wait for another command. If
you are interested in knowing how a command exited, each shell has a special built-in
variable that contains the exit status of the last command that terminated. (All of this
will be explained in detail in the individual shell chapters.) See Figure 1.4 for an exam-
ple of process creation and termination.

EXAMPLE 1.2

(C Shell)
1 % cp filex filey

% echo $status
0

2 % cp xyz
Usage: cp [-ip] f1 f2; or: cp [-ipr] f1 ... fn d2
% echo $status
1

(Bourne and Korn Shells)
3 $ cp filex filey

$ echo $?
0
$ cp xyz
Usage: cp [-ip] f1 f2; or: cp [-ipr] f1 ... fn d2
$ echo $?
1

EXPLANATION
1 The cp (copy) command is entered at the C shell command line prompt. After the

command has made a copy of filex called filey, the program exits and the prompt
appears. The csh status variable contains the exit status of the last command that
was executed. If the status is zero, the cp program exited with success. If the exit
status is nonzero, the cp program failed in some way.

2 When entering the cp command, the user failed to provide two filenames: the
source and destination files. The cp program sent an error message to the screen
and exited with a status of one. That number is stored in the csh status variable.
Any number other than zero indicates that the program failed.

3 The Bourne and Korn shells process the cp command as the C shell did in the first
two examples. The only difference is that the Bourne and Korn shells store the exit
status in the ? variable, rather than the status variable.

quigley.book Page 10 Friday, September 28, 2001 10:00 AM

1.4 The Environment and Inheritance 11

1.4 The Environment and Inheritance

When you log on, the shell starts up and inherits a number of variables, I/O streams, and
process characteristics from the /bin/login program that started it. In turn, if another
shell is spawned (forked) from the login or parent shell, that child shell (subshell) will
inherit certain characteristics from its parent. A subshell may be started for a number of
reasons: for handling background processing, for handling groups of commands, or for

Figure 1.4 The fork, exec, wait, and exit system calls.

EXPLANATION
1 The parent shell creates a copy of itself with the fork system call. The copy is called

the child shell.

2 The child shell has a new PID and is a copy of its parent. It will share the CPU
with the parent.

3 The kernel loads the grep program into memory and executes (exec) it in place of
the child shell. The grep program inherits the open files and environment from the
child.

4 The grep program exits, the kernel cleans up, and the parent is awakened.

quigley.book Page 11 Friday, September 28, 2001 10:00 AM

12 Chapter 1 • Introduction to UNIX Shells

executing scripts. The child shell inherits an environment from its parent. The environ-
ment consists of process permissions (who owns the process), the working directory, the
file creation mask, special variables, open files, and signals.

1.4.1 Ownership
When you log on, the shell is given an identity. It has a real user identification (UID),
one or more real group identifications (GID), and an effective user identification and
effective group identification (EUID and EGID). The EUID and EGID are initially the
same as the real UID and GID. These ID numbers are found in the passwd file and are
used by the system to identify users and groups. The EUID and EGID determine what
permissions a process has access to when reading, writing, or executing files. If the EUID
of a process and the real UID of the owner of the file are the same, the process has the
owner’s access permissions for the file. If the EGID and real GID of a process are the
same, the process has the owner’s group privileges.

The real UID, from the /etc/passwd file, is a positive integer associated with your login
name. The real UID is the third field in the password file. When you log on, the login
shell is assigned the real UID and all processes spawned from the login shell inherit its
permissions. Any process running with a UID of zero belongs to root (the superuser)
and has root privileges. The real group identification, the GID, associates a group with
your login name. It is found in the fourth field of the password file.

The EUID and EGID can be changed to numbers assigned to a different owner. By
changing the EUID (or EGID4) to another owner, you can become the owner of a pro-
cess that belongs to someone else. Programs that change the EUID or EGID to another
owner are called setuid or setgid programs. The /bin/passwd program is an example of a
setuid program that gives the user root privileges. Setuid programs are often sources for
security holes. The shell allows you to create setuid scripts, and the shell itself may be a
setuid program.

1.4.2 The File Creation Mask

When a file is created, it is given a set of default permissions. These permissions are
determined by the program creating the file. Child processes inherit a default mask from
their parents. The user can change the mask for the shell by issuing the umask command
at the prompt or by setting it in the shell’s initialization files. The umask command is
used to remove permissions from the existing mask.

Initially, the umask is 000, giving a directory 777 (rwxrwxrwx) permissions and a file
666 (rw–rw–rw–) permissions as the default. On most systems, the umask is assigned a
value of 022 by the /bin/login program or the /etc/profile initialization file.

 The umask value is subtracted from the default settings for both the directory and file
permissions as follows:

4. The setgid permission is system-dependent in its use. On some systems, a setgid on a directory may cause
files created in that directory to belong to the same group that is owned by the directory. On others, the
EGID of the process determines the group that can use the file.

quigley.book Page 12 Friday, September 28, 2001 10:00 AM

1.4 The Environment and Inheritance 13

 777 (Directory) 666 (File)
–022 (umask value) –022 (umask value)
------- ---------
 755 644

Result: drwxr-xr-x -rw-r--r--

After the umask is set, all directories and files created by this process are assigned the
new default permissions. In this example, directories will be given read, write, and exe-
cute for the owner; read and execute for the group; and read and execute for the rest of
the world (others). Any files created will be assigned read and write for the owner, and
read for the group and others. To change permissions on individual directories and per-
missions, the chmod command is used.

1.4.3 Changing Permissions with chmod

There is one owner for every UNIX file. Only the owner or the superuser can change the
permissions on a file or directory by issuing the chmod command. The following exam-
ple illustrates the permissions modes. A group may have a number of members, and the
owner of the file may change the group permissions on a file so that the group can enjoy
special privileges.

The chown command changes the owner and group on files and directories. Only the
owner or superuser can invoke it. On BSD versions of UNIX, only the superuser, root,
can change ownership.

Every UNIX file has a set of permissions associated with it to control who can read,
write, or execute the file. A total of nine bits constitutes the permissions on a file. The
first set of three bits controls the permissions of the owner of the file, the second set
controls the permissions of the group, and the last set controls the permissions of
everyone else. The permissions are stored in the mode field of the file’s inode.

The chmod command changes permissions on files and directories. The user must
own the files to change permissions on them.5

Table 1.1 illustrates the eight possible combinations of numbers used for changing
permissions.

5. The caller’s EUID must match the owner’s UID of the file, or the owner must be superuser.

Table 1.1 Permission Modes

Decimal Octal Permissions

0 000 none

1 001 – –x

2 010 –w–

3 011 –wx

quigley.book Page 13 Friday, September 28, 2001 10:00 AM

14 Chapter 1 • Introduction to UNIX Shells

4 100 r– –

5 101 r–x

6 110 rw–

7 111 rwx

The symbolic notation for chmod is as follows:
r = read; w = write; x = execute; u = user; g = group; o = others; a = all.

EXAMPLE 1.3
1 $ chmod 755 file

$ ls –l file
–rwxr–xr–x 1 ellie 0 Mar 7 12:52 file

2 $ chmod g+w file
$ ls -l file
–rwxrwxr-x 1 ellie 0 Mar 7 12:54 file

3 $ chmod go-rx file
$ ls -l file
–rwx-w---- 1 ellie0 Mar 7 12:56 file

4 $ chmod a=r file
$ ls -l file
–r--r--r-- 1 ellie 0 Mar 7 12:59 file

EXPLANATION
1 The first argument is the octal value 755. It turns on rwx for the user, and r and x

for the group and others for file.

2 In the symbolic form of chmod, write permission is added to the group.

3 In the symbolic form of chmod, read and execute permission are subtracted from
the group and others.

4 In the symbolic form of chmod, all are given only read permission. The = sign
causes all permissions to be reset to the new value.

EXAMPLE 1.4
(The Command Line)
1 $ chown steve filex
2 $ ls -l

(The Output)
-rwxrwxr-x 1 steve groupa 170 Jul 28:20 filex

EXPLANATION
1 The ownership of filex is changed to steve.

2 The ls –l command displays the owner steve in column 3.

Table 1.1 Permission Modes (continued)

quigley.book Page 14 Friday, September 28, 2001 10:00 AM

1.4 The Environment and Inheritance 15

1.4.4 Changing Ownership with the chown Command

The Working Directory. When you log in, you are given a working directory within
the file system, called the home directory. The working directory is inherited by processes
spawned from this shell. Any child process of this shell can change its own working
directory, but the change will have no effect on the parent shell.

 The cd command, used to change the working directory, is a shell built-in command.
Each shell has its own copy of cd. A built-in command is executed directly by the shell
as part of the shell’s code; the shell does not perform the fork and exec system calls when
executing built-in commands. If another shell (script) is forked from the parent shell,
and the cd command is issued in the child shell, the directory will be changed in the
child shell. When the child exits, the parent shell will be in the same directory it was in
before the child started.

EXAMPLE 1.5

1 % cd /

2 % pwd
/

3 % sh

4 $ cd /home

5 $ pwd
/home

6 $ exit

7 % pwd
/

%

EXPLANATION
1 The prompt is a C shell prompt. The cd command changes directory to /. The cd

command is built into the shell’s internal code.

2 The pwd command displays the present working directory, /.

3 The Bourne shell is started.

4 The cd command changes directories to /home.

5 The pwd command displays the present working directory, /home.

6 The Bourne shell is exited, returning back to the C shell.

7 In the C shell, the present working directory is still /. Each shell has its own copy
of cd.

quigley.book Page 15 Friday, September 28, 2001 10:00 AM

16 Chapter 1 • Introduction to UNIX Shells

Variables. The shell can define two types of variables: local and environment. The
variables contain information used for customizing the shell, and information required
by other processes so that they will function properly. Local variables are private to the
shell in which they are created and not passed on to any processes spawned from that
shell. Environment variables, on the other hand, are passed from parent to child process,
from child to grandchild, and so on. Some of the environment variables are inherited by
the login shell from the /bin/login program. Others are created in the user initialization
files, in scripts, or at the command line. If an environment variable is set in the child
shell, it is not passed back to the parent.

File Descriptors. All I/O, including files, pipes, and sockets, are handled by the ker-
nel via a mechanism called the file descriptor. A file descriptor is a small unsigned inte-
ger, an index into a file-descriptor table maintained by the kernel and used by the kernel
to reference open files and I/O streams. Each process inherits its own file-descriptor
table from its parent. The first three file descriptors, 0, 1, and 2, are assigned to your ter-
minal. File descriptor 0 is standard input (stdin), 1 is standard output (stdout), and 2 is
standard error (stderr). When you open a file, the next available descriptor is 3, and it
will be assigned to the new file. If all the available file descriptors are in use,6 a new file
cannot be opened.

Redirection. When a file descriptor is assigned to something other than a terminal, it
is called I/O redirection. The shell performs redirection of output to a file by closing the
standard output file descriptor, 1 (the terminal), and then assigning that descriptor to the
file (Figure 1.5).When redirecting standard input, the shell closes file descriptor 0 (the
terminal) and assigns that descriptor to a file (Figure 1.6). The Bourne and Korn shells
handle errors by assigning a file to file descriptor 2 (Figure 1.7). The C shell, on the other
hand, goes through a more complicated process to do the same thing (Figure 1.8).

6. See built-in commands, limit and ulimit.

EXAMPLE 1.6

1 % who > file
2 % cat file1 file2 >> file3
3 % mail tom < file
4 % find / -name file -print 2> errors
5 % (find / -name file -print > /dev/tty) >& errors

EXPLANATION
1 The output of the who command is redirected from the terminal to file. (All shells

redirect output in this way.)

2 The output from the cat command (concatenate file1 and file2) is appended to
file3. (All shells redirect and append output in this way.)

3 The input of file is redirected to the mail program; that is, user tom will be sent the
contents of file. (All shells redirect input in this way.)

quigley.book Page 16 Friday, September 28, 2001 10:00 AM

1.4 The Environment and Inheritance 17

Figure 1.5 Redirection of standard output.

Figure 1.6 Redirection of standard input.

4 Any errors from the find command are redirected to errors. Output goes to the ter-
minal. (The Bourne and Korn shells redirect errors this way.)

5 Any errors from the find command are redirected to errors. Output is sent to the
terminal. (The C shell redirects errors this way.)

EXPLANATION

quigley.book Page 17 Friday, September 28, 2001 10:00 AM

18 Chapter 1 • Introduction to UNIX Shells

Figure 1.7 Redirection of standard error (Bourne and Korn shells).

Figure 1.8 Redirection of standard error (C shell).

quigley.book Page 18 Friday, September 28, 2001 10:00 AM

1.4 The Environment and Inheritance 19

Pipes. Pipes allow the output of one command to be sent to the input of another com-
mand. The shell implements pipes by closing and opening file descriptors; however,
instead of assigning the descriptors to a file, it assigns them to a pipe descriptor created
with the pipe system call. After the parent creates the pipe file descriptors, it forks a child
process for each command in the pipeline. By having each process manipulate the pipe
descriptors, one will write to the pipe and the other will read from it. The pipe is merely
a kernel buffer from which both processes can share data, thus eliminating the need for
intermediate temporary files. After the descriptors are set up, the commands are exec’ed
concurrently. The output of one command is sent to the buffer, and when the buffer is
full or the command has terminated, the command on the right-hand side of the pipe
reads from the buffer. The kernel synchronizes the activities so that one process waits
while the other reads from or writes from the buffer.

The syntax of the pipe command is

who | wc

The shell sends the output of the who command as input to the wc command. This is
accomplished with the pipe system call. The parent shell calls the pipe system call, which
creates two pipe descriptors, one for reading from the pipe and one for writing to it. The
files associated with the pipe descriptors are kernel-managed I/O buffers used to tempo-
rarily store data, thus saving you the trouble of creating temporary files. Figures 1.9
through 1.13 illustrate the steps for implementing the pipe.

(1) The parent shell calls the pipe system call. Two file descriptors are returned: one
for reading from the pipe and one for writing to the pipe. The file descriptors assigned
are the next available descriptors in the file-descriptor (fd) table, fd 3 and fd 4. See Figure
1.9.

Figure 1.9 The parent calls the pipe system call for setting up a pipeline.

quigley.book Page 19 Friday, September 28, 2001 10:00 AM

20 Chapter 1 • Introduction to UNIX Shells

(2) For each command, who and wc, the parent forks a child process. Both child pro-
cesses get a copy of the parent’s open file descriptors. See Figure 1.10.

(3) The first child closes its standard output. It then duplicates (the dup system call)
file descriptor 4, the one associated with writing to the pipe. The dup system call copies
fd 4 and assigns the copy to the lowest available descriptor in the table, fd 1. After it
makes the copy, the dup call closes fd 4. The child will now close fd 3 because it does not
need it. This child wants its standard output to go to the pipe. See Figure 1.11.

Figure 1.10 The parent forks two child processes, one for each command
in the pipeline.

Figure 1.11 The first child is prepared to write to the pipe.

quigley.book Page 20 Friday, September 28, 2001 10:00 AM

1.4 The Environment and Inheritance 21

(4) Child 2 closes its standard input. It then duplicates (dups) fd 3, which is associated
with reading from the pipe. By using dup, a copy of fd 3 is created and assigned to the lowest
available descriptor. Since fd 0 was closed, it is the lowest available descriptor. Dup closes fd
3. The child closes fd 4. Its standard input will come from the pipe. See Figure 1.12.

(5) The who command is executed in place of Child 1 and the wc command is exe-
cuted to replace Child 2. The output of the who command goes into the pipe and is read
by the wc command from the other end of the pipe. See Figure 1.13.

Figure 1.12 The second child is prepared to read input from the pipe.

Figure 1.13 The output of who is sent to the input of wc.

quigley.book Page 21 Friday, September 28, 2001 10:00 AM

22 Chapter 1 • Introduction to UNIX Shells

1.4.5 The Shell and Signals

A signal sends a message to a process and normally causes the process to terminate, usu-
ally owing to some unexpected event such as a segmentation violation, bus error, or
power failure. You can send signals to a process by pressing the Break, Delete, Quit, or
Stop keys, and all processes sharing the terminal are affected by the signal sent. You can
kill a process with the kill command. By default, most signals terminate the program.
The shells allow you to handle signals coming into your program, either by ignoring
them or by specifying some action to be taken when a specified signal arrives. The C
shell is limited to handling ^C (Control-C).

1.5 Executing Commands from Scripts

When the shell is used as a programming language, commands and shell control con-
structs are typed in an editor and saved to a file, called a script. The lines from the file
are read and executed one at a time by the shell. These programs are interpreted, not
compiled. Compiled programs are converted into machine language before they are exe-
cuted. Therefore, shell programs are usually slower than binary executables, but they are
easier to write and are used mainly for automating simple tasks. Shell programs can also
be written interactively at the command line, and for very simple tasks, this is the quick-
est way. However, for more complex scripting, it is easier to write scripts in an editor
(unless you are a really great typist). The following script can be executed by any shell
to output the same results. Figure 1.14 illustrates the creation of a script called doit and
how it fits in with already existing UNIX programs/utilities/commands.

Figure 1.14 Creating a generic shell script.

quigley.book Page 22 Friday, September 28, 2001 10:00 AM

1.5 Executing Commands from Scripts 23

1.5.1 Sample Scripts: Comparing Three Shells

At first glance, the following three programs look very similar. They are. And they all do
the same thing. The main difference is the syntax. After you have worked with all three
shells for some time, you will quickly adapt to the differences and start formulating your
own opinions about which shell is your favorite. A detailed comparison of differences
among the C, Bourne, and Korn shells is found in Appendix B.

The following scripts send a mail message to a list of users, inviting each of them to
a party. The place and time of the party are set in variables. The people to be invited are
selected from a file called guests. A list of foods is stored in a word list, and each person
is asked to bring one of the foods from the list. If there are more users than food items,
the list is reset so that each user is asked to bring a different food. The only user who is
not invited is the user root.

1.5.2 The C Shell Script

EXPLANATION
1 Go into your favorite editor and type in a set of UNIX commands, one per line.

Indicate what shell you want by placing the pathname of the shell after the #! on
the first line. This program is being executed by the C shell and it is named doit.

2 Save your file and turn on the execute permissions so that you can run it.

3 Execute your program just as you would any other UNIX command.

EXAMPLE 1.7

1 #!/bin/csh –f
2 # The Party Program––Invitations to friends from the "guest" file
3 set guestfile = ~/shell/guests
4 if (! –e "$guestfile") then

echo "$guestfile:t non–existent"
exit 1

endif
5 setenv PLACE "Sarotini's"

@ Time = ‘date +%H‘ + 1
set food = (cheese crackers shrimp drinks "hot dogs" sandwiches)

6 foreach person (‘cat $guestfile‘)
if ($person =~ root) continue

quigley.book Page 23 Friday, September 28, 2001 10:00 AM

24 Chapter 1 • Introduction to UNIX Shells

7 mail –v –s "Party" $person << FINIS # Start of here document
Hi ${person}! Please join me at $PLACE for a party!
Meet me at $Time o'clock.
I'll bring the ice cream. Would you please bring $food[1] and
anything else you would like to eat? Let me know if you can't
make it. Hope to see you soon.

Your pal,
ellie@‘hostname‘ # or ‘uname -n‘

FINIS
8 shift food

if ($#food == 0) then
set food = (cheese crackers shrimp drinks "hot dogs"
 sandwiches)

endif
9 end

echo "Bye..."

EXPLANATION
1 This line lets the kernel know that you are running a C shell script. The –f option

is a fast startup. It says, “Do not execute the .cshrc file,” an initialization file that
is automatically executed every time a new csh program is started.

2 This is a comment. It is ignored by the shell, but important for anyone trying to
understand what the script is doing.

3 The variable guestfile is set to the full pathname of a file called guests.

4 This line reads: If the file guests does not exist, then print to the screen “guests non-
existent” and exit from the script with an exit status of 1 to indicate that something
went wrong in the program.

5 Set variables are assigned the values for the place, time, and list of foods to bring.
The PLACE variable is an environment variable. The Time variable is a local vari-
able. The @ symbol tells the C shell to perform its built-in arithmetic; that is, add
1 to the Time variable after extracting the hour from the date command. The Time
variable is spelled with an uppercase T to prevent the C shell from confusing it
with one of its reserved words, time.

6 For each person on the guest list, except the user root, a mail message will be cre-
ated inviting the person to a party at a given place and time, and asking him or
her to bring one of the foods on the list.

7 The mail message is created in what is called a here document. All text from the
user-defined word FINIS to the final FINIS will be sent to the mail program. The
foreach loop shifts through the list of names, performing all of the instructions
from the foreach to the keyword end.

EXAMPLE 1.7 (CONTINUED)

quigley.book Page 24 Friday, September 28, 2001 10:00 AM

1.5 Executing Commands from Scripts 25

1.5.3 The Bourne Shell Script

8 After a message has been sent, the food list is shifted so that the next person will
get the next food item on the list. If there are more people than food items, the
food list will be reset to ensure that each person is instructed to bring a food item.

9 This marks the end of the looping statements.

EXAMPLE 1.8

1 #!/bin/sh
2 # The Party Program––Invitations to friends from the "guest" file
3 guestfile=/home/jody/ellie/shell/guests
4 if [! –f "$guestfile"]

then
echo "‘basename $guestfile‘ non–existent"
exit 1

fi
5 PLACE="Sarotini's"

export PLACE
Time=‘date +%H‘
Time=‘expr $Time + 1‘
set cheese crackers shrimp drinks "hot dogs" sandwiches

6 for person in ‘cat $guestfile‘
do

if [$person =~ root]
then

continue
else

7 mail –v –s "Party" $person <<- FINIS
Hi ${person}! Please join me at $PLACE for a party!
Meet me at $Time o'clock.
I'll bring the ice cream. Would you please bring $1 and
anything else you would like to eat? Let me know if you
can't make it. Hope to see you soon.
 Your pal,
 ellie@‘hostname‘
FINIS

8 shift
if [$# –eq 0]
then
 set cheese crackers shrimp drinks "hot dogs" sandwiches
fi

fi
9 done

echo "Bye..."

EXPLANATION (CONTINUED)

quigley.book Page 25 Friday, September 28, 2001 10:00 AM

26 Chapter 1 • Introduction to UNIX Shells

1.5.4 The Korn Shell Script

EXPLANATION
1 This line lets the kernel know that you are running a Bourne shell script.

2 This is a comment. It is ignored by the shell, but important for anyone trying to
understand what the script is doing.

3 The variable guestfile is set to the full pathname of a file called guests.

4 This line reads: If the file guests does not exist, then print to the screen “guests non-
existent” and exit from the script.

5 Variables are assigned the values for the place and time. The list of foods to bring
is assigned to special variables (positional parameters) with the set command.

6 For each person on the guest list, except the user root, a mail message will be cre-
ated inviting each person to a party at a given place and time, and asking each to
bring a food from the list.

7 The mail message is sent when this line is uncommented. It is not a good idea to
uncomment this line until the program has been thoroughly debugged, otherwise
the e-mail will be sent to the same people every time the script is tested. The next
statement, using the cat command with the here document, allows the script to be
tested by sending output to the screen that would normally be sent through the
mail when line 7 is uncommented.

8 After a message has been sent, the food list is shifted so that the next person will
get the next food on the list. If there are more people than foods, the food list will
be reset, insuring that each person is assigned a food.

9 This marks the end of the looping statements.

EXAMPLE 1.9
1 #!/bin/ksh
2 # The Party Program––Invitations to friends from the "guest" file
3 guestfile=~/shell/guests
4 if [[! –a "$guestfile"]]

then
print "${guestfile##*/} non–existent"
exit 1

fi
5 export PLACE="Sarotini's"

((Time=$(date +%H) + 1))
set cheese crackers shrimp drinks "hot dogs" sandwiches

6 for person in $(< $guestfile)
do

if [[$person = root]]
then

continue
else

quigley.book Page 26 Friday, September 28, 2001 10:00 AM

1.5 Executing Commands from Scripts 27

Start of here document
7 mail –v –s "Party" $person <<- FINIS

Hi ${person}! Please join me at $PLACE for a party!
Meet me at $Time o'clock.
I'll bring the ice cream. Would you please bring $1
and anything else you would like to eat? Let me know
if you can't make it.
 Hope to see you soon.

 Your pal,
 ellie@‘hostname‘

FINIS
8 shift

if (($# == 0))
then
 set cheese crackers shrimp drinks "hot dogs" sandwiches
fi

 fi
9 done

print "Bye..."

EXPLANATION
1 This line lets the kernel know that you are running a Korn shell script.

2 This is a comment. It is ignored by the shell, but important for anyone trying to
understand what the script is doing.

3 The variable guestfile is set to the full pathname of a file called guests.

4 This line reads: If the file guests does not exist, then print to the screen “guests non-
existent” and exit from the script.

5 Variables are assigned the values for the place and time. The list of foods to bring
is assigned to special variables (positional parameters) with the set command.

6 For each person on the guest list, except the user root, a mail message will be cre-
ated inviting the person to a party at a given place and time, and assigning a food
from the list to bring.

7 The mail message is sent. The body of the message is contained in a here document.

8 After a message has been sent, the food list is shifted so that the next person will
get the next food on the list. If there are more people than foods, the food list will
be reset, insuring that each person is assigned a food.

9 This marks the end of the looping statements.

EXAMPLE 1.9 (CONTINUED)

quigley.book Page 27 Friday, September 28, 2001 10:00 AM

