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T he Linux kernel is a multitasking kernel, which means that many processes
can run as if they were the only process on the system. The way in which

an operating system chooses which process at a given time has access to a sys-
tem’s CPU(s) is controlled by a scheduler.

The scheduler is responsible for swapping CPU access between different
processes and for choosing the order in which processes obtain CPU access.
Linux, like most operating systems, triggers the scheduler by using a timer inter-
rupt. When this timer goes off, the kernel needs to decide whether to yield the
CPU to a process different than the current process and, if a yield occurs, which
process gets the CPU next. The amount of time between the timer interrupt is
called a timeslice.

System processes tend to fall into two types: interactive and non-interactive.
Interactive processes are heavily dependent upon I/O and, as a result, do not
usually use their entire timeslice and, instead, yield the CPU to another process.
Non-interactive processes are heavily dependent on the CPU and typically use
most, if not all, of their timeslice. The scheduler has to balance the requirements
of these two types of processes and attempt to ensure every process gets enough
time to accomplish its task without detrimentally affecting the execution of
other processes.

Linux, like some schedulers, distinguishes between one more type of process: a
real-time process. Real-time processes must execute in real time. Linux has sup-
port for real-time processes, but those exist outside of the scheduler logic. Put
simply, the Linux scheduler treats any process marked as real-time as a higher
priority than any other process. It is up to the developer of the real-time processes
to ensure that these processes do not hog the CPU and eventually yield.

Schedulers typically use some type of process queue to manage the execution of
processes on the system. In Linux, this process queue is called the run queue.
The run queue is described fully in Chapter 3, “Processes: The Principal Model
of Execution,”1 but let’s recap some of the fundamentals here because of the
close tie between the scheduler and the run queue.

1 Section 3.6 discusses the run queue.
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In Linux, the run queue is composed of two priority arrays:

• Active. Stores processes that have not yet used up their timeslice

• Expired. Stores processes that have used up their timeslice

From a high level, the scheduler’s job in Linux is to take the highest priority
active processes, let them use the CPU to execute, and place them in the expired
array when they use up their timeslice. With this high-level framework in mind,
let’s closely look at how the Linux scheduler operates.

7.1 Linux Scheduler
The 2.6 Linux kernel introduces a completely new scheduler that’s commonly

referred to as the O(1) scheduler. The scheduler can perform the scheduling of a
task in constant time.2 Chapter 3 addressed the basic structure of the scheduler and
how a newly created process is initialized for it. This section describes how a task is
executed on a single CPU system. There are some mentions of code for scheduling
across multiple CPU (SMP) systems but, in general, the same scheduling process
applies across CPUs. We then describe how the scheduler switches out the currently
running process, performing what is called a context switch, and then we touch on
the other significant change in the 2.6 kernel: preemption.

From a high level, the scheduler is simply a grouping of functions that operate
on given data structures. Nearly all the code implementing the scheduler can be
found in kernel/sched.c and include/linux/sched.h. One important point
to mention early on is how the scheduler code uses the terms “task” and “process”
interchangeably. Occasionally, code comments also use “thread” to refer to a task or
process. A task, or process, in the scheduler is a collection of data structures and
flow of control. The scheduler code also refers to a task_struct, which is a data
structure the Linux kernel uses to keep track of processes.3
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3 Chapter 3 explains the task_struct structure in depth.
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7.1.1 Choosing the Next Task
After a process has been initialized and placed on a run queue, at some time, 

it should have access to the CPU to execute. The two functions that are respon-
sible for passing CPU control to different processes are schedule() and
scheduler_tick(). scheduler_tick() is a system timer that the kernel period-
ically calls and marks processes as needing rescheduling. When a timer event occurs,
the current process is put on hold and the Linux kernel itself takes control of the
CPU. When the timer event finishes, the Linux kernel normally passes control back
to the process that was put on hold. However, when the held process has been
marked as needing rescheduling, the kernel calls schedule() to choose which
process to activate instead of the process that was executing before the kernel took
control. The process that was executing before the kernel took control is called the
current process. To make things slightly more complicated, in certain situations, the
kernel can take control from the kernel; this is called kernel preemption. In the fol-
lowing sections, we assume that the scheduler decides which of two user space
processes gains CPU control.

Figure 7.1 illustrates how the CPU is passed among different processes as time
progresses. We see that Process A has control of the CPU and is executing. The sys-
tem timer scheduler_tick() goes off, takes control of the CPU from A, and
marks A as needing rescheduling. The Linux kernel calls schedule(), which
chooses Process B and the control of the CPU is given to B.

FIGURE 7.1
Scheduling Processes

Process B executes for a while and then voluntarily yields the CPU. This com-
monly occurs when a process waits on some resource. B calls schedule(), which
chooses Process C to execute next.
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Process C executes until scheduler_tick() occurs, which does not mark C as
needing rescheduling. This results in schedule() not being called and C regains
control of the CPU.

Process C yields by calling schedule(), which determines that Process A should
gain control of the CPU and A starts to execute again.

We first examine schedule(), which is how the Linux kernel decides which
process to execute next, and then we examine scheduler_tick(), which is how
the kernel determines which processes need to yield the CPU. The combined effects
of these functions demonstrate the flow of control within the scheduler:

–----------------------------------------------------------------------
kernel/sched.c
2184 asmlinkage void schedule(void)
2185 {
2186   long *switch_count;
2187   task_t *prev, *next;
2188   runqueue_t *rq;
2189   prio_array_t *array;
2190   struct list_head *queue;
2191   unsigned long long now;
2192   unsigned long run_time;
2193   int idx;
2194 
2195   /*
2196   * Test if we are atomic. Since do_exit() needs to call into
2197   * schedule() atomically, we ignore that path for now.
2198   * Otherwise, whine if we are scheduling when we should not be.
2199   */
2200   if (likely(!(current->state & (TASK_DEAD | TASK_ZOMBIE)))) {
2201     if (unlikely(in_atomic())) {
2202       printk(KERN_ERR "bad: scheduling while atomic!\n  ");
2203       dump_stack();
2204     }
2205   }
2206 
2207 need_resched:
2208   preempt_disable();
2209   prev = current;
2210   rq = this_rq();
2211 
2212   release_kernel_lock(prev);
2213   now = sched_clock();
2214   if (likely(now - prev->timestamp < NS_MAX_SLEEP_AVG))
2215     run_time = now - prev->timestamp;
2216   else
2217     run_time = NS_MAX_SLEEP_AVG;
2218 
2219   /*

7.1 Linux Scheduler 377
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2220   * Tasks with interactive credits get charged less run_time
2221   * at high sleep_avg to delay them losing their interactive
2222   * status
2223   */
2224   if (HIGH_CREDIT(prev))
2225   run_time /= (CURRENT_BONUS(prev) ? : 1);
-----------------------------------------------------------------------

Lines 2213–2218

We calculate the length of time for which the process on the scheduler has been
active. If the process has been active for longer than the average maximum sleep
time (NS_MAX_SLEEP_AVG), we set its runtime to the average maximum sleep time.

This is what the Linux kernel code calls a timeslice in other sections of the code.
A timeslice refers to both the amount of time between scheduler interrupts and the
length of time a process has spent using the CPU. If a process exhausts its timeslice,
the process expires and is no longer active. The timestamp is an absolute value that
determines for how long a process has used the CPU. The scheduler uses time-
stamps to decrement the timeslice of processes that have been using the CPU.

For example, suppose Process A has a timeslice of 50 clock cycles. It uses the
CPU for 5 clock cycles and then yields the CPU to another process. The kernel uses
the timestamp to determine that Process A has 45 cycles left on its timeslice.

Lines 2224–2225

Interactive processes are processes that spend much of their time waiting for
input. A good example of an interactive process is the keyboard controller—most
of the time the controller is waiting for input, but when it has a task to do, the user
expects it to occur at a high priority.

Interactive processes, those that have an interactive credit of more than 
100 (default value), get their effective run_time divided by (sleep_avg/
max_sleep_avg * MAX_BONUS(10)):4

–----------------------------------------------------------------------
kernel/sched.c
2226
2227   spin_lock_irq(&rq->lock);
2228 
2229   /*
2230   * if entering off of a kernel preemption go straight
2231   * to picking the next task.
2232   */

378 Chapter 7 • Scheduling and Kernel Synchronization
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2233   switch_count = &prev->nivcsw;
2234   if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2235     switch_count = &prev->nvcsw;
2236     if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2237         unlikely(signal_pending(prev))))
2238       prev->state = TASK_RUNNING;
2239     else
2240       deactivate_task(prev, rq);
2241   }
-----------------------------------------------------------------------

Line 2227

The function obtains the run queue lock because we’re going to modify it.

Lines 2233–2241

If we have entered schedule() with the previous process being a kernel pre-
emption, we leave the previous process running if a signal is pending. This means
that the kernel has preempted normal processing in quick succession; thus, the code
is contained in two unlikely() statements.5 If there is no further preemption, we
remove the preempted process from the run queue and continue to choose the next
process to run.

–----------------------------------------------------------------------
kernel/sched.c
2243   cpu = smp_processor_id();
2244   if (unlikely(!rq->nr_running)) {
2245     idle_balance(cpu, rq);
2246     if (!rq->nr_running) {
2247       next = rq->idle;
2248       rq->expired_timestamp = 0;
2249       wake_sleeping_dependent(cpu, rq);
2250       goto switch_tasks;
2251     }
2252   }
2253 
2254   array = rq->active;
2255   if (unlikely(!array->nr_active)) {
2256     /*
2257     * Switch the active and expired arrays.
2258     */
2259     rq->active = rq->expired;
2260     rq->expired = array;
2261     array = rq->active;
2262     rq->expired_timestamp = 0;
2263     rq->best_expired_prio = MAX_PRIO;
2264   }
-----------------------------------------------------------------------

7.1 Linux Scheduler 379
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Line 2243

We grab the current CPU identifier via smp_processor_id().

Lines 2244–2252

If the run queue has no processes on it, we set the next process to the idle process
and reset the run queue’s expired timestamp to 0. On a multiprocessor system, we
first check if any processes are running on other CPUs that this CPU can take. In
effect, we load balance idle processes across all CPUs in the system. Only if no
processes can be moved from the other CPUs do we set the run queue’s next process
to idle and reset the expired timestamp.

Lines 2255–2264

If the run queue’s active array is empty, we switch the active and expired array
pointers before choosing a new process to run.

–----------------------------------------------------------------------
kernel/sched.c 
2266   idx = sched_find_first_bit(array->bitmap); 
2267   queue = array->queue + idx; 
2268   next = list_entry(queue->next, task_t, run_list); 
2269 
2270   if (dependent_sleeper(cpu, rq, next)) { 
2271     next = rq->idle; 
2272     goto switch_tasks; 
2273   } 
2274 
2275   if (!rt_task(next) && next->activated > 0) { 
2276     unsigned long long delta = now - next->timestamp; 
2277 
2278     if (next->activated == 1)
2279       delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2280 
2281     array = next->array;
2282     dequeue_task(next, array);
2283     recalc_task_prio(next, next->timestamp + delta);
2284     enqueue_task(next, array);
2285   }
next->activated = 0;
-----------------------------------------------------------------------

Lines 2266–2268

The scheduler finds the highest priority process to run via
sched_find_first_bit() and then sets up queue to point to the list held in the
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priority array at the specified location. next is initialized to the first process in
queue.

Lines 2270–2273

If the process to be activated is dependent on a sibling that is sleeping, we choose
a new process to be activated and jump to switch_tasks to continue the sched-
uling function.

Suppose that we have Process A that spawned Process B to read from a device 
and that Process A was waiting for Process B to finish before continuing. If 
the scheduler chooses Process A for activation, this section of code,
dependent_sleeper(), determines that Process A is waiting on Process B and
chooses an entirely new process to activate.

Lines 2275–2285

If the process’ activated attribute is greater than 0, and the next process is not a
real-time task, we remove it from queue, recalculate its priority, and enqueue it
again.

Line 2286

We set the process’ activated attribute to 0, and then run with it.

–----------------------------------------------------------------------
kernel/sched.c
2287 switch_tasks:
2288   prefetch(next);
2289   clear_tsk_need_resched(prev);
2290   RCU_qsctr(task_cpu(prev))++;
2291 
2292   prev->sleep_avg -= run_time;
2293   if ((long)prev->sleep_avg <= 0) {
2294     prev->sleep_avg = 0;
2295     if (!(HIGH_CREDIT(prev) || LOW_CREDIT(prev)))
2296       prev->interactive_credit--;
2297   }
2298   prev->timestamp = now;
2299 
2300   if (likely(prev != next)) {
2301     next->timestamp = now;
2302     rq->nr_switches++;
2303     rq->curr = next;
2304     ++*switch_count;
2305 
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2306     prepare_arch_switch(rq, next);
2307     prev = context_switch(rq, prev, next);
2308     barrier();
2309 
2310     finish_task_switch(prev);
2311   } else
2312     spin_unlock_irq(&rq->lock);
2313 
2314   reacquire_kernel_lock(current);
2315   preempt_enable_no_resched();
2316   if (test_thread_flag(TIF_NEED_RESCHED))
2317     goto need_resched;
2318 }
-----------------------------------------------------------------------

Line 2288

We attempt to get the memory of the new process’ task structure into the CPU’s
L1 cache. (See include/linux/prefetch.h for more information.)

Line 2290

Because we’re going through a context switch, we need to inform the current
CPU that we’re doing so. This allows a multi-CPU device to ensure data that is
shared across CPUs is accessed exclusively. This process is called read-copy updat-
ing. For more information, see http://lse.sourceforge.net/locking/
rcupdate.html.

Lines 2292–2298

We decrement the previous process’ sleep_avg attribute by the amount of time
it ran, adjusting for negative values. If the process is neither interactive nor non-
interactive, its interactive credit is between high and low, so we decrement its inter-
active credit because it had a low sleep average. We update its timestamp to the
current time. This operation helps the scheduler keep track of how much time a
given process has spent using the CPU and estimate how much time it will use the
CPU in the future.

Lines 2300–2304

If we haven’t chosen the same process, we set the new process’ timestamp, incre-
ment the run queue counters, and set the current process to the new process.
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Lines 2306–2308

These lines describe the assembly language context_switch(). Hold on for 
a few paragraphs as we delve into the explanation of context switching in the next
section.

Lines 2314–2318

We reacquire the kernel lock, enable preemption, and see if we need to resched-
ule immediately; if so, we go back to the top of schedule().

It’s possible that after we perform the context_switch(), we need to re-
schedule. Perhaps scheduler_tick() has marked the new process as needing
rescheduling or, when we enable preemption, it gets marked. We keep rescheduling
processes (and context switching them) until one is found that doesn’t need resched-
uling. The process that leaves schedule() becomes the new process executing on
this CPU.

7.1.2 Context Switch
Called from schedule() in /kernel/sched.c, context_switch() does the

machine-specific work of switching the memory environment and the processor
state. In the abstract, context_switch swaps the current task with the next task.
The function context_switch() begins executing the next task and returns a
pointer to the task structure of the task that was running before the call:

–----------------------------------------------------------------------
kernel/sched.c
1048 /*
1049 * context_switch - switch to the new MM and the new
1050 * thread's register state.
1051 */
1052 static inline
1053 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1054 {
1055   struct mm_struct *mm = next->mm;
1056   struct mm_struct *oldmm = prev->active_mm;
...
1063     switch_mm(oldmm, mm, next);
...
1072   switch_to(prev, next, prev);
1073 
1074   return prev;
1075 }
-----------------------------------------------------------------------

7.1 Linux Scheduler 383
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Here, we describe the two jobs of context_switch: one to switch the virtual
memory mapping and one to switch the task/thread structure. The first job, which
the function switch_mm() carries out, uses many of the hardware-dependent
memory management structures and registers:

–----------------------------------------------------------------------
/include/asm-i386/mmu_context.h
026  static inline void switch_mm(struct mm_struct *prev,
027     struct mm_struct *next,
028     struct task_struct *tsk)
029  {
030   int cpu = smp_processor_id();
031
032   if (likely(prev != next)) {
033    /* stop flush ipis for the previous mm */
034    cpu_clear(cpu, prev->cpu_vm_mask);
035  #ifdef CONFIG_SMP
036    cpu_tlbstate[cpu].state = TLBSTATE_OK;
037    cpu_tlbstate[cpu].active_mm = next;
038  #endif
039    cpu_set(cpu, next->cpu_vm_mask);
040
041    /* Re-load page tables */
042    load_cr3(next->pgd);
043
044    /*
045    * load the LDT, if the LDT is different:
046    */
047   if (unlikely(prev->context.ldt != next->context.ldt))
048     load_LDT_nolock(&next->context, cpu);
049   }
050  #ifdef CONFIG_SMP
051   else {
-----------------------------------------------------------------------

Line 39

Bind the new task to the current processor.

Line 42

The code for switching the memory context utilizes the x86 hardware register
cr3, which holds the base address of all paging operations for a given process. The
new page global descriptor is loaded here from next->pgd.

Line 47

Most processes share the same LDT. If another LDT is required by this process,
it is loaded here from the new next->context structure.
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The other half of function context_switch() in /kernel/sched.c then calls
the macro switch_to(), which calls the C function __switch_to(). The delin-
eation of architecture independence to architecture dependence for both x86 and
PPC is the switch_to() macro.

7.1.2.1 Following the x86 Trail of switch_to()

The x86 code is more compact than PPC. The following is the architecture-
dependent code for __switch_to(). task_struct (not thread_struct) is
passed to __switch_to(). The code discussed next is inline assembler code for
calling the C function __switch_to() (line 23) with the proper task_struct
structures as parameters.

The context_switch takes three task pointers: prev, next, and last. In addi-
tion, there is the current pointer.

Let us now explain, at a high level, what occurs when switch_to() is called and
how the task pointers change after a call to switch_to().

Figure 7.2 shows three switch_to() calls using three processes: A, B, and C.

FIGURE 7.2
switch_to Calls
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We want to switch A and B. Before, the first call we have

• Current → A

• Prev → A, next → B

After the first call:

• Current → B

• Last → A

Now, we want to switch B and C. Before the second call, we have

• Current → B

• Prev → B, next → C

After the second call:

• Current → C

• Last → B

Returning from the second call, current now points to task (C) and last points
to (B).

The method continues with task (A) being swapped in once again, and so on.

The inline assembly of the switch_to() function is an excellent example of
assembly magic in the kernel. It is also a good example of the gcc C extensions. See
Chapter 2, “Exploration Toolkit,” for a tutorial featuring this function. Now, we
carefully walk through this code block.

–----------------------------------------------------------------------
/include/asm-i386/system.h
012  extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev,
struct task_struct *next));

015  #define switch_to(prev,next,last) do {     \
016   unsigned long esi,edi;       \
017   asm volatile("pushfl\n\t"       \
018   "pushl %%ebp\n\t"        \
019   "movl %%esp,%0\n\t"  /* save ESP */    \
020   "movl %5,%%esp\n\t"  /* restore ESP */    \
021   "movl $1f,%1\n\t"   /* save EIP */   \
022   "pushl %6\n\t"   /* restore EIP */   \
023   "jmp __switch_to\n"        \
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023   "1:\t"          \
024   "popl %%ebp\n\t"        \
025   "popfl"         \
026   :"=m" (prev->thread.esp),"=m" (prev->thread.eip),  \
027   "=a" (last),"=S" (esi),"=D" (edi)     \
028   :"m" (next->thread.esp),"m" (next->thread.eip),   \
029   "2" (prev), "d" (next));       \
030  } while (0)
-----------------------------------------------------------------------

Line 12

The FASTCALL macro resolves to __attribute__ regparm(3), which forces
the parameters to be passed in registers rather than stack.

Lines 15–16

The do {} while (0) construct allows (among other things) the macro to have
local the variables esi and edi. Remember, these are just local variables with famil-
iar names.

Current and the Task Structure

As we explore the kernel, whenever we need to retrieve or store information on the
task (or process) which is currently running on a given processor, we use the global
variable current to reference its task structure. For example, current->pid holds
the process ID. Linux allows for a quick (and clever) method of referencing the cur-
rent task structure.

Every process is assigned 8K of contiguous memory when it is created. (With Linux
2.6, there is a compile-time option to use 4K instead of 8K.) This 8K segment is
occupied by the task structure and the kernel stack for the given process. Upon
process creation, Linux puts the task structure at the low end of the 8K memory and
the kernel stack pointer starts at the high end. The kernel stack pointer (especially for
x86 and r1 for PPC) decrements as data is pushed onto the stack. Because this 8K
memory region is page-aligned, its starting address (in hex notation) always ends in
0x000 (multiples of 4k bytes).

As you might have guessed, the clever method by which Linux references the current
task structure is to AND the contents of the stack pointer with 0xffff_f000. Recent ver-
sions of the PPC Linux kernel have taken this one step further by dedicating General
Purpose Register 2 to holding the current pointer.

7.1 Linux Scheduler 387
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Lines 17 and 30

The construct asm volatile ()6 encloses the inline assembly block and the
volatile keyword assures that the compiler will not change (optimize) the routine in
any way.

Lines 17–18

Push the flags and ebp registers onto the stack. (Note: We are still using the
stack associated with the prev task.)

Line 19

This line saves the current stack pointer esp to the prev task structure.

Line 20

Move the stack pointer from the next task structure to the current processor esp. 

NOTE By definition, we have just made a context switch.

We are now with a new kernel stack and thus, any reference to current is to the
new (next) task structure.

Line 21

Save the return address for prev into its task structure. This is where the prev
task resumes when it is restarted.

Line 22

Push the return address (from when we return from __switch_to()) onto the
stack. This is the eip from next. The eip was saved into its task structure (on
line 21) when it was stopped, or preempted the last time.

Line 23

Jump to the C function __switch_to() to update the following:

• The next thread structure with the kernel stack pointer

• Thread local storage descriptor for this processor

• fs and gs for prev and next, if needed

388 Chapter 7 • Scheduling and Kernel Synchronization
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• Debug registers, if needed

• I/O bitmaps, if needed

__switch_to() then returns the updated prev task structure.

Lines 24–25

Pop the base pointer and flags registers from the new (next task) kernel stack.

Lines 26–29

These are the output and input parameters to the inline assembly routine. See the
“Inline Assembly” section in Chapter 2 for more information on the constraints put
on these parameters.

Line 29

By way of assembler magic, prev is returned in eax, which is the third positional
parameter. In other words, the input parameter prev is passed out of the
switch_to() macro as the output parameter last.

Because switch_to() is a macro, it was executed inline with the code that called
it in context_switch(). It does not return as functions normally do.

For the sake of clarity, remember that switch_to() passes back prev in the eax
register, execution then continues in context_switch(), where the next instruc-
tion is return prev (line 1074 of kernel/sched.c). This allows
context_switch() to pass back a pointer to the last task running.

7.1.2.2 Following the PPC context_switch()

The PPC code for context_switch() has slightly more work to do for the
same results. Unlike the cr3 register in x86 architecture, the PPC uses hash func-
tions to point to context environments. The following code for switch_mm()
touches on these functions, but Chapter 4, “Memory Management,” offers a deeper
discussion.

Here is the routine for switch_mm() which, in turn, calls the routine 
set_context().

–----------------------------------------------------------------------
/include/asm-ppc/mmu_context.h
155  static inline void switch_mm(struct mm_struct *prev, struct
mm_struct *next,struct task_struct *tsk)
156  {
157   tsk->thread.pgdir = next->pgd;
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158   get_mmu_context(next);
159   set_context(next->context, next->pgd);
160  }
-----------------------------------------------------------------------

Line 157

The page global directory (segment register) for the new thread is made to point
to the next->pgd pointer.

Line 158

The context field of the mm_struct (next->context) passed into
switch_mm() is updated to the value of the appropriate context. This information
comes from a global reference to the variable context_map[], which contains a
series of bitmap fields.

Line 159

This is the call to the assembly routine set_context. Below is the code and dis-
cussion of this routine. Upon execution of the blr instruction on line 1468, the
code returns to the switch_mm routine.

–----------------------------------------------------------------------
/arch/ppc/kernel/head.S
1437  _GLOBAL(set_context)
1438  mulli  r3,r3,897  /* multiply context by skew factor */
1439  rlwinm  r3,r3,4,8,27  /* VSID = (context & 0xfffff) << 4 */
1440  addis  r3,r3,0x6000  /* Set Ks, Ku bits */
1441  li  r0,NUM_USER_SEGMENTS
1442  mtctr  r0
...
1457  3:  isync
...
1461  mtsrin  r3,r4
1462  addi  r3,r3,0x111  /* next VSID */
1463  rlwinm  r3,r3,0,8,3  /* clear out any overflow from VSID field */
1464  addis  r4,r4,0x1000  /* address of next segment */
1465  bdnz  3b
1466  sync
1467  isync
1468  blr
------------------------------------------------------------------------

Lines 1437–1440

The context field of the mm_struct (next->context) passed into
set_context() by way of r3, sets up the hash function for PPC segmentation.
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Lines 1461–1465

The pgd field of the mm_struct (next->pgd) passed into set_context() by
way of r4, points to the segment registers.

Segmentation is the basis of PPC memory management (refer to Chapter 4).
Upon returning from set_context(), the mm_struct next is initialized to the
proper memory regions and is returned to switch_mm().

7.1.2.3 Following the PPC Trail of switch_to()

The result of the PPC implementation of switch_to() is necessarily identical
to the x86 call; it takes in the current and next task pointers and returns a pointer
to the previously running task:

–----------------------------------------------------------------------
include/asm-ppc/system.h 
88 extern struct task_struct *__switch_to(struct task_struct *,
89   struct task_struct *);
90 #define switch_to(prev, next, last)
((last) = __switch_to((prev), (next))) 
91 
92 struct thread_struct;
93 extern struct task_struct *_switch(struct thread_struct *prev,
94         struct thread_struct *next);
-----------------------------------------------------------------------

On line 88, __switch_to() takes its parameters as task_struct type and, at
line 93, _switch() takes its parameters as thread_struct. This is because the
thread entry within task_struct contains the architecture-dependent processor
register information of interest for the given thread. Now, let us examine the imple-
mentation of __switch_to():

–----------------------------------------------------------------------
/arch/ppc/kernel/process.c 
200  struct task_struct *__switch_to(struct task_struct *prev,

struct task_struct *new)
201  {
202   struct thread_struct *new_thread, *old_thread;
203   unsigned long s;
204   struct task_struct *last;
205   local_irq_save(s);
...
247   new_thread = &new->thread;
248   old_thread = &current->thread;
249   last = _switch(old_thread, new_thread);
250   local_irq_restore(s);
251   return last;
252  }
-----------------------------------------------------------------------
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Line 205

Disable interrupts before the context switch.

Lines 247–248

Still running under the context of the old thread, pass the pointers to the thread
structure to the _switch() function.

Line 249

_switch() is the assembly routine called to do the work of switching the two
thread structures (see the following section).

Line 250

Enable interrupts after the context switch.

To better understand what needs to be swapped within a PPC thread, we need
to examine the thread_struct passed in on line 249.

Recall from the exploration of the x86 context switch that the switch does not
officially occur until we are pointing to a new kernel stack. This happens in
_switch().

Tracing the PPC Code for _switch()

By convention, the parameters of a PPC C function (from left to right) are 
held in r3, r4, r5, …r12. Upon entry into switch(), r3 points to the
thread_struct for the current task and r4 points to the thread_struct for the
new task:

–----------------------------------------------------------------------
/arch/ppc/kernel/entry.S 
437  _GLOBAL(_switch)
438   stwu  r1,-INT_FRAME_SIZE(r1)
439   mflr  r0
440   stw  r0,INT_FRAME_SIZE+4(r1)
441   /* r3-r12 are caller saved -- Cort */
442   SAVE_NVGPRS(r1)
443   stw  r0,_NIP(r1)  /* Return to switch caller */
444   mfmsr  r11
...
458  1:  stw  r11,_MSR(r1)
459   mfcr  r10
460   stw  r10,_CCR(r1)
461   stw  r1,KSP(r3)  /* Set old stack pointer */
462  
463   tophys(r0,r4)
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464   CLR_TOP32(r0)
465   mtspr  SPRG3,r0/* Update current THREAD phys addr */
466   lwz  r1,KSP(r4)  /* Load new stack pointer */
467   /* save the old current 'last' for return value */
468   mr  r3,r2
469   addi  r2,r4,-THREAD  /* Update current */
...
478   lwz  r0,_CCR(r1)
479   mtcrf  0xFF,r0
480   REST_NVGPRS(r1)
481  
482   lwz  r4,_NIP(r1)  /* Return to _switch caller in new task */
483   mtlr  r4
484   addi  r1,r1,INT_FRAME_SIZE
485   blr
-----------------------------------------------------------------------

The byte-for-byte mechanics of swapping out the previous thread_struct for
the new is left as an exercise for you. It is worth noting, however, the use of r1, r2,
r3, SPRG3, and r4 in _switch() to see the basics of this operation.

Lines 438–460 

The environment is saved to the current stack with respect to the current stack
pointer, r1.

Line 461

The entire environment is then saved into the current thread_struct pointer
passed in by way of r3.

Lines 463–465

SPRG3 is updated to point to the thread structure of the new task.

Line 466

KSP is the offset into the task structure (r4) of the new task’s kernel stack pointer.
The stack pointer r1 is now updated with this value. (This is the point of the PPC
context switch.)

Line 468

The current pointer to the previous task is returned from _switch() in r3. This
represents the last task.

Line 469

The current pointer (r2) is updated with the pointer to the new task structure (r4).
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Lines 478–486

Restore the rest of the environment from the new stack and return to the caller
with the previous task structure in r3.

This concludes the explanation of context_switch(). At this point, the
processor has swapped the two processes prev and next as called by
context_switch in schedule().

–----------------------------------------------------------------------
kernel/sched.c
1709   prev = context_switch(rq, prev, next);
-----------------------------------------------------------------------

prev now points to the process that we have just switched away from and next
points to the current process.

Now that we’ve discussed how tasks are scheduled in the Linux kernel, we can
examine how tasks are told to be scheduled. Namely, what causes schedule() to
be called and one process to yield the CPU to another process?

7.1.3 Yielding the CPU
Processes can voluntarily yield the CPU by simply calling schedule(). This is

most commonly used in kernel code and device drivers that want to sleep or wait
for a signal to occur.7 Other tasks want to continually use the CPU and the system
timer must tell them to yield. The Linux kernel periodically seizes the CPU, in so
doing stopping the active process, and then does a number of timer-based tasks.
One of these tasks, scheduler_tick(), is how the kernel forces a process to
yield. If a process has been running for too long, the kernel does not return con-
trol to that process and instead chooses another one. We now examine how
scheduler_tick()determines if the current process must yield the CPU:

–----------------------------------------------------------------------
kernel/sched.c
1981 void scheduler_tick(int user_ticks, int sys_ticks)
1982 {
1983   int cpu = smp_processor_id();
1984   struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1985   runqueue_t *rq = this_rq();
1986   task_t *p = current;
1987 
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1988   rq->timestamp_last_tick = sched_clock();
1989 
1990   if (rcu_pending(cpu))
1991    rcu_check_callbacks(cpu, user_ticks);  
-----------------------------------------------------------------------

Lines 1981–1986

This code block initializes the data structures that the scheduler_tick() func-
tion needs. cpu, cpu_usage_stat, and rq are set to the processor ID, CPU stats
and run queue of the current processor. p is a pointer to the current process exe-
cuting on cpu.

Line 1988

The run queue’s last tick is set to the current time in nanoseconds.

Lines 1990–1991

On an SMP system, we need to check if there are any outstanding read-copy
updates to perform (RCU). If so, we perform them via rcu_check_callback().

–----------------------------------------------------------------------
kernel/sched.c
1993   /* note: this timer irq context must be accounted for as well */
1994   if (hardirq_count() - HARDIRQ_OFFSET) {
1995     cpustat->irq += sys_ticks;
1996     sys_ticks = 0;
1997   } else if (softirq_count()) {
1998     cpustat->softirq += sys_ticks;
1999     sys_ticks = 0; 
2000   }
2001 
2002   if (p == rq->idle) {
2003     if (atomic_read(&rq->nr_iowait) > 0)
2004       cpustat->iowait += sys_ticks;
2005     else
2006       cpustat->idle += sys_ticks;
2007     if (wake_priority_sleeper(rq))
2008       goto out;
2009     rebalance_tick(cpu, rq, IDLE);
2010     return;
2011   }
2012   if (TASK_NICE(p) > 0)
2013     cpustat->nice += user_ticks;
2014   else
2015     cpustat->user += user_ticks;
2016   cpustat->system += sys_ticks;
-----------------------------------------------------------------------
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Lines 1994–2000

cpustat keeps track of kernel statistics, and we update the hardware and soft-
ware interrupt statistics by the number of system ticks that have occurred.

Lines 2002–2011

If there is no currently running process, we atomically check if any processes are
waiting on I/O. If so, the CPU I/O wait statistic is incremented; otherwise, the
CPU idle statistic is incremented. In a uniprocessor system, rebalance_tick()
does nothing, but on a multiple processor system, rebalance_tick() attempts to
load balance the current CPU because the CPU has nothing to do.

Lines 2012–2016

More CPU statistics are gathered in this code block. If the current process was
niced, we increment the CPU nice counter; otherwise, the user tick counter is
incremented. Finally, we increment the CPU’s system tick counter.

–----------------------------------------------------------------------
kernel/sched.c
2019   if (p->array != rq->active) {
2020     set_tsk_need_resched(p); 
2021     goto out;
2022   }
2023   spin_lock(&rq->lock);
-----------------------------------------------------------------------

Lines 2019–2022

Here, we see why we store a pointer to a priority array within the task_struct
of the process. The scheduler checks the current process to see if it is no longer
active. If the process has expired, the scheduler sets the process’ rescheduling flag
and jumps to the end of the scheduler_tick() function. At that point (lines
2092–2093), the scheduler attempts to load balance the CPU because there is no
active task yet. This case occurs when the scheduler grabbed CPU control before the
current process was able to schedule itself or clean up from a successful run.

Line 2023

At this point, we know that the current process was running and not expired or
nonexistent. The scheduler now wants to yield CPU control to another process; the
first thing it must do is take the run queue lock.
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–----------------------------------------------------------------------
kernel/sched.c
2024   /*
2025   * The task was running during this tick - update the
2026   * time slice counter. Note: we do not update a thread's
2027   * priority until it either goes to sleep or uses up its
2028   * timeslice. This makes it possible for interactive tasks
2029   * to use up their timeslices at their highest priority levels.
2030   */
2031   if (unlikely(rt_task(p))) {
2032     /*
2033     * RR tasks need a special form of timeslice management.
2034     * FIFO tasks have no timeslices.
2035     */
2036     if ((p->policy == SCHED_RR) && !--p->time_slice) {
2037       p->time_slice = task_timeslice(p);
2038       p->first_time_slice = 0;
2039       set_tsk_need_resched(p);
2040 
2041       /* put it at the end of the queue: */
2042       dequeue_task(p, rq->active);
2043       enqueue_task(p, rq->active);
2044     }
2045     goto out_unlock;
2046  }
-----------------------------------------------------------------------

Lines 2031–2046

The easiest case for the scheduler occurs when the current process is a real-time
task. Real-time tasks always have a higher priority than any other tasks. If the task
is a FIFO task and was running, it should continue its operation so we jump to the
end of the function and release the run queue lock. If the current process is a round-
robin real-time task, we decrement its timeslice. If the task has no more timeslice,
it’s time to schedule another round-robin real-time task. The current task has its
new timeslice calculated by task_timeslice(). Then the task has its first time-
slice reset. The task is then marked as needing rescheduling and, finally, the task is
put at the end of the round-robin real-time tasklist by removing it from the run
queue’s active array and adding it back in. The scheduler then jumps to the end of
the function and releases the run queue lock.

–----------------------------------------------------------------------
kernel/sched.c
2047   if (!--p->time_slice) {
2048     dequeue_task(p, rq->active);
2049     set_tsk_need_resched(p);
2050     p->prio = effective_prio(p);
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2051     p->time_slice = task_timeslice(p);
2052     p->first_time_slice = 0;
2053 
2054     if (!rq->expired_timestamp)
2055       rq->expired_timestamp = jiffies;
2056     if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2057       enqueue_task(p, rq->expired);
2058       if (p->static_prio < rq->best_expired_prio)
2059         rq->best_expired_prio = p->static_prio;
2060     } else
2061       enqueue_task(p, rq->active);
2062   } else {
-----------------------------------------------------------------------

Lines 2047–2061

At this point, the scheduler knows that the current process is not a real-time
process. It decrements the process’ timeslice and, in this section, the process’ times-
lice has been exhausted and reached 0. The scheduler removes the task from the
active array and sets the process’ rescheduling flag. The priority of the task is recal-
culated and its timeslice is reset. Both of these operations take into account prior
process activity.8 If the run queue’s expired timestamp is 0, which usually occurs
when there are no more processes on the run queue’s active array, we set it to jiffies.

Jiffies

Jiffies is a 32-bit variable counting the number of ticks since the system has been
booted. This is approximately 497 days before the number wraps around to 0 on a
100HZ system. The macro on line 20 is the suggested method of accessing this value
as a u64. There are also macros to help detect wrapping in include/jiffies.h.

-----------------------------------------------------------------------
include/linux/jiffies.h
017  extern unsigned long volatile jiffies;
020  u64 get_jiffies_64(void);
-----------------------------------------------------------------------

We normally favor interactive tasks by replacing them on the active priority array
of the run queue; this is the else clause on line 2060. However, we don’t want to
starve expired tasks. To determine if expired tasks have been waiting too long for
CPU time, we use EXPIRED_STARVING() (see EXPIRED_STARVING on line 1968).
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The function returns true if the first expired task has been waiting an “unreason-
able” amount of time or if the expired array contains a task that has a greater pri-
ority than the current process. The unreasonableness of waiting is load-dependent
and the swapping of the active and expired arrays decrease with an increasing num-
ber of running tasks.

If the task is not interactive or expired tasks are starving, the scheduler takes the
current process and enqueues it onto the run queue’s expired priority array. If the
current process’ static priority is higher than the expired run queue’s highest prior-
ity task, we update the run queue to reflect the fact that the expired array now has
a higher priority than before. (Remember that high-priority tasks have low numbers
in Linux, thus, the (<) in the code.)

–----------------------------------------------------------------------
kernel/sched.c
2062   } else {
2063     /*
2064     * Prevent a too long timeslice allowing a task to monopolize
2065     * the CPU. We do this by splitting up the timeslice into
2066     * smaller pieces.
2067     *
2068     * Note: this does not mean the task's timeslices expire or
2069     * get lost in any way, they just might be preempted by
2070     * another task of equal priority. (one with higher
2071     * priority would have preempted this task already.) We
2072     * requeue this task to the end of the list on this priority
2073     * level, which is in essence a round-robin of tasks with
2074     * equal priority.
2075     *
2076     * This only applies to tasks in the interactive
2077     * delta range with at least TIMESLICE_GRANULARITY to requeue.
2078     */
2079     if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2080       p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2081       (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2082       (p->array == rq->active)) {
2083 
2084       dequeue_task(p, rq->active);
2085       set_tsk_need_resched(p);
2086       p->prio = effective_prio(p);
2087       enqueue_task(p, rq->active);
2088     }
2089   }
2090 out_unlock:
2091   spin_unlock(&rq->lock);
2092 out:
2093   rebalance_tick(cpu, rq, NOT_IDLE);
2094 }
-----------------------------------------------------------------------
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Lines 2079–2089

The final case before the scheduler is that the current process was running and still
has timeslices left to run. The scheduler needs to ensure that a process with a large
timeslice doesn’t hog the CPU. If the task is interactive, has more timeslices than
TIMESLICE_GRANULARITY, and was active, the scheduler removes it from the active
queue. The task then has its reschedule flag set, its priority recalculated, and is placed
back on the run queue’s active array. This ensures that a process at a certain priority
with a large timeslice doesn’t starve another process of an equal priority.

Lines 2090–2094

The scheduler has finished rearranging the run queue and unlocks it; if execut-
ing on an SMP system, it attempts to load balance.

Combining how processes are marked to be rescheduled, via scheduler_tick()
and how processes are scheduled, via schedule() illustrates how the scheduler
operates in the 2.6 Linux kernel. We now delve into the details of what the sched-
uler means by “priority.”

7.1.3.1 Dynamic Priority Calculation

In previous sections, we glossed over the specifics of how a task’s dynamic prior-
ity is calculated. The priority of a task is based on its prior behavior, as well as its
user-specified nice value. The function that determines a task’s new dynamic pri-
ority is recalc_task_prio():

–----------------------------------------------------------------------
kernel/sched.c
381 static void recalc_task_prio(task_t *p, unsigned long long now)
382 {
383   unsigned long long __sleep_time = now - p->timestamp;
384   unsigned long sleep_time; 
385 
386   if (__sleep_time > NS_MAX_SLEEP_AVG)
387     sleep_time = NS_MAX_SLEEP_AVG;
388   else
389     sleep_time = (unsigned long)__sleep_time;
390 
391   if (likely(sleep_time > 0)) {
392     /*
393     * User tasks that sleep a long time are categorised as
394     * idle and will get just interactive status to stay active &
395     * prevent them suddenly becoming cpu hogs and starving
396     * other processes.
397     */
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398     if (p->mm && p->activated != -1 &&
399       sleep_time > INTERACTIVE_SLEEP(p)) {
400         p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
401             AVG_TIMESLICE);
402         if (!HIGH_CREDIT(p))
403           p->interactive_credit++;
404     } else {
405       /*
406       * The lower the sleep avg a task has the more
407       * rapidly it will rise with sleep time.
408       */
409       sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
410 
411       /*
412       * Tasks with low interactive_credit are limited to
413       * one timeslice worth of sleep avg bonus.
414       */
415       if (LOW_CREDIT(p) &&
416        sleep_time > JIFFIES_TO_NS(task_timeslice(p)))
417         sleep_time = JIFFIES_TO_NS(task_timeslice(p));
418 
419       /*
420       * Non high_credit tasks waking from uninterruptible
421       * sleep are limited in their sleep_avg rise as they
422       * are likely to be cpu hogs waiting on I/O
423       */
424       if (p->activated == -1 && !HIGH_CREDIT(p) && p->mm) {
425         if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
426           sleep_time = 0;
427         else if (p->sleep_avg + sleep_time >=
428             INTERACTIVE_SLEEP(p)) {
429           p->sleep_avg = INTERACTIVE_SLEEP(p);
430           sleep_time = 0;
431         }
432       }
433 
434       /*
435       * This code gives a bonus to interactive tasks.
436       *
437       * The boost works by updating the 'average sleep time'
438       * value here, based on ->timestamp. The more time a
439       * task spends sleeping, the higher the average gets -
440       * and the higher the priority boost gets as well.
441       */
442       p->sleep_avg += sleep_time;
443 
444       if (p->sleep_avg > NS_MAX_SLEEP_AVG) {
445         p->sleep_avg = NS_MAX_SLEEP_AVG;
446         if (!HIGH_CREDIT(p))
447           p->interactive_credit++;
448       }
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449     }
450   }
452 
452   p->prio = effective_prio(p);
453 }
-----------------------------------------------------------------------

Lines 386–389

Based on the time now, we calculate the length of time the process p has slept 
for and assign it to sleep_time with a maximum value of NS_MAX_SLEEP_AVG.
(NS_MAX_SLEEP_AVG defaults to 10 milliseconds.)

Lines 391–404

If process p has slept, we first check to see if it has slept enough to be classified
as an interactive task. If it has, when sleep_time > INTERACTIVE_SLEEP(p), we
adjust the process’ sleep average to a set value and, if p isn’t classified as interactive
yet, we increment p’s interactive_credit.

Lines 405–410

A task with a low sleep average gets a higher sleep time.

Lines 411–418

If the task is CPU intensive, and thus classified as non-interactive, we restrict the
process to having, at most, one more timeslice worth of a sleep average bonus.

Lines 419–432

Tasks that are not yet classified as interactive (not HIGH_CREDIT) that awake from
uninterruptible sleep are restricted to having a sleep average of INTERACTIVE().

Lines 434–450

We add our newly calculated sleep_time to the process’ sleep average, ensuring
it doesn’t go over NS_MAX_SLEEP_AVG. If the processes are not considered interac-
tive but have slept for the maximum time or longer, we increment its interactive
credit.

Line 452

Finally, the priority is set using effective_prio(), which takes into account
the newly calculated sleep_avg field of p. It does this by scaling the sleep average
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of 0 .. MAX_SLEEP_AVG into the range of -5 to +5. Thus, a process that has a static
priority of 70 can have a dynamic priority between 65 and 85, depending on its
prior behavior.

One final thing: A process that is not a real-time process has a range between 101
and 140. Processes that are operating at a very high priority, 105 or less, cannot
cross the real-time boundary. Thus, a high priority, highly interactive process could
never have a dynamic priority of lower than 101. (Real-time processes cover 0..100
in the default configuration.)

7.1.3.2 Deactivation

We already discussed how a task gets inserted into the scheduler by forking and
how tasks move from the active to expired priority arrays within the CPU’s run
queue. But, how does a task ever get removed from a run queue?

A task can be removed from the run queue in two major ways:

• The task is preempted by the kernel and its state is not running, and there is
no signal pending for the task (see line 2240 in kernel/sched.c).

• On SMP machines, the task can be removed from a run queue and placed
on another run queue (see line 3384 in kernel/sched.c).

The first case normally occurs when schedule() gets called after a process 
puts itself to sleep on a wait queue. The task marks itself as non-running
(TASK_INTERRUPTIBLE, TASK_UNINTERRUPTIBLE, TASK_STOPPED, and so on) and
the kernel no longer considers it for CPU access by removing it from the run queue.

The case in which the process is moved to another run queue is dealt with in the
SMP section of the Linux kernel, which we do not explore here.

We now trace how a process is removed from the run queue via
deactivate_task():

–----------------------------------------------------------------------
kernel/sched.c 
507 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
508 {
509   rq->nr_running--;
510   if (p->state == TASK_UNINTERRUPTIBLE)
511     rq->nr_uninterruptible++;
512   dequeue_task(p, p->array);
513   p->array = NULL;
514 }
-----------------------------------------------------------------------
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Line 509

The scheduler first decrements its count of running processes because p is no
longer running.

Lines 510–511

If the task is uninterruptible, we increment the count of uninterruptible tasks on
the run queue. The corresponding decrement operation occurs when an unin-
terruptible process wakes up (see kernel/sched.c line 824 in the function
try_to_wake_up()).

Line 512–513

Our run queue statistics are now updated so we actually remove the process from
the run queue. The kernel uses the p->array field to test if a process is running
and on a run queue. Because it no longer is either, we set it to NULL.

There is still some run queue management to be done; let’s examine the specifics
of dequeue_task():

–----------------------------------------------------------------------
kernel/sched.c
303 static void dequeue_task(struct task_struct *p, prio_array_t *array)
304 {
305   array->nr_active--;
306   list_del(&p->run_list);
307   if (list_empty(array->queue + p->prio))
308     __clear_bit(p->prio, array->bitmap);
309 }  
-----------------------------------------------------------------------

Line 305

We adjust the number of active tasks on the priority array that process p is on—
either the expired or the active array.

Lines 306–308

We remove the process from the list of processes in the priority array at p’s
priority. If the resulting list is empty, we need to clear the bit in the priority array’s
bitmap to show there are no longer any processes at priority p->prio().
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list_del() does all the removal in one step because p->run_list is a
list_head structure and thus has pointers to the previous and next entries in 
the list. 

We have reached the point where the process is removed from the run queue 
and has thus been completely deactivated. If this process had a state of
TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE, it could be awoken and
placed back on a run queue. If the process had a state of TASK_STOPPED,
TASK_ZOMBIE, or TASK_DEAD, it has all of its structures removed and discarded.

7.2 Preemption
Preemption is the switching of one task to another. We mentioned how

schedule() and scheduler_tick()decide which task to switch to next, but we
haven’t described how the Linux kernel decides when to switch. The 2.6 kernel
introduces kernel preemption, which means that both user space programs and ker-
nel space programs can be switched at various times. Because kernel preemption is
the standard in Linux 2.6, we describe how full kernel and user preemption oper-
ates in Linux.

7.2.1 Explicit Kernel Preemption
The easiest preemption to understand is explicit kernel preemption. This occurs

in kernel space when kernel code calls schedule(). Kernel code can call
schedule() in two ways, either by directly calling schedule() or by blocking.

When the kernel is explicitly preempted, as in a device driver waiting with a
wait_queue, the control is simply passed to the scheduler and a new task is cho-
sen to run.

7.2.2 Implicit User Preemption
When the kernel has finished processing a kernel space task and is ready to pass

control to a user space task, it first checks to see which user space task it should pass
control to. This might not be the user space task that passed its control to the ker-
nel. For example, if Task A invokes a system call, after the system call completes, the
kernel could pass control of the system to Task B.
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Each task on the system has a “rescheduling necessary” flag that is set whenever
a task should be rescheduled:

–----------------------------------------------------------------------
include/linux/sched.h
988 static inline void set_tsk_need_resched(struct task_struct *tsk)
989 {
990   set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
991 }
992 
993 static inline void clear_tsk_need_resched(struct task_struct *tsk)
994 {
995   clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
996 }
...
1003 static inline int need_resched(void)
1004 {
1005   return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1006 }
-----------------------------------------------------------------------

Lines 988–996

set_tsk_need_resched and clear_tsk_need_resched are the interfaces
provided to set the architecture-specific flag TIF_NEED_RESCHED.

Lines 1003–1006

need_resched tests the current thread’s flag to see if TIF_NEED_RESCHED is set.

When the kernel is returning to user space, it chooses a process to pass 
control to, as described in schedule() and scheduler_tick(). Although
scheduler_tick() can mark a task as needing rescheduling, only schedule()
operates on that knowledge. schedule() repeatedly chooses a new task to execute
until the newly chosen task does not need to be rescheduled. After schedule()
completes, the new task has control of the processor.

Thus, while a process is running, the system timer causes an interrupt that
triggers scheduler_tick(). scheduler_tick() can mark that task as needing
rescheduling and move it to the expired array. Upon completion of kernel opera-
tions, scheduler_tick() could be followed by other interrupts and the kernel
would continue to have control of the processor—schedule() is invoked to
choose the next task to run. So, the scheduler_tick() marks processes and
rearranges queues, but schedule() chooses the next task and passes CPU control.
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7.2.3 Implicit Kernel Preemption
New in Linux 2.6 is the implementation of implicit kernel preemption. When a

kernel task has control of the CPU, it can only be preempted by another kernel task
if it does not currently hold any locks. Each task has a field, preempt_count, which
marks whether the task is preemptible. The count is incremented every time the task
obtains a lock and decremented whenever the task releases a lock. The schedule()
function disables preemption while it determines which task to run next.

There are two possibilities for implicit kernel preemption: Either the kernel code
is emerging from a code block that had preemption disabled or processing is return-
ing to kernel code from an interrupt. If control is returning to kernel space from an
interrupt, the interrupt calls schedule() and a new task is chosen in the same way
as just described.

If the kernel code is emerging from a code block that disabled preemption, the
act of enabling preemption can cause the current task to be preempted:

–----------------------------------------------------------------------
include/linux/preempt.h
46 #define preempt_enable() \
47 do { \
48   preempt_enable_no_resched(); \
49   preempt_check_resched(); \
50 } while (0)
-----------------------------------------------------------------------

Lines 46–50

preempt_enable() calls preempt_enable_no_resched(), which decre-
ments the preempt_count on the current task by one and then calls
preempt_check_resched():

–----------------------------------------------------------------------
include/linux/preempt.h
40 #define preempt_check_resched() \
41 do { \
42   if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) \
43     preempt_schedule(); \
44 } while (0)
-----------------------------------------------------------------------

Lines 40–44

preempt_check_resched() sees if the current task has been marked for
rescheduling; if so, it calls preempt_schedule().
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–----------------------------------------------------------------------
kernel/sched.c
2328 asmlinkage void __sched preempt_schedule(void)
2329 {
2330   struct thread_info *ti = current_thread_info();
2331 
2332   /*
2333   * If there is a non-zero preempt_count or interrupts are disabled,
2334   * we do not want to preempt the current task. Just return..
2335   */
2336   if (unlikely(ti->preempt_count || irqs_disabled()))
2337     return; 
2338 
2339 need_resched:
2340   ti->preempt_count = PREEMPT_ACTIVE;
2341   schedule();
2342   ti->preempt_count = 0;
2343 
2344  /* we could miss a preemption opportunity between schedule and now */
2345   barrier();
2346   if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2347     goto need_resched;
2348 }
-----------------------------------------------------------------------

Line 2336–2337

If the current task still has a positive preempt_count, likely from nesting
preempt_disable() commands, or the current task has interrupts disabled, we
return control of the processor to the current task.

Line 2340–2347

The current task has no locks because preempt_count is 0 and IRQs are
enabled. Thus, we set the current tasks preempt_count to note it’s undergoing pre-
emption, and call schedule(), which chooses another task.

If the task emerging from the code block needs rescheduling, the kernel needs to
ensure it’s safe to yield the processor from the current task. The kernel checks the
task’s value of preempt_count. If preempt_count is 0, and thus the current task
holds no locks, schedule() is called and a new task is chosen for execution. If
preempt_count is non-zero, it is unsafe to pass control to another task, and con-
trol is returned to the current task until it releases all of its locks. When the current
task releases locks, a test is made to see if the current task needs rescheduling. 
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When the current task releases its final lock and preempt_count goes to 0, sched-
uling immediately occurs. 

7.3 Spinlocks and Semaphores
When two or more processes require dedicated access to a shared resource, they

might need to enforce the condition that they are the sole process to operate in a
given section of code. The basic form of locking in the Linux kernel is the spinlock.

Spinlocks take their name from the fact that they continuously loop, or spin,
waiting to acquire a lock. Because spinlocks operate in this manner, it is imperative
not to have any section of code inside a spinlock attempt to acquire a lock twice.
This results in deadlock.

Before operating on a spinlock, the spin_lock_t structure must be initialized.
This is done by calling spin_lock_init():

–----------------------------------------------------------------------
include/linux/spinlock.h
63 #define spin_lock_init(x) \
64   do { \
65     (x)->magic = SPINLOCK_MAGIC; \
66     (x)->lock = 0; \
67     (x)->babble = 5; \
68     (x)->module = __FILE__; \
69     (x)->owner = NULL; \
70     (x)->oline = 0; \
71   } while (0)
-----------------------------------------------------------------------

This section of code sets the spin_lock to “unlocked,” or 0, on line 66 and ini-
tializes the other variables in the structure. The (x)->lock variable is the one we’re
concerned about here.

After a spin_lock is initialized, it can be acquired by calling spin_lock() or
spin_lock_irqsave(). The spin_lock_irqsave() function disables interrupts
before locking, whereas spin_lock() does not. If you use spin_lock(), the
process could be interrupted in the locked section of code.

To release a spin_lock after executing the critical section of code, you need to call
spin_unlock() or spin_unlock_irqrestore(). The spin_unlock_irqrestore()
restores the state of the interrupt registers to the state they were in when
spin_lock_irq() was called.

7.3 Spinlocks and Semaphores 409

Salzberg_C07.qxd  8/19/05  2:38 PM  Page 409



Let’s examine the spin_lock_irqsave() and spin_unlock_irqrestore()
calls:

–----------------------------------------------------------------------
include/linux/spinlock.h
258 #define spin_lock_irqsave(lock, flags) \
259 do { \
260   local_irq_save(flags); \
261   preempt_disable(); \
262   _raw_spin_lock_flags(lock, flags); \
263 } while (0)
...
321 #define spin_unlock_irqrestore(lock, flags) \
322 do { \
323   _raw_spin_unlock(lock); \
324   local_irq_restore(flags); \
325   preempt_enable(); \
326 } while (0)
-----------------------------------------------------------------------

Notice how preemption is disabled during the lock. This ensures that any oper-
ation in the critical section is not interrupted. The IRQ flags saved on line 260 are
restored on line 324.

The drawback of spinlocks is that they busily loop, waiting for the lock to be
freed. They are best used for critical sections of code that are fast to complete. For
code sections that take time, it is better to use another Linux kernel locking utility:
the semaphore.

Semaphores differ from spinlocks because the task sleeps, rather than busy waits,
when it attempts to obtain a contested resource. One of the main advantages is that
a process holding a semaphore is safe to block; they are SMP and interrupt safe:

–----------------------------------------------------------------------
include/asm-i386/semaphore.h
44 struct semaphore {
45   atomic_t count;
46   int sleepers;
47   wait_queue_head_t wait;
48 #ifdef WAITQUEUE_DEBUG
49   long __magic;
50 #endif
51 };
-----------------------------------------------------------------------

–----------------------------------------------------------------------
include/asm-ppc/semaphore.h
24 struct semaphore {
25   /*
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26   * Note that any negative value of count is equivalent to 0,
27   * but additionally indicates that some process(es) might be
28   * sleeping on 'wait'.
29   */
30   atomic_t count;
31   wait_queue_head_t wait;
32 #ifdef WAITQUEUE_DEBUG
33   long __magic;
34 #endif
35 };
-----------------------------------------------------------------------

Both architecture implementations provide a pointer to a wait_queue and a
count. The count is the number of processes that can hold the semaphore at the
same time. With semaphores, we could have more than one process entering a crit-
ical section of code at the same time. If the count is initialized to 1, only one process
can enter the critical section of code; a semaphore with a count of 1 is called a
mutex.

Semaphores are initialized using sema_init() and are locked and unlocked 
by calling down() and up(), respectively. If a process calls down() on a locked
semaphore, it blocks and ignores all signals sent to it. There also exists
down_interruptible(), which returns 0 if the semaphore is obtained and
–EINTR if the process was interrupted while blocking.

When a process calls down(), or down_interruptible(), the count field in the
semaphore is decremented. If that field is less than 0, the process calling down() is
blocked and added to the semaphore’s wait_queue. If the field is greater than or
equal to 0, the process continues.

After executing the critical section of code, the process should call up() to
inform the semaphore that it has finished the critical section. By calling up(), the
process increments the count field in the semaphore and, if the count is greater
than or equal to 0, wakes a process waiting on the semaphore’s wait_queue.

7.4 System Clock: Of Time and Timers
For scheduling, the kernel uses the system clock to know how long a task has

been running. We already covered the system clock in Chapter 5 by using it as an
example for the discussion on interrupts. Here, we explore the Real-Time Clock
and its uses and implementation; but first, let’s recap clocks in general.
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The clock is a periodic signal applied to a processor, which allows it to function
in the time domain. The processor depends on the clock signal to know when it can
perform its next function, such as adding two integers or fetching data from mem-
ory. The speed of this clock signal (1.4GHz, 2GHz, and so on) has historically been
used to compare the processing speed of systems at the local electronics store.

At any given moment, your system has several clocks and/or timers running.
Simple examples include the time of day displayed in the bottom corner of your
screen (otherwise known as wall time), the cursor patiently pulsing on a cluttered
desktop, or your laptop screensaver taking over because of inactivity. More compli-
cated examples of timekeeping include audio and video playback, key repeat (hold-
ing a key down), how fast communications ports run, and, as previously discussed,
how long a task can run.

7.4.1 Real-Time Clock: What Time Is It?
The Linux interface to wall clock time is accomplished through the /dev/rtc

device driver ioctl() function. The device for this driver is called a Real-Time
Clock (RTC). The RTC9 provides timekeeping functions with a small 114-byte user
NVRAM. The input to this device is a 32.768KHz oscillator and a connection for
battery backup. Some discrete models of the RTC have the oscillator and battery
built in, while other RTCs are now built in to the peripheral bus controller (for
example, the Southbridge) of a processor chipset. The RTC not only reports the
time of day, but it is also a programmable timer that is capable of interrupting the
system. The frequency of interrupts varies from 2Hz to 8,192Hz. The RTC can also
interrupt daily, like an alarm clock. Here, we explore the RTC code:

–----------------------------------------------------------------------
/include/linux/rtc.h

/*
* ioctl calls that are permitted to the /dev/rtc interface, if
* any of the RTC drivers are enabled.
*/

70  #define RTC_AIE_ON   _IO('p', 0x01)  /* Alarm int. enable on */
71  #define RTC_AIE_OFF   _IO('p', 0x02)  /* ... off   */
72  #define RTC_UIE_ON   _IO('p', 0x03)  /* Update int. enable on  */
73  #define RTC_UIE_OFF   _ IO('p', 0x04)  /* ... off    */
74  #define RTC_PIE_ON   _IO('p', 0x05)  /* Periodic int. enable on  */
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75  #define RTC_PIE_OFF   _IO('p', 0x06)  /* ... off    */
76  #define RTC_WIE_ON   _IO('p', 0x0f) /* Watchdog int. enable on  */
77  #define RTC_WIE_OFF   _IO('p', 0x10) /* ... off    */

78  #define RTC_ALM_SET   _IOW('p', 0x07, struct rtc_time) /* Set alarm time */
79  #define RTC_ALM_READ  _IOR('p', 0x08, struct rtc_time) /* Read alarm time*/
80  #define RTC_RD_TIME   _IOR('p', 0x09, struct rtc_time) /* Read RTC time */
81  #define RTC_SET_TIME  _IOW('p', 0x0a, struct rtc_time) /* Set RTC time */
82  #define RTC_IRQP_READ  _IOR('p', 0x0b, unsigned long)  /* Read IRQ rate*/
83  #define RTC_IRQP_SET  _IOW('p', 0x0c, unsigned long)  /* Set IRQ rate */
84  #define RTC_EPOCH_READ  _IOR('p', 0x0d, unsigned long)  /* Read epoch */
85  #define RTC_EPOCH_SET  _IOW('p', 0x0e, unsigned long)  /* Set epoch */
86  
87  #define RTC_WKALM_SET  _IOW('p', 0x0f, struct rtc_wkalrm)/*Set wakeupalarm*/
88  #define RTC_WKALM_RD  _IOR('p', 0x10, struct rtc_wkalrm)/*Get wakeupalarm*/
89  
90  #define RTC_PLL_GET   _IOR('p', 0x11, struct rtc_pll_info) /* Get PLL
correction */
91  #define RTC_PLL_SET   _IOW('p', 0x12, struct rtc_pll_info) /* Set PLL
correction */  
-----------------------------------------------------------------------

The ioctl() control functions are listed in include/linux/rtc.h. At this
writing, not all the ioctl() calls for the RTC are implemented for the PPC archi-
tecture. These control functions each call lower-level hardware-specific functions (if
implemented). The example in this section uses the RTC_RD_TIME function.

The following is a sample ioctl() call to get the time of day. This program sim-
ply opens the driver and queries the RTC hardware for the current date and time,
and prints the information to stderr. Note that only one user can access the RTC
driver at a time. The code to enforce this is shown in the driver discussion.

–----------------------------------------------------------------------
Documentation/rtc.txt
/*
*  Trimmed down version of code in /Documentation/rtc.txt
*
*/

int main(void) {

int fd, retval = 0;
//unsigned long tmp, data;
struct rtc_time rtc_tm;

fd = open ("/dev/rtc", O_RDONLY);

/* Read the RTC time/date */
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retval = ioctl(fd, RTC_RD_TIME, &rtc_tm);

/* print out the time from the rtc_tm variable */

close(fd);
return 0;

} /* end main */
------------------------------------------------------------------------

This code is a segment of a more complete example in /Documentation/
rtc.txt. The two main lines of code in this program are the open() command
and the ioctl() call. open() tells us which driver we will use (/dev/rtc) and
ioctl() indicates a specific path through the code down to the physical RTC
interface by way of the RTC_RD_TIME command. The driver code for the open()
command resides in the driver source, but its only significance to this discussion is
which device driver was opened.

7.4.2 Reading the PPC Real-Time Clock
At kernel compile time, the appropriate code tree (x86, PPC, MIPS, and so on)

is inserted. The source branch for PPC is discussed here in the source code file for
the generic RTC driver for non-x86 systems:

–----------------------------------------------------------------------
/drivers/char/genrtc.c 
276  static int gen_rtc_ioctl(struct inode *inode, struct file *file,
277    unsigned int cmd, unsigned long arg)
278  {
279   struct rtc_time wtime;
280   struct rtc_pll_info pll;
281  
282   switch (cmd) {
283  
284   case RTC_PLL_GET:
...  
290   case RTC_PLL_SET:
...
298   case RTC_UIE_OFF:  /* disable ints from RTC updates.  */
...
302   case RTC_UIE_ON:  /* enable ints for RTC updates.  */
...
305   case RTC_RD_TIME:  /* Read the time/date from RTC  */
306    
307    memset(&wtime, 0, sizeof(wtime));
308    get_rtc_time(&wtime);
309  
310    return copy_to_user((void *)arg,&wtime,sizeof(wtime)) ? -EFAULT:0;
311
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312   case RTC_SET_TIME:  /* Set the RTC */
313    return -EINVAL;
314   }
...
353  static int gen_rtc_open(struct inode *inode, struct file *file)
354  {
355   if (gen_rtc_status & RTC_IS_OPEN)
356    return -EBUSY;
357   gen_rtc_status |= RTC_IS_OPEN;
------------------------------------------------------------------------

This code is the case statement for the ioctl command set. Because we made
the ioctl call from the user space test program with the RTC_RD_TIME flag, con-
trol is transferred to line 305. The next call is at line 308, get_rtc_time(&wtime)
in rtc.h (see the following code). Before leaving this code segment, note line 353.
This allows only one user to access, via open(), the driver at a time by setting the
status to RTC_IS_OPEN:

–----------------------------------------------------------------------
include/asm-ppc/rtc.h
045  static inline unsigned int get_rtc_time(struct rtc_time *time)
046  {
047    if (ppc_md.get_rtc_time) {
048     unsigned long nowtime;
049   
050    nowtime = (ppc_md.get_rtc_time)();
051   
052     to_tm(nowtime, time);
053   
054     time->tm_year -= 1900;
055  time->tm_mon -= 1; /* Make sure userland has a 0-based month */
056    }
057   return RTC_24H;
058  }
------------------------------------------------------------------------

The inline function get_rtc_time() calls the function that the structure vari-
able pointed at by ppc_md.get_rtc_time on line 50. Early in the kernel initial-
ization, this variable is set in chrp_setup.c:

–----------------------------------------------------------------------
arch/ppc/platforms/chrp_setup.c
447  chrp_init(unsigned long r3, unsigned long r4, unsigned long r5,
448  unsigned long r6, unsigned long r7)
449  {
...
477   ppc_md.time_init  = chrp_time_init;
478   ppc_md.set_rtc_time = chrp_set_rtc_time;
479   ppc_md.get_rtc_time = chrp_get_rtc_time;
480   ppc_md.calibrate_decr = chrp_calibrate_decr;
------------------------------------------------------------------------
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The function chrp_get_rtc_time() (on line 479) is defined in chrp_time.c
in the following code segment. Because the time information in CMOS memory is
updated on a periodic basis, the block of read code is enclosed in a for loop, which
rereads the block if the update is in progress:

–----------------------------------------------------------------------
arch/ppc/platforms/chrp_time.c
122  unsigned long __chrp chrp_get_rtc_time(void)
123  {
124   unsigned int year, mon, day, hour, min, sec;
125   int uip, i;
...  
141   for ( i = 0; i<1000000; i++) {
142    uip = chrp_cmos_clock_read(RTC_FREQ_SELECT);
143    sec = chrp_cmos_clock_read(RTC_SECONDS);
144    min = chrp_cmos_clock_read(RTC_MINUTES);
145    hour = chrp_cmos_clock_read(RTC_HOURS);
146    day = chrp_cmos_clock_read(RTC_DAY_OF_MONTH);
147    mon = chrp_cmos_clock_read(RTC_MONTH);
148    year = chrp_cmos_clock_read(RTC_YEAR);
149    uip |= chrp_cmos_clock_read(RTC_FREQ_SELECT);
150    if ((uip & RTC_UIP)==0) break;
151   }
152   if (!(chrp_cmos_clock_read(RTC_CONTROL)
153   & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
154   {
155    BCD_TO_BIN(sec);
156    BCD_TO_BIN(min);
157    BCD_TO_BIN(hour);
158    BCD_TO_BIN(day);
159    BCD_TO_BIN(mon);
160    BCD_TO_BIN(year); 
161   }
...
054  int __chrp chrp_cmos_clock_read(int addr)
055  {   if (nvram_as1 != 0)
056   outb(addr>>8, nvram_as1);
057   outb(addr, nvram_as0);
058   return (inb(nvram_data));
059  }
------------------------------------------------------------------------

Finally, in chrp_get_rtc_time(), the values of the individual components of
the time structure are read from the RTC device by using the function
chrp_cmos_clock_read. These values are formatted and returned in the rtc_tm
structure that was passed into the ioctl call back in the userland test program.
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7.4.3 Reading the x86 Real-Time Clock
The methodology for reading the RTC on the x86 system is similar to, but some-

what more compact and robust than, the PPC method. Once again, we follow the
open driver /dev/rtc, but this time, the build has compiled the file rtc.c for the
x86 architecture. The source branch for x86 is discussed here:

–----------------------------------------------------------------------
drivers/char/rtc.c 
...
352  static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
353  {
...
switch (cmd) {
...
482  case RTC_RD_TIME:  /* Read the time/date from RTC  */
483  {
484   rtc_get_rtc_time(&wtime);
485   break;
486  }
...
1208  void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1209  {
...
1238   spin_lock_irq(&rtc_lock);
1239   rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1240   rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1241   rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1242   rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1243   rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1244   rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1245   ctrl = CMOS_READ(RTC_CONTROL);
...
1249  spin_unlock_irq(&rtc_lock);
1250
1251  if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1252  {
1253   BCD_TO_BIN(rtc_tm->tm_sec);
1254   BCD_TO_BIN(rtc_tm->tm_min);
1255   BCD_TO_BIN(rtc_tm->tm_hour);
1256   BCD_TO_BIN(rtc_tm->tm_mday);
1257   BCD_TO_BIN(rtc_tm->tm_mon);
1258   BCD_TO_BIN(rtc_tm->tm_year);
1259  }
------------------------------------------------------------------------

The test program uses the ioctl() flag RTC_RD_TIME in its call to the driver
rtc.c. The ioctl switch statement then fills the time structure from the CMOS
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memory of the RTC. Here is the x86 implementation of how the RTC hardware
is read:

–----------------------------------------------------------------------
include/asm-i386/mc146818rtc.h 
...
018  #define CMOS_READ(addr) ({ \
019   outb_p((addr),RTC_PORT(0)); \
020   inb_p(RTC_PORT(1)); \
021  })
-----------------------------------------------------------------------

Summary
This chapter covered the Linux scheduler, preemption in Linux, and the Linux

system clock and timers.

More specifically, we covered the following topics:

• We introduced the new Linux 2.6 scheduler and outlined its new features.

• We described how the scheduler chooses the next task from among all tasks
it can choose and the algorithms the scheduler uses to do so.

• We discussed the context switch that the scheduler uses to actually swap a
process and traced the function into the low-level architecture-specific code.

• We covered how processes in Linux can yield the CPU to other processes by
calling schedule() and how the kernel then marks that process as “to be
scheduled.”

• We delved into how the Linux kernel calculates dynamic priority based on
the previous behavior of an individual process and how a process eventually
gets removed from the scheduling queue.

• We then moved on and covered implicit and explicit user- and kernel-level
preemption and how each is dealt with in the 2.6 Linux kernel.

• Finally, we explored timers and the system clock and how the system clock is
implemented in both x86 and PPC architectures.
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Exercises

1. How does Linux notify the scheduler to run periodically?

2. Describe the difference between interactive and non-interactive
processes.

3. With respect to the scheduler, what’s special about real-time
processes?

4. What happens when a process runs out of scheduler ticks?

5. What’s the advantage of an O(1) scheduler?

6. What kind of data structure does the scheduler use to manage the
priority of the processes running on a system?

7. What happens if you were to call schedule() while holding a
spinlock?

8. How does the kernel decide whether a kernel task can be implic-
itly preempted?
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