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1.4 AVERAGE RATE OF CHANGE

C H A P T E R

How hot is it really? Anyone who has ever visited Phoenix surely

has heard the adage that the dry heat of the desert doesn’t feel as hot

as the temperature would suggest. Indeed, when it is 100°F in Phoenix with a rel-

ative humidity of 10%, it “feels like” it is only 95°F—a full five degrees cooler

than the thermometer says!

The “heat index” is a number calculated by meteorologists to measure the effect

of humidity on the apparent temperature as felt by the human body. It is designed to

report how hot you actually feel at a particular combination of air temperature and

relative humidity.The chart in Fig. 1.0.1 shows the heat index for various levels of rel-

ative humidity at a fixed air

temperature of 85°F.

The chart indicates that

when the humidity is 10%

the apparent temperature

is only 80°F. However, if the

humidity is 90%, then a

temperature of 85°F seems

like 102°F. Thus the humid-

ity has a big effect on how

hot we actually feel.

FIGURE 1.0.1

Source: National Weather
Service, Buffalo, New York.
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3

We can see from the chart that as the relative humidity increases from 0% to

60%, the apparent temperature increases uniformly from 78°F to 90°F. Notice that

this portion of the chart appears to be a straight line. After we reach a relative

humidity of 60%, however, the apparent temperature increases more rapidly as

the relative humidity increases. That is, this portion of the chart appears to curve

upward.

All around us we see quantities, like apparent temperature and relative

humidity, that seem to be related to each other in some systematic way. We often

describe this dependence of one quantity on another by using the word function.

Thus, we might say that your weight is (ideally) a function of your height; that

your grade on a history test is a function of how long you studied; or that your

income is a function of your education level. In each case we are noting a depend-

ence of the first quantity on the second.

In this chapter, we introduce the mathematical concept of a function, we

study functions defined by tables, graphs, and rules, and we explore increasing

and decreasing functions.

1.1 FUNCTIONS DEFINED BY TABLES
The menu at a local Waffle House restaurant gives the price of a breakfast of

eggs, toast, jelly, and grits based on the number of eggs the customer orders, as

illustrated in the following table of 2005 prices:

NUMBER OF EGGS PRICE OF BREAKFAST

3 $2.60

2 $2.25

1 $1.80

Most applications of mathematics involve the use of numbers or variables to

describe real-world quantities. In this situation, suppose we let n represent the

number of eggs ordered and p the price of the breakfast.Then the table describes

a relationship between n and p. This relationship is an example of a mathemati-

cal function because for each number n of eggs ordered there is a corresponding

price p charged for the breakfast.

The key concept here is that there is only one price associated with each

number of eggs. The menu, in effect, provides a “rule” for determining price: If

you know how many eggs were ordered, you know the price of the breakfast. If

you and your friend each ordered a 1-egg breakfast, then you would expect to be

charged the same amount. Indeed, if one of you were charged more than $1.80

for your breakfast, then you surely would complain!
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4 CHAPTER 1 Functions and Mathematical Models

D E F I N I T I O N : Function

A function f defined on a collection D of numbers is a rule that assigns to

each number x in D a specific number f(x).

We will refer to the numbers in the set D as “inputs” and the corresponding

f(x) numbers as “outputs.” In the Waffle House example, we can say that the price

of the breakfast is a function of the number of eggs ordered. This means that for

each input (number of eggs), there is only one output (price).

We can also look at the table “backwards,” and say that the number of eggs

ordered is a function of the price of the breakfast. Then each input (price) has

only one output (number of eggs).

The following table gives the average price of a 30-second commercial airing dur-

ing the Super Bowl in the indicated year.

a. Is the price of the commercial a function of the year?

b. Is the year a function of the price of the commercial?

PRICE OF COMMERCIAL 
YEAR (IN MILLIONS)

1998 $1.3

2000 $2.1

2001 $2.3

2003 $2.1

2005 $2.4

Source. www.superbowl-ads.com.

S O L U T I O N

a. When we ask “Is the price a function of the year?” we are considering

the year as the input and the price as the output. Thus, the price of the

commercial is a function of the year because for each input (year)

there is only one output (price).

b. When we ask “Is the year a function of the price?” we are considering

the price as the input and the year as the output. Thus, the year is not a

function of the price because for the input $2.1 million, there are two

different outputs (2000 and 2003).

In the definition of function, the number f(x)—we say “f of x”—is called the

value of the function f at the number x.The “rule” mentioned in the definition can

be specified by a table, by a formula, or by a graph, or even by a verbal descrip-

tion that tells how the value f(x) is found when the number x is given. While we

frequently use x to denote the variable and f to denote the function, we can use

any other letters that we like or that seem more natural in a particular situation.

E X A M P L E  1 Is It a Function?
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SECTION 1.1 Functions Defined by Tables 5

When we consider the Waffle House data as defining price as a function of

the number of eggs ordered, the set D is the collection of all possible numbers of

eggs—the set of numbers 1, 2, and 3. Since the inputs are numbers of eggs, we will

denote them by n (rather than x). Since the outputs are prices, we will denote

them by p(n).

n p(n)

1 $1.80

2 $2.25

3 $2.60

Given a number n in the first column of the table, we simply look in the second

column to find the corresponding price p(n). For instance, p(3) � 2.60 because

$2.60 is the price “assigned” to a 3-egg breakfast.

So the mathematical question “Find p(n)” is equivalent to the English ques-

tion “If the input is n, what is the output?” It is convenient for us to think of this

as the “frontward” question “Here is the input, what is the output?”

We can also ask the “backward” question “Here is the output, what is the

input?” This is equivalent to the mathematical question “For what value(s) of n
is p(n) � 2.25?” From the table, the answer is n � 2.

Notice that when we use this notation, the input value appears inside the

parentheses. In the “frontward” question “Find p(3),” we are given the input 3

and asked to find the output. In the “backward” question “For what value(s) of n
is p(n) � 2.25,” we are looking for the input n.

Rather than keeping a “running total,” the Bureau of the Public Debt uses a daily

accounting method to calculate the public debt of the United States. At the end

of each day, approximately 50 different agencies (such as Federal Reserve Banks)

report certain financial information to the Bureau. At around 11:30 AM EST the

next morning, the accounting system produces a figure for the public debt, cor-

rect to the nearest penny, for the previous day. Thus, to each date is assigned an

official public debt amount, and we therefore can say that the debt depends on

the day chosen. In other words, the debt is a function of the date. Here is a por-

tion of a table reporting the public debt in February 2005.

DATE x PUBLIC DEBT g(x)

02/18/2005 $7,689,935,780,269.27

02/17/2005 $7,689,847,469,266.70

02/16/2005 $7,671,700,332,790.18

02/15/2005 $7,674,137,053,033.57

02/14/2005 $7,630,849,109,540.36

a. Find g(02/15/2005).

b. Find x if g(x) � $7,689,847,469,266.70.

E X A M P L E  2 Finding Input and Output Values
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6 CHAPTER 1 Functions and Mathematical Models

S O L U T I O N

From the table:

a. g(02/15/2005) � $7,674,137,053,033.57.

b. When g(x) � $7,689,847,469,266.70, x � 02/17/2005.

Domain and Range of a Function
When we use functions to describe relationships between variables, it is important

that we know what numbers are sensible values to substitute for those variables.

D E F I N I T I O N : Domain

The collection (or set) of all numbers for which the number f(x) is defined

is called the domain (of definition) of the function f. These numbers are the

input values of the function.

We saw in Example 1 that the average price of a 30-second Super Bowl ad is

a function of the year it airs. Based on the table, the domain of this function is

{1998, 2000, 2001, 2003, 2005}.

D E F I N I T I O N : Range

The set of all possible values y � f(x) is called the range of the function.

Based on the table in Example 1, the range of the Super Bowl ad function is

{1.3, 2.1, 2.3, 2.4}, where the values are in millions of dollars. Notice that it is not

necessary to list 2.1 twice, because the range indicates what numbers occur as

output values, regardless of how many times each one appears.

E X A M P L E  3 Finding Domain and Range

Consider the following table giving calories from fat and milligrams of choles-

terol for several sandwiches from the Subway restaurant:

SUBWAY SANDWICH CALORIES FROM FAT x CHOLESTEROL (mg) C(x)

Honey Mustard Ham 45 25

Cheese Steak 90 35

Buffalo Chicken 130 50

Italian BMT 190 55

Double Meat Cold Cut Combo 250 105

Source. www.subway.com.

This table defines milligrams of cholesterol as a function of calories from fat.

a. What is the domain of this function?

b. What is the range of this function?
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S O L U T I O N

a. The domain of the function is {45, 90, 130, 190, 250}.

b. The range of the function is {25, 35, 50, 55, 105}.

In this section, we have applied the definitions of function, function value,

domain, and range to data given in table form. We will continue to apply these

same important definitions when we encounter functions defined by graphs or by

rules.

SECTION 1.1 Functions Defined by Tables 7

Building Your Skills
In Exercises 1–4, determine whether B is a function of A and then, if B is a function of
A, give the domain and the range of the function.

1.

2.

3.

4.

In Exercises 5–8, find (a) f(2) and (b) the value(s) of x for which f(x) � 2.

5.

6.

7.

8.
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8 CHAPTER 1 Functions and Mathematical Models

Applying Your Skills

9. The total number of fat grams and calories in various chicken sandwiches are

given in the following table:

Source: Chick-Fil-A Gram Comparison.

a. Based on this table, are calories a function of fat grams?

b. Based on this table, are fat grams a function of calories?

10. In 2005, Kaiser Permanente advertised the following monthly rates for the

Personal Advantage health plan for male subscribers in the state of Georgia:

a. Based on this table, is cost a function of age?

b. Based on this table, is age a function of cost?

11. The College Board reports the average verbal and math SAT scores for college-

bound seniors by state. The accompanying table shows averages for the year

2004:

STATE AVERAGE VERBAL SCORE AVERAGE MATH SCORE

Arkansas 569 555

Connecticut 515 515

Illinois 585 597

Hawaii 487 514

Texas 493 499

a. Based on this table, is average math score a function of average verbal

score?

b. Based on this table, is average verbal score a function of average math

score?

12. For a person who is 5 feet, 8 inches tall, the following table gives weight in

pounds and corresponding body mass index (BMI). A person whose BMI is less

than 18.5 is considered underweight.

Source: Centers for Disease Control and Prevention.

a. Explain why, based on this table, BMI is a function of weight in pounds.

b. Explain why, based on this table, weight in pounds is a function of BMI.
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c. What is the BMI for a person 5 feet, 8 inches tall who weighs 133 pounds?

d. A person whose BMI is 25.0–29.9 is considered overweight. Based on this table,

for which weights would a person 5 feet, 8 inches tall be considered overweight?

13. The following table shows the year that the Dow Jones Average first reached

certain milestone levels:

Source: Dow Jones Industrial Average.

a. Explain why, based on this table, year is a function of Dow Jones Average.

b. Explain why, based on this table, the Dow Jones Average is not a function

of year.

c. When did the Dow Jones average first reach 3000?

d. What value(s) did the Dow Jones first attain in 1995?

14. Use a newspaper, a magazine, or the Internet to find

a. an example of a table of data that represents a function;

b. an example of a table of data that does not represent a function.

SECTION 1.2 Functions Defined by Graphs 9
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1.2 FUNCTIONS DEFINED BY GRAPHS
In Example 3 of Section 1.1, we saw that the table showing calories from fat and

cholesterol for Subway sandwiches represented cholesterol c(x) as a function of

calories x:

To graphically represent this data, we create a scatter plot, a set of points in the

coordinate plane with the input values on the horizontal axis (x-axis) and the

output values on the vertical axis (y-axis). Figure 1.2.1 shows a calculator scatter

plot for these data with calories from fat on the horizontal axis and milligrams of

cholesterol on the vertical axis.

FIGURE 1.2.1 Scatter plot of cholesterol

versus calories data.
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10 CHAPTER 1 Functions and Mathematical Models

On the other hand, the table showing fat grams and calories for chicken

sandwiches (in Exercise 9 of Section 1.1) did not represent calories as a function

of fat grams because the input 33 had two different outputs, 680 and 750:

Figure 1.2.2 shows a scatter plot for these data with fat grams (input) on the hor-

izontal axis and calories (output) on the vertical axis.

The scatter plot in Fig. 1.2.3 illustrates the population (in thousands) of

St. Louis, Missouri, for the census years 1950–2000. Does this scatter plot repre-

sent a function?

E X A M P L E  1 Is It a Function?

FIGURE 1.2.3 Population of

St. Louis.

Source: www.census.gov.
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FIGURE 1.2.2 Scatter plot of calories

versus fat grams data.

In this scatter plot, we see the two outputs (680 and 750) for the input 33, yield-

ing two different points “stacked” vertically above the input 33.

This understanding that more than one output for a given input shows up on

a graph as two points lying on the same vertical line is the source of the “vertical

line test” for a function. In order for a graph to represent a function, any vertical

line must cross the graph only once.
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S O L U T I O N

This plot describes a function P(x) that is defined for each of the years 1950, 1960,

1970, 1980, 1990, and 2000 because for each input (year x), the plot shows exactly
one dot, indicating only one output (population P).
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SECTION 1.2 Functions Defined by Graphs 11

Throughout this book we will see how quantities measured over time repre-

sent functions with time as the input and the quantity measured (such as popula-

tion) as the output. Using functions to make predictions of how values will

change with time is an important use of mathematics. Planning in business and

government for future revenue, expenditure, and resource allocation frequently

depends on identifying functions to model the behavior of such quantities.

A scatter plot is a representation of a set of individual points. Frequently

mathematical relationships are displayed as connected lines or curves. In these

situations, we can also apply the vertical line test to determine whether a parti-

cular graph represents a function.

The graph in Fig. 1.2.4 shows the percentage chance per month that a woman

15–45 years of age will become pregnant. Does this graph represent chance of

conception as a function of mother’s age?

E X A M P L E  2 Is It a Function?

FIGURE 1.2.4 Fertility odds.

Source: Atlanta Journal-Constitution.
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S O L U T I O N

We see that any vertical line would cross this graph only once. This indicates that

this plot represents a function because each input (age) is associated with only

one output (percentage chance of conception).

Just as we did with functions defined by tables, we can find input and output val-

ues if functions are given graphically. However, if points on the graph are not labeled

or accompanied by a table of values, we can only estimate the values in question.

If we consider the fertility odds graph in Fig. 1.2.4, we can ask the “front-

ward” question “What is the output when the input is 20?” This question asks us

to find the percentage chance of conception when the mother is 20 years old.

Since age is represented on the horizontal axis, we find 20 on the horizontal axis

and then find the point on the graph directly above it.This appears to be the high-

est point on the graph, located a bit lower than 25, perhaps 24. So we estimate

that the output for an input of 20 is about 24; that is, if a woman is 20 years old,

she has about a 24% chance of conceiving per month.
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12 CHAPTER 1 Functions and Mathematical Models

Similarly, suppose we are asked the “backward” question “What is the input

when the output is 10?” This question asks us to find the mother’s age when

chance of conception is 10%. Since chance of conception is represented on the

vertical axis, we find 10 on the vertical axis and find the point (or points) on the

graph that lie directly to its right.This point lies a little to the left of 35, so we esti-

mate that the input for an output of 10 is about 34. That is, if the chance of con-

ception is 10%, the mother’s age is about 34 years.

FIGURE 1.2.5 Hospital occu-

pancy.

Source: The World Almanac and
Book of Facts 2005.

Figure 1.2.5 shows the number of hospitals and the percentage of beds occupied

in the hospitals for several U.S. states.

a. Find the percentage of beds occupied if the number of hospitals in the

state is 83.

b. Find the number of hospitals in the state if 74% of beds are occupied.

E X A M P L E  3 Finding Input and Output Values
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S O L U T I O N

a. This question asks us to find the output if the input is 83. If we find 83

on the horizontal axis and look for the point directly above it, we see

that the point is located slightly below 60 on the vertical axis. Thus we

estimate that about 58% of hospital beds are occupied.

b. This question asks us to find the input if the output is 74. There seem to

be two points lying at a height of 74. One seems to have a first coordi-

nate of about 5; the second seems to have a first coordinate of about

35. Therefore, we say that the states with 5 or 35 hospitals have 74% of

their beds occupied.

If a function is represented graphically, we can find (at least approximately)

its domain and range. Recalling that the domain is the set of input values, we look

at the hospital occupancy function in Fig. 1.2.5. Estimating these values from the

graph, we see that the domain of this function is {5, 19, 35, 61, 66, 83}.

Similarly, since the range is the set of output values, we estimate those values

from the graph and find that the range of the function is {58, 61, 64, 74}. Notice that

although there are six values in the domain, the range only contains four different
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values. This occurs because the inputs 5 and 35 have the same output, 74, and the

inputs 19 and 83 both have the output 58.

SECTION 1.2 Functions Defined by Graphs 13

FIGURE 1.2.6 Typical stopping

distances.

Source: www.highwaycode.gov.uk.

Building Your Skills
In Exercises 1 and 2, make a scatter plot of the data, using A as input (on the horizon-
tal axis) and B as output (on the vertical axis). Then explain why the scatter plot does
or does not represent B as a function of A.
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Figure 1.2.6 shows the typical distance (in feet) that a car travels after the brakes

have been applied for various speeds (in miles per hour).

a. Find the domain of this function.

b. Find the range of this function.

E X A M P L E  4 Finding Domain and Range
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S O L U T I O N

a. Because the graph is given as a connected curve, the domain consists of

all values that lie between the smallest input value and the largest input

value, inclusive. That is, the domain contains all real numbers between

20 and 70, including both 20 and 70. Using interval notation, we write

the domain as [20, 70].

b. Similarly, the range of the function consists of all values that lie

between the smallest output value and the largest output value, inclu-

sive. So the domain contains all real numbers between 40 and 315,

inclusive. In interval notation, the range is [40, 315].
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14 CHAPTER 1 Functions and Mathematical Models

In Exercises 3–6, first determine whether the graph represents a function (with input on
the horizontal axis and output on the vertical axis) and then, if the graph represents a
function, give its domain and range.

3. 4.

5.

6.

In Exercises 7–10, let y � f(x). Find (a) f(2) and (b) the value(s) of x for which f(x) � 2.

Each tick mark on the axes represents one unit.

7. 8.
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9.

10.

Applying Your Skills

11. The scatter plot in Fig. 1.2.15 shows the height and weight for 12 pitchers on the

Texas Rangers active roster in June 2005. Based on this scatter plot, is weight a

function of height? Why or why not?

SECTION 1.2 Functions Defined by Graphs 15

FIGURE 1.2.15 Texas Rangers

pitchers.

Source: www.texasrangers.mlb.com.
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12. The scatter plot in Fig. 1.2.16 shows the latitude and length of growing season

for several U.S. cities. Based on this scatter plot, is length of growing season a

function of latitude? Why or why not?

DAVIMC01_0131450352.qxd  10/19/06  12:38 AM  Page 15 REVISED PAGES



16 CHAPTER 1 Functions and Mathematical Models

13. The scatter plot in Fig. 1.2.17 gives the death toll for California earthquakes of

various magnitudes that occurred in the twentieth century.
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FIGURE 1.2.16 Growing season

versus latitude.

Source: www.census.gov and The
Old Farmer’s Almanac.
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FIGURE 1.2.17 California earth-

quakes.

Source: National Geophysical Data
Center (NGDC).

a. Explain why, based on the scatter plot, the number of deaths is a function

of the magnitude of the earthquake.

b. Give the magnitudes for two earthquakes that have the same number of deaths.

c. How many deaths occurred in the earthquake with magnitude 6.4?

14. Fig. 1.2.18 shows data collected by a mathematical modeling student in 2005, giv-

ing the price of a used Corvette as a function of its age.

(25, 1.8)

(0, 43.4)

0

10

20

30

40

50

0 5 10 15 20 25 30

Age (years)

T
h

o
u

sa
n

d
s 

o
f 

D
o

ll
a
rs

FIGURE 1.2.18 Price of a used

Corvette.
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a. What is the domain of this function?

b. What is the range of this function?

c. What is the price of a 10-year-old Corvette?

d. How old is a Corvette that costs 10 thousand dollars?

15. In an August 2004 article concerning the political power of the United Auto

Workers union, The Detroit News included Fig. 1.2.19, which gives the union’s

membership as a function of the year.

SECTION 1.3 Functions Defined by Formulas 17

a. What is the domain of this function?

b. What is the range of this function?

c. In what year were 250 million cases of 7-Up sold?

d. How many cases were sold in 1994?

17. Use a newspaper, a magazine, or the Internet to find:

a. An example of a graph that represents a function.

b. An example of a graph that does not represent a function.
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1,527,858

1.6 million

624,585

FIGURE 1.2.19 Membership in

the United Auto Workers union.

Source: The Detroit News.

a. What is the domain of this function?

b. What is the range of this function?

c. How many UAW members were there in 1987?

d. In what year were there 900,000 UAW members?

16. Fig. 1.2.20 shows the number of cases (in millions) of 7-Up sold for as a function

of the year.
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FIGURE 1.2.20 Sales of 7-Up.

Source: Atlanta Journal-Constitution.
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18 CHAPTER 1 Functions and Mathematical Models

(weights) and the values in the Y1 column are the outputs (BMI).We see the BMI

values displayed correct to one decimal place, and notice that the value obtained

for a weight of 40 pounds corresponds to the value we found previously.

To examine this relationship graphically, we can create a scatter plot of BMI

versus weight using the data in Fig. 1.3.2 or we can create a graph of the function

directly from the function rule. Since the function is already entered into the Y�
menu of the calculator, all we need do to display the graph is to choose an appro-

priate viewing window. In order to see all the ordered pairs displayed in Fig. 1.3.2,

we must set the window so that our minimum x-value is smaller than 40, our max-

imum x-value is larger than 52, our minimum y-value is smaller than 21, and our

maximum y-value is larger than 28. Using the settings displayed in Fig. 1.3.3, we

obtain the graph in Fig. 1.3.4.

This graph shows BMI not only for the integer weights given in Fig. 1.3.2, but

also for any weight between 35 pounds and 55 pounds. For example, to find the

1.3 FUNCTIONS DEFINED BY FORMULAS
In Sections 1.1 and 1.2, we examined functions that were defined using either a

table of values or a graph. In this section, we look at functions defined by for-

mulas, either symbolic or verbal, and consider the relationship among a formula,

a table, and a graph.

The Body Mass Index, or BMI, is a measure that assesses the amount of fat

in the body. It is commonly used to determine whether individuals are under-

weight or overweight and is used with both adults and children.

When weight is measured in pounds, the BMI for a child who is 36 inches tall

is calculated by the following formula:

.

From this formula, we can see that BMI is a function of weight because for each

input value (weight in pounds), we will get exactly one BMI value. For example,

if a child’s weight is 40 pounds, then his or her BMI is rounded

to the nearest tenth.

Furthermore, we can use the formula to determine BMI for any given

weight. By entering this function rule into our calculator’s Y� menu as

Y1�703(X/362), we can use the table feature to generate a table of function

values, as shown in Figs. 1.3.1 and 1.3.2. The values in the X column are our inputs

703a 40

362
b = 21.7,

BMI = 703aweight

362
b

FIGURE 1.3.1 Table setup for BMI

function.

FIGURE 1.3.2 Table of BMI

function values.
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SECTION 1.3 Functions Defined by Formulas 19

BMI for a weight of 42.5 pounds, you can use the value command in the CALC
menu. Figure 1.3.5 shows that the BMI for a weight of 42.5 is 23.1.

FIGURE 1.3.3 Setting the

window for the BMI function.

FIGURE 1.3.4 Graph of BMI

function.

FIGURE 1.3.5 Finding the output value for

an input of 42.5.

In June 2005, T-Mobile advertised a “Get More” Plan for cell phone service that

included 600 “whenever minutes” plus unlimited weeknight and weekend

minutes each month for $39.99, with additional minutes charged at 40¢ each.

Let’s assume that only weekday minutes count as “whenever minutes” against

the 600-minute total under the $39.99 basic monthly charge. Does this formula

describe the monthly cost of cell phone service as a function of the number of

weekday minutes used?

S O L U T I O N

This plan describes a function C(n) that is defined for nonnegative values of n,

the number of weekday minutes used, because for each input (number of week-

day minutes), there is only one output (cost in dollars and cents).

Suppose that we want a symbolic, rather than verbal, formula for this func-

tion. If we look at the process we use to find specific output values, we are led to

a symbolic rule.

Let’s call weekday minutes simply “minutes” for the time being, since week-

night and weekend minutes are free. Our “frontward” question “Here’s the input,

what’s the output?” then becomes “How much would a person be charged for

cell phone service if she used (for example) 123 minutes?” The formula tells us

that her cost would be $39.99, or symbolically, C(123) � $39.99.

What if she used 130 minutes, 218 minutes, 467 minutes, or 600 minutes? The

answer to each of these questions is the same—$39.99. So we can say that C(n)�
$39.99 if 0 � n � 600.

E X A M P L E  1 Is It a Function?
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20 CHAPTER 1 Functions and Mathematical Models

But that is only part of the story. Suppose we were asked the cost if a person

used 601 minutes. We can easily see that there is only one “extra” minute, costing

40¢, which must be added to the basic charge of $39.99. So C(601) � $39.99 �
$0.40 � $40.39. Similarly, if a person used 738 minutes, there would be 738 � 600 �
138 additional minutes, each charged at 40¢, making C(738) � $39.99 �
138($0.40) � $95.19. If a person used 919 minutes, there would be 919 � 600 �
319 additional minutes, each charged at 40¢, making C(919) � $39.99 �
319($0.40) � $167.59. In each case, to calculate the cost, we needed to subtract

600 from the minutes used to find the number of additional minutes charged at

40¢ each. In general, C(n) � $39.99 � (n � 600)($0.40) if n � 600.

Thus, in order to give a symbolic rule for this function, we must write it in two

parts:

where n represents the number of weekday minutes used and C(n) is cost in dol-

lars and cents. The graph of this function is shown in Fig. 1.3.6.

C(n) = e 39.99 if 0 …  n … 600,

39.99 + (n - 600)(0.40)  if  n 7 600,

200

−10
−100 1000

FIGURE 1.3.6 Graph of the “Get More”

Plan function.

If a certain savings account earns 4% simple interest per year, then the interest I
earned each year is given in terms of the amount A in the account by the func-

tion I(A) � 0.04A.

a. Find the amount in the account if the yearly interest earned is $18.00.

b. Find the interest earned each year if the amount in the account is $360.00.

S O L U T I O N

a. This question asks us to find the input if the output is $18.00. Since

I(A) represents the output for an input of A dollars, we need to solve

the equation

for A. Thus, , and there is $450.00 in an account

earning $18.00 interest yearly.

We can also find this input graphically, using the calculator. To the

calculator, inputs are x’s and outputs are y’s, so we enter 0.04x into Y1

A =

18.00

0.04
= 450.00

18.00 = 0.04 A

E X A M P L E  2 Finding Input and Output Values

DAVIMC01_0131450352.qxd  10/19/06  12:38 AM  Page 20 REVISED PAGES



and 18.00 into Y2. Then we set the window so we can see the graphs of

these functions. Since the input x represents the dollars invested, we

use the window Xmin � �10, Xmax � 800, Xscl � 100. The y’s rep-

resent the dollars of interest earned, so we let Ymin � �1, Ymax � 25,
Xscl � 5, and then graph the functions. The point where these two

graphs intersect has the input value that gives an output of 18.00. Using

the intersect command in the CALC menu of our calculator, we hit

ENTER to select the “first curve” Y1, ENTER again to select the “second

curve” Y2, and ENTER once again to select a “guess”. (Sometimes you

need to move the cursor to get close to the point of intersection, but usu-

ally wherever the cursor “lands” is fine.) We can see from Fig. 1.3.7, that

$450 is the amount invested if the interest earned is $18.

b. This question asks us to find the output if the input is $360.00. Here we

need to find I(360.00) � 0.04(360.00) � 14.40. So, an account of $360.00

earns $14.40 each year.

If we use the value command in the CALC menu, as we did with the BMI func-

tion previously, the calculator returns the output value of 14.4, as shown in Fig. 1.3.8.

SECTION 1.3 Functions Defined by Formulas 21

FIGURE 1.3.7 Finding the amount

invested for $18.00 interest earned.

FIGURE 1.3.8 Finding the interest

earned for $360.00 invested.

Since we are dealing with interest earned, we express the answer in dollars and

cents as $14.40.

Examples 1 and 2 illustrate functions that describe relationships between

real-world variables. The key to using mathematics to analyze a real-world situa-

tion often is recognizing relationships among the variables that describe the sit-

uation. The following example illustrates functions defined by formulas that may

be familiar from your previous studies in mathematics and science.

a. The area A of a circle of radius r (Fig. 1.3.9) is given by

using function notation to indicate that the area depends on the radius.

In order to make a circular garden with area 30 square feet, how large

(to the nearest hundredth of a foot) should the radius be?

A(r) = pr2  (where p L 3.1416),

E X A M P L E  3 Finding Input and Output Values
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22 CHAPTER 1 Functions and Mathematical Models

b. If a rock is dropped from atop a high tower (Fig. 1.3.10) and the accel-

eration of gravity is 32 ft/sec2, then its velocity v after t seconds and

the distance d it has fallen are given by, respectively,

.

How fast is the rock moving after 2.5 seconds, and how far has it fallen?

c. If the temperature of a 3-gram sample of carbon dioxide is 27°C, then

its volume V in liters is given by

where p is the pressure of the gas in atmospheres. What is the pressure

of the gas if its volume is 14 liters?

S O L U T I O N

a. This question asks us to find the input if the output is 30 square feet.

Since A(r) represents the output for an input of radius r, we need to

solve the equation

30 � 3.1416r2

for r. Thus, feet (rounded to the

nearest hundredth).

b. This question asks us to find the outputs for both the velocity and dis-

tance functions if the input is 2.5 seconds. So we need to find v(2.5) �
32(2.5) � 80 feet per second and d (2.5) � 16(2.52) � 100 feet.

c. Here we are again given output and asked for input. We need to solve

the equation

Therefore, atmospheres.

Of course, we could also use the calculator techniques from Example 2 to find

these same input and output values.

p =  168

14
= 12

14 =

168

p
.

r2
L

30

3.1416
, and r L A 30

3.1416
 L 3.09

V(p) =

168

p
,

v(t) = 32t  and  d(t) = 16t2

FIGURE 1.3.9 The area A of a

circle is a function of its radius r.

r

FIGURE 1.3.10 The distance d
the rock has fallen is a function

of time t.

v

Ground

d

Suppose the total cost C of manufacturing n copies of a regional cookbook is

$500 to set up the printing press plus $6 for each book actually printed. Then C is

given as a function of n by the formula

Find the domain and the range of this function.

C (n) = 500 + 6n.

E X A M P L E  4 Finding Domain and Range
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S O L U T I O N

The domain of the cost function C is the set {1, 2, 3, } of all positive integers,
because it would be meaningless to speak of printing a negative or fractional num-

ber of books. The range of C is the set of all numbers described by the list {506,

512, 518, } because each book adds an additional $6 to the total cost of printing.Á

Á

SECTION 1.3 Functions Defined by Formulas 23

The squaring function defined by

assigns to each number x its square x2. What are the domain and the range of f?

S O L U T I O N

Because every number can be squared, the domain of f is the set—often denoted

by R—of all real numbers. Since the output of squaring a real number is never

negative, the range of f is the set of all nonnegative numbers, [0, �).

Figure 1.3.11 shows a calculator graph of y � x2. While the calculator shows

only that portion of the graph visible in a standard viewing window (with x and

y lying between �10 and 10), we can see that it confirms our belief that no neg-

ative numbers are in the range of f.

f (x) = x2

E X A M P L E  5 Finding Domain and Range

x

y

−10

10

−5 5

FIGURE 1.3.11 Calculator graph of

f(x) � x2.

Examples 4 and 5 illustrate the process of finding the range of a function.

Frequently, however, we are more concerned with the domain of a function than

with its range because it is crucial for us to know what numbers we can use for

the input to get “sensible” values for the output. When we are given a function

specified by a formula, we will assume that the domain of the function is the set

of real numbers for which corresponding output values “make sense.”

When we describe the function f by writing a formula y � f(x), we call x the

independent variable and y the dependent variable because the value of y depends

(through the rule or formula of f ) on the choice of x. As the independent variable

x changes or varies, then so does the dependent variable y. For instance, as x
changes from �2 to 0 to 3, the value y � x2 of Example 5 changes from 4 to 0 to 9.

You may find it useful to visualize the dependence of the value y � f(x) on

x by thinking of the function f as a kind of machine that accepts as input a num-

ber x and then produces as output the number f(x), perhaps printed or displayed

on a monitor (Fig. 1.3.12).

FIGURE 1.3.12 A “function

machine” with input x and

output f(x).

x

f

f(x)
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24 CHAPTER 1 Functions and Mathematical Models

One such machine is (in effect) the square root key of a simple pocket calcu-

lator. When a number x is entered and this key is pressed, the calculator displays

(a decimal approximation to) the number This square root function f(x) �
has domain and range both equal to the set of all nonnegative numbers. A

calculator like the TI-84 illustrates its knowledge of the domain by displaying an

error message if we ask it to calculate the square root of a negative number.

1x
1x.

Building Your Skills
In Exercises 1–4 the given formula defines a function. Identify the independent variable
and the dependent variable, and then rewrite each formula in function notation.

1.

2.

3.

4.

In Exercises 5–10, explain why the formula does or does not represent y as a function
of x.

5. The record high temperature y in Denver for each month x of the year.

6. The total cost y of purchasing x hamburgers at your favorite fast-food restau-

rant.

7. The price y of a Christmas tree based on its height x if

• a 6-foot tree costs between $20 and $50;

• an 8-foot tree costs between $25 and $75;

• an 11-foot tree costs between $100 and $200;

• a 13-foot tree costs $300 or more.

8.

9.

10.

In Exercises 11–14, find and simplify each of the following values: f (�1), f (0.5), and

11.

12.

13.

14.

In Exercises 15–17 find all values of a such that g(a) � 13.

15.

16.

17. g(x) = x2
- 36

g(x) = 15x + 4

g(x) = 3x + 4

f(x) = 2x2
+ 2

f(x) =

1

2x + 1

f(x) = x2
+ 1

f(x) = 2x + 3

f(12)

4x - 3y = 8

x = y2

y = x2

V = e3

C = 2pr

T = 4 u - 7

R = 8 1s

1.3 Exercises
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In Exercises 18–20 find the domain and the range of the function h.

18.

19.

20.

Applying Your Skills

21. The BMI for a person who weighs 150 pounds is given by

where h is the person’s height in inches.

a. Explain why this formula represents BMI as a function of height in inches.

b. How tall (to the nearest inch) is a 150-pound person whose BMI is 24.2?

c. What is the BMI for a 150-pound person who is 72 inches tall?

22. On August 2, 2005, the website XE.com gave the rate for exchanging U.S. dol-

lars and Euros as 1.00 United States dollar � 0.820150 Euro.

a. Write a symbolic function giving the number of Euros received

when d dollars are exchanged.

b. How many Euros would you get for $475?

c. How many dollars did you exchange if you received 492.09 Euros?

d. What are the domain and the range of this function?

23. Straight line depreciation is a method for computing an asset’s loss of value over

time that assumes that the asset will lose an equal amount of value over each

year of its useful life. If you buy a $3000 computer today for your home business

and assume that it will be worth only $200 at the end of its useful life 5 years

from now, it loses $560 of value each year.

a. Write a symbolic function giving the value of the computer as

a function of its age in years.

b. How much is the computer worth after 3 years?

c. How old is the computer if it is worth $1880?

d. What are the domain and the range of V?

24. According to the U.S. Postal Service, “First-Class Mail is used for personal and

business correspondence. Any mailable item may be sent as First-Class Mail.

It includes postcards, letters, large envelopes, and small packages. The maxi-

mum weight is 13 ounces.” The Postal Service gives its First-Class Mail rates as

follows:

V(n) =
Á

E(d) =
Á

BMI = 703a 150

h2
b ,

h(x) = x2
+ 7

h(x) = 12x - 3

h(x) = - x + 3

SECTION 1.3 Functions Defined by Formulas 25

$0.37

$0.23

First ounce

Each additional ounce

By “each additional ounce,” the Postal Service means each additional ounce or

fractional part of an ounce, if the letter does not weigh a whole number of

ounces. Thus a letter weighing 4.5 ounces costs the same amount as a letter

weighing 5 ounces.
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Based on the table, the cost of tuition is a function of the year. As we exam-

ine the table, we see that as the year increases, so does the tuition. We therefore

say that the tuition cost is an increasing function of the year.

In general, a function y � f(x) is increasing over an interval of x-values if, for

any two different values x1 and x2 in the interval, if x1 � x2, then f(x) � f(x2).

That is, as the x-values increase, so do the y-values.

What does this mean in terms of the graph of the function? If we consider

the graph of the increasing tuition cost function shown in Fig. 1.4.1, we see that,

as we look from left to right, the graph “goes uphill.” This provides visual confir-

mation of the fact that as the x-values increase, so do the y-values.

Similarly, a function y � f(x) is decreasing over an interval of x-values if, for

any two different values x1 and x2 in the interval, if x1 � x2, then f(x1 ) � f(x2).

That is, as the x-values increase, the y-values decrease. The graph of a decreasing

function “goes downhill” as we look from left to right.

Finally, a function y � f(x) is constant over an interval of x-values if, for any two

different values x1 and x2 in the interval, f(x1) � f(x2). That is, no matter what the 

26 CHAPTER 1 Functions and Mathematical Models

a. Explain why the Postal Service rule describes the postage rate as a

function of weight.

b. What is the cost to send a letter weighing 6.9 ounces? 7 ounces? 7.1

ounces?

c. If a letter costs $1.06, how much does it weigh?

d. Write a multipart rule for the First-Class Mail rate function R(w), giving

the rate in dollars and cents as a function of the weight in ounces.

e. What are the domain and the range of the function R?

25. Use a newspaper, a magazine, or the Internet to find

a. an example of a verbal or symbolic formula that represents a function;

b. an example of a verbal or symbolic formula that does not represent a

function.

1.4 AVERAGE RATE OF CHANGE
According to a July 2005 College Board report, “There’s no escaping the fact

that college costs are rising.” This fact probably comes as no surprise to any col-

lege student paying for tuition, housing, and books.The following table shows the

average cost of tuition at a public four-year college (for an academic year begin-

ning in the fall of each indicated year):

YEAR TUITION YEAR TUITION

1993 $2535 1999 $3362

1994 $2705 2000 $3487

1995 $2811 2001 $3725

1996 $2975 2002 $4115

1997 $3111 2003 $4694

1998 $3247
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SECTION 1.4 Average Rate of Change 27

FIGURE 1.4.1 Graph of an

increasing cost function.

x-value is, the y-value remains the same.Thus, if f(x) � c for every x, then the graph of

the function is the line y � c. So the graph of a constant function is a horizontal line.

Recall the cell phone cost function

where n represents the number of weekday minutes used and C(n) is cost in dol-

lars and cents. Use the graph of this function, shown in Fig. 1.4.2, to determine the

intervals for which C is increasing, decreasing, or constant.

C(n) = e39.99  if  0 … n … 600,

39.99 + (n - 600)(0.40)  if  n 7 600,

E X A M P L E  1 Increasing, Decreasing, or Constant?

FIGURE 1.4.2 Graph of the “Get

More” Plan function.

$0
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200

−10
−100 1000

S O L U T I O N

For all n between 0 and 600, inclusive, C(n) is $39.99, so C is constant on the

interval [0, 600]. Once n reaches 600, as n increases, so does C(n), so C is increas-

ing for “sensible” input values greater than or equal to 600. No matter what

month we are in, there are no more than 31 days and there are always at least

8 weekend days. Then the largest number of anytime minutes possible is

minutes per month. So C is increas-

ing on the interval [600, 33120]. (Most people would probably not argue if you used

the interval [600, �) to indicate “sensible” values of n greater than or equal to 600.)

Notice that when we report intervals where the function is increasing,

decreasing, or constant, we use intervals of input values.

60 minutes

hour
*

24 hours

day
* 23 days = 33,120
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28 CHAPTER 1 Functions and Mathematical Models

The accompanying table gives the percentage of the U.S. population that was

born outside of the United States as a function of the year. Use the table to

determine the intervals where the function is increasing, decreasing, or

constant.

E X A M P L E  2 Increasing, Decreasing, or Constant?

PERCENTAGE OF POPULATION 
YEAR BORN OUTSIDE U.S. 

x f (x)

1940 8.8

1950 6.9

1960 5.4

1970 4.7

1980 6.2

1990 8.0

2000 10.4

Source: The World Almanac and Book of Facts 2005.

S O L U T I O N

f(x) is decreasing on [1940, 1970] and increasing on [1970, 2000].

When we discuss how function values change when input values change,

we frequently look at the function’s average rate of change. For a function y �
f(x), we define the average rate of change of the function over the interval [a, b]

to be

Thus the average rate of change is the change in y divided by the change in x. For

instance, for the function f(x) in Example 3, the average rate of change over the

interval [1940, 1950] is

¢y

¢x
=

f (1950) - f (1940)

1950 - 1940
=

6.9 - 8.8

10
=

-1.9

10
= -0.19.

¢y

¢x
=

f(b) - f(a)

b - a
.

Complete the accompanying table to find the average rate of change of f(x) over

each interval of consecutive x-values. Note that we are recording the average rate

of change between two consecutive data points in the same line of the table as

the first of the data points. (The last line of the average rate of change column is

blank because average rate of change requires two points.)

E X A M P L E  3 Average Rate of Change
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SECTION 1.4 Average Rate of Change 29

PERCENTAGE OF POPULATION
YEAR BORN OUTSIDE U.S. AVERAGE RATE OF CHANGE

x f(x) ¢y/¢x

1940 8.8 �0.19

1950 6.9

1960 5.4

1970 4.7

1980 6.2

1990 8.0

2000 10.4 —

S O L U T I O N

PERCENTAGE OF POPULATION
BORN OUTSIDE U.S. AVERAGE RATE OF CHANGE

YEAR f (x) ¢y/¢x

1940 8.8 �0.19

1950 6.9 �0.15

1960 5.4 �0.07

1970 4.7 0.15

1980 6.2 0.18

1990 8.0 0.24

2000 10.4 —

0

2

4

6

8

10

12

1940 1950 1960 1970 1980 1990 2000

Year

P
e
rc

e
n

ta
g
e

Recall that we reported that f(x) is decreasing on [1940, 1970] and increasing

on [1970, 2000]. Now we notice that the average rate of change is increasing over

the entire interval. So we can say that f(x) is decreasing at an increasing rate on

[1940, 1970] because the function’s output values are getting smaller but average

rate of change is getting larger. Similarly, f(x) is increasing at an increasing rate

on [1970, 2000] because both the function’s output values and its average rate of

change are getting larger.

If we consider the graph of this function in Fig. 1.4.3, we can see the intervals of

increase and decrease. We also observe that the function bends upward like a bowl

sitting right side up. This is a property associated with a function with an increasing

average rate of change. We say that the graph of the function is concave upward.

FIGURE 1.4.3 Percentage of U.S.

population born outside the

United States.
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30 CHAPTER 1 Functions and Mathematical Models

FIGURE 1.4.4 Finding the average rate of change.

E X A M P L E  4 Describing Average Rate of Change

In Section 1.2, we looked at the graph of a woman’s percentage chance of con-

ception each month as a function of her age. The following table shows the func-

tion values f(x) for various ages.

a. Complete the table to find the average rate of change of f(x) over each

interval of consecutive x-values.

b. Describe the increasing and decreasing behavior of both the function

and its average rate of change.

AGE ODDS OF CONCEPTION AVERAGE RATE OF CHANGE
x f (x) 	y�	x

15 22 0.4

20 24

25 22

30 16

35 8

40 3

45 0.01 —

S O L U T I O N

a. Fortunately, we can use the calculator to complete a table such as this.

Store the x-values in L1 and the function values in L2. Then highlighting

L3, select 2nd, STAT, OPS, and choose 	List(. Type 2nd 2 for L2, then)
and�. Again select 2nd, STAT, OPS, and choose 	List(. Now type 2nd 1
for L1, then) and ENTER. Figure 1.4.4 shows the resulting table.

The function f(x) � is increasing on its domain [0, ). Complete the fol-

lowing table to describe its average rate of change on [0, 36].

q1x

E X A M P L E  5 Describing Average Rate of Change

b. f(x) is increasing on [15, 20] and decreasing on [20, 45]. The average

rate of change is decreasing on [15, 35] and increasing on [35, 45].
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SECTION 1.4 Average Rate of Change 31

FIGURE 1.4.5 Finding the average

rate of change for f(x) = 1x.

FIGURE 1.4.6 Graph of f(x) = 1x.

If we examine the graph of the function in Fig. 1.4.6, we see that the graph goes

uphill from left to right because the function is increasing. It also curves downward

because the average rate of change is decreasing. We say that this graph is concave
downward.

As we continue through this book we will see the important role that the aver-

age rate of change plays in describing a function.

f (x) AVERAGE RATE OF CHANGE
x 	y/	x

0

1

4

9

16

25

36

S O L U T I O N

The calculator table shown in Fig. 1.4.5 shows that the average rate of change of

f(x) is decreasing on [0, 36].

Building Your Skills
In Problems 1–4, determine the intervals over which the indicated function is increas-
ing, decreasing, or constant.

1.

1.4 Exercises

−3 −2 −1 1 2 3

2

4

6

8
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32 CHAPTER 1 Functions and Mathematical Models

x

f(x)

�6

�10

�3

�8

0

1

2

3

5

8

x

f(x)

0

6

2

7

4

8

6

8

8

8

10

7

x

f(x)

�6

�128

�3

�62

0

4

2

48

5

114

x

f(x)

0

25

5

30

10

34

15

33

20

32

x

f(x)

1

18

3

6

5

�3

7

�9

9

�12

x

f(x)

�1

18

0

15

4

9

11

0

23

�12

2.

3.

4.

In Exercises 5–8, find the average rate of change for the indicated function, and deter-
mine where the average rate of change is increasing, decreasing, or constant.

5.

6.

7.

8.

Applying Your Skills

9. The accompanying graph shows the number of farms (in thousands) in Missouri

as a function of the years 1996 through 2003. Determine the intervals of years

for which this function is increasing, decreasing, or constant.

2 4 6 8

−1

−0.5

0.5

1
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SECTION 1.4 Average Rate of Change 33

Year

Number

1993

24.5

1995

24.5

1997

25.0

1999

25.1

2001

25.1

2003

25.3

10. The following table gives the median age at first marriage for U.S. women as a

function of the year. Use the table to determine the years over which the medi-

an age is increasing, decreasing, or constant.

Source: World Almanac and Book of Facts 2005.

11. The following graph shows the percentage y of all music sold that was rap music

x years after 1992. The y-intercept of 8.6 indicates that 8.6% of all music sold in

1992 was rap music.

Source: Missouri Agricultural Statistics Service.

Source: World Almanac and Book of Facts 1998.

a. Determine the intervals of x-values for which the function is increasing.

b. Determine the intervals of x-values for which the function is decreasing.

c. Determine the intervals of x-values for which the average rate of change of

the function is increasing.

d. Determine the intervals of x-values for which the average rate of change of

the function is decreasing.

12. The accompanying table gives the number (in thousands) of new cases of diag-

nosed diabetes among adults aged 18–79 years in the United States as a function

104

105

106

107

108

109

110

111

1995 1997 1999 2001 2003

Year

Farms in Missouri

T
h

o
u

sa
n

d
s 

o
f 

fa
rm

s

(1, 9.2)

(2, 7.9)

(3, 6.7)

(4, 8.9)

0

2

4

6

8

10

0 1 2 3 4 5

Years after 1992

P
e
rc

e
n

ta
g

e
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34 CHAPTER 1 Functions and Mathematical Models

of the year. Find the average rate of change for this function and use your

answer to determine the intervals of years for which,

a. the number of new cases of diabetes is increasing at a decreasing rate;

b. the number of new cases of diabetes is increasing at an increasing rate.

Source: www.cdc.gov.

1997

878

1998

921

1999

979

2000

1104

2001

1213

2002

1304

2003

1349

2004

1356

Year

Number

In this chapter, you learned about functions and function models. After complet-

ing the chapter, you should be able to

• determine whether a relation described numerically, graphically, or symboli-

cally represents a function;

• find the domain and range of a function;

• find the output value of a function for a given input value;

• find the input value(s) of a function for a given output value;

• determine the intervals over which a function is increasing, decreasing, or

constant;

• determine the average rate of change of a function over an interval.

Chapter 1 Review

Review Exercises
In Exercises 1–6, decide whether, based on the table, graph,
or formula, y is a function of x.

1.

2.

3.

4.

5.

6.

In Exercises 7–9, find the domain and range of each function.

7. The number of fat grams F(x) in a sandwich based on the

number of calories x, according to the following table.

Source: Chick-Fil-A Fat Gram Comparison.

x = | y |

y = x2
- 4

x

y

2

3

4

4

6

9

6

13

8

15

11

23

x

y

2

3

4

4

5

9

6

9

8

15

11

23

y

x

y

x

430

20

550

29

320

5

680

33

300

9

750

33

530

26

710

43

Calories

Fat Grams
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8.

9. f(x) = | x | - 3

CHAPTER 1 Review 35

Source: www.cdc.gov/mmwr.

10. The function graphed as follows is defined on the

interval [�2, 4]. Determine the intervals over which

the function is increasing or decreasing.

11. Often in the media, functions are displayed using bar

graphs rather than scatter plots,as in the following graph.

(4, 1)(0, 1)

(2, 3)
f(x)

x0

1

2

3

0 1 2 3 4

−2

1

2

2 3 4

−4

−3

−1−2

−1

1

Percentage of Young Adults Aged 18–24 Years Who Never
Smoked Cigarettes –– United States, 1998–2004

P
e
rc

e
n

ta
g
e

100

80

60

40

20

1998

65.3 64.5 64.8 65.8 64.7
68.6 69.4

1999 2000 2001

Year

2002 2003 2004

0

a. Make a table of values for this function, letting x be

years after 1998 and P(x) the percentage of young

adults who never smoked cigarettes.

b. Use your calculator to make a scatter plot of this

function, using x-window [0, 7] and y-window

[0, 100].

12. For many years, insurance companies published

guidelines of ideal weights W for various heights h.

The most common rule for calculating ideal weight

for a woman was 100 pounds for a woman 60 inches

tall plus 5 additional pounds for each inch over 60

inches.

a. Write a function rule W(h) to determine the ideal
weight for a woman who is at least 60 inches tall.

b. Use your rule to determine the ideal weight for a
woman who is 66 inches tall.

13. The monthly cost function for a “light” plan for dial-

up Internet access is given by

where C is in dollars and h is the number of hours

used. If a subscriber’s bill was $23.65, how many hours

of Internet time did she use that month?

C(h) = e6.95     if   0 … x … 5,

6.95 + 2(h - 5)  if   x 7 5,
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36 CHAPTER 1 Functions and Mathematical Models

14. The text on the graph showing UAW membership as

a function of year states that there has been a steady

decline in membership from 1979 to 2003. However,

if you look carefully at the graph, you will see that

there are brief intervals where the function appears

to be increasing or constant. Identify the intervals of

years over which this function is increasing or

constant.

0

78

10

80

20

82

30

84

40

86

50

88

60

90

70

93

80

97

90

102

100

108

Relative Humidity (%)

Apparent Temperature (ºF)

15. (Chapter Opener Revisited) In the discussion that

introduced this chapter, we looked at the graph of

the heat index at a fixed air temperature of 85°F as a

function of the relative humidity.

a. Use the given table of values for that function to
determine the average rate of change over con-
secutive input values.

b. Use your answer from part (a) to determine the
intervals of input values where the average rate
of change is increasing, decreasing, or constant.

c. In our discussion, we noted that for relative
humidities of 0% to 60%, the graph appeared to
be a straight line. Over those input values, was the
average rate of change increasing, decreasing, or
constant?

d. In our discussion, we noted that for relative
humidities of 60% to 100%, the graph appeared
to curve upward. Over those input values, was the
average rate of change increasing, decreasing, or
constant?

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

'79 '80 '81 '82 '83 '84 '85 '86 '87 '88 '89 '90 '91 '92 '93 '94 '95 '96 '97 '98 '99 '00 '01 '02 '03

1,527,858

1.6 million

624,585

Source: The Detroit News.

INVESTIGATION Exploring Rate of Change

In this chapter, you learned about the behavior of func-

tions and their average rates of change. This activity will

allow you to investigate these concepts numerically,

graphically, and verbally.

To raise money for their sorority’s service project,

Kari and Keisha decided to sell cookies outside the stu-

dent center. After the first week of sales, they examined

their sales record and made a chart that includes the

number of cookies sold per day along with the change

from the previous day. Complete a chart like the one

shown for each of the situations described. Then make a

plot that shows the day on the x-axis and the number of

cookies sold on the y-axis. Describe in words how each

graph looks.
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CHAPTER 1 Review 37

AVERAGE RATE OF CHANGE
DAY COOKIES SOLD (cookies per day)

1 40 N/A

2

3

4

5

6

7

1. Cookie sales remained constant.

2. Cookie sales increased at a constant rate.

3. Cookie sales increased at an increasing rate.

4. Cookie sales increased at a decreasing rate.

5. Cookie sales decreased at a constant rate.

6. Cookie sales decreased at an increasing rate.

7. Cookie sales decreased at a decreasing rate.
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On March 1, 1872, President Ulysses S. Grant signed a law declaring

that approximately 2 million acres of land near the headwaters of the

Yellowstone River would be “dedicated and set apart as a public park or plea-

suring ground for the benefit and enjoyment of the people.” This act created the

world’s first national park, Yellowstone National Park.

Seventy-five percent of all the geysers on Earth are in Yellowstone National

Park, and the largest concentration of geysers in the world occurs in the Upper

Geyser Basin of the park. This is the area that contains the most famous of the

geysers, Old Faithful, which was named for its consistent performance by explor-

ers in 1870. According to the National Park Service, “Old Faithful erupts more

frequently than any of the other big geysers, although it is not the largest or most

regular geyser in the park. Its average interval between eruptions is about 91

minutes, varying from 65–92 minutes.” An eruption lasts from 1.5 to 5 minutes,

during which between 3700 and 8400 gallons of boiling water are expelled, with

the height of the eruption between 106 and 184 feet.

Visitors to Yellowstone are interested in seeing Old Faithful erupt,and many peo-

ple mistakenly believe that it erupts every hour. The problem is, as the Park Service

indicates, that the geyser doesn’t erupt on a fixed schedule, although there do seem to

be patterns in its eruptions.Figure 2.0.1 shows a plot of data from selected Old Faithful

eruptions in January 2003 as recorded by park rangers and volunteers in the Old

Faithful Visitor Center logbook and transcribed for the Internet by Lynn Stephens.

In this graph, the input variable is the duration of an eruption and the output

variable is the time to the next eruption. We can make several observations about

this graph. First, the graph represents a function since for each input value, there is

LINEAR FUNCTIONS 
AND MODELS

2.1 CONSTANT CHANGE AND LINEAR GROWTH

2.2 LINEAR FUNCTIONS AND GRAPHS

2.3 PIECEWISE-LINEAR FUNCTIONS

2.4 FITTING LINEAR MODELS TO DATA

C H A P T E R
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39

only one output value. Second, this function is increasing; that is, as the duration of

the eruption increases, so does the time to the next eruption. Finally, the points in

this scatter plot lie approximately on a (straight) line.

Since the time to the next eruption is what visitors want to know, it would be

useful to determine a function rule that would allow us to make such a prediction.

In this chapter, we study functions whose graphs are lines and learn how to deter-

mine rules for such functions. These rules will allow us to predict output values for

given input values—exactly what we would want to do for the Old Faithful geyser.

FIGURE 2.0.1 Old

Faithful eruptions.

Source: www.geyser-

study.org.

2.1 CONSTANT CHANGE AND 
LINEAR GROWTH

Temperature is commonly measured in the United States in Fahrenheit degrees,

but in much of the rest of the world it is measured in Celsius degrees. The fol-

lowing table illustrates the relation between the Celsius temperature C and the

Fahrenheit temperature F. (This relation is a function because each Celsius tem-

perature corresponds to exactly one Fahrenheit temperature.)

C (DEGREES) F (DEGREES)

0 32

10 50

20 68

30 86

40 104

50 122

60 140

70 158

80 176

90 194

100 212
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40 CHAPTER 2 Linear Functions and Models

Here, successive Celsius temperatures appear in the first column of the table

at equal intervals of 10 degrees. Note also that successive Fahrenheit tempera-

tures appear in the second column at equal intervals of 18 degrees. The fact that

equal differences in one column correspond to equal differences in the other

indicates a special kind of relationship between corresponding Celsius and

Fahrenheit temperatures.

Using the techniques from Section 1.4, we see that the average rate of change

is constant; that is, . This means that for each 10 degrees that

the Celsius temperature increases, the Fahrenheit temperature increases by 18 

degrees, or alternatively, for each degree that the Celsius temperature increases,

the Fahrenheit temperature increases by 1.8 degrees.

Because the average rate of change is constant, there is a special kind of rela-

tionship between corresponding Celsius and Fahrenheit temperatures.The scatter

plot in Fig. 2.1.1 shows this relationship. We see from this plot that these points all

appear to lie on the same (straight) line. So what is special about the data in our

original table of temperatures is this: It is described by a function whose graph is

a straight line. That is, because the average rate of change of this function is con-

stant, the graph of the function is a line. We call a function whose graph is a line a

linear function.

¢F
¢C

=

18

10
= 1.8

¢F
¢C

FIGURE 2.1.1 Scatter plot of

degrees F versus degrees C.

You can verify that if C and F are corresponding entries in the table, then if

we write F as a function of C, we have

F(C) � 1.8C � 32. (1)

One way to check this is to substitute each value C � 0, 10, 20, . . . , 100 into (1) and

verify in each case that the corresponding value of F shown in the table results.

Another way is to rewrite (1) as

(2)

with x in place of C and y in place of F(C). With Y1 � 1.8X � 32 and using

the TBLSET menu with TblStart � 0, and �Tbl � 10, a calculator yields the

table shown in Fig. 2.1.2, the same columns of numerical values as in the

Celsius–Fahrenheit table.

y = 1.8 x + 32
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If we graph the function in (2) in the calculator window defined by

Xmin � 0, Xmax � 100, Xscl � 10,
Ymin � 0, Ymax � 300, Yscl � 30,

we get the picture shown in Fig. 2.1.3. Here we see again that the graph of this

function is a line. Furthermore, we see all points on the graph (in this particular

window), not merely the pairs given in the original table.

SECTION 2.1 Constant Change and Linear Growth 41

x

y

0

0

100

300

FIGURE 2.1.2 Y1�1.8X�32 table

with TblStart�0 and �Tbl�10.
FIGURE 2.1.3 The graph y = 1.8x + 32.

x

y

(0, b)
(1, b)

(1, b + a)

f(x) = ax + b

rise = a

run = 1

FIGURE 2.1.4 The geometric

roles of a and b.

D E F I N I T I O N : Linear Function

A linear function is a function of the form

(3)

Note that the right-hand side in (3) contains both a constant term and an 

x-term (but no higher powers). A particular linear function f is determined when

the values of the constant coefficients a and b are specified.

Since f(0) � a � 0 � b � b, the constant term b is the output when the input

is 0. Thus, the graph of the linear function y � f(x) intersects the y-axis at the

point (0, b). That is, the constant b is the y-intercept of the line (Fig. 2.1.4) and

therefore measures its vertical location.

The constant coefficient a is the average rate of change of the linear function
and measures how the output value of the function changes for each one-unit

change in the input value.

The roles of a and b in a linear function make it easy for us to determine a

function’s symbolic rule if we are given its average rate of change and the output

for an input value of 0.

f(x) = ax + b.
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42 CHAPTER 2 Linear Functions and Models

Suppose the following table records the growth in the population of a certain

hypothetical city during the 1990s:

POPULATION 

YEAR (THOUSANDS)

1990 110

1991 116

1992 122

1993 128

1994 134

1995 140

1996 146

1997 152

1998 158

1999 164

2000 170

We see that each number in the second column is found by adding 6 to the pre-

vious one.Thus the population of this city grew each year during the 1990s by the

same amount of 6 thousand people. Since its average rate of change is constant,

the population of the city is a linear function of time t.
In order to find a symbolic rule for this function, let’s take t � 0 in 1990. (We will

call this technique “resetting the clock,” and will commonly use it when our input

variable is calendar years.) The result of starting with a population of P(0) � 110

thousand people and adding 6 thousand people t times in succession—once each

year—can be described by saying that t years after 1990 the population is given by

(4)

Note that the constant term in (4) is the city’s initial population and the coeffi-

cient of t is its annual change in population.

More generally, suppose a city has an initial population of

at time t � 0 and that its constant annual change in population is a. Then after t
years the population has increased by

(5)

(using the �-notation for differences). Therefore, the city’s population after t
years is

Thus a population P(t) with initial population P0 and (constant) annual change a
is described by the linear function

(6)

Not all populations are described by linear functions, but a population model

like the one in (6)—with a constant term and a t-term—is called a linear population

P(t) = P0 + at.

P = initial population + change = P0 + ¢P = P0 + at.

¢P = a # t

P(0) = P0

P(t) = 110 + 6t  or  P(t) = 6t + 110 (thousand)
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SECTION 2.1 Constant Change and Linear Growth 43

On January 1, 1999, the population of Ajax City was 67,255 and had increased by

2935 people during the preceding year. Suppose this rate of increase continues,

with 2935 more people added to the population of Ajax City each subsequent

year. Find each of the following:

a. A linear function P(t) modeling the population of Ajax City.

b. The predicted population of Ajax City on October 1, 2002, based on

the model.

c. The month and the calendar year in which the population of Ajax City

reaches 100 thousand.

S O L U T I O N

a. In a given situation, we must decide when to start the clock, and we can

count population however we wish—either by the person or by the

thousand (for instance). If we reset the clock by letting t � 0 on

1/1/1999 and measure population in thousands, it makes it easier to set

an appropriate calculator window. Then is our initial

population and 2.935 is the function’s constant average rate of change.

Therefore, the linear function model for this population is

(7)

b. This is once again our standard question “Here’s the input, what’s the

output?” Since we reset the clock, October 1, 2002, is 3 years and 9

months—that is, 3.75 years—after January 1, 1999. So we substitute 

t � 3.75 in (7) and calculate

either by hand or by entering our population function into our calculator

as Y1, and using the value command from the CALC menu. Thus our

linear model predicts an Ajax city population of 78.261 thousand, or

78,261 people on October 1, 2002.

c. In this case, we need to answer the “backward” question “Here’s the

output, what’s the input?” We can solve this algebraically by setting

and solving for t:

67.255 � 2.935t � 100, (8)

so

2.935t � 100 � 67.255 � 32.745

and

t =

32.745

2.935
= 11.157 years.

P(t) = 100

P(3.75) = 67.255 + 2.935 * 3.75 = 78.261

P(t) = 2.935t + 67.225, for P in thousands and t = 0 on 1/1/1999.

P(0) = 67.255

E X A M P L E  1 Finding a Linear Population Model

model. In this section we discuss both linear population models and other linear

models for which we know a function’s initial value. In Sections 2.2 and 2.3 we dis-

cuss linear models for a wider variety of situations.
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44 CHAPTER 2 Linear Functions and Models

Starting with January 1, 1999, when t � 0, exactly 11 years later is

January 1 of the year 1999 � 11 � 2010. So the population of Ajax City

hits 100 thousand

into the year 2010. Note that 1.88 months means that we have completed

all of January and are somewhere toward the end of February. So the

population of Ajax City is 100 thousand during February 2010.

Note that for the purpose of “calendar month” problems like this, we will

consider the year to be divided into 12 equal months. This is slightly inaccurate,

but it is standard practice to take the differing lengths of individual months into

account only when a question asks for a specific day of a particular month.

In Example 1, we solved part (c) algebraically. You may prefer to find the

answer to such questions either graphically or numerically. Examples 2 and 3

illustrate these methods.

0.157 years = 0.157 years *

12 months

year
= 1.88 months

Use graphical methods to find the year and month in which the population of

Ajax City is 100 thousand.

S O L U T I O N

In order to determine the year and month in which the population of Ajax City is

100 thousand, we need to determine when the output P(t) has the value 100. Since

both P(t) and 100 represent outputs, we enter them into the Y� menu of the calcu-

lator, plot their graphs, and see where the two graphs intersect. Because a graphing

calculator requires that x and y (rather than t and P) be used as the independent and

dependent variables, Fig. 2.1.5 shows the Y� menu with the appropriate entries

and y � 100.

Figure 2.1.6 shows the resulting plot with viewing window

Xmin � 0 Ymin � 0
Xmax � 20 Ymax � 150

y = 67.255 + 2.935x

E X A M P L E  2 Finding an Input Graphically

y

x

150

0
0 20

FIGURE 2.1.5 The  Y� menu for

the graphical solution of Example 2.

FIGURE 2.1.6 The graphs Y1 � 67.225
� 2.935X and Y2�100 intersect at

(11.157, 100).
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We have used the calculator’s CALC intersect facility to locate the point of

intersection.

The indicated result (11.157, 100) agrees with our previous algebraic solution

t � 11.157 of Equation (8).

SECTION 2.1 Constant Change and Linear Growth 45

Use numerical methods to find the year and month in which the population of

Ajax City is 100 thousand.

S O L U T I O N

We now proceed to solve Example 1(c) using the calculator’s table-making facil-

ity. First we must enter the function we wish to tabulate. This is done in the same

way as when we wish to graph a function—using the Y� menu. (In this case our

function is already stored in Y1 from Example 2; we can clear Y2 since we no

longer need it.)

To prepare to tabulate values of the function we’ve defined, we must specify

the sort of table we want using the calculator’s “table set” menu. We want to start

our table at x � 0 and proceed by yearly increments of �x � 1. Thus our table’s

starting point and its increment between successive entries are specified by enter-

ing these two values as shown in Fig. 2.1.7.

E X A M P L E  3 Finding an Input Numerically

Now we’re ready to go! When we execute the calculator’s TABLE command,

we get the table shown in Fig. 2.1.8. This table doesn’t go quite far enough to

reach a population of 100 thousand, so we use the calculator’s down arrow to

scroll down. The calculator obligingly fills in additional values, with the result

shown in Fig. 2.1.9. Again we see the population is closest to 100 thousand when

years (the symbol indicates “approximate equality” as opposed to �,Lx L 11

FIGURE 2.1.7 Initial table setting for the Ajax

City population function.

FIGURE 2.1.8 Initial table for the

Ajax City population function.
FIGURE 2.1.9 Additional table

values for the Ajax City population

function.
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46 CHAPTER 2 Linear Functions and Models

which means exact equality). But the population is still a bit short of 100 thou-

sand after precisely 11 years, so the exact population is hit sometime during the

twelfth year after January 1, 1997.

To see more closely when during the twelfth year the population reaches

100 thousand, we use the calculator’s “table set” menu to specify the new start-

ing value x � 11 and the new increment �x � 0.1 (Fig. 2.1.10). The resulting

table (Fig. 2.1.11) indicates that the population is closest to 100 thousand after

11.2 years (rounded off to the nearest tenth of a year). This is because 100.13

thousand after 11.2 years is closer to 100 thousand than is 99.834 thousand after

11.1 years.

FIGURE 2.1.10 Second table set-

ting for the Ajax City population

function

FIGURE 2.1.11 Second table for

the Ajax City population function.

FIGURE 2.1.12 Third table for the 

Ajax City population function.

To narrow it down still further—in the interval between years and

years—we go back to the calculator’s table set menu and specify start-

ing point and increment (Note that we typically divide our

desired interval of x-values into 10 “pieces.”) Then the TABLE command yields

the table shown in Fig. 2.1.12. Now we see that the population of Ajax City is clos-

est to 100 thousand after years (rounded off accurate to the nearest

hundredth of a year).

x L 11.16

¢x = 0.01.x = 11.1

x = 11.2

x = 11.1

To satisfy yourself that we will obtain the same answer here as we did in

Example 1(c) and Example 2, you should perform this “table zoom” procedure

one more time, with starting point and increment Do you

see that the population is closest to 100 thousand when years?

Perhaps it seems to you that this “table zooming” is a great deal more work

than solving the linear equation algebraically or graphi-

cally. Most people (including the authors) would agree with you. The method is

67.255 + 2.935t = 100

x = 11.157

¢x = 0.001.x = 11.15
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presented here to illustrate that you will have a choice of algebraic, graphical, and

numerical methods for solving the problems you will encounter. In another situ-

ation, you may find using the table preferable.

Slope and Rate of Change
You may recall from previous mathematics courses the slope-intercept equation

(9)

of a straight line in the xy-plane with coefficients

(10)

as illustrated in Fig. 2.1.13.

m = slope  and  b = y-intercept

y = mx + b

SECTION 2.1 Constant Change and Linear Growth 47

x

y

(0, b)

(x, y)

rise = y – b

run = x

FIGURE 2.1.13 The slope-intercept equation

of a straight line.y = mx + b

The population function

(11)

has the same linear form as the slope-intercept equation (4) but with independ-

ent variable t instead of x and with dependent variable P instead of y. The coef-

ficients (or parameters) in the linear function (11) are

(12)

Comparing (9) and (11), we note the correspondence between the slope of a

straight line and the rate of change of a linear function. Indeed, the rate of change

a of the linear function is simply the slope of its straight line

graph in the tP-plane (Fig. 2.1.14).

P(t) = P0 + at

a = average rate of change  and  P0 = initial population.

P(t) = P0 + at  [or, equivalently, P(t) = at + P0]

t

P

(0, P0)

(t, P)

rise = P – P0

run = t

FIGURE 2.1.14 The graph of the linear

function P(t) = P0 + at.
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On January 1, 1992, the population of Yucca City was 46,350 and on July 1, 1994,

it was 56,925. Suppose this rate of population increase continues for the foresee-

able future.

a. Write a linear function giving the population of Yucca

City at time t (where on January 1, 1992).

b. Find the predicted population of Yucca City on October 1, 2000.

c. In what month of what calendar year will the population of Yucca City

double?

S O L U T I O N

a. The statement that “t � 0 on January 1, 1992” means that we are

“resetting the clock.” Furthermore, we can measure our population in

thousands, making our initial population of 46,350 � 46.350 thousand.

This procedure makes it easier for us to find a suitable window for

viewing the graph of the function.

July 1, 1994, is 21⁄2 years after January 1, 1992, so the population of

Yucca City is

Since we have our initial population (46.350), all we need in order to

write our population function is its average rate of change:

So our population function for Yucca City is

P(t) � 46.350 � 4.230 t, (13)

where t is years after 1992 and P is measured in thousands.

b. On October 1, 2000, we have completed 8 years and 9 months since

January 1, 1992, so October 1, 2000 represents t � 89⁄12 or 8.75.

Algebraically, to find the population when t � 8.75, we use (13) to find

Thus our linear model predicts 83,363 people in Yucca City on October

1, 2000.

c. In this context, “double” means reaching the population that is two times

the initial population. So we need to determine when P(t) reaches 2 �
46.350 (thousand) by setting P(t)�92.700 and solving for t:

t =

46.350

4.230
L 10.957

4.230t = 46.350

 46.350 + 4.230t = 92.700

P(8.75) = 46.350 + 4.230 * 8.75 L 83.363.

a =

¢P
¢t

=

56.925 - 46.350

2.5 - 0
=

10.575

2.5
= 4.230 (thousand people per year).

 P = 56.925  when  t = 2.5.

 P = 46.350  when  t = 0, and

t = 0

P(t) = P0 + at

E X A M P L E  4 Another Linear Population Model
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So the function P(t) reaches the value 92.700 (thousand) at 10.957 years

after January 1, 1992. Ten years after January 1, 1992, is January 1, 2002,

and 0.957 year is

into the year 2002. So 11 months of 2004 have been completed, and we

are somewhere in the twelfth month. Therefore, the population of Yucca

City should double during the twelfth month of the year 2002, that is,

during December 2002.

Figures 2.1.15 and 2.1.16 show graphical solutions for parts (b) and (c),

respectively. While you may find the algebraic solutions easier while we are

working with linear functions, you should be familiar with graphical techniques

as well. You may prefer the graphical techniques when we solve similar problems

involving functions that are not linear.

0.957 year *

12 months

year
= 11.484 months

SECTION 2.1 Constant Change and Linear Growth 49

FIGURE 2.1.15 The graphical

solution for Example 4(b).

FIGURE 2.1.16 The graphical

solution for Example 4(c).

Other Linear Models
The techniques that we used to create linear population models also apply to

other linear models. All we need to know is the function’s output for an input of

0 (its initial value) and its average rate of change.

E X A M P L E  5 Finding a Linear Function Model

Suppose that the local garden club wants to raise money for neighborhood beau-

tification and decides to sell a small cookbook containing its members’ recipes. A

print shop charges $200 to set up the press and $2 for each book produced.

a. Find a linear function model that gives the total cost C of the book as a

function of the number of books produced n.

b. Find the total cost if 250 books are produced.

c. How many books can be produced if the garden club’s budget for this

project is $3000?

d. If the garden club plans to sell these cookbooks for $12 each, how

many cookbooks must the members sell to break even?
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FIGURE 2.1.17 Table 1 for the

numerical solution for Example 5(c).

FIGURE 2.1.18 Table 2 for the

numerical solution for Example 5(c).

S O L U T I O N

a. In order to write a linear function model, we need to identify both the

function’s initial value and its constant average rate of change. In this

situation, the initial value is $200 because this is the total cost if we pro-

duce 0 books. The constant average rate of change is $5 because the

cost increases by $5 for each book that is produced. Thus, the total cost

function is

C(n) � 200 � 5n.

b. To find the total cost if 250 books are produced, we need to find the

output when the input is 250. So C(250) � 200 � 5 � 250 � 1450, and

the total cost of the 250 cookbooks is $1450.

c. Here we need to find the input that produces an output of $3000. Let’s

use the calculator’s table feature to answer this question. We begin by

storing our function in the Y� menu, letting Y1�200�5x. We know

from part (b) that 250 books cost only $1450, so the input we are look-

ing for is larger than 250. Let’s try setting TblStart�300 and �Tbl�50.

Then the table in Fig. 2.1.17 shows that Y1 is $2950 when X is 550 and

$3200 when X is 600. Using the table once again with TblStart�550
and �Tbl �10, we see in Fig. 2.1.18 that Y1 is exactly $3000 when X is

560. Therefore, if the garden club’s budget is $3000, then 560 cookbooks

can be produced.

d. Breaking even means that the garden club sells enough cookbooks to

cover the cost of producing the books; that is, the revenue generated by

selling the cookbooks must equal the cost of producing them. We

already have the linear function C(n) representing the total cost of pro-

ducing n cookbooks; we must now find a function to represent the rev-

enue earned by the cookbook sales. Since no revenue is earned if no

cookbooks are sold, the initial value of our revenue function is $0. The

average rate of change for this function is $12 per book, so the revenue

is a linear function of the number of books n that are sold. If we use

R(n) to indicate the revenue function, we then have

R(n) � 0 � 12n or R(n) � 12n.

Leaving our original cost function C(n) stored in Y1 and putting the

revenue function R(n) in Y2, we choose an appropriate window to view
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the graphs, and then use the intersect command from the CALC menu

as shown in Fig. 2.1.19. Thus, we see that the cost and revenue functions

have the same output ($342.86) when the input is 28.57. But recall that

the input here is number of cookbooks, and the garden club is not going

to sell (nor is anyone likely to buy) a fraction of a cookbook. So to cover

the cost of making the books sold, the garden club must both produce

and sell 29 books.

SECTION 2.1 Constant Change and Linear Growth 51

FIGURE 2.1.19 The graphical

solution for Example 5(d).

Do you see that if the garden club produces and sells fewer than 29 books,

the total cost will be greater than the revenue generated by sales? Since the gar-

den club wants to make money, they need to sell more than 29 books because

then the revenue earned is more than the cost of the books. However, it is impor-

tant for the club to determine what the demand for the cookbooks is likely to be

because any unsold books will decrease the overall profit.

Notice that parts (b) and (c) are the same “Here’s the input, what’s the out-

put?” and “Here’s the output, what’s the input?” questions that we answered in

Example 1, as well as in Chapter 1, when we looked at functions of all different

types. Part (d) is a variation on the “Here’s the output, what’s the input?” ques-

tion. While we are indeed looking for an input, the output is “hidden” in a sense.

The output that we “have” is the output that is the same for our two linear func-

tions. You might wish to practice using algebraic, graphical, and numerical meth-

ods to answer such questions so that you can decide which method or methods

you prefer.

Building Your Skills
In Exercises 1–4, first determine whether B is a function of A and then, if B is a func-
tion of A, decide (based on the average rate of change ) whether B is a linear
function of A.

1.

¢B>¢A

2.1 Exercises

A

B

10

3

10.5

4

13

9

15

13

16

15

20

23
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A

B

10

3

10.5

4

13

4

15

9

16

13

20

23

A

B

2

3

4

4

5

9

5

13

8

15

11

23

A

B

2

3

4

3

6

3

8

3

10

3

12

3

2.

3.

4.

In Exercises 5–8 a population function P(t) is given, with t in years and P in thousands.
Find the initial population and the function’s constant rate of change a.

5. P(t) � 123 � 6 t

6. P(t) � 387 � 8 t

7. P(t) � 487.139 � 20.558 t

8. P(t) � 666.333 � 42.789 t

In Exercises 9–12, write a population function P(t) with the given initial population P0
and constant rate of change a.

9. P0 � 42 and a � 5

10. P0 � 73 and a � �6

11. P0 � 324.175 and a � 15.383

12. P0 � 786.917 and a � �21.452

In Exercises 13–16 use the “resetting the clock” method to find a linear population
function P(t) with the average rate of change a. Be sure to indicate the calendar year in
which t � 0.

13. P(1987) � 375 and a � 12

14. P(1983) � 685 and a � �24

15. P(1991) � 227.625 and a � 17.234

16. P(1993) � 847.719 and a � �60.876

In Exercises 17–20 use the linear model P(t) � P0 � at to represent each city’s popula-
tion. Be sure to indicate the calendar year in which t � 0.

17. City A had a population of 35,500 on January 1, 1985, and it was growing at the

rate of 1700 people per year. Assuming that this annual rate of change in the

population of City A continues, find:

a. Its population on January 1, 2000.

b. The month of the calendar year in which its population reaches 85 

thousand.
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18. City B had a population of 375 thousand on January 1, 1992, and it was growing

at the rate of 9250 people per year. Assuming that this annual rate of change in

the population of City B continues, find:

a. Its population on January 1, 2000.

b. The month of the calendar year in which its population reaches 600 thousand.

19. City C had a population of 45,325 on January 1, 1985, and a population of 50,785

on January 1, 1990. Assuming that this annual rate of change in the population

of City C continues, find:

a. Its population on January 1, 2000.

b. The month of the calendar year in which its population reaches 

75 thousand.

20. City D had a population of 428 thousand on January 1, 1992, and a population

of 422 thousand on January 1, 1997. Assuming that this annual rate of change in

the population of City D continues, find:

a. Its population on January 1, 2000.

b. The month of the calendar year in which its population is 400 thousand.

21. Find the month of the calendar year during which Cities A and C of Problems

17 and 19 have the same population.

22. Find the month of the calendar year during which Cities B and D of Problems

18 and 20 have the same population.

Applying Your Skills
23. Consumer credit experts are concerned that Americans’ credit card debt con-

tinues to increase. USA Today reported that in 1995, U.S. bank credit card loans

totaled $358 billion, while in 2004, they totaled $697 billion.

a. Find a linear function model C(t) � � � � that gives the U.S. bank credit card

loans as a function of t, number of years after 1995. (Round the average

rate of change to three decimal places.)

b. According to your function model, in what month and year will U.S. bank

credit card loans reach $1000 billion (1 trillion dollars)?

c. Use your model to predict the U.S. bank credit card loans in 2006.

24. In 1997,Allergan, the maker of Botox, earned $90 million in sales of Botox, used

as injections for both cosmetic and medical purposes. Allergan’s revenues from

Botox in 2001 were $310 million.

a. Find a linear function model R(t) � � � � that gives Botox revenue as a

function of t, the number of years after 1997.

b. Use your model to predict Allergan’s Botox revenue in 2010.

c. According to your function model, in what month and year will Allergan’s

Botox revenue reach $500 million?

25. According to the U. S. Census, the population of St. Louis was 397 thousand in

1990 and 348 thousand in 2000.

a. Find a linear function model P(t) � � � � that gives the population of 

St. Louis as a function of t, the number of years after 1990.

b. Use your model to predict the population of St. Louis in 2003.

c. If the actual population of St. Louis in 2003 was 332 thousand, was your

answer in (b) a reasonable prediction?

SECTION 2.1 Constant Change and Linear Growth 53
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d. Use your model to predict the month of the calendar year in which the

population of St. Louis falls to 300 thousand.

26. According to the U.S. Census, the population of Lexington, Kentucky, was 

225 thousand in 1990 and 261 thousand in 2000.

a. Find a linear function model P(t) � � � � that gives the population of

Lexington as a function of t, the number of years after 1990.

b. Use your model to predict the population of Lexington in 2003.

c. If the actual population of Lexington in 2003 was 267 thousand, was your

answer in (b) a reasonable prediction?

d. Use your model to predict the month of the calendar year in which the

population of Lexington grows to 300 thousand.

27. Use your models from Exercises 25 and 26 to predict the month of the calendar

year in which the populations of St. Louis and Lexington are the same.

28. One of the services that Statewide Landscape provides is grinding out stumps of

trees that have fallen or been otherwise removed. The company charges a $45

“trip fee” and $2.00 per inch of diameter of the stump (or stumps) to be ground.

a. Find a linear function model P(i) � � � � that gives the price of stump

grinding as a function of the number of inches i of diameter.

b. If the customer has a budget of $275 for stump grinding, how many inches

of diameter of tree stumps can be ground?

c. If a total diameter of 200 inches of tree stumps needs to be ground, how

much will the customer be charged?

29. In 2006, AT&T advertised a “one rate” plan for long distance customers in New

Mexico, with a $3.95 monthly fee and long distance calls charged at 7¢ per

minute. A competing company, Qwest, offered a “15¢ Single Rate Plan” for long

distance, which featured a 99-cent monthly fee and a charge of 15¢ per minute

for calls.

a. Find a linear function model A(t) � � � � that gives the monthly cost of

AT&T long distance service as a function of t, the number of minutes used.

b. How much is the monthly cost of the AT&T long distance if the customer

uses 1 hour of long distance time?

c. Find a linear function model Q(t) � � � � that gives the monthly cost of Qwest

long distance service as a function of t, the number of minutes used.

d. How much is the monthly cost of the Qwest long distance if the customer

uses 1 hour of long distance time?

e. When is it cheaper to use the AT&T plan, and when is it cheaper to use the

Qwest plan?

30. In 2006, Bell South advertised both a “Dollar Plan” and a “Nickel Plan” to its long

distance customers in Charlotte, North Carolina. The Dollar Plan had a service

charge of $1.00 a month, and a charge of 10¢ per long distance minute.The Nickel

Plan had a $5.95 monthly fee, with long distance calls charged at 5¢ per minute.

a. Find a linear function model D(t) � � � � that gives the monthly cost of the

Dollar Plan for long distance as a function of t, the number of minutes used.

b. How much is the monthly cost of the Dollar Plan if the customer uses 1 hour

of long distance time?

c. Find a linear function model N(t) � � � � that gives the monthly cost of the

Nickel Plan as a function of t, the number of minutes used.

d. What is the monthly cost of the Nickel Plan if the customer uses 1 hour of

long distance time?
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e. When is it cheaper to use the Dollar Plan, and when is it cheaper to use the

Nickel Plan?

31. As a person ages, the number of additional years he or she can expect to live

declines. U.S. government statisticians use population data to provide estimates

of how much longer a person will live based on gender and current age. A new-

born boy (0 years old) in 2001 was expected to live 74.4 years, while a man 30

years old in 2001 was expected to live an additional 46.2 years.

a. Find a linear function model L(a) � � � � that gives the years of life

expectancy as a function of a, a male’s age in 2001.

b. Use your model to predict how much longer a male is expected to live if he

is 18 in 2001.

c. In 2001 how old is a male who is expected to live 32.1 additional years?

32. The excerpt shown in Fig 2.1.20 is from the Pew Hispanic Center’s June 2005

paper “Unauthorized Migrants: Numbers and Characteristics” discusses the

SECTION 2.1 Constant Change and Linear Growth 55

A major demographic story of the 1990s is a broad increase in the unauthorized popu-

lation. This chart portrays the growth trend in the unauthorized population while

illustrating the uncertainty involved with the dotted bands of error and the alter-

native trend line at the end incorporating the results based on the 2000 Census

and subsequent March CPSs through 2004. (Note that smooth lines should not be

interpreted to mean that there are not annual fluctuations in growth. The lines

merely connect the dates for which stock estimates are available.)

Because of inherent uncertainties in the residual technique, the difference in successive

annual estimates of the unauthorized population is not a valid measure of growth.

However, it is possible to use differences taken over longer intervals to measure

growth. Thus, the average annual change over the 2000–2004 period is about

485,000 or 10.3 million minus 8.4 million divided by 4. For the entire decade of the

1990s, growth averaged just about 500,000 per year. However, there are a number

of data sources that point to substantially larger growth increments at the very

end of the 1990s (and possibly at the end of the 1980s and the very early 1990s).

The apparent slowdown in growth after 1996 in probably not a real decline but is attrib-

utable to undercoverage in the data used to estimate unauthorized flows. Similarly,

the apparent very rapid growth to 2000 may (or may not) be an accurate depiction

of the trend but may reflect data anomalies in the CPSs of the late 1990s.

The decrease in size from 1986 to 1989 is caused by the IRCA legalizations that

removed immigrants from the unauthorized population by granting them legal

status, not by making them leave the country.

FIGURE 2.1.20 Unauthorized at New Heigh—Details of Trend Uncertain

4-80

Millions of Unauthorized Migrants Living in the U.S.

3

4 5

8.4

10.3

(2004)

3.9

2.5

3.3

1-82 6-86 6-89 10-02 10-96 4-00 3-04
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56 CHAPTER 2 Linear Functions and Models

difficulty of accurately predicting the number of illegal immigrants in the United

States.

a. This paper suggests that considering the average rate of change over longer

intervals is a reasonable way to measure the growth of the unauthorized

migrant population. Use the data from April 1980 (3 million migrants) and

from April 2000 (8.4 million migrants) to find a linear model that gives the

number of unauthorized migrants as a function of years after April 1980.

b. Use your model to predict the number of unauthorized migrants in April

2004. How does your answer compare to the value given in the chart for

March 2004?

c. In what year does the model predict that the number of unauthorized

migrants will grow to 15 million?

2.2 LINEAR FUNCTIONS AND GRAPHS
Recall that in the last section we investigated the relationship between tempera-

ture measured in Celsius degrees and temperature measured in Fahrenheit

degrees.We determined that, because the average rate of change was constant, we

could express Fahrenheit temperature as a linear function of Celsius temperature.

The table of values indicated that for a Celsius temperature of 0 degrees, the

Fahrenheit temperature was 32 degrees. Furthermore, we found that the average

rate of change was 1.8 degrees F per degree C. Using the techniques of Section 2.1,

we can write this temperature function as F(C) � 32 � 1.8C.

Suppose that, instead of having the function’s initial value (its output when

input � 0), we were given two pairs of (C, F) values, say (30, 86) and (70, 158). As

before, we can find the function’s average rate of change:

But how do we determine a rule for this function? We know that the function

has this same average rate of change between any two ordered pairs. So consider

(C, F(C)) any pair of Celsius and Fahrenheit temperatures. Then

Therefore

F(C) � 86 � 1.8(C � 30). (1)

To verify that this is the very same linear function obtained earlier (as well as in

Section 2.1), we can simplify (1) to get

F(C) � 86 � 1.8C � 54, 50.

F(C) � 32 � 1.8C.

In general, suppose that we know a function’s average rate of change a and

a pair of input and output values (x1, f(x1)). Then (as before)

¢f

¢x
=

f(x) - f(x1)

x - x1
= a.

¢F
¢C

=

F(C ) - 86

C - 38
= 1.8,  and so  F(C ) - 86 = 1.8(C - 30).

¢F
¢C

=

158 - 86

70 - 30
=

72

40
= 1.8.
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So

and then

(2)

This is the point-slope form of a linear function. In this form, we see visibly displayed

both the slope a of the function’s graph and a particular point (x1, f(x1)) lying on the

graph.

f(x) = f(x1) + a(x - x1).

f(x) - f(x1) = a(x - x1),

SECTION 2.2 Linear Functions and Graphs 57

E X A M P L E  1 Finding a Linear Function Model

Use the point-slope form to find a linear function f(x) such f(2) � 1 and f(4) � 15.

S O L U T I O N

To find a linear function having these two pairs of input-output values, we first

find the average rate of change a:

Now we substitute appropriate values in (2), the point-slope form of the linear

function:

(3)

or

(4)

If we prefer to have the slope-intercept form of the function (as in Section 2.1), we

merely simplify either (3) or (4).

That is, or .

Notice that whichever version of the point-slope form we use, we end up with the

same slope-intercept form of the function.

We can use the point-slope form to find linear functions in applied settings

as well.

f(x) = 15 + 7x - 28 = 7x - 13f(x) = 1 + 7x - 14 = 7x - 13

f(x) = 15 + 7(x - 4).

f(x) = f(4) + 7(x - 4),

 f(x) = 1 + 7(x - 2),

 f(x) = f(2) + 7(x - 2),

¢f

¢x
=

f(4) - f(2)

4 - 2
=

15 - 1

4 - 2
=

14

2
= 7.

AT&T’s “one rate” plan for long distance customers in New Mexico charged a

monthly fee with long distance calls charged at 7¢ per minute. In June 2006, a cus-

tomer used 87 long distance minutes, and her bill was $10.04.

a. Use the point-slope form to find a linear function C(t) giving the

monthly cost of long distance service as a function of the number of

minutes of long distance calls made.

E X A M P L E  2 Finding a Linear Cost Function
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58 CHAPTER 2 Linear Functions and Models

FIGURE 2.2.2 Table 2 for the nu-

merical solution for Example 2(c).

FIGURE 2.2.1 Table 1 for the nu-

merical solution for Example 2(c).

b. What was the monthly service charge for the “one rate” plan?

c. How many minutes did the customer use in July 2006 if her bill was $8.92?

S O L U T I O N

a. Here the average rate of change a is the per-minute charge ($0.07), and

C(87) � 10.04. So, the cost of long distance service as a function of min-

utes is given by

(5)

b. The service charge is the fee just for having the calling plan, even if no

minutes of long distance time are used. So the service charge is the out-

put for the input of 0, or the function’s initial value. This is once again

our standard question, “Here’s the input, what’s the output?” with the

given input being 0. So we substitute t � 0 in (5) and calculate

Then

and so

Thus, the monthly service charge for the “one rate” plan is $3.95.

c. In this case, we are given an output and are required to find the appro-

priate input. As always, we have several choices of methods for deter-

mining the input that makes the function output 8.82. We might first

notice that now that we have found the function’s initial value [in part

(b)], we can write an equivalent slope-intercept form for our function:

(6)

We can store our original function from (5) in Y1 and the slope-

intercept form from (6) in Y2. Using the table settings TblStart�0 and

�Tbl�10, we see in Figs. 2.2.1 and 2.2.2 that the function values are the

same. So the two different forms do describe the same function, and we

are free to use whichever one we prefer.

C(t) = 3.95 + 0.07t.

C(0) = 3.95.

C(0) = 10.04 + 0.07(-87) ,

C(0) = 10.04 + 0.07(0 - 87).

C(t) = 10.04 + 0.07(t - 87).
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Furthermore, we see that the cost reaches $8.92 for some t between and

If we reset our table to start at 70 and use increments of 1 (rather than 10),

we obtain the table in Fig. 2.2.3. So, it is an input of 71 that generates an output of

8.92. Therefore, if a customer’s bill is $8.92, she used 71 minutes of long distance.

t = 80.

t = 70

SECTION 2.2 Linear Functions and Graphs 59

While we solved this problem numerically, we would have obtained the same

result if we had used either an algebraic or a graphical method.

The method used in the previous examples can also be used to find linear

population models if we choose not to “reset the clock.”

FIGURE 2.2.3 Table 3 for the numerical

solution for Example 2(c).

According to the Census Bureau, the population of Providence, Rhode Island,

was 160,728 in 1990 and 173,618 in 2000.

a. Use the point-slope form of a linear function to describe the population

of Providence as a function of the year.

b. According to your model, in what month and year will the population

of Providence be 200,000?

c. According to your model, what will Providence’s population be in 2008?

S O L U T I O N

a. We first need to find the average rate of change a:

Then

b. To find the year in which the population reaches 200,000, we need to

find the input for which the function’s output is 200000. That is, we

need to solve the equation . In

order to solve this equation graphically, we store our population func-

tion in Y1 and the output value 200000 in Y2. Recalling that the input

values for our function are actual calendar years, we set the window as

indicated in Fig. 2.2.4. Then Fig. 2.2.5 shows the intersection point found

160728 + 1289(t - 1990) = 200000

P(t) = 160728 + 1289(t - 1990).

a =

¢P
¢t

=

173618 - 160728

2000 - 1990
=

12890

10
= 1289.

E X A M P L E  3 Finding a Linear Population Model
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FIGURE 2.2.4 The window setting 

for Example 3(b).

FIGURE 2.2.5 The intersection

point for Example 3(b).

60 CHAPTER 2 Linear Functions and Models

by the intersect feature of the calculator. Unless we are told otherwise, we

assume that our input years begin on January 1, so 2020.467 would be

months into the year 2020. Our model predicts that

the population of Providence will grow to 200,000 during the sixth month

(June) of 2020.

c. Here we are looking for , which is 160728 � 1289(2008 � 1990)

� 183930. Thus, the population of Providence in 2008 is predicted to be

183,930 people.

Notice that in Example 3, we left our function in point-slope form because

we were using actual calendar years there. It makes no sense to simplify this func-

tion to put it into slope-intercept form since this intercept would indicate the

population of Providence in the year 0 (more than 20 centuries ago). There are

several problems with this notion. First, there is no year designated “0” in the

Western calendar. We have the year 1 BC, followed by the year 1 AD. Second,

even if there were such a year way back then, there was no city of Providence.

Finally, if we went backward 2000� years using this model, we would predict a

negative value for the population, which is certainly not sensible.

This example demonstrates a problem we may encounter when we create

functions to model real-world data. Sometimes our meaningful or “sensible”

domain does not include 0, making meaningless any value we might find there for

the y-intercept. As we noted in Chapter 1, consideration of the domain of a func-

tion is a critical part of the function definition.

Straight Lines and Linear Graphs
The graph of the linear function f(x)� ax � b is the straight line consisting of all

points (x, y) in the xy-plane that satisfy the equation

y � ax � b. (7)

Although we often abbreviate and speak of “the straight line y � ax � b,” it

is important to understand the differences among

• the linear function f,
• its defining formula f(x) � ax � b,

• the equation y � ax � b, and

• the graph with equation y � ax � b.

P(2008)

0.467 * 12 = 5.604
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In particular, the words function, equation, and graph should not be used inter-

changeably. In mathematics (as elsewhere) it’s important to “say what you mean

and mean what your say.”

SECTION 2.2 Linear Functions and Graphs 61

Define Y1 � A*X � B in the Y� menu of your graphing calculator. Then enter

several different pairs of slope-intercept values as indicated in Fig. 2.2.6, pressing

GRAPH after each is entered.

Describe how changing the parameter a affects the graph of the line.

S O L U T I O N

As illustrated in Figs. 2.2.7 and 2.2.8, we find that

• the line rises (from left to right) if the slope a is positive;

• the larger is a � 0, the more steeply the line rises;

• the line falls (from left to right) if the slope a is negative;

• the larger in absolute value is a 	 0, the more steeply the line falls.

E X A M P L E  4 Distinguishing Rising and Falling Lines

FIGURE 2.2.6 Various slopes a and 

y-intercepts b.

x

y

0

0

10

10

FIGURE 2.2.7 Slope a � 1 and 

y-intercept b � �2, so y � x � 2.

FIGURE 2.2.8 Slope a � �2 and

y-intercept b � 5, so y � �2x � 5.

x

y

0

0

10

10

D E F I N I T I O N : Graph of an Equation

The graph of an equation involving two variables x and y consists of all

points in the xy-plane whose coordinates (x, y) satisfy the equation.

A straight line is a simple example of a graph of an equation.
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62 CHAPTER 2 Linear Functions and Models

Sketch and describe a graph of the equation x � �3.

S O L U T I O N

The graph of the equation x � �3, illustrated in Fig. 2.2.9, is a vertical line. Only

ordered pairs (x, y) whose first coordinate x equals �3 satisfy this equation. The

second coordinate y can be any real number. Notice that in this relationship, y is

not a function of x because the single value �3 of x is paired with infinitely many

different values of y.A graph that is a vertical line certainly fails our “vertical line

test” for a function.

E X A M P L E  5 Recognizing a Vertical Line

y

x21−2

1

–1

–3

–2

2

3

–1−3−4

FIGURE 2.2.9 The graph of x � �3.

Sketch and describe a graph of the equation y � 2.

S O L U T I O N

The graph of the equation y � 2, illustrated in Fig. 2.2.10, is a horizontal line. In

this case, the first coordinate x can be any real number, but the second coordinate

y must equal 2. Here y is a function of x because each x-value is paired with only

one y-value. What makes this function unusual is that every point on the graph

has the same y-value as every other point.

E X A M P L E  6 Recognizing a Horizontal Line

y

x1 2 3−3

1

–1

–2

2

3

4

–1–2

FIGURE 2.2.10 The graph of y � 2.

For instance, there are three types of equations whose graphs are straight lines:

• Equations whose graphs are vertical lines

• Equations whose graphs are horizontal lines

• Equations whose graphs are slanted lines (neither vertical nor horizontal)
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Sketch and describe a graph of the equation y � �2x � 1.

S O L U T I O N

Figure 2.2.11 shows the graph of the equation y � �2x � 1. Note that it is a slant-

ed line, falling from left to right, with y-intercept 1. We see that again y is a func-

tion of x since each x-value is paired with only one y-value. Unlike the previous

example, different points on the graph have different y-values.

E X A M P L E  7 Recognizing a More General Line

FIGURE 2.2.11 The graph of y � �2x � 1.y

x1 2 3−3

1

–1

–2

2

3

4

–1–2

The graph of a function is a special case of the graph of an equation.

D E F I N I T I O N : Graph of a Function

The graph of the function f is the graph of the equation y � f (x).

Thus the graph of the function f consists of all points in the plane whose coor-

dinates have the form (x, f (x)) with x being in the domain of f. Observe that the sec-

ond coordinate of any such point is the value of f at its first coordinate (Fig. 2.2.12).

x

y

(x1, f(x1)) (x2, f(x2))

(x3, f(x3))

f(x1) f(x2)

y = f(x)

x1

f(x3)

x2 x3

FIGURE 2.2.12 The graph of the

function f.

We have been using this definition somewhat intuitively when graphing a

function in our calculator. We have typed our function rule into the Y� menu in

the calculator, using X as our input value. Thus the definition confirms our
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understanding that the notation f(x) is another (somewhat fancy) name for y.

This notation is convenient in that it gives us a shorthand for specifying a par-

ticular set of input and output values. Rather than having to say (for example)

“when x � 2, y � 5,” we can say f(2) � 5. Much of the mathematical notation

that may appear confusing at first glance actually makes it easier for us to “talk”

about mathematical relationships.

Building Your Skills
In Exercises 1–4 use the point-slope form to find a linear function f (x) having the given
values.

1. and

2. and

3. and

4. and

In Exercises 5–10 write (in slope-intercept form) an equation of the line L described
and sketch its graph.

5. L passes through the origin and the point (2, 3).

6. L is vertical and has x-intercept 7.

7. L is horizontal and passes through the point (3, �5).

8. L has x-intercept 2 and y-intercept �3.

9. L passes through (�1, �4) and has slope 1⁄2.

10. L passes through (4, 2) and rises (left to right) at a 45-degree angle.

Three points A, B, and C lie on a single straight line if and only if the slope of AB
equals the slope of BC. In Exercises 11–14 plot the three given points and then use the
slopes AB and BC to determine whether all three points lie on a single line.

11. A(�1, �2), B(2, 1), C(4, 3)

12. A(�2, 5), B(2, 3), C(8, 0)

13. A(�1, 6), B(1, 2), C(4, �2)

14. A(�3, 2), B(1, 6), C(8, 14)

In Exercises 15–18 find a linear population function P(t) with the average rate of
change a. Do not “reset the clock.”

15. and 

16. and 

17. and 

18. and a = - 60.876P(1993) = 847.719

a = 17.234P(1991) = 227.625

a = - 24P(1983) = 685

a = 12P(1987) = 375

f(3) = - 10f(1) = 8

f(3) = - 16f(- 2) = 19

f(7) = 17f(3) = 5

f(5) = 13f(2) = 7

2.2 Exercises
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Applying Your Skills
19. The Fahrenheit temperature F and the absolute (Kelvin) temperature K are lin-

ear functions of each other. Moreover, K � 273.16 when F � 32, and K � 373.16

when F � 212.

a. Find a linear function K(F) that gives the absolute temperature as a func-

tion of the Fahrenheit temperature.

b. Use your function from part (a) to find the Fahrenheit temperature when

the Kelvin temperature is 0 (“absolute zero”).

c. What is the Kelvin temperature when the Fahrenheit temperature is 0?

20. The owner of a grocery store finds that she can sell 980 gallons of milk each

week at $2.69 per gallon and 1220 gallons of milk each week at $2.49 per

gallon.

a. Find a linear function G(p) that gives the number of gallons sold as a func-

tion of the price of the milk.

b. How many gallons would she then expect to sell at $2.99 per gallon?

c. According to your function, if the owner sold 800 gallons of milk, what was

the price per gallon?

21. The length L in centimeters of a copper rod is a linear function of its Celsius

temperature C.

a. If L � 124.942 when C � 20 and L � 125.131 when C � 110, find a linear

function L(C) that gives the length of the rod as a function of its Celsius tem-

perature.

b. What is the length of the rod if the temperature is 50°C?

c. If the rod is 125.0764 centimeters long, what is its Celsius temperature?

22. Taking a cruise has become an increasingly popular form of vacationing for

Americans. In 1995, 4.4 million Americans took a cruise; in 2003 the number had

risen to 8.2 million. (Source: USA Today)

a. Assuming that the number of Americans taking cruises was increasing at a

constant rate over this period, find a function A(y) that gives the number

of Americans taking a cruise as a function of the year.

b. In what year can the travel industry expect the number of Americans tak-

ing a cruise to reach 12 million?

23. According to the U.S. Department of Agriculture, there were 705 farms in

Cheyenne County, Nebraska, in 1987, and 615 farms in 2002.

a. Find a linear function F(t) that gives the number of farms in Cheyenne

County as a function of the year.

b. Use your model to find the year in which the number of farms in

Cheyenne County will fall to 580.

24. The number of calories that a person burns depends not only on what type of

activity is performed, but also on the person’s weight. A person who weighs 130

pounds will burn 590 calories playing racquetball competitively for an hour,

while a 155-pound individual will burn 704 calories doing the same activity.

a. Find a linear function C(w) that gives the number of calories burned per

hour of competitive racquetball as a function of weight.

SECTION 2.2 Linear Functions and Graphs 65
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b. According to your model, how many calories will a person weighing 180

pounds burn if he or she plays competitive racquetball for an hour?

25. It is fairly common knowledge that crickets are sensitive to temperature and

chirp faster as the temperature rises. There are many different formulas for

obtaining the temperature when you know how frequently a cricket chirps. Most

of these formulas are simple linear functions.

a. Suppose that you count the number of times a cricket chirps in 10 seconds and

find that it chirped 14 times when the temperature was 61°F. When the tem-

perature was 88°F the cricket chirped 32 times in 10 seconds. Find a linear

function T(c) that gives the temperature in degrees Fahrenheit as a function of

the number of cricket chirps in a 10-second interval.

b. What is the temperature if the cricket chirps 24 times in 10 seconds?

26. According to the U.S. Census, the population of Virginia Beach, Virginia, was

393 thousand in 1990 and 425 thousand in 2000.

a. Find a linear function P(t) that gives the population P as function of the year t.
b. Use your model to predict the population of Virginia Beach in 2003.

c. According to your model, what is the yearly rate of change in the popula-

tion of Virginia Beach?

d. Use your model to predict the month of the calendar year in which the

population of Virginia Beach grows to 500 thousand people.

27. According to the U.S. Census, the population of Milwaukee, Wisconsin was 628

thousand in 1990 and 597 thousand in 2000.

a. Find a linear function P(t) that gives the population P as function of the year t.
b. Use your model to predict the population of Milwaukee in 2003.

c. According to your model, what is the yearly rate of change in the population

of Milwaukee?

d. Use your model to predict the month of the calendar year in which the

population Milwaukee is 400 thousand people.

28. Use your models from Exercises 30 and 31 to predict the month of the calendar

year in which the populations of Virginia Beach and Milwaukee are the same.

2.3 PIECEWISE-LINEAR FUNCTIONS
Sometimes function relationships cannot be described by a single linear function.

There are many situations in which different intervals of input values generate

different linear functions. For instance, a population P might grow at one con-

stant rate on one time interval and at a different constant rate on another time

interval. We call such functions piecewise-linear functions because each section

(or piece) of the graph is a portion of a line.

D E F I N I T I O N : Piecewise-linear Function

A piecewise-linear function is a function that is defined by different linear

functions on different intervals.
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Suppose that the population of Springfield was 150 thousand in 1970 and from

1970 to 1990 the population grew at the rate of 10 thousand per year. However, due

to new industry acquired in 1990, additional people started moving in steadily. As

a result, after 1990 the population of Springfield grew at the increased rate of 20

thousand people per year. Find a piecewise-linear function P(t) that gives the pop-

ulation of Springfield as a function of the year.

S O L U T I O N

In 1970 the population was 150 thousand, giving us a (t, P) ordered pair (1970,

150) and an average rate of change a � 10. Using the techniques of Section 2.2,

we find that the population P is described by the function P(t) � 150 � 10(t �
1970) for t from 1970 to 1990. Noting that the population of Springfield in 1990

was 350 thousand (why?), and the average rate of change thereafter was a � 20,

we use the same techniques to determine that the city’s population is described

by P(t) � 350 � 20(t � 1990) for t from 1990 onward. Thus, the piecewise-linear

function giving Springfield’s population is described for by

Figure 2.3.1 shows the graph of the population function P(t) .

In your previous study of mathematics, you’ve probably encountered the

absolute value function, . The absolute value of a number measures

how far the number is away from 0, without regard to its direction from 0.

Thus, both |�2| and | 2 | are equal to 2 because both numbers are two units

away from 0; negative 2 is two units to the left of 0, while positive 2 is 2 units

to the right of 0.

Figure 2.3.2 shows the calculator graph Y1 � abs(X) of the absolute value

function defined mathematically by

ƒ x ƒ = e -x   if x 6 0,

x    if x Ú  0.

f(x) = ƒ  x ƒ

p(t) = e150 + 10(t - 1970)  if 1970 … t … 1990,

350 + 20(t - 1990)  if t 7 1990.

t Ú 1970

E X A M P L E  1 Finding a Piecewise-Linear Population Model

P
800

700

600

500

400

300

200

100

t2010200019901980

(1990, 350)

FIGURE 2.3.1 The piecewise-

linear population function of

Example 1.

y

x

FIGURE 2.3.2 Graph of y = | x |.
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68 CHAPTER 2 Linear Functions and Models

We see that the function is defined differently for and for . The two

“pieces” of the function rule correspond to the two straight line “pieces” of the

graph. The graph “turns the corner” at the origin because it consists of

• the left half of the line which falls from left to right with slope �1,

and

• the right half of the line which rises from left to right with slope �1.

While such functions definitions may seem odd initially, piecewise functions

frequently turn up in applied settings.

y = x,

y = -x,

x Ú 0x 6 0

FIGURE 2.3.3 The graph of the

cost function C(h) for the

Mindspring “light” plan.

In 1999, Mindspring Enterprises offered a “light” plan for Internet access in which

the monthly cost was $6.95 for up to 5 hours of connection time, with additional

hours charged at $2.00 each. Find a piecewise linear function that gives the cost C
of Internet access as a function of the number of hours h of connection time.

S O L U T I O N

If a customer uses between 0 and 5 hours of connection time, the monthly cost

remains the same. That is, C(h) � 6.95 for h between 0 and 5, inclusive. Then, for

each additional hour, the customer is charged $2 per hour. So for over 5 hours,

C(h) � 6.95 � 2(h � 5). Thus, our two-part rule for this function is

Figure 2.3.3 shows the graph of this function.

Note that the graph consists of two straight-line pieces—one horizontal and

one slanted—that meet at the point (5, 6.95) and correspond to the two parts of

the formula. (You may recognize this symbolic form from Chapter 1, where you

answered a “Here’s the output, what’s the input?” question for this function.)

Graphical, Numerical, and Symbolic Viewpoints
In working examples in Chapter 1 and this chapter we demonstrated graphical,

numerical, and symbolic methods of solution, and you have probably used all of

these methods at one time or the other as well. Likewise, applications of piecewise

functions can involve looking at the same function from different viewpoints.

C(h) = e6.95           if 0 … h … 5

6.95 + 2(h - 5)  if h 7 5.

E X A M P L E  2 Finding a Piecewise-Linear Cost Function

108642 h

20

15

10

5

C

Suppose that a car begins (at time t � 0 hours) in Hartford, Connecticut and trav-

els to Danbury 60 miles away at a constant speed of 60 miles per hour. The car

stays in Danbury for exactly 1 hour, and then returns to Hartford, again at a con-

stant speed of 60 miles per hour.

E X A M P L E  3 Describing Distance As a Function of Time
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SECTION 2.3 Piecewise-Linear Functions 69

60

1 2 3 t

d

FIGURE 2.3.4 Graph of d(t).

The car’s distance from Hartford d is a function of the time t in hours.

a. Describe the car’s distance from Hartford graphically.

b. Describe the car’s distance from Hartford symbolically.

S O L U T I O N

a. Here we are asked to create a graph of the function d(t) from its verbal

description. For the first hour, the car is traveling a constant rate of

speed away from Hartford, so the distance is increasing at a constant

rate. This means that for t between 0 and 1, d is an increasing linear

function of t. In order to graph d(t) on this interval, we only need two

points. We know that at time t � 0, d � 0, and at time t � 1, d � 60, so

our graph is the line segment connecting (0, 0) and (1, 60).

For the next hour, the car remains in Danbury, so for t between 1

and 2, d is a constant function of t. So on this interval, the graph d is the

line segment connecting (1, 60) and (2, 60).

During the last hour, the car returns to Hartford, again at a constant

rate of speed. Thus, the distance is decreasing at a constant rate, and for t
between 2 and 3, d is a decreasing linear function of t. At time t � 3, the

car has returned to Hartford and d � 0. The last “piece” of our graph is

the line segment connecting (2, 60) and (3, 0).

The graph of d(t) is shown in Fig. 2.3.4.

b. Now we will build a symbolic function d(t) based on the verbal descrip-

tion. For the first hour, the constant average rate of change of distance

(with respect to time) is 60 miles per hour. The car’s initial distance

from Hartford is 0. So for t between 0 and 1, d(t) � 60t.
During the next hour, the car stays in Danbury, so its distance from

Hartford is constant—60 miles. That is, for t between 0 and 1, d(t) � 60.

Finally, during the last hour, the car is returning to Hartford, so the

constant average rate of change of distance (with respect to time) is �60

miles per hour. Our starting point for the journey back is at t � 2, d � 60.

Using the point-slope form, we find that d(t) � 60 � 60(t � 2) for t
between 2 and 3. [We can simplify this to d(t) � 180 � 2t if we wish, or

merely leave it as it is.]

We have used the word “between” in a vague manner in discussing

this symbolic form. We can see that the three “pieces” of graph “match

up”—there are no breaks or jumps in the graph. This means that our

three function rules also “match up” at their endpoints, so we may

include the endpoint t-values in whichever “piece” of the domain we

prefer. For no particular reason, we will include these two values (t � 1

and t � 2) with their left-hand rules. Then the distance from Hartford (in

miles) as a function of time (in hours) is given by the three-part formula

The domain of this function is the interval and we can see

from its graph that its range is the interval 0 … d … 60.

0 … t … 3,

d(t) = L 60t if 0 … t … 1,

60 if 1 6 t … 2,

60 - 60(t - 2) if 2 6 t … 3.
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a. Find a piecewise-linear function R(w) that gives the rate to send a

package from Alaska to one of the “lower 48” states as a function of its

weight w if the weight is no more than 5 pounds.

b. Graph R(w).

S O L U T I O N

a. In the table, we see the rates for the whole number of pounds from 1

through 5. Furthermore, the note accompanying the table tells us that

any fraction of a pound more than the weight shown requires the next

higher rate. That means that any package that weighs up to and includ-

ing 1 pound costs $27.25; a package weighing more than 1 pound but

not more than 2 pounds costs $30.00, and so on. So our rate function is

given by

Notice that R(w) is a special kind of piecewise-linear function because

each of its linear pieces is also constant.

b. The easiest way to graph such a function in the calculator is to store

each part of the function rule in a separate location in the function edi-

tor. In order to get the proper graph, on each section of the domain we

R(w) = e 27.75  if 0 6 w … 1,

30.00  if 1 6 w … 2,

32.50  if 2 6 w … 3,

35.50  if 3 6 w … 4,

38.00  if 4 6 w … 5.

70 CHAPTER 2 Linear Functions and Models

Figure 2.3.5 shows a portion of the rate table for UPS Next Day Air delivery from

the state of Alaska.

E X A M P L E  3 Finding and Graphing a Step Function

FIGURE 2.3.5 Rates for package delivery from Alaska.

Source: www.ups.com.

In Example 2, we began with a verbal description of the function and then

constructed both a graphical description and a symbolic description. In the next

example, we begin with a table of values.

- Any fraction of a pound more than
  the weight shown in the rate chart
  requires the next higher rate.

Zones

Letter

Alaska
Metro

1 lbs.

2

3

4

5

$15.25

21.00

23.75

26.25

28.25

30.25

48 Contiguous
States, Hawaii

Metro and
Puerto Rico

$17.25

27.25

30.00

32.50

35.50

38.00

22 24

- The Letter rate applies only
  to document, correspondence
  and electronic media shipments
  sent in a UPS Express Envelope.
  Express Envelopes containing
  items other than those listed
  above and Express Envelopes
  exceeding one pound that are
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SECTION 2.3 Piecewise-Linear Functions 71

FIGURE 2.3.6 Entering R(w) into

the calculator.

FIGURE 2.3.7 The calculator graph

of R(w).

put the function rule in parentheses and then use “/” to separate the

rule from its domain restriction (also in parentheses). The first three

pieces of the rule are shown in Fig. 2.3.6. Then the graph (with a couple

of tricks to show the endpoints clearly) is shown in Fig. 2.3.7.

From the graph, you can see why we describe a function like R(w) as

a “step” function.

Most people encounter piecewise-linear functions when they pay their

income tax on or before April 15 of each year. While the IRS gives us its “rules”

in table form, we can use the point-slope form to convert those rules into linear

functions.

Schedule X of the 2005 Form 1040 instructions specifies the tax paid by a single

taxpayer as shown in Fig. 2.3.8.

E X A M P L E  4 Income Tax As a Piecewise-Linear Function

FIGURE 2.3.8 Income tax for single taxpayers.

a. Find a piecewise-linear function T(I) that gives the income tax owed

for a taxable income of I dollars.

b. Find the income tax owed by a single taxpayer with a taxable income

of $50,000.

c. Find the income tax owed by a single taxpayer with a taxable income

of $150,000.

If your taxable
income is:

$0

7,300

29,700

71,950

150,150

326,450

$0

7,300

29,700

71,950

150,150

326,450

$7,300

29,700

71,950

150,150

326,450

----------

---------- 10%

$730.00 + 15%

4,090.00 + 25%

14,652.50 + 28%

36,548.50 + 33%

94,727.50 + 35%

The tax is:

Over—
But not
over—

of the
amount
over—
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72 CHAPTER 2 Linear Functions and Models

S O L U T I O N

a. The information in the IRS table determines a left-hand endpoint (I, T)

and an average rate of change a for each interval. (This average rate of

change over each interval is called the marginal tax rate. You can see that

the marginal tax rate increases as the income increases.) The following

table summarizes this information.

Using the point-slope form on the first interval, we have

or . Similarly, on the second inter-

val, we have . If we continue in this fashion

for each subsequent interval, we have

b. Because $50,000 falls into the third interval, a single taxpayer with a

taxable income of $50,000 owes income tax of

c. $150,000 falls into the fourth interval, so a single taxpayer with a tax-

able income of $150,000 owes

This taxpayer has three times the taxable income of the taxpayer in

(b) but owes almost four times as much tax. This illustrates the fact that

the federal income tax is progressive—people with larger incomes pay

larger percentages of their income in tax.

Most states also have income tax structures that are progressive and thus

are represented by piecewise-linear functions. Several states have a “flat” tax

rate (the same percentage regardless of income); such tax structures are sim-

ple linear functions. A few states tax only dividends and interest, using a flat

tax rate.

T(150000) = 14652.50 + 0.28(I - 71950) = $36,506.20.

T(50000) = 4090 + 0.25(50000 - 29700) = $9165.

T(I) = f
0.10I  if 0 6 I … 7300,

730 + 0.15(I - 7300)  if 7300 6 I … 29700,

4090 + 0.25(I - 29700)  if 29700 6 I … 71950,

14652.50 + 0.28(I - 71950)  if 71950 6 I … 150150,

36548.50 + 0.33(I - 150150)  if 150150 6 I … 326450,

94727.50 + 0.35(I - 326450)  if I 7 326450.

(I - 7300)T(I) = 730 + 0.15

T(I) = 0.10I(I - 0),T(I) = 0 + 0.10

AVERAGE RATE 
INTERVAL LEFT ENDPOINT (I, T ) OF CHANGE a

(0, 0) 0.10

(7300, 730) 0.15

(29700, 4090) 0.25

(71950, 14652.50) 0.28

(150150, 36548.50) 0.33

(326450, 94727.50) 0.35I 7 326450

150150 6 I … 326450

71950 6 I … 150150

29700 6 I … 71950

7300 6 I … 29700

0 6 I … 7300
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SECTION 2.3 Piecewise-Linear Functions 73

Building Your Skills
Sketch the graphs of each function in Exercises 1–4. Label any points where the func-
tion rule changes.

1.

2.

3.

4.

In Exercises 5–8 write a symbolic description of the function whose graph is pictured.

5. 6.

7. 8.

f(x) = e5 - 2x if - 1 … x 6 2

1 + x if 2 6 x … 6

f(x) = e 2 if  x 6 0

3  if  x Ú 0

f(x) = ƒx ƒ - 1

f(x) = ƒx - 1 ƒ

2.3 Exercises

y

x1 2 3−3 −2

1

2

3

–1

(−1, 0)

(−2, 1)

(2, 3)

y

x5

(−2, 2) (2, 2)

(5, 0)

(−3, 0)

1

3

2

4321–1
–1

–2

Each of the Exercises 9–12 describes a trip you made along a straight road connecting two
cities 120 miles apart. Sketch the graph of the distance d from your starting point (in miles)
as a function of the time t elapsed (in hours).Also describe the function d(t) symbolically.

9. You traveled for 1 hour at 45 miles per hour, then realized you were going to be

late, and therefore traveled at 75 miles per hour for the next hour.

10. You traveled for 1 hour at 60 miles per hour, were suddenly engulfed in dense

fog, and therefore drove back home at 30 miles per hour.

11. You traveled for 1 hour at 60 miles per hour, stopped for 1⁄2 hour while a herd of

bison crossed the road, and then drove on toward your destination for the next

hour at 60 miles per hour.

12. You traveled for 1⁄2 hour at 60 miles per hour, suddenly remembered that you’d

left your wallet at home, drove back at 60 miles per hour to get it, and finally

drove 2 hours at 60 miles per hour to reach your destination.
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74 CHAPTER 2 Linear Functions and Models

Applying Your Skills
13. According to the U.S. Census Bureau, the population of Tucson, Arizona, was

45 thousand in 1950, and from 1950 to 1970 it grew at the average rate of 10.9

thousand people per year. After 1970, the population of Tucson grew at the

average rate of 7.5 thousand people per year.

a. Find a piecewise-linear function P(t) that gives the population P of Tucson

as a function of the year t.
b. According to your model, in what year did the population of Tucson reach

100 thousand?

c. Use your model to predict the population of Tucson in 2010.

14. According to the U.S. Census Bureau, the population of Charlotte, North

Carolina, was 18 thousand in 1900, and from 1900 to 1950 it grew at the average

rate of 2.32 thousand people per year. After 1950, the population of Charlotte

grew at the average rate of 6.26 thousand people per year.

a. Find a piecewise-linear function P(t) that gives the population of Charlotte

as a function of the year.

b. Use your model to determine the year in which the population of

Charlotte grew to 500 thousand.

c. Based on your model, what was the population of Charlotte in 1980?

15. According to the U.S. Census Bureau, the population of Rochester, New York,

was 163 thousand in 1900, and from 1900 to 1950 it grew at the average rate of

3.38 thousand people per year.After 1950, the population of Rochester declined

at the average rate of 2.24 thousand people per year.

a. Find a piecewise-linear function P(t) that gives the population of

Rochester as a function of the year.

b. Based on your model, what was the population of Rochester in 1932?

c. Use your model to predict the year in which the population of Rochester

returns to its 1900 level.

16. According to the U.S. Census Bureau, the population of San Francisco was 775

thousand in 1950, and from 1950 to 1980 it declined at the average rate of 3.2

thousand people per year. After 1980, the population of San Francisco grew at

the average rate of 4.9 thousand people per year.

a. Find a piecewise-linear function P(t) that gives the population of San

Francisco as a function of the year.

b. Based on your model, what was the population of San Francisco in 1975?

c. Use your model to determine the year in which the population of San

Francisco returned to its 1950 level.

17. For an express delivery letter weighing up to 8 ounces sent to a certain destina-

tion, the charge C is $8.00 for the first 8 ounces plus 80 cents for each addition-

al ounce or fraction thereof. Sketch the graph of the step function C(x) that gives

the charge as a function of the total number x of ounces.

18. In a certain city, the charge C for a taxi trip of at most 10 miles is $5.00 for the

first 2 miles (or fraction thereof) plus 75 cents for each half-mile (or fraction

thereof) up to a total of 10 miles. Sketch the graph of the step function C(x) that

gives the charge as a function of the total number x of miles.

19. In 2006, the first-class mail rate in the United States was 39 cents for the first

ounce and 24 cents for each additional ounce or fraction thereof (up to 13

ounces).
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a. Find a piecewise linear function P(x) that gives the first-class mail rate for

letters not weighing more than 5 ounces.

b. Sketch the graph of P(x).

20. In 2006, the fee for insurance coverage on parcels sent from the United States to

Canada was $1.30 for values not over $50, $2.20 for values not over $100, and

$1.00 for each additional $100 of value (or fraction thereof), up to a value of $700.

a. Find a piecewise linear function F(v) that gives the fee for insurance cover-

age for parcels with value up to $700.

b. Sketch the graph of F(v).

21. While other soft drinks struggled to retain their share of the market, Mountain

Dew saw a dramatic increase in sales beginning in 1993, as indicated in Fig 2.3.13.

SECTION 2.3 Piecewise-Linear Functions 75

FIGURE 2.3.13 Growth in

Mountain Dew sales.

Source: Atlanta Journal
Constitution.

a. Find a piecewise linear function C(t) that gives the number of cases sold

(in millions) as a function of the year.

b. Use your model to determine when the number of cases of Mountain Dew

sold was 300 million.

c. Use your model to determine when the number of cases of Mountain Dew

sold was 500 million.

d. According to your model, how many cases of Mountain Dew were sold in

2005?

22. The U.S. Census Bureau maintains a “population clock” that keeps track of the

population of the United States. In 1967, as the population clock reached

200,000,000, a Chinese-American baby was born in Atlanta and designated (by

Life Magazine) as the 200,000,000th American. Since that time, the population

has continued to grow (reaching 300,000,000 by the time you read this), and has

become increasingly diverse. The percentages of the population that are

African-American, Asian, and Hispanic have increased, while the percentage of

the population that is white has decreased, as indicated in Fig. 2.3.14.

FIGURE 2.3.14
Change in race/

ethnicity of U.S.

population.

Source: Altanta Journal-
Constitution.
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a. Find the tax owed on a taxable income of $3350.

b. Find the tax owed on a taxable income of $6000.

c. Find the tax owed on a taxable income of $38,000.

d. Write a formula defining a piecewise linear function T(I) � that gives

tax owed in Mississippi as a function of taxable income.

25. The following table gives the 2004 Louisiana state tax rates for married persons

filing jointly.

IF YOUR TAXABLE BUT NOT THE TAX YOU OF THE AMOUNT 
INCOME IS OVER OVER OWE IS OVER

$0 $12,500 2% $0

$12,500 $25,000 $250 � 4% $12,500

$25,000 $550 � 6% $25,000

a. Find the tax owed on a taxable income of $4400.

b. Find the tax owed on a taxable income of $17,000.

c. Find the tax owed on a taxable income of $56,000.

d. Write a formula defining a piecewise linear function T(I) � that gives

tax owed in Louisiana as a function of taxable income.

Á

Á

76 CHAPTER 2 Linear Functions and Models

a. Find a piecewise linear function P(t) that gives the percentage of the popu-

lation that is white as a function of the year.

b. According to your model, what percentage of the population was white in 1949?

c. According to your model, what percentage of the population will be white in

2010?

d. Use your model to determine when the percentage of the population that is

white was 75%.

23. The following table gives the 2004 Connecticut state tax rates for persons who

are head of household. (Source for tax information in Exercises 23–27 is The
World Almanac and Book of Facts 2005.)

IF YOUR TAXABLE BUT NOT THE TAX YOU OF THE AMOUNT 
INCOME IS OVER OVER OWE IS OVER

$0 $16,000 3% $0

$16,000 $480 � 5% $16,000

a. Find the tax owed on a taxable income of $5700.

b. Find the tax owed on a taxable income of $16,000.

c. Find the tax owed on a taxable income of $43,000.

d. Write a formula defining a piecewise linear function T(I ) � that gives

tax owed in Connecticut as a function of taxable income.

24. The following table gives the 2004 Mississippi state tax rates for single persons.

IF YOUR TAXABLE BUT NOT THE TAX YOU OF THE AMOUNT 
INCOME IS OVER OVER OWE IS OVER

$0 $5000 3% $0

$5000 $10,000 $150 � 4% $5000

$10,000 $350 � 5% $10,000

Á
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SECTION 2.4 Fitting Linear Models to Data 77

26. The following table gives the 2004 District of Columbia tax rates for married

persons filing separately.

IF YOUR TAXABLE BUT NOT THE TAX YOU OF THE AMOUNT 
INCOME IS OVER OVER OWE IS OVER

$0 $10,000 5% $0

$10,000 $30,000 $500 � 7.5% $10,000

$30,000 $2000 � 9.3% $30,000

a. Find the tax owed on a taxable income of $4400.

b. Find the tax owed on a taxable income of $17,000.

c. Find the tax owed on a taxable income of $36,000.

d. Write a formula defining a piecewise linear function that gives

tax owed in the District of Columbia as a function of taxable income.

27. The state of Michigan had a 2004 flat tax rate of 3.9% of taxable income.

a. Find the tax owed on a taxable income of $5700. Compare this value to the tax

owed on the same amount in the state of Connecticut (found in Exercise 23).

b. Find the tax owed on a taxable income of $43,000. Compare this value to

the tax owed on the same amount in the state of Connecticut (found in

Exercise 23).

c. Write a formula defining a linear function that gives tax owed

in Michigan as a function of taxable income.

d. For what incomes would a taxpayer in Michigan pay more tax than a com-

parable taxpayer in Connecticut? For what incomes would the Michigan

taxpayer pay less?

T(I) =
Á

T(I) =
Á

2.4 FITTING LINEAR MODELS TO DATA
In Section 2.1 we saw that a population whose growth is modeled by a linear

function grows with a constant rate of change—that is, with the same change in

population each year. In this section we discuss the modeling of data of a sort

that might be said to display an “almost constant” rate of change—with the annu-

al changes from year to year being approximately but not exactly equal. As an

example of data that might therefore be described as “almost but not quite lin-

ear,” the following table shows the population of Charlotte, North Carolina, as

recorded in the decade census years of 1950–1990.

YEAR POPULATION (THOUSANDS) CHANGE (THOUSANDS)

1950 134

1960 202 68

1970 241 39

1980 315 74

1990 396 81

Source: U.S. Census Bureau.
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The third column of this table shows (for each decade year) the change in the

population during the preceding decade. We see that the population of Charlotte

increased by roughly 70 to 80 thousand people during the 1950s, the 1970s, and the

1980s. It increased by somewhat less during the 1960s, but still with a change meas-

ured in roughly comparable tens of thousands. We might wonder whether this

qualifies as “almost linear” population growth.The way to answer such a question

is to plot the data and take a look.

The data points corresponding to this table are plotted in Fig. 2.4.1. Surely most

people would agree that these points appear to lie on or near some straight line.

FIGURE 2.4.1 Scatter plot of the

Charlotte 1950–1990 population

data.

Use the populations from 1950 and 1990 to find a linear function that describes

(at least approximately) the population of Charlotte over this time period.

S O L U T I O N

First, we find the average rate of change of this function:

Then, using the point-slope form with t1 � 1950 and P1 � 134 gives the linear

population model

(1)

Figure 2.4.2 shows the graph of P(t) along with our original census population

data points for Charlotte.

P(t) = 134 + 6.55 (t - 1950).

a =

¢P
¢t

=

396 - 134

1990 - 1950
=

262

40
= 6.55 thousand/year.

E X A M P L E  1 Finding a Linear Population Model
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FIGURE 2.4.2 The graph of 

P(t) � 134 � 6.55(t � 1950)

approximating the 1950–1990

growth of Charlotte.

But how can we find a straight line that passes through or near each data

point in the figure? One way is simply to pass a straight line through the first and

last data points—those for 1950 and 1990.
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SECTION 2.4 Fitting Linear Models to Data 79

The linear function we found looks like a pretty “good fit” to the data—the

1950 and 1990 data points automatically lie on the line (why?), while the 1960

point seems to lie on the line and the 1970 and 1980 points lie just below the line.

The following table shows the discrepancies between the actual populations and

those “predicted” by the linear function in (3) for each of the 1950–1990 census

years. We see that the actual 1960 population is just 2.5 thousand (only about

1%) larger than the 1960 population predicted by the linear model in (3),

whereas the actual 1970 and 1980 populations are 24 thousand and 15.5 thou-

sand, respectively, less than the corresponding linear predictions. We generally

refer to these discrepancies as “errors,” and will do so from here on.

P (ACTUAL) P(t) (PREDICTED) ERROR P � P(t)
t (THOUSANDS) (THOUSANDS) (THOUSANDS)

1950 134 134 0

1960 202 199.5 2.5

1970 241 265 �24

1980 315 330.5 �15.5

1990 396 396 0

Note that the figures in each (horizontal) row of the figure satisfy the formula

Pactual = P(t) + error.

Smaller Errors and Fitting Data Better
Now we discuss the concept of a linear model that best fits given population (or

other) data such as those in the following table:

In the case of the Charlotte population, there were five given data points.

However, here we assume for simplicity in the general discussion that four data

points are given. The final procedure will be analogous whatever the number of

data points.

The table gives the actual populations specified at 

different times . We may ask what linear model of the form

(2)

“best fits” the given data. That is, what should the numerical values of the coeffi-

cients a and b be in order that the model best fits the data? But the real question

is: What does this mean? What does it mean for the model to “fit” the data well?

Figure 2.4.3 shows the errors that correspond to the discrepancies between

the given data points in the tP-plane and the straight-line graph of (2). The ith
error Ei is the vertical distance between the actual data point (ti, Pi) and the cor-

responding point (ti, P(ti)) on the line that is “predicted” by the linear model. It

P(t) = b + at

t1, t2, t3, and t4
n = 4P1, P2, P3, and P4

t1

P1

t2

P2

t3

P3

t4

P4

t

P
(t3, P3)

(t1, P1)

(t2, P2)

(t4, P4)

E3

E4
E1

E2

FIGURE 2.4.3 The errors in the

linear model P(t) � at � b.

t (year)

P (thousands)
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80 CHAPTER 2 Linear Functions and Models

Find the SSE for the linear population model in Example 1.

S O L U T I O N

Recall that that the linear model for Charlotte’s population in Example 1 is

(5)P(t) = 134 + 6.55(t - 1950).

E X A M P L E  2 Finding the SSE for a Linear Model

is worth emphasizing that Pi is the actual observed value of the population at

time ti, while P(ti) is the value predicted by the linear model, so

error � actual � predicted. (3)

One might suspect that the linear model fits the data well if the sum of the
errors is small. However, observe that each error Ei defined is signed. It is positive

if the ith data point lies above the graph of but is negative if the data

point lies below the line. Consequently, it is possible for large positive errors to can-

cel out large (in absolute value) negative errors in the sum of all the errors. For

instance, Fig. 2.4.3 indicates two large positive errors (data points above the line)

and two large negative errors (data points below the line). Although each of these

four errors is numerically large, their sum may be quite small, or even 0, just as

Thus the fact that the sum of the errors is small does not guarantee that all the

individual errors are small.

It is therefore customary to use the sum of the squares of the errors as a measure

of the overall discrepancy between the given data points and a proposed linear model.

D E F I N I T I O N : Sum of Squares of Errors

The phrase “Sum of Squares of Errors” is so common in data modeling that

it is abbreviated to SSE. Thus the SSE associated with a data model based

on n data points is defined by

(4)

Note that, however many data points are given, the SSE is the sum of the
squares of all their errors. In plain words, if we write the actual populations in one

column and the predicted populations in a second column, then the SSE is the sum

of the squares of the differences between corresponding entries in the two columns:

ti ACTUAL Pi LINEAR P(ti) ERROR Ei Ei
2

1950 134 134 0 0

1960 202 199.5 2.5 6.25

1970 241 265 �24 576

1980 315 330.5 �15.5 240.25

1990 396 396 0 0

SSE = E 2
1 + E 2

2 + E 2
3 +

Á
+ E 2

n .

(+72) + (-54) + (+29) + (-47) = 0.

P(t) = at + b
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Find a linear function with a smaller SSE for the Charlotte population data.

S O L U T I O N

Looking at Fig. 2.4.2 as well as at the table for Example 2, we see that the graph

of passes right through the first and last data points, but

passes 24 units above the third data point. Let’s think of a line that splits the

difference and passes 12 units below the first and last data point as well as 12

units above the third data point. Can you see that we can make this change by

subtracting 12 from the value in (8), so that the new line lies 12

units lower in the tP-plane? Our new linear model is

(7)

with m � 6.55 as in (6) but now (rather than �12,638.5). The fol-

lowing table shows the computation of the SSE for this new altered linear model.

(We started with the previous table, then recalculated the numbers in the third,

fourth, and fifth columns in turn. You should verify the results for yourself.)

ti ACTUAL Pi LINEAR P(ti) ERROR Ei Ei
2

1950 134 122 12 144

1960 202 187.5 14.5 210.25

1970 241 253 �12 144

1980 315 318.5 �3.5 12.25

1990 396 384 12 144

Now the sum of the numbers in the final column is

(as compared with 822.5 for the linear model of Example 2). Thus we have suc-

ceeded in reducing somewhat the SSE.

SSE = 144 + 210.25 + 144 + 12.25 + 144 = 654.5

b = -12650.5

P(t) = 6.55t - 12650.5

b = -12638.5

P(t) = 6.55 t - 12,638.5

E X A M P L E  3 Finding a Smaller SSE

The table showing the Charlotte census data now includes a final column showing the

squares of the errors.The SSE is the sum of the numbers in this final column; that is,

So the SSE for our Charlotte population model is 822.5.

The linear function can be simplified as follows:

(6)

So in (6) corresponds to choosing the numerical values

and in the slope-intercept linear model . We

wonder if it is possible to find different numerical values of a and b that yield a

smaller SSE than the value 822.5 found in Example 2.

P(t) = b + atb = -12638.5a = 6.55

P(t) = 6.55t - 12,638.5

P(t) = 6.55t - 12638.5.

P(t) = 134 + 6.55t - 12772.5

P(t) = 134 + 6.55(t - 1950)

SSE = 0 + 6.25 + 576 + 240.25 + 05 = 822.5.
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So although either of the functions

(8)

can be used as a linear model for the growth of Charlotte during the 1950–1990

period, the latter one fits the observed census data at least slightly better because

it has a smaller sum of squares of errors.

But exactly what does the SSE really mean? Well, the SSE for either of the

models in (8) is a sum of five “squared errors,”

We should therefore divide by 5 to get the average of these squared errors,

But then we should take the square root of the average squared error to get the

average error itself,

This is for Charlotte with n � 5 data points. To define the average error for a

model fitting n given data points we need only divide the SSE instead by n.

D E F I N I T I O N : Average Error

The average error in a linear model fitting n given data points is defined in

terms of its SSE by

(9)

This formula says simply that the average error is the square root of the aver-
age of the squares of the individual errors (or discrepancies between predicted

and actual data values).

average error = ASSE

n
.

average error = ASSE

5
.

average squared error =

E 2
1 + E 2

2 + E 2
3 + E 2

4 + E 2
5

5
=

SSE

5
.

SSE = E 2
1 + E 2

2 + E 2
3 + E 2

4 + E 2
5 .

P(t) = 6.55t - 12638.5  or  P(t) = 6.55t - 12650.5

Find the average error for each of the population models in (8).

S O L U T I O N

For the first linear model in (8), we calculated its SSE �
822.5, so with n � 5 in (9) we find that its average error is

But the SSE for the second linear model in (8) is only

654.5, so its average error is

average error = A654.5

5
L 11.441.

P(t) = 6.55t - 12650.5

average error = A822.5

5
L 12.826.

P(t) = 6.55t - 12638.5

E X A M P L E  4 Finding Average Error
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These average errors—like the populations themselves—are measured in

thousands. We may therefore say that the populations “predicted” by our first

model for the five census years 1950, 1960, 1970, 1980, and 1990 err by an

average of 12,826 people, whereas the predictions of our second model err by

an average of 11,441 people. This is a tangible statement of the extent to

which the second model fits the actual census data better than does the first

model.

The Best Fit—The Least Possible Average Error
The question is this: What choice of the numerical coefficients a and b in the lin-

ear model will minimize the average error—that is, will result in

the least possible average error? This optimal linear model will be the one that

we say “best fits” the given data.

Students in past generations often plotted data points on a piece of graph

paper, then carefully maneuvered a ruler so that it appeared visually to come as

close as possible to these points “on the average.” But the modern graphing cal-

culator comes equipped with the facility to solve “best-fitting” problems more

precisely. Here we describe how this is done. You should use your graphing cal-

culator to carry out the steps we describe.

Figure 2.4.4 shows how to enter the Charlotte population data in a calcu-

lator. The list of census years from 1950 to 1990 is stored as a list L1, and

the corresponding list of recorded populations is stored as a list L2. (Note

that calculator “lists” are enclosed in curly braces.) Figure 2.4.5 the resulting

STAT EDIT menu displaying the data in table form. Here the individual

items—either a year or the corresponding population—can be changed or

“edited” one at a time (for instance, if an error was made in entering either

list originally).

P(t) = b + at

FIGURE 2.4.5 The TI-84 STAT EDIT menu.

FIGURE 2.4.4 Storing the 1950–1990 population

census data for Charlotte.
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FIGURE 2.4.6 The TI-84 STAT
CALC menu.

FIGURE 2.4.7 Fitting the X-data in

list L1 and the Y-dta in list L2.

Figure 2.4.6 shows the calculator’s STAT CALC menu. Item 4: LinReg(ax�b)
on this menu is the calculator’s so-called “linear regression” facility for finding the

linear function y � ax � b that best fits the selected data. (Curve-fitting is called

“regression” in statistics and calculator lingo.) When we select item 4 on this

menu, the LinReg(ax�b) function is entered on the home calculating screen. As

shown in Fig. 2.4.7, we must then enter the names of our list L1 of input values, our

list L2 of output values, and the name Y1 of the Y� menu variable where we want

the resulting linear formula saved.

FIGURE 2.4.8 The best straight-line

fit to our data points.

FIGURE 2.4.9 The best-fitting lin-

ear function ready for graphing.

Figure 2.4.8 shows the display that results when this command is entered,

showing that the linear function that best fits our data is

(12)

The LinReg(ax�b) L1, L2,Y1 command automatically enters Equation (12)

in the Y� menu, ready for plotting as shown in Fig. 2.4.9. With Plot 1 turned On
in the STAT PLOT menu (Fig. 2.4.10), GRAPH then gives the plot of the best

fitting linear function shown in Fig. 2.4.11, where the original census data points

are shown as small squares.

y = 6.37x - 12291.3.

The calculator automatically uses X as the input variable and Y as the output

variable. For our calendar year–population situation, we use t as the input vari-
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SECTION 2.4 Fitting Linear Models to Data 85

able and P as the output variable, and Equation (12) says that the linear model

that best fits the 1950–1990 Charlotte census data is given by

(13)

This is the model that “best fits” the data in the sense that it has the smallest

sum of the squares of the errors (SSE). While we cannot show that no model has

a smaller SSE (this would involve mathematics beyond the scope of this text), we

can demonstrate that the SSE for this model is smaller than either of the two we

have already found. Should you want further examples, you can construct some

linear models of your own and find their (larger) SSEs.

P(t) = 6.37t - 12291.3

Find the SSE and the average error for the linear model that best fits the

1950–1990 Charlotte census data.

S O L U T I O N

The following table gives the actual population values and the values predicted

by our best-fitting linear model, along with the errors and their squares. (You

should verify these table entries.) 

P P(t) ERROR

t (ACTUAL (PREDICTED (ACTUAL � ERROR

(CALENDAR POPULATION IN POPULATION IN PREDICTED) SQUARED

YEAR) THOUSANDS) THOUSANDS) (THOUSANDS) (THOUSANDS)

1950 134 130.2 3.8 14.44

1960 202 193.9 8.1 65.61

1970 241 257.6 �16.6 275.56

1980 315 321.3 �6.3 39.69

1990 396 385 11.0 121.00

E X A M P L E  5 Finding the Average Error for the Best-Fitting Model

x

y

1940

0

2000

500

FIGURE 2.4.10 Preparing to plot the

data with the best-fit straight line.
FIGURE 2.4.11 The line of best fit.
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Hence the SSE associated with the optimal linear model in (13) is

Therefore the average error is given by

Thus the linear model predicts 1950–1990 census year

populations that differ (on the average) by 10,162 people from those actually

recorded for Charlotte.

By comparison, our first linear model had an SSE of

822.5 and an average error of 12.826,while our second model 

had an SSE of 654.5 and an average error of 11.441.

Once we have a linear model that predicts the 1950–1990 census year popu-

lations for Charlotte, we can use it to predict the population of Charlotte in years

for which we have no data. This is really the point of mathematical modeling

since it would be foolish to use an approximate value for the population in 1970

when we have the exact value.

This issue raises several points of which you should be aware. First, your

calculator will always find you a “best” linear model, whether your data

“looks” linear or not. Before constructing such a model, you should consider

whether it is appropriate. You can do this by plotting your data or finding the

average rates of change between consecutive data points to verify that the

average rate of change is more or less constant. (A set of data that increases

and decreases at noticeably different rates is not a good candidate for a linear

model.)

Second, you should pay attention to the type of prediction you plan to

make. If you are making a prediction about a year between two data points, say

1962 (between census years 1960 and 1970), this is called interpolation. It is

generally safe to make such a prediction because, barring some unusual cir-

cumstance, the population is not likely to fluctuate wildly over this 10-year

period. (Of course, such unusual circumstances do sometimes occur. Consider

the population of New Orleans on January 1, 2005, before Hurricane Katrina,

compared to its population on January 1, 2006, approximately 4 months after

the hurricane.)

If you make a prediction about a year earlier or later than all of your data,

this is called extrapolation. You must be careful about predicting too far

beyond (or before) the information you have because circumstances that affect

the actual population may be very different from those existing when the data

are collected.

Applications of Linear Modeling
Thus far, we have discussed only the modeling of linear population growth. But

the world is full of other apparently linear data waiting to be modeled.

P(t) = 6.55t - 12650.5

P(t) = 6.55t - 12638.5

P(t) = 6.37 t - 12291.3

average error = A516.30

5
L 10.162.

14.44 + 65.61 + 275.56 + 39.69 + 121.00 = 516.30.
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The per capita consumption of cigarettes in 1930 and the lung cancer death rate

(deaths per million males) for 1950 in the four Scandinavian countries were as

follows:

COUNTRY CIGARETTE CONSUMPTION IN 1930 DEATH RATE IN 1950
c D

Norway 250 95

Sweden 300 120

Denmark 350 165

Finland 1100 350

It is hard to ignore the fact that higher cigarette consumption appears to be cor-

related with higher lung cancer death rates 20 years later.

a. Verify that this relationship is approximately linear.

b. Find the linear model that best fits this data.

S O L U T I O N

a. We do MEM ClrAllLists to purge the Charlotte population data from

our calculator, then enter the c- and D-data in the lists L1 and L2
(Fig. 2.4.12). Then we use the command L3��List(L2)/�List(L1) (as

we did in Section 1.4) to determine whether the average rate of

change is approximately constant. The result is shown in Fig. 2.4.13.

E X A M P L E  6 Finding an Appropriate Linear Model

FIGURE 2.4.12 The cigarette con-

sumption and lung cancer death

date of Example 6.

FIGURE 2.4.13 Checking the

average rate of change.

At first glance, the average rates of change stored in L3 might appear

very different. But notice that each one is positive and between 0 and 1.

So we conclude that the average rate of change for this table of values is

approximately constant, and so we can model these data with a linear

function.

b. Now we use the STAT CALC command LinReg(ax�b) L1, L2,Y1,

which produces the linear function

(14)y = 0.28x + 40.75,
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FIGURE 2.4.15 The errors or “residuals” in 

Example 6.

which best fits our data (with our calculator set in two-decimal-place

mode). With an appropriate window and the same STAT PLOT settings

as before, we get the plot of this linear function and the table data points

that is shown in Fig. 2.4.14.

Thus, using function notation and our c and D variables, we find that

the linear model that best fits the given data is 

The calculator also calculates automatically the discrepancies between the

data and the predictions of the linear model in (14). These errors are stored in

the LIST menu under the name RESID. If you scroll through the list indicated

in Fig. 2.4.15, you see that these errors or “residuals” are �15.75, �4.74, 26.25,

and 1.25.

D(c) = 0.28c + 40.75.

FIGURE 2.4.14 The line best fitting

the cigarette consumption versus

lung cancer deaths data.

x

y

0

0

1200

500

Hence the average error of our linear model is

Thus the average error in the linear model’s predictions (for the four Scandinavian

countries) is 15.5 lung cancer deaths per million males.

For a comparison, the 1930 per capita cigarette consumption in Australia was

470, so the linear model predicts

lung cancer deaths per million males in Australia. The actual number of such

deaths in Australia in 1950 was 170 per million. (Given an average error of 15.50,

this agreement is better than we have any right to expect, especially ignoring any

D(470) = (0.28)(470) + 40.75 = 172.35 L 172

average error = A (-15.752
+ (-4.75)2

+ (26.25)2
+ (1.25)2

4
= 15.50.
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Building Your Skills
In Exercises 1–4 the population P (in thousands) of a city in three different years is
given, thereby providing three known (t, P) data points. Find the average error for the
linear function whose graph contains:

a. The first and third of these points.

b. The second and third of these points.

(Note that in some exercises we have “reset the clock,” while in others we use actual cal-
endar years.)

1.

2.

3.

4.

P(t) = at + b

2.4 Exercises

t (years)

P (thousands)

0

200

10

270

20

320

t (years)

P (thousands)

0

460

10

390

20

300

t (years)

P (thousands)

1980

715

1990

605

2000

435

t (years)

P (thousands)

1980

615

1990

805

2000

1155

differences there may be between Australian and Scandinavian health and

lifestyles.)

Finally, let us note what the linear model means. If we

substitute c � 0 (no cigarette consumption), we get D(0) � 40.75.Thus we should

expect 40.75 lung cancer deaths per million males even if no cigarettes at all are

smoked. Then the average rate of change (or slope) a � 0.28 implies an addi-

tional 0.28 death per unit increase in per capita cigarette consumption. That is,

since there should be approximately one additional death for

each four-unit increase in per capita cigarette consumption. This sort of interpret-
ation of a linear model frequently is more important than any specific numerical

predictions of the model.

Before you begin working on the exercises, we need to discuss decimal-place

settings on the calculator.When using real-world data, the values of a and b in the

best-fitting linear model seldom come out “nicely.” This means that if your cal-

culator is in “float” mode, these values could be reported with as many as 10 dec-

imal places. Because we frequently give our population values in thousands, it is

convenient for interpreting the model if a and b are given as three-place deci-

mals. Thus, the answers given in the back of the book reflect a calculator setting

of three decimal places. If you use a different setting on your calculator, your

answers may vary a bit from ours.

4 * 0.28 = 1.12,

D(c) = 0.28c + 40.75
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In Exercises 5–8 the population P (in thousands) of a city in four different years is
given, thereby providing four known (t, P) data points. For each set of data, find:

a. The linear model that best fits the data.

b. The SSE and average error for this optimal linear model.

5.

6.

7.

8.

Applying Your Skills
Exercises 9–12 give the 1950–1990 U.S. census data for a city whose average rate of
growth is approximately constant.

a. Find the linear model that best fits this census data. (You

may “reset the clock” or not, as you prefer.)

b. Construct a table showing the actual populations, predicted populations,

and errors for the decade years 1950–1990.

c. Use your linear model to predict the city’s population in the year 2000.

9. San Diego, California:

10. Buffalo, New York:

11. Newark, New Jersey:

P(t) = at + b

1950

334

1960

573

1970

697

1980

876

1990

1111

0

360

10

300

20

300

30

240

t (years)

P (thousands)

0

240

10

320

20

360

30

360

t (years)

P (thousands)

1960

600

1970

800

1980

950

1990

1050

t (years)

P (thousands)

1960

565

1970

485

1980

385

1990

265

t (years)

P (thousands)

t (years)

P (thousands)

1950

580

1960

533

1970

463

1980

358

1990

328

t (years)

P (thousands)

1950

439

1960

405

1970

382

1980

329

1990

275

t (years)

P (thousands)
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12. Garland, Texas:

13. The following table shows the percentage of a three-person American family’s

weekly income spent on gasoline for the indicated year.

YEAR t 1966 1976 1986 1996 2006

Percentage Spent 5.5 4.4 3.0 2.7 4.2

on Gasoline P

Source: St. Louis Post-Dispatch.

a. Use a plot of the data to determine whether a linear function is a suitable

model for these data.

b. If a linear model is suitable, find the linear function that best fits the data.

14. The following table shows the revenue in billions of dollars for the state of

Georgia for the years 1996 through 2000.

YEAR t 1996 1997 1998 1999 2000

Revenue R 9.9 10.5 11.1 12.1 13

(billions of dollars)

Source: Atlanta Journal-Constitution.

a. Use a plot of the data to determine whether a linear function is a suitable

model for these data.

b. If a linear model is suitable, find the linear function that best fits the data.

15. The following table below shows the U.S. life expectancy (estimated number of

years of life remaining) as a function of current age.

AGE A 0 10 20 35 50 70

Years of Life 77.2 67.9 58.1 43.9 30.3 14.6
Remaining L

Source: The World Almanac and Book of Facts 2005.

a. Use a plot of the data to determine whether a linear function is a suitable

model for these data.

b. If a linear model is suitable, find the linear function that best fits the data.

16. The following table shows the total number of marine species as a function of

the total number of gallons of tanks for various U.S. aquariums.

Source: Atlanta Journal-Constitution.

SECTION 2.4 Fitting Linear Models to Data 91

1

692

1.3

536

2.5

536

2.5

625

4.75

1600

5

500

Gallons g

Marine Species M

1950

11

1960

39

1970

81

1980

139

1990

181

t (years)

P (thousands)
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92 CHAPTER 2 Linear Functions and Models

a. Use a plot of the data to determine whether a linear function is a suitable

model for these data.

b. If a linear model is suitable, find the linear function that best fits the data.

17. The following table gives the number of CDs (in millions) sold in the United

States for the even-numbered years 1988 through 1996.A plot of these data indi-

cates that CD sales were increasing at a reasonably constant rate over these

years.

T (YEAR) 1988 1990 1992 1994 1996

S (millions  149.7 286.5 407.5 662.1 778.9

of CDs)

Source: The World Almanac and Book of Facts 1998 and The World Almanac and Book of
Facts 2005.

a. Find the linear model that best fits these data.

b. Compare the model’s prediction for the year 1995 with the actual 1995 CD

sales of 722.9 million.

c. Compare the model’s prediction for the year 2002 with the actual 2002 CD

sales of 803.3 million.

d. What do you think may have accounted for the discrepancy between the

2002 predicted and actual values?

18. The following table gives the number of cassette tapes (in millions) sold in the

United States for various years between 1994 and 2001.

T (YEAR) 1994 1995 1997 2000 2001

S (millions of 345.4 272.6 172.6 76.0 45.0

cassettes)

Source: The World Almanac and Book of Facts 2005.

a. Find the linear model that best fits these data.

b. Explain the meaning of the average rate of change for this linear model in

terms of the situation.

c. According to this model, in what year will no more cassette tapes be sold?

Is this answer reasonable?

19. The following table gives the number of athletes participating in the Winter

Olympics for various years between 1924 and 2002 as a function of the number

of countries represented.

Source: National Council of Teachers of Mathematics.

a. Find the linear model that best fits these data.

b. What does the average rate of change of the model mean in terms of the

situation?

c. Use your model to predict the number of athletes participating if 80 coun-

tries are represented.

S(t) = at + b

S(t) = at + b

16

258

25

464

37

1072

49

1272

64

1801

77

2399

Number of countries C

Number of Athletes A
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20. The following table gives the winning times (in seconds) for the men’s 400-meter

hurdles in the Summer Olympics as a function of the year.

Source: The World Almanac and Book of Facts 2005.

a. Find the linear model W(t) that best fits these data.

b. Find the average error for the linear model, and explain what it means in

terms of the situation.

c. Given that the Summer Olympics are held only every 4 years, during which

Summer Olympics does the model predict that the winning time will fall

below 45 seconds?

21. The following table gives the 2004 military monthly pay scale for a Warrant

Officer (W-4) based on years of service.

Source: The World Almanac and Book of Facts 2005.

a. Find the linear model that best fits these data.

b. According to your model, what is the pay for a Warrant Officer (W-4) with

15 years of service?

c. Use a graph or a table of values for this model to find the years in which

the model underestimates a warrant officer’s pay.

22. The Consumer Price Index (CPI) is a measure of the cost to consumers of

various goods and services in comparison to the cost of those items in previ-

ous years. The following table gives the CPI for all urban consumers for

housing for selected years from 1987 to 1996. The years 1982–1984 serve as

the base years for comparison, with the cost of housing in those years equal

to 100.

a. Find the linear model that best fits these data.

b. Use this linear model to predict the CPI for housing in 1989. Is your

answer a reasonable approximation to 124.9, the actual 1989 CPI for hous-

ing? Explain your answer in terms of the plot of the data or the average

rates of change between consecutive table entries.

c. Use the linear model to predict the year in which the CPI for housing

will reach 165. What assumption are you making when you make this

prediction?

d. Use the linear model to predict when the CPI for housing will reach 250.

Why is it not a good idea to make such a prediction?

SECTION 2.4 Fitting Linear Models to Data 93

2

3356

4

3547

8

3872

12

4194

16

4617

20

4944

Y (years of service)

P (pay in dollars)

0

115.6

3

130.5

4

135.0

7

145.4

9

154.0

T (years after 1987)

CPI

0

54.0

8

53.4

16

52.4

36

50.1

48

48.12

56

47.64

t (years after 1920)

W (seconds)
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94 CHAPTER 2 Linear Functions and Models

23. Thus far we have constructed linear models for data that represent a function of

some independent variable. Frequently in the “real world,” we are confronted

with a set of data that does not actually describe a function, but that suggests an

underlying relationship that might be modeled by a function. An example of

such data is the relationship between height and weight for the seven infielders

on the Los Angeles Dodgers roster on July 12, 1997.

a. Find the linear model that best fits these data.

b. Use the linear model to predict the weight of a major league infielder who

is 6 feet tall.

c. Should you use this model to predict the weight of any American male

who is 6 feet tall? Why or why not?

Review Exercises
In Exercises 1–6, decide whether, based on the table, graph,
or formula, y is a linear or a piecewise-linear function of x.

1.

2.

3.

x

y

2

3

4

1.5

5

0

6

�1.5

8

�3

11

�4.5

x

y

2

3

4

1.5

6

0

8

�1.5

10

�3

12

�4.5

70

163

74

170

71

180

71

145

76

222

70

185

73

200

Height in inches h

Weight in pounds W

In this chapter, you learned about linear and piecewise-linear function models.

After completing the chapter, you should be able to:

• Determine whether a function described numerically, graphically or symboli-

cally represents a linear function or a piecewise-linear function.

• Determine the average rate of change of a linear function.

• Find a linear function that models given linear data.

• Find a piecewise-linear function that models given piecewise-linear data.

• Find the best-fitting linear model for data that is “approximately” linear.

• Interpret the slope and y-intercept of a linear model in terms of the situation

modeled.

Chapter 2 Review
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CHAPTER 2 Review 95

4.

5.

6.

7. Find the average rate of change for the linear function

given by the following table.

8. The population of Libertyville was 227 thousand in

2000 and was decreasing at an average rate of 2.3

thousand people per year.

a. Find a linear population model P(t) that gives the

population of Libertyville as a function of the

number of years after 2000.

b. According to your model, what was the popula-

tion of Libertyville in 2000?

c. Use your model to predict the year in which the

population of Libertyville falls to 200 thousand.

9. In 1989, 51% of students at Ohio State University

graduated within 6 years of entering the university. By

1999, the percentage graduating within 6 years had

risen to 68%.

a. Find a linear model that gives the percentage of

students graduating within 6 years as a function of

the year.

b. Explain what the average rate of change of your

model means in terms of the situation.

c. Use your model to predict the percentage of stu-

dents graduating within 6 years in 2006.

10. Economists frequently use linear functions to con-

struct models for the relationship between price and

demand for a small business. Generally, we consider

the selling price p of the item to be a linear function of

the demand x (the number of units consumers will

purchase). Pomelia has begun a home business making

decorative lawn sprinklers out of copper tubing. She

has found that she can sell 20 sprinklers per month if

y = x2
+ 3x

3x + 4y = 2

they are priced at $60 each but only 12 sprinklers per

month if they are priced at $70.

a. Find a linear function p(x) giving the price of the

sprinklers as a function of the number sold.

b. How many sprinklers will she sell if the sprinklers

are priced at $55?

c. If Pomelia wants to sell at least 30 sprinklers per

month, what price should she charge?

d. Explain what the intercepts of the line mean in

this situation.

11. According to Knight-Ridder Newspapers, homeown-

ers who hire a tree service to grind and remove tree

stumps from their yards can expect to pay about $95

for the first 10 inches of tree stump diameter and $1

for each additional inch thereafter.

a. Find a piecewise-linear function C(d) that gives

the charge for stump grinding and removal as a

function of the diameter of the stump in inches.

b. Find C(16) and explains what it means in terms of

the situation.

c. If a homeowner paid $108 for stump grinding

and removal, what was the diameter of the tree

stump?

12. Nambe Mills in Santa Fe, New Mexico, manufactures

tableware made of a metal alloy. The pieces are sand

casted and then shaped, ground, buffed, and polished.

The table following gives the total grinding and pol-

ishing times (in minutes) for various pieces of

Nambeware and their corresponding prices (in dol-

lars).

Source: Nambe Mills.

a. Find the best-fitting linear model for price as a

function of grinding and polishing time.

b. According to your model, what should be the

price of a piece of Nambeware if its grinding and

polishing time is 53.18 minutes?

c. Interpret the slope of your model in terms of the

situation.

13. (Chapter Opener Revisited) In the discussion that

introduced this chapter, we looked at a plot that dis-

played the relationship between the duration of an

Old Faithful eruption and the time to its next eruption.

The plot was based on data from January, 2003, which

is displayed in the following table.

109.38

260

16.41

39

23.77

49.50

13.25

31

44.25

89

64.30

165

34.16

75

Time

Price

x

f(x)

�3

�7.2

0

�3

1.5

�0.9

4

2.6

6

5.4

−2 −1 1 2 3 4

1

2

3

4

DAVIMC02_0131450352.qxd  10/19/06  12:31 AM  Page 95 REVISED PAGES



96 CHAPTER 2 Linear Functions and Models

a. It is known that the time to the next Old Faithful

eruption can be predicted using the duration of an

eruption and an appropriate regression model.

Use the table of values to find the best-fitting lin-

ear model T(d) that gives the time (in minutes) to

the next eruption based on the duration (in sec-

onds) of an eruption.

b. Use your model to predict the time to the next

eruption if an eruption lasted 90 seconds.

f. Find the SSEs for your model and for the

Logbook predictions. Based on the SSEs, which

predictions are better? (Note that our model is

based on a very small set of very linear data.)

c. Use your model to predict the time to the next

eruption if an eruption lasts 260 seconds.

d. Complete the following table by finding the times

to next eruption predicted by your linear model in

part (a) and the corresponding errors. (Round

your predicted values to the nearest whole

minute.)

110

66

147

73

174

81

231

92

243

96

273

101

Duration d (seconds)

Times to Next Eruption T (minutes)

110

66

147

73

174

81

231

92

243

96

273

101

Duration (seconds)

Times to Next Eruption (minutes)

Predicted Value T(d) (minutes)

Error (Actual�Predicted)

Duration (seconds)

Times to Next Eruption (minutes)

Time Predicted in OFVC Logbook (minutes)

Error (Actual�Predicted)

e. According to Ralph Taylor, who has logged and

analyzed much of the Old Faithful data, in recent

years there have been more eruptions lasting

longer than 90 seconds and fewer eruptions of

shorter duration. Therefore, most predictions are

made using two different regression models—one

for longer durations and one for shorter durations.

(Adjustments are made for the very few durations

that fall in between.) The following table gives the

time to next eruption predicted in the Old Faithful

Visitor Center (OFVC) Logbook for each of our

data points. Complete the table to find the errors

for the Logbook predictions.

110

66

65

147

73

65

174

81

84

231

92

94

243

96

94

273

101

94

INVESTIGATION Modeling Used Car Prices

In this chapter, you have learned that a linear function is

one whose rate of change is constant. As a car ages, its

market value decreases, frequently at a rate that is

approximately constant. This activity will allow you to

create a linear model to describe the price of a used car

as a function of its age.

Select a particular make and model of a car or truck

that has been in production for at least 10 years (such as

a Ford Mustang, a Chevy Silverado, or a Toyota Camry).

Then collect prices from a newspaper or the Internet for

10 different vehicles from at least five different model

years. Try to choose vehicles that are similar in terms of
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features; for example, if you choose a Camry, select only

SE models or only LE models. Be sure to save a copy of

your data from the original source, and attach it to your

report.

Once you have your prices:

1. Make a table showing the age of the vehicle in

years as input and the price in dollars as output.

(A vehicle of the current year is 0 years old, last

year’s model is 1 year old, etc.)

2. Find the best-fitting linear model P(t) that gives

the price of a used vehicle of your model as a

function of its age.

CHAPTER 2 Review 97

3. Find the SSE and the average error for your

model.

4. Make a graph showing the scatter plot of your

data, along with the regression line. Based on your

graph, is a linear function an appropriate model

for your data?

5. Explain what the slope and y-intercept of the line

mean in terms of the age and price of your vehicle.

6. Based on your model, how much should a 6-year-

old vehicle of your make and model cost?

7. Based on your model, how old is a car of your

make and model when it becomes “free”?
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3
Some time during the last day, you probably “visited” the

Internet. You may have checked your e-mail, participated in a chat room, or

downloaded a new ring tone for your cell phone, activities that were unavailable

just a few years ago. During the 1990s the use of the Internet exploded, so that

today millions of people around the world use it each day for school, work, and

entertainment.

The chart in Fig. 3.0.1

shows a plot of data por-

traying the growth of the

Internet from 1993 to 1999.

The Internet Software

Consortium considered a

“host” to be a computer sys-

tem connected directly to

the Internet. We can see

NATURAL GROWTH
MODELS

3.1 PERCENTAGE GROWTH AND INTEREST

3.2 PERCENTAGE DECREASE AND 
HALF-LIFE

3.3 NATURAL GROWTH AND DECLINE 
IN THE WORLD

3.4 FITTING NATURAL GROWTH MODELS 
TO DATA

C H A P T E R

FIGURE 3.0.1 Internet growth

from 1993 to 1999.

Source: Internet Software
Consortium Internet Domain

Survey.
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from the increasing steepness of the graph that the growth of the Internet was

rather slow at first, but then began to increase more rapidly. Because this function

is not increasing at a constant rate, it is not a linear function. To a mathematician,

a graph with this shape suggests a quite different kind of function, one that grows

at the same percentage rate each year.

In this chapter, we study functions that model such growth and illustrate

their applicability to a wide variety of real-world situations.

3.1 PERCENTAGE GROWTH AND INTEREST
Suppose that $1000 is invested on July 1, 2000, in a savings account that pays 10%

annual interest. This means that, on each subsequent July 1, the amount in the

account is increased by 10%—that is, “interest” equal to 1/10 of the current

amount is added to the account. Thus, (1/10)($1000) � $100 in interest is added

to the account on July 1, 2001, so the new amount then is $1000 � $100 � $1100.

Next, (1/10)($1100) � $110 in interest is added to the account on July 1, 2002, so

the new amount then is $1100 � $110 � $1210. The following table shows the

resulting amount on each July 1 (after the year’s interest has been added) for the

first 10 years. The third column of the table shows the change in the amount from

the previous year. You should use your calculator to verify all the entries in this

table. That is, add 1/10 of each year’s amount to that amount to calculate the sub-

sequent year’s amount.

DATE AMOUNT CHANGE

July 1, 2000 $1,000.00

July 1, 2001 $1,100.00 $ 100.00

July 1, 2002 $1,210.00 $ 110.00

July 1, 2003 $1,331.00 $ 121.00

July 1, 2004 $1,464.10 $ 133.10

July 1, 2005 $1,610.51 $ 146.41

July 1, 2006 $1,771.56 $ 161.05

July 1, 2007 $1,948.72 $ 177.16

July 1, 2008 $2,143.59 $ 194.87

July 1, 2009 $2,357.95 $ 214.36

July 1, 2010 $2,593.74 $ 235.79

Observe that that the annual change increases from each year to the next.

Indeed, the change in each of the last 2 years is over twice the change in the

first year. Hence it is not the amount of the change that is constant from year

to year, but rather the percentage of change that remains constant. Thus growth

at a constant percentage rate—10% annually in this case—is quite different from

a constant rate of change.
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100 CHAPTER 3 Natural Growth Models

Many changing quantities, ranging from bank accounts to animal popula-

tions, are very different in appearance but very similar in the way they change. In

equal units of time, such as during any 1-year period, from one year to the next,

they grow by the same percentage. In this section we review the language that is

needed to measure and analyze the growth of such quantities.

Percentage Increase
For a brief review of percentages, recall first that 1 cent is 1/100 of a dollar. This

helps us to remember that the word percent means “one hundredth.” Thus 1 per-
cent of something is 1/100 of it. Then p percent of it is p times 1 percent of it,

which is the same as p/100 of it. So, if we’re talking about a quantity denoted by

A, then

(1)

We often use the abbreviation % for the word “percent.” Thus the symbol %
simply stands for the number 1/100. That is,

(2)

So, whenever we see the symbol % we can replace it with the number 0.01 if we

wish. For instance,

This fact is all we need to clear up the air of mystery that surrounds percentages

among some people.

The phrase “percent of” simply means “% times.” Hence

(3)

For those who remember (3), there really is no mystery to percentages. It may

help to regard the symbol % as a combination of the division symbol / and the

two zeroes in the quantity 1/100 in (2).

p% of A = p *

1

100
* A = p * 0.01 * A.

7% = 7 * % = 7 * 0.01 = 0.07.

% =

1

100
= 0.01.

p percent of A =

p

100
* A,

Find each of the following:

a. 6% of 100

b. 15% of 270

c. 7.6% of 385

S O L U T I O N

a. 6% of 100 = 6 *
1

100 * 100 = 0.06 * 100 = 6

E X A M P L E  1 Using Percentages
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b.

c.

(Whenever you see such calculations here, you should use your calculator to

check them to make sure you know what’s going on.)

We can simply replace the word percent with the symbol % � 0.01 when

“translating” an appropriate sentence into a mathematical equation. The follow-

ing table includes some additional pairs of corresponding words and symbols that

should be familiar:

7.6% of 385 = 7.6 *
1

100 * 385 = 0.076 * 385 = 29.26

15% of 270 = 15 *
1

100 * 270 = 0.15 * 270 = 40.5

SECTION 3.1 Percentage Growth and Interest 101

WORD SYMBOL

percent %

of (“times”) ×

and (“plus”) �

is (“equals”) �

Often we need to find the result of increasing some quantity by a given per-

centage. To increase A by p% means to increase A by adding p% of A to A itself.

Suppose a shirt is priced at $26.50. If this price is increased by 6%, find the new

price of the shirt.

S O L U T I O N

so the new price of the shirt is $28.09.

Interest and Constant Percentage Growth
We now begin our study of quantities that grow by equal percentages during

equal time intervals. A typical such quantity is the amount A invested in a sav-

ings account that draws interest that is compounded annually. If the annual inter-
est rate is p%, this means that at the end of each year, p% of the amount at the

beginning of the year is added to the account as “interest.” That is, the amount in
the account at the beginning of the year is increased by p% at the end of the year.
Let’s consider a specific example as a way of developing an appropriate function

rule for the amount in the account after t years.

Suppose that $500 is invested in an account paying 6% interest, compounded

annually. We would like to determine the amount A in the account after any

given number of years t, that is, A(t). For the sake of having a specific number to

26.50 + (0.06)(26.50) = 26.50 + 1.59 = 28.09,

E X A M P L E  2 Percentage Increase
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102 CHAPTER 3 Natural Growth Models

talk about, let’s suppose we are interested in A(20), the amount in the account

after 20 years.

We can proceed as we did in Example 2, and we find the following:

• After 1 year, we have

(4)

• After 2 years, we have

(5)

• After 3 years we have (rounded to the nearest cent)

(6)

We could continue on in this manner all the way to 20 years, but this is just not

very efficient. Let’s look carefully at what we have done.

In (4), we calculated that the amount A in the account in dollars after 1 year

is A(1) � $500 � 0.06($500). If we factor that expression, we see that

Similarly, factoring (5), we obtain A(2) � $530 (1 � 0.06) � $530($1.06). But

$530 is A(1), so we can replace $530 with $500(1.06) to get

Again, factoring (6), we find A(3) � $561.80(1 � 0.06) � $561.80(1.06). Since

$561.80 is A(2),

Do you see the pattern that is emerging?

• After 1 year, the amount in the account is A(1) � 500(1.06) = 500(1.06)1

dollars.

• After 2 years, the amount in the account is A(2) � 500(1.06)2 dollars.

• After 3 years, the amount in the account is A(3) � [500(1.06)](1.06) �
500(1.06)3 dollars.

You can probably now guess that the answer to our original question, “How

much is in this account after 20 years?” is found by calculating A(20) �
500(1.06)20. That is, the exponent on the multiplier 1.06 matches the number of

years the money has been in the account. We see in Fig. 3.1.1 the calculator com-

putation of this value, $1603.57.

A(3) = [$500(1.06)2](1.06) = $500(1.06)3.

A(2) = [$500(1.06)](1.06) = $500(1.06)2.

A(1) = $500(1 + 0.06) = $500(1.06).

A(3) = $561.80 + 0.06($561.80) = $561.80 + $33.71 = $595.51.

A(2) = $530 + 0.06($530) = $530 + $31.80 = $561.80.

A(1) = $500 + 0.06($500) = $500 + $30 = $530.

FIGURE 3.1.1 Calculating 500(1.06)20.
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Therefore, after t years, the amount in this account will be A(t) � 500(1.06)t

dollars. In particular, we see that the amount A is a function of the number of

years t that the money remains in the account.

Because there is nothing special about the amount we start with or the rate

of interest we are earning, we can find a similar function to represent any such

annual compound interest situation.

If A0 denotes the amount originally deposited in the account and the inter-

est rate, written in decimal form, is r, then the amount in the account after the

first year is given by

During the second year the amount A(1) is itself multiplied by (1 � r), so at the

end of 2 years the amount in the account is

During the third year the amount A(2) is multiplied by (1 � r), so at the end of

3 years the amount in the account is

Again we see the same pattern as before. In each case, the final exponent on the

right equals the input value (time in years) on the left.

Therefore, when A0 dollars are invested in an account with an annual com-

pound interest rate whose decimal equivalent is r, then the amount in the account

at the end of t years is

(7)

This function rule is frequently written as A(t) � P(1 � r)t because the initial

amount A0 is referred to as the principal in investment situations.

A(t) = A0(1 + r)t dollars.

A(3) = A(2)(1 + r) = [A0(1 + r)2](1 + r) = A0(1 + r)3.

A(2) = A(1)(1 + r) = [A0(1 + r)](1 + r) = A0(1 + r)2.

A(1) = A0 + A0r = A0(1 + r).
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Suppose you deposit $1000 in a savings account that draws 5% interest com-

pounded annually. How long will you have to wait until you have $1300 in the

account?

S O L U T I O N

If we substitute P � 1000 and r � 0.05 in (7), we get the function 

A(t) � 1000(1.05)t, which gives the amount in the account after t years. In order

to answer this “Here’s the output, what’s the input?” question, we can calculate

this amount with the successive values n � 1, 2, 3, until our money reaches

$1300. An easy way to do this is to store our function in Y1 and then look at the

table of function values for TblStart = 0 and �Tbl = 1. The calculator screen in

Fig. 3.1.2 shows the resulting table.

We see that we had “almost” reached $1300 after 5 years, but it required 6

years to actually exceed our goal of $1300. So the answer to the question asked

is 6 years. (But if we had asked after what year is the amount in the account

closest to $1300, the answer would have been 5 years.)

Á

E X A M P L E  3 Annual Compound Interest

FIGURE 3.1.2 Table of function

values for A(t) � 1000(1.05)t.
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104 CHAPTER 3 Natural Growth Models

Natural Growth Models
The U.S. Constitution as adopted in 1783 decrees that a census (or count) of the

people shall be conducted every 10 years.The third column of the following table

records the results from the first six census counts in the decade years 1790, 1800,

1810, 1820, 1830, and 1840. The fourth column shows the results of an annual

growth rate of 3%, starting with the initial 1790 population P0 � 3.9 million. Note

the close correspondence, in these early decades of our nation’s history, between

the actual population figures and those predicted by the “3% mathematical

model” P(t) � 3.9 � (1.03)t.

The world is full of quantities that, like savings accounts and the early U.S.

population, appear to grow at a constant percentage rate per unit of time. For

instance, this is so common for many other populations—of people, animals,

insects, bacteria—that such growth is called natural growth. If a population starts

at time t � 0 with initial population numbering P0 and thereafter grows “natu-

rally” at an annual rate of r, then the number of individuals in the population

after t years is given by

(8)

Observe that this formula is the same as Equation (7), except that here

we write P for population instead of A for amount. Regardless of the letters

we use as variables, a function in this form denotes a quantity growing at a

constant percentage rate. A graphing calculator typically requires that X
(rather than T) be used for the independent variable in its Y= functions menu.

But you should realize that the formula defines exactly the

same function as (8) because it says to do precisely the same thing with x or

t (whichever letter we use to denote the independent variable). The inde-

pendent variable by any other name is (like a rose?) still the independent

variable.

We will call the percentage form of r in either (7) or (8) the annual growth
rate because this value indicates the percentage by which the quantity is growing

each year.We will call the value 1 � r the annual growth factor because this is the

value by which our amount is multiplied each year.

P(x) = P0(1 + r)x

P(t) = P0(1 + r)t.

CENSUS 
t POPULATION P(t) = 3.9 × (1.03)t

(YEARS) YEAR (MILLIONS) (ROUNDED, MILLIONS)

0 1790 3.9 3.9

10 1800 5.3 5.2

20 1810 7.2 7.0

30 1820 9.6 9.5

40 1830 12.9 12.7

50 1840 17.1 17.1

DAVIMC03_0131450352.qxd  10/19/06  12:56 AM  Page 104 REVISED PAGES



Let’s assume for the sake of discussion that each calculated population

occurs at the midpoint (July 1) of the corresponding year. The 109 years

after July 1, 1790, would be July 1, 1899 (because 1790 � 109 � 1899). The

population of 100 million would then occur about 0.8 year later, early in the

year 1900.

A prediction based on an assumed formula is one thing, and actual reality

may be another. The results in Example 4 could have been calculated (per-

haps using a slide rule instead of a modern calculator) early in the nineteenth

century, as soon as enough census data were available to suggest a 3% annual

growth rate. But how could one then have been sure that the U.S. population

would continue to grow at this same 3% constant annual rate? Did it? One

should never merely accept mathematical predictions without wondering

about the possibility of a reality check. We cannot be sure of the validity of

a mathematical model until we have checked its predictions against real-world

facts.

SECTION 3.1 Percentage Growth and Interest 105

Suppose the U.S. population, starting at 3.9 million in 1790, had continued indef-

initely to grow at a constant 3% annual rate.

a. Use your model to predict the U.S. population in 1890.

b. According to your model, when would the country’s population have

reached 100 million?

S O L U T I O N

a. Using the model with t � 0 in 1790, the year 1890 is

t � 100, so million people (rounded to

the nearest million).

b. Here we want to find the value of t such that 

million. In Fig. 3.1.3 we plotted the graphs Y1 = 3.9*1.03^X and Y2 =
100 in the viewing window 0 � x, y � 150 and then used the calcula-

tor’s intersection-finding facility to determine the indicated coordinates

(109.8, 100) of the point of intersection. Thus it would take about 109.8

years (starting in 1790) for the U.S. population to reach 100 million.

P(t) = 3.9 * (1.03)t
= 100

P(100) = 3.9 * (1.03)100
= 75

P(t) = 3.9 * (1.03)t

E X A M P L E  4 Using a Natural Growth Model

FIGURE 3.1.3 when

t = 109.8

P = 100y

x
0 150

0

150
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106 CHAPTER 3 Natural Growth Models

In this case, sitting here more than a century later, we know how it turned

out. Figure 3.1.4 exhibits a spreadsheet (available at this book’s web site as

USpop.xls) showing both the population predicted by the “3% mathematical

model” and the actual population recorded in U.S. census data at 10-year inter-

vals through the year 1900. In the graph, predicted populations are plotted as a

smooth curve and the actual census populations are plotted as square dots.

FIGURE 3.1.4 Predicted and

actual U.S. populations for

1790-1900.

The revenue for the state of Georgia from 1990 to 2001 can be modeled approx-

imately by the natural growth function where t is years after

1990 and R(t) is measured in billions of dollars.

(Source for data: Atlanta Journal-Constitution.)

a. According to this model, what was the State of Georgia’s revenue in

1990?

b. At what annual rate was Georgia’s revenue growing over this time

period?

c. Use the model to predict the year in which Georgia’s revenue reaches

$10 billion.

d. Use the model to predict Georgia’s revenue in the year 2010.

S O L U T I O N

a. In a natural growth model , represents the initial

amount. So our initial amount, 6.8 (billion dollars) represents the rev-

enue for Georgia in 1990.

b. Similarly, (1 � r) � 1.068 is our growth factor. Therefore, the growth

rate r � 1.068 � 1 � 0.068. Changing this decimal form to percent form

gives us an annual growth rate of 6.8%.

A0A(t) = A0(1 + r)t

R(t) = 6.8(1.068)t,

E X A M P L E  5 Interpreting a Natural Growth Model

We observe that the assumed 3% rate of growth appears to have been main-

tained initially—perhaps through the first half of the nineteenth century—but the

actual U.S. population growth seems to have slowed appreciably during the sec-

ond half of the century. Indeed, in the year 1900 the actual population of the

United States was about 76 million rather than the 100 million that is predicted

by the model P(t) = 3.9 * (1.03)t.
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c. With stored in Y1, 10 stored in Y2, and a viewing window of 

�1 � x, y � 20, the intersect command on the calculator gives the

intersection point shown in Fig. 3.1.5.

A(t)

SECTION 3.1 Percentage Growth and Interest 107

FIGURE 3.1.5 R � 10 when t � 5.86.

FIGURE 3.1.6 When t � 20, R � 25.35.

Assuming, as we usually do, that the years referred to begin on January 

1, 5.86 years takes us to the latter part of 1995. So, the revenue for the state

of Georgia is predicted to have reached $10 billion in 1995.

d. Since is already stored in Y1 and our calculator window is (just)

large enough for the input we are interested in (year 2010, t � 20), we

can use the value command to evaluate .A(20)

A(t)

As Fig. 3.1.6 indicates, our model predicts a 2010 Georgia revenue of

$23.35 billion.

Iteration
Modern calculators and computers provide especially simple ways to carry out

repetitive calculations like the one in Example 3 (in which $1000 is deposited in

a savings account that draws 5% interest compounded annually). Indeed, this is

exactly what modern computers were invented (in the 1940s and 1950s) to do.

Suppose we enter

in our calculator to record the initial deposit A, and then enter the command

A*(1 + 0.05) A

to calculate and store (as the value of A) the amount in the account after 1 year

if 5% interest is compounded annually.

Now comes the punch line—if we simply press the ENTER key again, the last

command line is executed again! That is, the value 1050.00 currently stored as A

:

1000 : A
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is itself multiplied by the growth factor 1.05, and the result stored as the new

value of A. Having started the process, each press of the ENTER key carries out

the computation for another year and stores the result. So, in order to find

out how much is in the account after 6 years, we need only type the line 

A*(1+0.05) A once, and then press the ENTER key five times in succession

(keeping careful count of how many times we’ve entered the command). Figure

3.1.7 shows the result, and provides the same conclusion as in Example 3.

This is our first example of iteration—doing the same thing again and again.

Specifically, the successive results A0, A1, A2, A3, . . . are calculated iteratively
when the same formula is used repeatedly to calculate each new result from the

preceding one. In Example 3, this iterative formula is the formula

(9)

which says that each amount is multiplied by (1 � 0.05) to get the next amount.

Doing this over and over is called iterating the formula. So Fig. 3.1.7 shows the

result of iterating (9) six times, starting with A0 � 1000.

In this situation iteration provides an alternate strategy for calculating yearly

amounts in annual compound interest problems. Iteration has a long history in

mathematics; iterative methods were sometimes the only ones available to solve

a problem and were used long before calculators and computers were available.

When we repeat the iteration of Fig. 3.1.7, we “plow” the output back into the

right-hand side of the equation Anew � Aold(1 � 0.05). Indeed, the word iterate
apparently stems from the Latin verb iterare with the meaning “to plow again.”

The concept of iteration is as old as the word. Two thousand years ago the

Babylonians introduced the iteration

(10)

which can be used to calculate more and more accurate approximations to the

square root of a given positive number A. One starts with an initial guess x0

and then uses (10) to calculate the successive iterates x1, x2, x3, . . . . It happens

that the initial guess x0 need not be especially accurate—any nonzero guess will

do for a start. For instance, x0 � A/2 is a convenient starting point, and then the

Babylonian square algorithm can be implemented with the calculator commands

A ⁄2 X

(1 ⁄2)(X + A ⁄ X) X

to approximate the square root of the number A � 2. The first two commands

here initialize the variables A and X, and the last one is the iterative command.

:
:

2 : A

1A

xn+1 =

1

2
axn +

A
xn
b ,

An+1 = An(1 + 0.05),

:

FIGURE 3.1.7 Example 3 by iteration.
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The results shown in Fig. 3.1.8 indicate that the six-place value is

reached quickly. With any positive number A and any initial guess x0 the succes-

sive approximations generated by the iteration in (10) eventually “stabilize” in

this way, agreeing to the number of decimal places displayed. In Exercises 28 and

29, you can explore this historic method for calculating square roots.

Input-Output Processes
The iterative formula in (9) or (10) can be visualized as an input-output process
as illustrated in Fig. 3.1.9. We think of a “black box” with a hidden mechanism

inside that performs the computation described by the iterative formula.

Specifically, when an input A � Aold is fed into the box, the iteration is performed

and the output Anew is produced. We often find it useful to interpret a compli-

cated iteration as a “simple” input-output process—simple in that for many pur-

poses we need not think explicitly of what is happening inside the box. It may

only be important that, whatever the input, the same process always produces the

corresponding output.

22 L 1.414214
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FIGURE 3.1.8 Approximating the square

root of 2.

FIGURE 3.1.9 Iteration (9) as an

input-output process.

Anew

Aold

Anew = Aold (1+ 0.05)

Building Your Skills
In Exercises 1–4, find each number.

1. 5% of 200

2. 3.5% of 50

3. 2.25% of 18

4. 4.19% of 58.35

In Exercises 5–8, calculate the new price (rounded off to the nearest cent) if

5. The old price of $110 is increased by 13%.

6. The old price of $1720 is increased by 4.2%.

7. The old price of $69.50 is increased by 3.9%.

8. The old price of $250 is increased by 8.25%.

9. Explain why the following method works to calculate the amount to be paid in

a restaurant if you wish to add a 15% tip to the original bill amount A. First you

write down the amount A.Then you move the decimal point in A one unit to the

left and write this amount under A. Finally divide this second amount by 2 and

write this amount down also. The total amount (including tip) to be paid is then

the sum of the three amounts you have written down.

3.1 Exercises
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10. The town of Bridgeport had 20 thousand people in the year 2000 and was grow-

ing at a rate of 4% per year. Find a natural growth function P(t) that gives the

population of Bridgeport as a function of t, years after 2000.

11. The town of Jackson had 130 thousand people in the year 2000 and was growing

at a rate of 6.3% per year. Find a natural growth function P(t) that gives the pop-

ulation of Jackson as a function of t, years after 2000.

12. A small company currently has total sales of $80,000 and projects that its sales will

grow at a rate of 2% per year.What are the company’s projected sales in 10 years?

13. A self-employed tax preparer currently has an advertising budget of $500 and

plans to increase this budget by 1.5% per year. In how many years will her adver-

tising budget rise to $600?

Applying Your Skills
14. A 1996 presidential primary candidate proposed a “flat tax” under which a fam-

ily of four would pay as its federal income tax each year an amount equal to 17%

of the portion of its taxable income in excess of $36,000. Suppose that a family’s

1996 taxable income was $50,000.

a. Under this proposal, how much would be owed as income tax?

b. Suppose that this family’s actual federal income tax bill for 1996 was $6015

plus 28% of the amount of their taxable income over $40,100. How much

income tax did the family owe?

c. Under which method of assessing taxes would the family pay less tax?

15. Repeat Exercise 14 for a family whose taxable income was $200,000.

16. Suppose that $400 is deposited in an account paying 6% interest compounded

annually.

a. Find a natural growth function A(t) that gives the amount in the account

after t years.

b. How much is in the account after 5 years?

c. How long will it take until the account has $1000? Give the year after

which the amount is at least $1000.

17. Suppose that $2000 is deposited in an account paying 3.45% interest com-

pounded annually.

a. Find a natural growth function A(t) that gives the amount in the account

after t years.

b. How much is in the account after 8 years?

c. How long will it take until the account has $3200? Give the year after

which the amount is at least $3200.

18. How long (rounded off accurate to the nearest year) does it take to triple an ini-

tial deposit of $1000 if the annual interest rate is 8%?

19. Suppose that $1000 is deposited in an account.

a. Complete column B to show how long it will take until the initial deposit is

doubled for various interest rates. (Give the year after which the amount in

the account is closest to $2000.)

b. Complete column C by finding the product of the values in column A and

column B for each row.
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COLUMN B  
COLUMN A NUMBER OF YEARS COLUMN C

% INTEREST RATE TO DOUBLE COLUMN A � COLUMN B

3

4

6

8

9

c. Based on your results, what might the rule of 72 say?

20. If you invest $1000 at 12% annual interest, show that you will have $1973.82

after 6 years and $2210.68 after 7 years. What initial deposit (accurate to the

nearest cent) would lead to precisely $2000 (accurate to the nearest dollar) after

6 years? To answer this question, you will need to try several different initial val-

ues, finding successively better estimates of the needed initial deposit; obviously

you need to start with a bit more than $1000.

21. The population of Jacksonville, Florida, was 635 thousand in 1990 and grew at

an average annual rate of 1.49% throughout the 1990s. Assuming that this rate

of growth continues,

a. Find a natural growth function P(t) that gives the population of

Jacksonville as a function of t, years after 1990.

b. Use your function model to predict the year in which the population of

Jacksonville will grow to 800 thousand.

c. Use your function model to predict the population of Jacksonville in 2003.

How does your prediction compare to the actual 2003 population of

733,781?

22. The population of Lincoln, Nebraska, was 192 thousand in 1990 and grew at an

average annual rate of 1.64% throughout the 1990s. Assuming that this rate of

growth continues,

a. Find a natural growth function P(t) that gives the population of

Jacksonville as a function of t, years after 1990.

b. Use your function model to predict the population of Lincoln in 2003. How

does your prediction compare to the actual 2003 population of 235,594?

c. Use your function model to predict the year in which the population of

Lincoln will grow to 350,000.

23. The population of Corpus Christi, Texas, was 257 thousand in 1990 and grew at

an average annual rate of 0.75 % throughout the 1990s. Assuming that this rate

of growth continues,

a. Find a natural growth function P(t) that gives the population of Corpus

Christi as a function of t, years after 1990.

b. Use your function model to predict the population of Corpus Christi in

2003. How does your prediction compare to the actual 2003 population of

279,208?

c. Use your function model to predict the year in which the population of

Corpus Christi will grow to 400 thousand.

SECTION 3.1 Percentage Growth and Interest 111
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24. Data from the St. Louis Post-Dispatch indicate that the cost in dollars of a gal-

lon of gasoline from 1966 to 2006 can be modeled approximately by the natural

growth function G(t) � 0.32(1.055)t, where t is years after 1966.

a. According to this model, what was the price of a gallon of gas in 1966?

b. At what annual percentage rate was the price of a gallon of gas growing

over this time period?

c. Use the model to predict the price of a gallon of gas in 2016.

d. Use the model to predict the year in which the price of a gallon rises to $5.

25. The number of people (in millions) enrolled in health maintenance organiza-

tions (HMOs) for the 20 years following 1976 can be given approximately by the

natural growth model P(t) � 6.0(1.12)t, where t is years after 1976. (Model based

on data from World Almanac and Book of Facts 2005.)

a. According to this model, how many people were enrolled in HMOs in

1976?

b. At what annual percentage rate was the number of people enrolled in

HMOs growing over this time period?

c. Use the model to predict the number of people enrolled in HMOs in 1999.

How does your prediction compare to 81.3 million, the actual number of

people enrolled in HMOs in 1999?

d. Use the model to predict the number of people enrolled in HMOs in 2000.

How does your prediction compare to 80.9 million, the actual number of

people enrolled in HMOs in 2000?

e. How do you explain the discrepancy in part (d)?

26. According to the Atlanta Journal-Constitution, the market research firm NPD

Group “reported a dramatic 53% increase in sales of suits, dress pants, sport

coats, and jackets to young men” in 2005 over 2004 sales of $645 million dollars.

a. Assuming that this trend continues, find a natural growth function S(t) that

gives the sales as a function of t, years after 2004.

b. Based on your model, what were the 2005 sales of suits, dress pants, sport

coats, and jackets to young men?

c. Use your model to predict the year in which sales will reach $1 billion? ($1

billion is $1000 million.)

27. Data from USA Today indicate that in 1994, Brazil’s exports were valued at

$46.4 billion and increased at an average annual rate of 8.51% over the next 10

years. (“Exports” refers to goods and services, and are measured in constant

2000 U.S. dollars.)

a. Assuming that this trend continues, find a natural growth function E(t) that

gives the value of Brazil’s exports as a function of t, years after 1994.

b. Based on your model, what was the value of Brazil’s exports in 2004?

c. Use your model to predict the year in which Brazil’s exports will double.

28. Apply the Babylonian square root algorithm to approximate the (principal)

square root of 19.Try different initial guesses and discuss how the accuracy of the

initial guess affects the number of iterations required to get six-place accuracy.

29. What happens with the Babylonian algorithm if a negative rather than a posi-

tive initial guess is used? 
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SECTION 3.2 Percentage Decrease and Half-Life 113

3.2 PERCENTAGE DECREASE 
AND HALF-LIFE

In Section 3.1, we considered natural growth functions that describe quantities

that increase at a constant annual percentage rate. Natural growth functions can

also be used to describe quantities that decrease at a constant percentage rate.

(Oddly enough, we refer to this entire class of functions as natural “growth” func-

tions, regardless of whether the quantity involved is growing or declining.)

Percentage Decrease
Some department store “clearance centers” operate on the principle that the price of

an article is reduced by an additional 10% each week it remains in stock. Suppose

that such a clearance center has a pair of shoes initially priced at $150.What function

describes the price of the shoes in terms of the number of weeks it remains in stock?

Recall that to increase A by p% means to increase A by adding p% of A to

A itself. Similarly, to decrease A by p% means to decrease A by subtracting p%
of A from A itself.

So for our clearance shoes:

• After 1 week, the price P would be

(1)

• After 2 weeks, the price P would be

(2)

• After 3 weeks, the price P would be

(3)

We could continue on in this manner, finding the price of the shoes as long as they

remain in stock, or we could use an iterative formula as we did in Section 3.1. But

our goal here is to determine a function that describes the price of the shoes.

In (1), we calculated that the price P of the shoes after 1 week is 

P(1) � $150 � 0.10($150). If we factor that expression, we see that

Similarly, factoring (2), we get P(2) � $135(1 � 0.10) � $135(0.90). But $135 is

P(1), so we can replace $135 with $150(0.90) to get

And again, factoring (3), we find P(3) � $121.50(1 � 0.10) � $121.50(0.90). Since

$121.50 is P(2),

We see the same kind of pattern here that we observed in increasing natural

growth functions. That is,

• after 1 week, the price of the shoes is P(1) � 150(0.90) � 500(0.90)1 dollars;

P(3) = [$150(0.90)2](0.90) = $150(0.90)3.

P(2) = [$150(0.90)](0.90) = $500(0.90)2.

P(1) = $150(1 - 0.10) = $150(0.90).

P(3) = $121.50 - 0.10($121.50) = $109.35.

P(2) = $135 - 0.10($135) = $121.50.

P(1) = $150 - 0.10($150) = $135.
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• after 2 weeks, the price of the shoes is P(2) � 150(0.90)2 dollars;

• after 3 weeks, the price of the shoes is P(3) � 150(0.90)3 dollars.

Therefore we conclude that, after t weeks, the price of the shoes will be 

P(t) � 150(0.90)t dollars.

If you are willing to pay only $80 for the shoes from the clearance center, how

long must you wait to buy them?

S O L U T I O N

Since the price of the shoes is reduced only once a week, a table displaying func-

tion values at the end of each week will indicate when the price of the shoes is

$80 or less. Entering P(t) into Y1 and 80 into Y2, we set TblStart=0 and �Tbl =1.
Figure 3.2.1 shows the resulting table.

E X A M P L E  1 Finding an Input Value

FIGURE 3.2.1 Finding when P(t) … 80.

We see that if the shoes are still in stock after 6 weeks, the price will be $79.72 (to

the nearest cent). Since the price is below $80, you can now happily purchase the

shoes. (Of course, someone else may have been willing to pay more, and may

have bought them earlier!)

Declining Natural Growth Models
In general, suppose that A is a quantity that is decreasing at a constant percent-

age rate r (expressed as a decimal) during each unit of time t. If A0 denotes the

initial value of the quantity, then the amount after the first unit of time (hour, day,

week, year, whatever) is given by

During the second unit of time, the amount A(1) is itself multiplied by (1 � r), so that

During the third unit of time, the amount A(2) is multiplied by (1 � r), so

that

A(3) = A(2)(1 - r) = [A0(1 - r)2](1 - r) = A0(1 - r)3.

A(2) = A(1)(1 - r) = [A0(1 - r)](1 - r) = A0(1 - r)2.

A(1) = A0(1 - r).
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Again we see the same pattern as before. In each case, the final exponent on the

right equals the input value (time) on the left.

Therefore, when a quantity whose initial value is A0 is decreasing during each

unit of time at a rate whose decimal equivalent is r, then the amount of the quan-

tity after t units of time is

(4)A(t) = A0(1 - r)t.

SECTION 3.2 Percentage Decrease and Half-Life 115

Suppose you invested $1200 a dot-com stock in 1990, and rather than growing (as

you expected), the value of that investment decreased at an annual percentage

rate of 4%.

a. Find a natural growth function that describes the value of the invest-

ment as a function of t, the number of years after 1990.

b. What was the value of your investment in 1995?

c. If you have decided to sell the stock when its value declines to $500, in

what month and year will you sell the stock?

S O L U T I O N

a. If we substitute A0 � $1200 and r � 0.04 in (4), we get the natural growth

function A(t) � $1200(0.96)t giving the value of the investment—that is,

the amount in the account after t years—as a function of t.
b. In order to answer this “Here’s the input, what’s the output?” question,

we need to evaluate our function when t � 5. Thus A(5) � $1200(0.96)5

� $978.45 (correct to the nearest cent).

c. In this case, we are given the output ($500) and asked to find the

appropriate input (time). Letting Y1=1200(0.96)^X and Y2=500, and

using the window indicated in Fig. 3.2.2, we find that the intersect
command gives intersection point shown in Fig. 3.2.3.

E X A M P L E  2 Finding a Declining Natural Growth Function

FIGURE 3.2.2 The window for solv-

ing 1200(0.98)^X = 500.

FIGURE 3.2.3 A � 500 when 

t � 21.446.

Thus, you need to sell the stock after 21.446 years. Since (0.446

year)(12 months/year) � 5.352 months, we have completed 5 months and

are in the sixth; you need to sell the stock in June 2011.
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116 CHAPTER 3 Natural Growth Models

If you prefer to learn only one formula for natural growth functions, you

should remember the one from Section 3.1, A(t) � A0(1 � r)t. When you need to

create a decreasing natural growth function, you can think of its growth rate as

negative (because adding the opposite of a number is equivalent to subtracting

the number itself).

We saw in Chapter 2 that once we have “built” one or more functions, we can

answer many different types of input-output questions, such as,

• What is the value of a function for a given input?

• For what input does a function have a given output?

• For what input is the function’s value double its initial value?

• For what input do two functions have the same output?

We can also answer such questions for the natural growth functions we cre-

ated in this chapter (and have done so in Examples 1 and 2). Indeed, we will be

doing this for all the different types of functions we create throughout this book.

This is the key to understanding the “big idea” of mathematical modeling: the

questions do not change—it is only the functions that model the situation that are

different.

In 2000, the population of Baltimore, Maryland, was 651 thousand and was

declining at an average annual rate of 1.14%.At the same time, the population of

Fort Worth,Texas, was 541 thousand and was increasing at an average annual rate

of 2.64%. In what month and year will the populations of Baltimore and Fort

Worth be equal?

S O L U T I O N

Our first task is to find a natural growth model for the population of each city.

Since Baltimore’s initial population is 651 thousand and its annual rate of decline

is 0.0114, the population is given by

where t � 0 in 2000 and B(t) is given in thousands.

Fort Worth’s initial population is 541 thousand and its annual rate of increase

is 0.0264; its population is given by

where t � 0 in 2000 and B(t) is given in thousands.

The question we need to answer then is “What value of t makes B(t) � F(t)?”

With B(t) stored in Y1 and F(t) stored in Y2, and using the window �1 � x � 15,

�10 � y � 800, we use the intersect feature of the calculator. Figure 3.2.4 shows

the result.

We see (as we expect) one increasing function (the population of Fort

Worth) and one decreasing function (the population of Baltimore). You should

always verify that the graph your calculator displays reflects what you know

about the function or functions you are graphing. It is easy to make an error in

F(t) = 541(1 + .0264)t
= 541(1.0264)t,

B(t) = 651(1 - .0114)t
= 651(0.9886)t,

E X A M P L E  3 When Are Two Populations Equal?
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entering a function into the calculator—if something looks wrong to you, check

it before reporting an answer.

In this case, however, all is fine, and the intersection point (4.933, 615.204)

tells us that 4.933 years after January 1, 2000, the populations of Baltimore and

Fort Worth are equal. Since 0.933 � 12 is 11.196, the populations are equal in

December 2004.

The intersection point also tells us the answer to a question we didn’t ask.

That is, what are the populations of the cities when they are equal? The second

coordinate gives us these equal populations. So our models predict that on some

day in December 2004 Baltimore and Fort Worth will each have a population of

615.204 thousand, or 615,204 people.

Half-Life
When discussing an increasing natural growth function, it makes sense to ask

when the initial amount doubles. With a decreasing natural growth function, the

quantity is getting smaller, so the amount will never be double the initial amount.

However, we are frequently interested in answering a similar question—when

does the quantity decline to half the initial amount?

For a quantity described by a decreasing natural growth function, the length

of time it takes for the quantity to decrease to half its initial value is called its

half-life. While we do not typically talk about the half-life of an investment gone

bad or a city’s population, this idea is very common in discussing the decay of

radioactive elements or the metabolism of drugs in the human body.

SECTION 3.2 Percentage Decrease and Half-Life 117

FIGURE 3.2.4 when t = 4.933.B(t) = F(t)

A laboratory has a 50-gram sample of bismuth-210, a radioactive element that

decays at a daily rate of approximately 12.94%.

a. What is the half-life of bismuth-210?

b. How long will it take until only 2 grams of the sample remain?

S O L U T I O N

a. The natural growth function describing the number of grams in the

sample is . To determine the half-life, we need to fig-

ure out when B(t) � 25. We will again use the intersect command from

the calculator’s CALC menu, with B(t) stored in Y1 and 25 stored in

Y2. In an appropriate window, the calculator displays the intersection

B(t) = 50(0.8706)t

E X A M P L E  4 Finding Half-Life
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118 CHAPTER 3 Natural Growth Models

point shown in Fig. 3.2.5. (For many students, the most difficult part of

these problems is finding an appropriate window. We leave you to dis-

cover a “good” window here on your own, as practice for future situa-

tions. Just keep trying windows until you find one where the intersec-

tion of the two graphs shows clearly.) 

The intersection point indicates that the half-life of bismuth-10 is

(correct to the nearest day) 5 days.

FIGURE 3.2.5 A � 25 when 

t � 5.002.
FIGURE 3.2.6 B � 2 when 

t � 23.229.

b. Although the wording is much different, this question is the same kind

of “Here’s the output, what’s the input?” question that we answered in

part (a). (We really are asking you the same questions over and over

again!) So if we replace 25 with 2 in Y2 and use intersect once again,

the result is shown in Fig. 3.2.6. Thus, it takes a bit over 23 days for only

2 grams of the sample to remain.

There are two important points to note about this example. First, although

we gave you a specific number of grams in the sample, this value is not required

for the calculation of the half-life.The half-life of a substance does not depend on

the initial amount given, but rather on properties inherent in the substance itself.

If a particular amount had not been given in Example 4, we could have chosen

any amount we like (our favorite number perhaps?) or the arbitrary amount A0.

In this case, we would be need to solve the equation

If we divide both sides of this equation by , we obtain the equivalent equation

We can solve this equation graphically, as we did before, with in Y1, and

0.5 in Y2. (You should try this to see that we get exactly the same half-life.)

Second, we notice that while it took only 5 days for the first 25 grams of the

sample to decay, the next 23 grams (so that only 2 grams remain) took approxi-

mately 18 days to decay. Why is this? This sample is not decaying by the same

amount every 5 days—that would make it a linear function. It is decaying by the

same percentage (50% of what is there) every 5 days—that’s what makes it a nat-

ural growth function. Because half of our sample “disappears” every 5 days, we

keep halving and halving and halving indefinitely. Thus, at least in theory, all of

the sample never goes away. Of course, at some point, whatever scale we are

0.8706t

0.5 = (0.8706)t.

A0

0.5 A0 = A0(0.8706)t.
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using to measure the sample is not sensitive enough to recognize that there is any

sample left. At this point, we can say that the weight of the sample is “essentially”

zero. What we mean by this is that neither we nor the scale we are using can dis-

tinguish between the weight of the sample and the real number 0.

So for a declining natural growth function, as our input values increase, our

output values get closer and closer to 0 but never actually “get there.” Thus the

graph of such a function gets closer and closer to the x-axis but never actually

touches it. (Our calculator has the same difficulty as the scale weighing the sam-

ple—if you go out “far enough,” it appears that the output values are all 0. But in

reality they are not; it is just the physical limitations of the calculator that prevent

us from seeing the difference.)

You probably have had no occasion to think about the half-life of bismuth-210

in your daily life, but the same mathematical principles apply to how your body elim-

inates certain chemicals from your blood. Metabolism of prescription medications,

over-the-counter remedies, and even caffeine behaves like a decreasing natural

growth function. (Surprisingly, alcohol—when measured by the drink—is eliminated

from the body in a linear fashion, typically at the rate of about 1 drink per hour.)

SECTION 3.2 Percentage Decrease and Half-Life 119

In a healthy adult, the amount of caffeine in the bloodstream decreases at an

hourly rate of approximately 11.5%.

a. What is the half-life of caffeine in a healthy adult?

b. A can of Red Bull energy drink contains about the same amount of caf-

feine as a cup of regular coffee, 100 mg. If you drink a Red Bull or a cup of

coffee, how much caffeine will remain in your bloodstream after 2 hours?

Sources: American Journal of Clinical Pathology and www.redbullusa.com.

S O L U T I O N

a. Since a specific initial value is not given here, the natural growth

function describing the amount of caffeine in the bloodstream is

We need to determine when the amount of caffeine

falls to half the initial amount, that is, to 0.5A0. Thus we need to solve

the equation As before, we can find an equivalent

equation, and solve this equation for t. Figure 3.2.7 shows

the graphical solution of this equation. Once again, you should verify

this result in your calculator.

0.5 = 0.885t,

0.5A0 = A0(0.885)t.

A(t) = A0(0.885)t.

E X A M P L E  5 The Half-Life of Caffeine

FIGURE 3.2.7 A � 0.5 when t � 5.674.

So the half-life of caffeine in a healthy adult is about 5.7 hours.
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120 CHAPTER 3 Natural Growth Models

b. Here we do have a specific initial amount, so our natural growth

function is We are asked to determine how much

caffeine is in the bloodstream after 2 hours—that is, to find the output

for an input value of 2. We evaluate to

the nearest milligram, 78 mg of caffeine remain after 2 hours.

What we have presented here is a simplified view of how a body metabolizes caf-

feine. There are many variables involved—a person’s gender, weight, and medical

condition and how quickly he or she consumes the caffeine.But it is worth noting that

natural growth models, whether increasing or decreasing, occur in many applications

that at first glance seem quite different.What unites all of these situations is that they

involve quantities that either increase or decrease at a constant percentage rate.

A(2) = 100(0.885)2
= 78.4335;

A(t) = 100(0.885)t.

Building Your Skills
In Exercises 1–6, calculate the new price (rounded off to the nearest cent) if

1. the old price of $82 is decreased by 7%.

2. the old price of $640 is decreased by 2%.

3. the old price of $69.50 is decreased by 1.5%.

4. the old price of $1080 is decreased by 6.3%.

5. the old price of $535 is decreased by 0.4%.

6. the old price of $192 is decreased by 0.25%.

7. Suppose that a quantity whose initial value is 120 is reduced by 25%, and then

the result is increased by 25%. Is the final value 120, more than 120, or less than

120? Why?

8. Suppose that a quantity whose initial value is 200 is increased by 15%, and then

the result is decreased by 15%. Is the final value 200, more than 200, or less than

200? Why?

9. The town of Bilston had 35 thousand people in the year 2000 and was declining

at a rate of 3% per year. Find a natural growth function P(t) that gives the pop-

ulation of Bilston as a function of t, years after 2000.

10. The town of Independence had 210 thousand people in the year 2000 and was

declining at a rate of 4.1% per year. Find a natural growth function P(t) that

gives the population of Independence as a function of t, years after 2000.

11. A manufacturing company currently loses $20,000 a year on defective items. It

is implementing a plan by which it hopes to reduce this amount by 1% each year

for the next 10 years. If the company is successful, how much will it lose on

defective items 5 years from now?

12. A small accounting firm is spending $60,000 a year on clerical staff. The presi-

dent of the firm believes that they can reduce this amount by 5% per year over

the next 5 years by hiring temporary workers. Assuming the president is correct,

how much would the firm spend on clerical staff in 3 years?

Applying Your Skills
13. Suppose that you invest $1000 in shares of a new stock you heard about from

a friend. Instead of gaining value (as you hoped), the stock loses 2% of its value

each month.

3.2 Exercises
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a. Find a natural growth function V(t) that gives the value of the stock after t
months.

b. What is the stock worth after 6 months?

c. If you are unwilling to lose more than $200 on this venture, in how many

months must you sell the stock (assuming that it continues to lose value at

this rate)?

14. The population of Birmingham, Alabama, was 266 thousand in 1990 and was

decreasing at an average annual rate of approximately 1% throughout the 1990s.

Assuming that this rate of decline continues,

a. find a natural growth function P(t) that gives the population of

Birmingham as a function of t, years after 1990.

b. use your function model to predict the year in which the population of

Birmingham will fall to 220 thousand.

c. Use your function model to predict the population of Birmingham in 2003.

How does your prediction compare to the actual 2003 population of

236,620?

15. The population of Toledo, Ohio, was 333 thousand in 1990 and was decreasing at

an average annual rate of 0.59% throughout the 1990s. Assuming that this rate

of decline continues,

a. find a natural growth function P(t) that gives the population of Toledo as a

function of t, years after 1990.

b. use your function model to predict the population of Toledo in 2003.

How does your prediction compare to the actual 2003 population of

308,973?

c. use your function model to predict the year in which the population of

Toledo will fall to 280 thousand.

16. The population of Cincinnati, Ohio, was 331 thousand in 2000 and decreased at

an average annual rate of 1.53% over the next 3 years. At the same time, the

population of Plano,Texas, was 222 thousand and grew at an average annual rate

of 2.92%. Assuming that these trends continue, in what month and year will the

populations of Cincinnati and Plano be the same?

17. The population of Boston, Massachusetts, was 589 thousand in 2000 and

decreased at an average annual rate of 0.4% over the next 3 years. At the

same time, the population of Sacramento, California, was 407 thousand and

grew at an average annual rate of 3.02%. Assuming that these trends contin-

ue, in what month and year will the populations of Boston and Sacramento be

the same?

18. Canada’s Office of Consumer Affairs reported that in 1982 the average

household spending for food constituted 15.1% of household expenditures.

From 1950 to 2003 this amount decreased at an average annual rate of

1.53%.

a. Assuming that this trend continues, find a natural growth function F(t) that

gives percentage expenditure on food as a function of t, years after 1994.

b. Use your model to predict the year in which percentage expenditure on

food decreases to 10%.

c. Based on your model, what percentage of household expenditures did the

average household spend on food in 1996?

19. According to the American Cancer Society, death rates from diseases other than

cancer were falling from 1950 to 2003, while cancer death rates remained virtu-

ally the same. Measured per hundred thousand, the death rate from heart

SECTION 3.2 Percentage Decrease and Half-Life 121
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122 CHAPTER 3 Natural Growth Models

disease in 1950 was 586.8. This amount decreased at an average annual rate of

1.74% over the next 53 years.

a. Assuming that this trend continues, find a natural growth function D(t)
that gives heart disease deaths per hundred thousand as a function of t,
years after 1950.

b. Based on your model, how many heart disease deaths per hundred thou-

sand were there in 1967?

c. Use your model to predict the year in which heart disease deaths per hun-

dred thousand fall to 300.

20. As indicated in Example 5, the amount of caffeine in the bloodstream decreases

at an hourly rate of approximately 11.5%. A double shot of espresso contains 80

mg of caffeine.

a. Find a natural growth model C(t) that gives the amount of caffeine in the

bloodstream as a function of time t in hours.

b. How much caffeine is in the bloodstream after 3 hours?

c. How long does it take for the caffeine level in the blood to fall to 10 mg?

21. A laboratory has a 30-gram sample of radon-222, which decays at a rate of

16.6% per day.

a. Find a natural growth model R(t) that gives the amount of radon-222 as a

function of t, time in days.

b. How long does it take for the sample to decay to 5 grams?

c. How much radon-222 remains after 2 weeks?

22. A laboratory has a 800-mg sample of cesium-137, which decays at an annual rate

of 2.28%.

a. Find a natural growth model C(t) that gives the amount of cesium-137 as a

function of t, time in years.

b. How much of the sample remains after 5 years?

c. What is the half-life of cesium-137, correct to the nearest year?

23. Many people use the over-the-counter medication ibuprofen for relief from

muscle strains and joint pain.The amount of ibuprofen in an adult’s bloodstream

decreases at an hourly rate of approximately 29%, and a normal adult dose is

400 mg.

a. Find a natural growth model I(t) that gives the amount of ibuprofen in the

bloodstream as a function of time t in hours.

b. What is the half-life of ibuprofen?

c. How much ibuprofen is in a person’s bloodstream after 3 hours?

3.3 NATURAL GROWTH AND DECLINE 
IN THE WORLD

In Sections 3.1 and 3.2, we discussed natural growth models for which we knew

the annual growth rate. However, in many situations we suspect (or assume) con-

stant-percentage growth but know the actual population at only a couple of dif-

ferent times. The following example illustrates several different methods that can

then be used to determine the population’s growth rate r.
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SECTION 3.3 Natural Growth and Decline in the World 123

The city of Bethel had a population of 25 thousand in 1990 and 40 thousand in

2000. What was the city’s percentage rate of growth (rounded off accurate to one

decimal place in percentage points) during this decade?

S O L U T I O N

We take t � 0 in 1990 to get started. Using the natural growth function

with P0 � 25 (thousand), we have

(1)

since the population 10 years later in 2000 was 40 thousand.We need to solve this

equation for r. Various methods are available.

Graphical Method We graph the functions Y1 = 25 (1+X)^10 and Y2 = 40, with x
instead of r denoting the unknown in Equation (1), in the viewing window

0 � x � 0.10, 0 � y � 60. (For sake of investigation, we estimate initially that the

unknown rate r � x is less than 10% � 0.10.) Figure 3.3.1 shows this plot; the rising

curve is the curve y � 25 (1 � x)10.We used the calculator’s intersection-finding facil-

ity to solve automatically for the intersection point and obtained the point (0.048,40).

P(10) = 25(1 + r)10
= 40

P(t) = P0(1 + r)t

E X A M P L E  1 Finding the Growth Rate r

0 0.1

x

y
60

0

Thus x � 0.048, and the growth rate r � 4.8% describes the growth of Bethel

during this decade. Therefore, the mathematical model

(2)

gives the population (in thousands) of Bethel as a function of years after 1990.

Numerical Method Another approach is to solve Equation (1) by the method of

tabulation. We use our calculator to tabulate values of the function Y1 = 25*(1 +
X)^10 (which we previously stored). Figure 3.3.2 shows the result when we construct

a table with TblStart = 0 and �Tbl = 0.001 and then scroll down in this table until

the population figures (in the Y1 column) approach the target of 40 (thousand).

P(t) = 25 * 1.048t

FIGURE 3.3.1 The graphs 

and y = 40.

y = 25(1 + x)10

FIGURE 3.3.2 P is closest to 40 when r = 0.048.

DAVIMC03_0131450352.qxd  10/19/06  12:56 AM  Page 123 REVISED PAGES
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The second column entry that is closest to 40 corresponds to the first column entry

of x � 0.048 � 4.8% � r for the annual percentage growth rate. This is the same

growth rate we found graphically and leads to the same mathematical model

shown in Equation (2).

Symbolic Method Finally, we illustrate an entirely algebraic approach. In order

to solve the equation

we divide each side by 25 and obtain the equation

Taking the tenth root, or the 1/10 power, of each side yields

What we have found here is the growth factor—the value by which we multiply

each “old” population of Bethel to get each “new” population of Bethel. The

question asks us to find the growth rate r. So,

The calculator then gives (8�5)^(1�10) � 1 � 0.048 (approximately), so once

again we see that . Pay careful attention to the parentheses in this

expression. If you forget either set of parentheses, you will not get the correct

growth rate!

As we have seen, it is “the rule rather than the exception” when a choice of

different methods is available to solve a given problem. The preceding example

illustrates the rule of three, which advocates the consideration of graphical and

numerical methods as well as the symbolic methods of ordinary algebra. Of

course, plotting the graph of a function is graphical, calculating a table of values

is numerical, and solving an equation algebraically (as we did here) is symbolic.

It is important that you develop, through experience and practice, some judgment

as to which of the available methods of approach is likely to work best (or seem

easiest to you) in a given situation.

In this situation many students prefer to find the correct natural growth

function symbolically, particularly when the growth rate is not specifically

requested. Suppose that we are given both the initial value (when ) and

a “new value” V after a specified “elapsed time” of N years (or other appropri-

ate time unit). Then an easy way to “build” the natural growth function is

to write

(3)

that is,

(4)A(t) = A0a V
A0

b t>N
.

A(t) = (initial value) a new value

initial value
b t>elapsed time

,

A(t)

t = 0A0

r L 4.8%

r = a8

5
b1>10

- 1.

1 + r = a8

5
b1>10

= 1.048.

(1 + r)10
=

8

5

25(1 + r)10
= 40,
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Here’s the reasoning behind this formula. We are given that the amount A
increased from to V in time N. Thus we multiply by the factor to get

the new value after passage of the time period N.We think of 

such time periods having passed in time t. If we started with and multiplied by

the factor once for each of these elapsed time periods—that is, a total of 

times—then we would get the result shown in (4). This is so because multiplica-

tion times by amounts to multiplication by the “aggregate factor”

that we see in (4).(V>A0)t>N V>A0t>N
t>NV>A0

A0

t>NA0(V>A0) = V
V>A0A0A0

SECTION 3.3 Natural Growth and Decline in the World 125

FIGURE 3.3.3 The function model-

ing Greendale’s population.

FIGURE 3.3.4 Finding the population

when t � 9.

The city of Greendale had a population of 46 thousand in 1996 and 41 thousand

in 2000.

a. Assuming natural growth, find a model that gives the population of

Greendale as a function of years after 1996.

b. What was the city’s population in 2005?

c. Use your model to predict the year in which the population of

Greendale’s falls to 30 thousand.

S O L U T I O N

a. With t � 0 in 1996, we have A0 � 46, V � 41, and N � 2000 � 1996 � 4.

Substitution of these values in (4) yields the natural growth model

which gives the population of Greendale t years after the year 1996.

b. In parts (b) and (c), we are once again back to our usual input-output

questions. Here we are given input (t � 9 years) and asked for output

(population). Since part (c) is the “backward” question, for which we

will want to use the intersect command, we will go ahead and store

P(t) in Y1. This allows us to use the value command to evaluate P(9).

Figure 3.3.3 shows our function, with the required parentheses; Fig. 3.3.4

shows P(9).

P(t) = 46a41

46
b t/4

 (thousands)

E X A M P L E  2 Finding a Natural Growth Model

According to our model, the 2005 population of Greenwood was 35.507

thousand, or 35,507 people.
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c. The window we used in part (b), �1 � x � 15, �5 � y � 50, is not

quite large enough in the x-direction to show clearly the intersection

of the graph of Y1 with the line Y2 = 30. So in a new window, with

Xmax=20, the intersect command gives the result shown in Fig. 3.3.5.

FIGURE 3.3.5 Finding when the

population is 30 (thousand).

Our model predicts that by 2010 the population of Greenwood will

have decreased to 30 thousand.

Notice that in Example 2, the calculator performs perfectly well without

“knowing” explicitly either the annual growth rate r or the annual growth factor

1 � r. If, for whatever reason, we wanted to determine 1 + r, we could apply the

law of exponents

.

In this case, then,

Since ( ) (correct to four decimal places), the growth factor for the

population of Greendale is approximately 0.9716.

Because the growth factor is less than 1, we know that the population is

declining rather than growing. (Of course, we knew this from the data we were

given.) If we subtract 1 from the growth factor to get the growth rate, we find that

r � �0.0284 � �2.84%, with the negative sign indicating that the population was

decreasing at the rate of 2.84% per year.

Exponential Models
We have used the function

(5)

as a mathematical model for the natural growth of a quantity that starts (at time

t � 0) with initial amount A0 and thereafter grows at an annual percentage rate

whose decimal equivalent is r.

A(t) = A0(1 + r)t

1/4
= 0.971641

46 

P(t) = 46a41

46
b t>4

= 46 c a41

46
b1>4 d t.

am/n
= (am)1>n

= (a1>n)m
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There are situations (like Example 2) in which the growth rate r itself is

not of specific interest, and it may then be easier to simply think of the “base

constant”

b � 1 � r (6)

that appears (raised to the tth power) in (5). Then (5) takes the simpler-looking

form

(7)

D E F I N I T I O N : Exponential Function

An exponential function is a function of the form

(8)

with base b and exponent x (its independent variable).

Note that b is a constant raised to a variable power. By contrast, in an ordi-

nary power function like 7x3, x is a variable raised to a constant power.

Equation (8) then says that a natural growth function is an exponential func-
tion. Frequently, the verbal description of a natural growth function gives the

base constant b rather than the growth rate r; in this situation, we can write the

function directly if we use the exponential form A(t) = Ao
# bt.

f(x) = a # bx

A(t) = A0
# bt.

SECTION 3.3 Natural Growth and Decline in the World 127

Suppose that a population of rabbits initially has 10 rabbits and is doubling every

year.

a. Find an exponential function that models the growth of this population.

b. How many rabbits will there be in 5 years?

c. What is the annual rate of growth of this population?

S O L U T I O N

a. When we say that a quantity is doubled, we mean that it is multiplied

by 2. Since the base constant b is the factor by which the population is

multiplied each year, b is 2 for this population. With an initial popula-

tion of 10, our function model is then

b. Because the population is doubling, we can easily find its value when 

t � 5. We don’t even need the calculator for this computation. We can

use inputs from 0 to 5, and then double the population as we go from

one year to the next, as shown in the following table. (Of course, we

wouldn’t want to do this if we were asked about, say, 20 years, and we

would be unable to do it “in our head” if we were asked about a

fractional number of years.)

P(t) = 10 # 2t.

E X A M P L E  3 Using the Base Constant
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t P(t)

0 10

1 20

2 40

3 80

4 160

5 320

c. The base constant b is just another “name” for the growth factor 1 � r.

For this population b � 2, so we have 1 � r � 2, and thus r � 1. To give

r as a percent, we write 1 � 1.00 � 100%. Therefore, a population that

is doubling every year is growing at an annual rate of 100%.

A population that triples every year is described by the function P(t) � P0 3t;

one that quadruples every year is described by P(t) � P0 4t; and one that

quintuples annually is described by P(t) � P0 5t. Obviously the larger the base

constant b, the faster the exponential function bt grows in value as t increases.

There’s no reason that it—whatever it is—has to happen in a single year. Our

rabbit population of Example 3 could double every 3 years, rather than every

year. In that case, we can modify the table we constructed to reflect this new

situation:

t P(t)

0 10

3 20

6 40

9 80

12 160

15 320

You can see that we multiply the initial population of 10 by

• when t � 3

• when t � 6

• when t � 9

and so on. Notice that each exponent is determined by dividing t by 3. That is,

instead of multiplying by , we are multiplying by . So the function describing

this population is P(t) � 10 2t �3.#

2t>32t

23

22

21

#

#

#
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Natural Growth Model: Multiplication by b Every N years

If a quantity with initial value A0 grows naturally and is multiplied by the num-

ber b every N years (or other appropriate unit of time), then it is described by the

function

(9)

This formula is equivalent the earlier formula in (4). To see this, suppose the

value of the quantity after the initial period of N years is denoted by V. Then the

initial amount has been multiplied by the factor to get V. But

substitution of in (9) gives the same function 

shown in (4).

A(t) = A0(V>A0)t/Nb = V>A0

b = V>A0A0

A(t) = A0
# bt/N

SECTION 3.3 Natural Growth and Decline in the World 129

Suppose that Quasimodo has four bats in his belfry, and the bats are tripling

every 5 years.

a. Find an function B(t) that gives the number of bats as a function of the

time in years.

b. How long will it take for the population of bats to grow to 50 bats?

c. How many bats will there be in Quasimodo’s belfry in 7 years?

S O L U T I O N

a. With an initial population of four bats and the population tripling

every 5 years, the function model is B(t) � 4 3t/5.

b. Storing B(t) in Y1 and 50 in Y2 (Fig. 3.3.6), we use the intersect com-

mand to obtain the screen shown in Fig. 3.3.7.

#

E X A M P L E  4 A Population That Triples

FIGURE 3.3.6 Storing the functions

to solve B(t) � 50.

FIGURE 3.3.7 The intersection

point (11.495,50).

So after approximately 111/2 years the population of bats will grow to 50.

c. Here we can use the value command, or we can type the function

evaluation directly on the home screen of the calculator, as shown in

Fig. 3.3.8.
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After 7 years, there will be 18 or 19 bats in the belfry (depending on

whether we ignore the “fractional” bat or round to the nearest whole bat).

Warning We emphasize once again that the parentheses enclosing the exponent

7/5 in Example 4(c) are vital (as are the ones in our function definition as well)!

If we omitted them we would get

4*3^7�5

instead. You should recognize immediately that this cannot be the correct value.

Since t � 7, the population has tripled once (to 12 bats at t � 50, but has not

tripled again (to 36 bats at t � 10).

The calculator, of course, finds the correct value for the calculation you

requested. The calculator “understands” the ordinary order of operations you

learned in elementary algebra. That is, unless parentheses indicate otherwise, rais-

ing to a power comes before multiplying or dividing (which then occur in order

from left to right).Thus the command 4*3^7/5 means to first raise 3 to the seventh

power, then multiply this value by 4, and finally divide the result by 5. Without

parentheses this calculation is 4*(3^7)/5 instead of 4*3^(7/5). Most people dislike

superfluous parentheses because they complicate typing (and also make the eyes

glaze over) and therefore try not to use them unless actually necessary to tell the

calculator precisely what to do. But a good practice is “When in doubt, use paren-

theses” to make sure the calculator does what you intend.

1749.600

FIGURE 3.3.8 Evaluating B(7).

A nuclear reactor accident at the state’s engineering school has left its campus

contaminated with three times the maximal amount S of radiation that is safe for

human habitation. Two and one half months after the accident the campus radi-

ation level has declined to 75% of its original level. Assuming natural decline of

this radiation level,

a. how long must students and faculty members wait before it is safe for

them to return to campus;

b. what is the half-life of this substance?

S O L U T I O N

a. Let us write A(t) for the amount of radiation still present after t months.

If we measure A as a multiple of the maximal safe amount S, then we

E X A M P L E  5 Radioactive Decay
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won’t need to know exactly what S is (who knows this sort of thing

offhand?). For in terms of these “safe units” (SU) we’re given that

SU and we want to find when SU, so it’s safe for

folks to come back to campus.

In addition to the initial amount A0 � 3, we’re given that the amount of

radiation is multiplied by the factor b � 75% � 0.75 every N � 2.5 months.

Therefore Equation (8) gives

Notice that here time is measured in months rather than in years. To find

when A = 1, we define Y1 � 3*0.75^(X/2.5) and Y2 � 1 with the idea of see-

ing where the amount graph crosses the horizontal line y � 1. Figure 3.3.9

shows a plot in the viewing window defined by 0 � x � 12, 0 � y � 4.

Automatic intersection-finding yields the intersection point (9.5471, 1).

Thus we see that A falls to 1 SU in just over 91/2 months. With human lives

at stake, we probably ought to add a margin for safety and wait at least

10 months, maybe a full year, before reoccupying the campus.

A(t) = 3 * 0.75t>2.5.

A(t) = 1A(0) = 3

SECTION 3.3 Natural Growth and Decline in the World 131

0 12

y
4

0 x

FIGURE 3.3.9 Solving the equation

3 * 0.75t>2.5
= 1.

b. Recalling that the half-life of a substance is the amount of time for only

half it to remain, we replace Y2 � 1 with Y2 � 1.5 (half of our initial

3 SU). For the same window as before, intersect gives the intersection

point (6.024, 1.5). Therefore, the half-life of the radioactive substance is

approximately 6 months.

SUMMARY
We say that a quantity grows or declines naturally provided that

for constants A0 and b both greater than zero. Recalling the relation b � 1 � r
between the growth rate r and the (positive) base constant b, we see that as t
increases, A(t)

• increases if r � 0 (and hence b � 1),

• decreases if r � 0 (and hence b � 1).

This means that, as we scan the graph of A(t) from left to right, the curve

• rises if b � 1 (natural growth),

• falls if 0 � b � 1 (natural decline).

A(t) = A0
# bt
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Letting A0 � 1, we can see typical “growth curves” for values of b � 1 in Fig. 3.3.10.

Figure. 3.3.11 shows some typical “decay curves” for several values of b � 1.

P

P = 5t P = 3t

P = 2t

t32 4 5−1

10

15

20

25

5

10

2

1 .5

1

0 .5

x

y

y = 0 .7 x

y = 0 .5 x

y = 0.2x

54321

FIGURE 3.3.10 Natural growth

curves.

FIGURE 3.3.11 Natural decay

curves.

Many quantities grow or decline naturally—that is, are multiplied by equal

factors in equal times—and are therefore described by exponential functions.

3.3 Exercises Building Your Skills
Each of the tables in Exercises 1–4 gives data from a function that is exponential.
Determine the factor by which y is multiplied each year, and find a function of the form

that fits these points exactly.

1.

2.

3.

4.

In Exercises 5–12, write a natural growth or decay function model.

5. P(0) � 100 and P(1) � 175.

6. P(0) � 400 and P(1) � 155.

7. P(0) � 120 and P(4) � 40.

8. P(0) � 120 and P(3) � 180.

y = a # bx

x

y

0

10

1

20

2

40

3

80

4

160

x

y

0

5

1

15

2

45

3

135

4

405

x

y

0

100

1

20

2

4

3

0.8

4

0.16

x

y

0

80

1

40

2

20

3

10

4

5
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9. P(0) � 75 and P doubles every year.

10. P(0) � 125 and P triples every year.

11. P(0) � 100 and P doubles every 21/2 years.

12. P(0) � 50 and P triples every 31/4 years.

13. Find the half-life for the function model in Exercise 6.

14. Find the half-life for the function model in Exercise 7.

15. Find the annual growth or decay rate for the function model in Exercise 7.

16. Find the annual growth or decay rate for the function model in Exercise 8.

Applying Your Skills
17. The population of Amsterdam, New York, was 20.7 thousand in 2000 and 18

thousand in 2003. Assuming natural growth,

a. find its annual percentage decrease;

b. find its predicted population in the year 2010;

c. find the year in which the population falls to half the initial amount.

18. The population of Crestwood, Missouri, was 11.2 thousand in 1990 and 11.9

thousand in 2000. Assuming natural growth,

a. find its annual percentage increase;

b. find the predicted population in the year 2010;

c. find the year in which the population doubles.

19. The population of Nevada was 1.2 million in 1990 and 2 million in 2000.

Assuming natural growth,

a. find its annual percentage increase;

b. find the predicted population in the year 2010;

c. find the year in which the population reaches 3 million.

20. The population of North Dakota was 642.2 thousand in 2000 and 636.7 thousand

in 2003. Assume natural growth;

a. find its annual percentage decrease;

b. find the predicted population in the year 2010;

c. find the year in which the population falls to 500 thousand.

21. The population of the world’s more developed regions was 1.002 billion in 1965

and 1.176 billion in 1985, while the population of the world’s less developed

regions was 2.356 billion in 1965 and 3.706 billion in 1985.

a. Using a natural growth model, in what year do you expect the population

of the world’s more developed regions to double?

b. Using a natural growth model, in what year do you expect the population

of the world’s less developed regions to double?

22. The Giving USA Foundation reports that individual Americans gave 11.19 bil-

lion dollars to charity in 1964 and 92.52 billion dollars in 1994.

a. Assuming natural growth, find the annual percentage rate of growth in

individual American’s charitable giving over this time period.

SECTION 3.3 Natural Growth and Decline in the World 133
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b. Assuming this trend continued, predict the amount of money given to

charity by individual Americans in 2004.

c. Compare your prediction in part (b) with the actual value, $187.92 billion.

23. According to USA Today, spending on medical equipment is rising rapidly

because of the aging of the baby boomer population and the improving quality

of health care in countries like India and China. In 2001, U.S. medical device rev-

enue was $47.5 billion and was projected to be $80.2 billion in 2006.

a. What annual percentage increase in revenue does this represent?

b. Use a natural growth model to predict the U.S. medical device revenue in

2010.

c. In what year does your model predict U.S. medical device revenue of $100

billion?

24. In 1979, the typical microcomputer contained 29 thousand transistors, while in

1993, a typical microcomputer contained 3.1 million transistors.

a. Assuming natural growth, find a function giving the number of tran-

sistors in a typical microcomputer t years after 1979.

b. Find the annual growth rate in part (a), expressed as a percentage.

c. At this rate, how many months does it take to double the number of tran-

sistors in a typical microcomputer?

d. Assuming this annual rate of increase continues, how many transistors

(rounded off accurate to the nearest million) did the typical microcomputer

contain in the year 2001?

25. A naturally growing bacteria population P(t) numbers 49 at 12 noon.

a. Write a formula giving P(t) after t hours if there are 294 bacteria at 1 PM.

b. How many bacteria are there at 1:45 PM?

c. At what clock time (to the nearest minute) that afternoon are there

20 thousand bacteria?

26. How long does it take a naturally growing bacteria population to triple if it dou-

bles in 1.5 hours?

27. The number of bacteria in a culture increased sixfold in 10 hours. Assuming nat-

ural growth, how long did it take their number to double?

28. The English language evolves naturally in such a way that 77% of all words dis-

appear (or are replaced) every 1000 years.

a. Of a basic list of words used by Chaucer in the year 1400, what percentage

would have been in use in the year 2000?

b. How long will it take until only 1% of Chaucer’s words are still in use?

29. A survey by the market research firm NPD Group, as reported in the San
Antonio Express News, found that over the 20-year period from 1985 to 2005,

the percentage of Americans who said they find overweight people less attrac-

tive dropped from 55% to 24%.

a. Find a natural growth model that gives the percentage of Americans who

find overweight people less attractive as a function of years after 1985.

b. Use your model to predict the percentage of Americans who find over-

weight people less attractive in 2008.

c. In what year will only 5% of Americans find overweight people less

attractive?

r

N(t)
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29. An accident at a nuclear power plant has left the surrounding area polluted with

radioactive material that decays naturally. The initial amount of radioactive

material present is 15 SU (safe units), and 5 months later it is still 10 SU.

a. Write a formula giving the amount A(t) of radioactive material (in SU)

remaining after t months.

b. What amount of radioactive material will remain after 8 months?

c. How long (in total number of months or fraction thereof) will it be until 

A � 1 SU so it is safe for people to return to the area?

30. On April 26, 1986, the worst accident in the history of nuclear power occurred

at the Chernobyl plant in Ukraine. An estimate of the amount of radioactive

cesium-137 released from the plant is 2.7 million curies. If cesium-137 has a half-

life of 30 years, how much of the amount released remained on April 26, 2006,

the twentieth anniversary of the accident?

31. The National Center for Health Statistics reported that 557,271 Americans died

of cancer in 2002, and that number declined to 556,902 deaths in 2003.

a. Find a natural growth model that gives the number of Americans who died

of cancer as a function of years after 2002.

b. What was the annual percentage decrease in the number of Americans

dying of cancer?

c. If this trend continues, how many years will it take for American cancer

deaths to fall below 500,000?

32. Thousands of years ago ancestors of the American Indians crossed the Bering

Strait from Asia and entered the Western Hemisphere. Since then, they have

fanned out across North and South America. The single language that the orig-

inal Indian settlers spoke has since split into many Indian “language families.”

Assume that a language family develops into 1.5 language families every 6000

years. There are now 150 Indian language families in the Americas. About when

did the first American Indians arrive?

33. On the April 24, 1999, edition of the Car Talk radio show, Tom and Ray pre-

sented a puzzler concerning a fellow who visited a nursery for advice concern-

ing a new lawn. The following scenario is an adaptation of that puzzler. Mike

wants to have a lush, new lawn for the Fourth of July. Since it is already May 30,

it is too late for grass seed, and sod is too expensive for his budget. Matt, the

nursery worker, suggests a new product—a small plug of grass that doubles in

size every day. After consulting a diagram of the yard, Matt does some calcula-

tions, and reports his conclusion. If Mike plants only one plug on June 1, he will

have the lawn he desires on June 30. Being a bit nervous, Mike decides to buy

two, just to be on the safe side. If Mike plants two grass plugs on June 1, on what

day will he have his new lawn?

3.4 FITTING NATURAL GROWTH 
MODELS TO DATA

In Section 3.1 we discussed briefly the data in the following table, which shows

the U.S. population as recorded during the first six census counts, in the decade

years 1790, 1800, 1810, 1820, 1830, and 1840.

SECTION 3.4 Fitting Natural Growth Models to Data 135
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U.S. CENSUS
POPULATION CHANGE

t YEAR (MILLIONS) (MILLIONS)

0 1790 3.9

10 1800 5.3 1.4

20 1810 7.2 1.9

30 1820 9.6 2.4

40 1830 12.9 3.3

50 1840 17.1 4.2

We saw that the U.S. population was growing at approximately 3% per

year over these 50 years, and we modeled the population with the natural growth

function

(1)

But now we wonder whether there is a natural growth function that will fit these

data even better.

Recall that in Section 2.4, we used the calculator’s linear regression feature

to find the best-fitting linear model—the one that had the smallest SSE and aver-

age error. This is the criterion we would like to continue to use for judging which

model best fits a set of data. So let us first consider the SSE and average error for

our “3% mathematical model” for the early U.S. population.

The following table compares the actual population figures with those pre-

dicted by this 3% natural growth model, and gives both the errors and their

squares.

t ACTUAL POPULATION ERROR E E2

0 3.9 3.90 0.00 0.0000

10 5.3 5.24 0.06 0.0036

20 7.2 7.04 0.16 0.0256

30 9.6 9.47 0.13 0.0169

40 12.9 12.72 0.18 0.0324

50 17.1 17.10 0.00 0.0000

Population values and errors in millions.

The sum of the squares of the errors shown in the table is

.

Since there are n � 6 data points, the average error in this natural growth model

is given by

(2)average error = ASSE

n
= A0.0755

6
= 20.0126 L 0.1122.

SSE = 0.0000 + 0.0036 + 0.0256 + 0.0169 + 0.0324 + 0.0000 = 0.0755

P(t) = 3.9 * (1.03)t

P(t) = 3.9 * (1.03)t.
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Thus the average discrepancy between the actual census population and the pop-

ulation predicted by the natural model in (1) is about 0.112 million, or 112,000

persons.

We could now search around, trying different natural growth models, to see

if we can find one with a smaller SSE and average error. We could adjust either

the initial amount or the annual growth rate or both, each time checking to see if

we get a better model. However, happily for us, the calculator does not only lin-

ear regression, but also many other kinds, including exponential regression. For a

given set of data, exponential regression will supply a “best-fitting” function of

the form

. (3)

In a typical data-modeling situation, the numbers a and b in (3) are not

known in advance. Indeed the question ordinarily is “What numerical values for

a and b yield the best natural growth model for the given data?” As before, the

“optimal” model is the one that best fits the actual data, and the better of two dif-

ferent models is the one giving the lesser average error.

The Best Fitting Natural Growth Model
Figure 3.4.1 shows 1790–1840 U.S. population data entered in a calculator. The 

t-values 0, 10, 20, 30, 40, 50 corresponding to the decade years from 1790 to 1840

are stored as list L1, and the corresponding list of census population figures is

stored as list L2. Figure 3.4.2 shows the resulting STAT EDIT menu displaying the

data in table form.

y = a # bx

SECTION 3.4 Fitting Natural Growth Models to Data 137

FIGURE 3.4.1 Storing the

1790–1840 U.S. census data.

FIGURE 3.4.2 TI-83 STAT EDIT
screen showing the U.S. population

data in table form.

In the calculator’s STAT CALC menu, item 0: ExpReg (below item 9) is the

calculator’s so-called “exponential regression” facility for finding the natural

growth (or “exponential”) curve y � a · bx that best fits the selected data. As we

did with linear regression, we will tell the calculator where our inputs are stored

(L1), where our outputs are stored (L2), and where to save our natural growth

function rule (Y1). So the command we enter is ExpReg L1, L2,Y1. Figure 3.4.3

shows the display that results when this command is entered.

The displayed results say that the natural growth curve best fitting the given

data is

(4)y = 3.9396 * (1.0300)x.
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In terms of time t and population P rather than the calculator’s variables x and y,

the natural growth function best fitting the actual 1790–1840 U.S. population

growth is given by

(5)

Observe that this optimal population function corresponds to a population

that grows at a 3.00% annual rate, starting with an initial population of 3.9396

million when t � 0. Note also that this best-fitting initial population, about 3.94

million, is different from the actual initial population of 3.9 million. So when

we attempt to best-fit a given list of population data, we are free to modify both

the initial population and the rate of growth in order to fit the data as closely as

possible.

The ExpReg L1, L2,Y1 command automatically enters Equation (4) in the

Y� menu. With Plot 1 turned On in the STAT PLOT menu, GRAPH then gives

the plot of the best-fitting natural growth curve shown in Fig. 3.4.4, where the

original census data points are shown as small squares.

Here we are less interested in the graph than in a table of values that we

can use to compute the average error in our optimal fit. Our calculator now

provides the table of (rounded off) values of Y1 � 3.9396*1.03^X shown in

Fig. 3.4.5.

P(t) = 3.9396 * (1.0300)t.

FIGURE 3.4.3 The optimal natural

growth function.

20

0 x

y

0 60

FIGURE 3.4.4 The optimal natural

growth fit.

FIGURE 3.4.5 Values of the

optimal natural growth function

P(t) = 3.9396 * 1.0300t.

When we combine these values with our original U.S. population data, we get

the following table. It compares the original census data with the population fig-

ures predicted by the optimal natural growth model .P(t) = 3.9396 * (1.0300)t
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t ACTUAL POPULATION ERROR E E2

0 3.9 3.94 �0.04 0.0016

10 5.3 5.29 0.01 0.0001

20 7.2 7.12 0.08 0.0064

30 9.6 9.56 0.04 0.0016

40 12.9 12.85 0.05 0.0025

50 17.1 17.27 �0.17 0.0289

Population values and errors in millions.

As usual, the final column shows the squares of the errors. Hence the SSE

associated with the optimal natural growth model in (18) is

Since there are n � 6 data points, the average error in the optimal model is given

by

Thus the average discrepancy between the actual census population and the pop-

ulation predicted by the natural model in (5) is about 0.083 million, or 83 thou-

sand persons.

In this case, the average error of 83 thousand for our “best-fitting” model is

less than the average error of 112 thousand in the 3% natural growth model

. However, contrary to one’s natural expectation, the so-

called “best-fitting model” given by a calculator’s exponential-regression facility

is not always an exponential model with the least possible average error. The

example that follows demonstrates this surprising fact.

P(t) = 3.9 * (1.03)t

average error = ASSE

n
= A0.0411

6
= 10.0069 L 0.0828.

SSE = 0.0016 + 0.0001 + 0.0064 + 0.0016 + 0.0025 + 0.0289 = 0.0411.

P(t) = 3.94 * (1.03)t

One of the indicators of China’s growing economy is its trade volume with other

nations. The table gives this trade volume in billions of dollars for selected years

from 1980 to 2004.

TRADE VOLUME
YEAR (BILLIONS OF DOLLARS)

1980 38

1985 70

1990 115

1995 281

2000 474

2004 1155

Source: Atlanta Journal-Constitution.

E X A M P L E  1 Comparing Natural Growth Models
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140 CHAPTER 3 Natural Growth Models

a. Use the first and last data points to find a natural growth model giving

trade volume as a function of years after 1980.

b. Find the SSE and average error for the model in (a).

c. Use exponential regression to find the best-fitting natural growth

model giving trade volume as a function of years after 1980.

d. Find the SSE and average error for the model in (c).

S O L U T I O N

a. Using the formula

from Section 3.3, we obtain the natural growth function 

where A1 is measured in billions and t is years 

after 1980.

b. As before, we enter our inputs in L1, our outputs in L2, and our natural

growth function A(t) in Y1. We will use our calculator’s table to find the

squares of the errors as follows:

1. In the STAT EDIT menu, highlight L3. At the bottom of the screen L3 �
appears. Hit VARS, arrow over to Y-VARS, hit ENTER, select Function,

then ENTER again to select Y1. The bottom line of the STAT EDIT
menu now reads L3 = Y1. Type (, then 2ND and 1 for L1, then ). The

bottom line of the STAT EDIT menu now reads L3 � Y1(L1). Hit

ENTER, and the calculator displays in L3 (Fig. 3.4.6) the output values

predicted by the natural growth model.

38a1155

38
b t/24

,A1(t) =

A(t) = A0a V
A0

b t>N

FIGURE 3.4.6 Values predicted 

by the natural growth model

.A1(t) = 38a1155

38
b t>24

2. To find the errors, arrow over and highlight L4. At the bottom of the

screen L4 � appears. Type 2ND and 2 for L2, then –, and 2ND and 3
for L3. Hit ENTER, and the calculator displays in L4 the errors

(actual � predicted) for the natural growth model.

3. Finally, to find the squares of the errors, arrow over and highlight L5.

At the bottom of the screen L5 � appears. Type 2ND and 4 for L4,

then the x2 key, and ENTER. The calculator displays in L5 the squares

of the errors for this model. Figure 3.4.7 shows the errors in L4 and

their squares in L5. (Notice that the errors for the first and last data

points are 0 because we built the function to contain those exact

points.)
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FIGURE 3.4.7 Predicted values, error,

and the squares of the errors for 

A1(t) = 38a1155

38
b t>24

.

So the SSE for this model is given by

where we have scrolled down through L5 to obtain three decimal places 

for each value. Therefore, the average error is ,

correct to three decimal places.

c. We already have our data stored in L1 and L2, so we execute the com-

mand ExpReg L1, L2,Y1, and obtain the natural growth function Y1 =
34.218*1.149^X. Thus, the best-fitting exponential model for the China

trade volume data is , again with given in bil-

lions and t as years after 1980.

d. Following exactly the same steps as in part (b), we obtain Fig. 3.4.8,

showing the predicted values, the errors, and their squares.

A2A2(t) = 34.218(1.149)t

A35803.106

6
= 77.248

SSE = 0 + 54.652 + 1816.617 + 1601.630 + 32330.207 + 0 = 35803.106,

FIGURE 3.4.8 Predicted values,

error, and the squares of the errors

for A2(t) = 34.218(1.149)t.

So,

Note that this average error, for the best-fitting function

, exceeds the average error of 77.248 for our original

exponential model , as found in part (b).

We see that, unlike the linear regression from Section 2.4, exponential re-

gression does not always provide us with the function with the smallest possible

SSE. (This is because of the way the calculator does exponential regression,

which we can’t explain without ideas from the next chapter.)

(38)(1155/38)t/24A(t) =

A(t) = 34.218(1.149)t

and the average error is A44696.369

6
= 86.310.= 44696.369,

SSE = 14.304 + 2.173 + 494.255 + 38.140 + 5832.463 + 38315.034
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142 CHAPTER 3 Natural Growth Models

So if it’s not always “the best there is,” why do we bother? First, it is a model

that is quite good at fitting our data—it is indeed the “best-fitting” exponential

model in a certain technical sense (which we will describe in Chapter 4). Frequently

it is better than a “first point-last point” model like the one we created in part (a)

of Example 1. Second, we don’t have the mathematics that’s needed to find the

“perfect” model, so we’d rather not spend lots of time and energy trying different

models when one that is easy to obtain will do very nicely.

We will continue to refer to the models that we obtain by regression as the

models that “best fit” our data (even though that term is sometimes misleading).

This gives us the vocabulary by which we will recognize when we are asked to use

regression to find a function model.

Newton’s Law of Cooling
Suppose that a hot object with initial temperature T0 is placed in a relatively cool

medium with constant temperature A. For example, we might put a hot cake ( just

out of the oven) in a cool room with air temperature A, or we might put a hot

rock in a large water tank with water temperature A. Then Newton’s law of cool-
ing says that the difference

(6)

between the temperature of the object at time t and the temperature A is a nat-

urally declining quantity. That is,

(7)

with appropriate values of the positive parameters a and b, where b � 1. In the

case of the hot cake, for instance, we might measure its falling temperature sev-

eral times with a thermometer and then attempt to fit the resulting data with an

exponential function to predict when the cake will be cool enough to serve.

u(t) = a # bt

u(t) = T(t) - A

Suppose a cake is baked in an oven at 350°F. At 1 PM it is taken out of the oven

and placed to cool on a table in a room with air temperature 70°F. We plan to

slice and serve it as soon as it has cooled to 100°F. The temperature of the cake

is measured every 15 minutes for the first hour, with the following results.

E X A M P L E  2 When Is the Cake Cool?

1:00

350

1:15

265

1:30

214

1:45

166

2:00

143

Time t (PM)

Temperature of cake T (°F)

When will the cake be cool enough to eat?

S O L U T I O N

To use Newton’s law we must replace the cake temperature T with the difference

u � T � 70 that we see in Equation (6), with A � 70°F (room temperature).

Measuring time t in hours and subtracting 70 from each temperature entry, we

find that the given data take the form
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If we can fit these data with an exponential model , then we can find

a model for the temperature of the cake and then solve graphically for the time

when T � 100°F as desired.

We begin by entering the list of t-values as calculator list L1 and the list of

u values as list L2 (Fig. 3.4.9). Then the STAT CALC command ExpReg L1,
L2,Y1 produces the result shown in Fig. 3.4.10.

u(t) = a # bt

SECTION 3.4 Fitting Natural Growth Models to Data 143

t

u

0

280

0.25

195

0.5

144

0.75

96

1

73

FIGURE 3.4.9 Entering the data of

Example 5.

FIGURE 3.4.10 The best exponen-

tial fit u(t) = 277.534(0.257)t.

So the best-fitting exponential function is given by

(8)

(on replacing X with t and Y with u). Finally, remembering Equation (6), we add

A � 70°F (the room temperature) to both sides to obtain the cake’s temperature

function

(9)

It’s always important to keep your eye on the cake. Here, literally no one
cares what is the average error in the natural decay function (8). Instead, we all

want to know when we can eat our cake. That is, accepting (9) as our mathemat-

ical model for the cooling of our cake, for what value of time t is it true that

(10)

In Fig. 3.4.11 we have graphed the functions Y1 � 70+277.534*(0.257)^X and

Y2 � 100 and asked for the coordinates of the point of intersection.

70 + 277.534(0.257)t
= 100°F?

T(t) = 70 + 277.534(0.257)t (°F)

u(t) = 277.534(0.257)t

400

0 x

y

0 2

FIGURE 3.4.11 Solving Eq. (10).
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144 CHAPTER 3 Natural Growth Models

The x-value of 1.637 tells us that our cake reaches an edible temperature of 100°F

after 1.637 hours (starting at 1 PM). Since 0.637 � 60 � 38.220, this means we can

slice and eat the cake at about 2:38 PM.

In previous sections of this chapter we saw many different quantities whose

growth can be modeled with natural growth functions. We can use exponential

regression to find the best-fitting model whenever we are given a set of data

whose behavior exhibits natural growth.

Building Your Skills
Each of the tables in Exercises 1–8 gives data from a function that is approximately
exponential.

a. First use the exponential regression facility of your calculator to find the

exponential model of the form that best fits these points. Find a
and b accurate rounded off to three decimal places.

b. Calculate the average error in this optimal exponential model.

1.

2.

3.

4.

5.

6.

7.

8.

y = a # bx

3.4 Exercises

x

y

0

5

1

7

2

10

3

15

4

23

x

y

1

35

2

75

3

170

4

385

5

865

x

y

0

15

2

30

4

60

6

110

8

220

x

y

1

22

1.5

23

2

24

2.5

25

3

27

x

y

0

40

1

27

2

17

3

11

4

7

x

y

1

215

3

40

5

7

7

1

9

0

x

y

0.5

80

0.75

65

1

55

1.25

45

1.5

40

x

y

0

1000

5

775

10

600

15

465

20

360
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Applying Your Skills
In each of Exercises 9–12 the 1960–1990 population census data for a U.S. city is given.

a. Find the exponential model (with t � 0 in 1960) that best fits

these census data.

b. What was the city’s average annual percentage rate of growth during this

30-year period?

c. Use your model to predict the city’s population in 2000.

9. San Diego

10. Phoenix

11. Cleveland

12. Buffalo

13. San Antonio

14. Raleigh

In Exercises 15–21, use the best-fitting exponential model to determine the answer to
each question. (For problems using calendar years, “reset the clock” so that t � 0 in the
year for which you first have data.)

15. In a certain lake the intensity I of light beneath the surface is a naturally declin-

ing function of the depth x in feet. The following table gives I as a percentage of

the intensity of light at the surface:

P = a # bt

SECTION 3.4 Fitting Natural Growth Models to Data 145

1960

573

1970

697

1980

876

1990

1111

Year

Population (thousands)

1960

439

1970

584

1980

790

1990

1008

Year

Population (thousands)

1960

876

1970

751

1980

574

1990

506

Year

Population (thousands)

1960

533

1970

463

1980

358

1990

328

Year

Population (thousands)

1960

588

1970

654

1980

786

1990

935

Year

Population (thousands)

1960

94

1970

123

1980

150

1990

212

Year

Population (thousands)

0

100

5

60

10

35

15

20

Depth x (feet)

Intensity I (%)
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146 CHAPTER 3 Natural Growth Models

How deep would you have to dive in this lake so that the light intensity there

will be 1% of the surface intensity?

16. The atmospheric pressure p (in pounds per square inch, lb/in2) is a naturally

declining function of the altitude x above sea level. The following table gives p
as a function of x in thousands of feet:

a. Suppose that you (like most people) cannot survive without special condi-

tioning at an air pressure of less than 7.5 lb/in2. Then how high could you

safely fly in an airplane without pressurization?

b. What is the air pressure atop Mt. Everest (at 29,029 feet)?

17. The amount money earned by winning the Kentucky Derby has grown quite a

bit since the Derby’s first running in 1875. The following table gives the net

amount earned by the winner as a function of the year of the race.

Source: Churchill Downs Incorporated (www.kentuckyderby.com).

a. In what year would you expect the prize money to grow to $1,000,000?

b. Use your model to predict the prize money in 2007.

18. As cassette tapes and compact discs became more popular, the sales of vinyl sin-

gles declined according to the accompanying table.

Source: The World Almanac and Book of Facts 1998.

Suppose that vinyl singles will be discontinued when their sales fall below 2 mil-

lion. In what year will this occur?

19. The success of a major league baseball team is frequently tied very closely to the

quality of its pitching staff. The relief pitchers (the “bullpen”) come in the game

to pitch when a pitcher tires or gets in trouble. The table gives the ERA (earned

run average) and the number of games saved by the bullpen of the Atlanta Braves

over various seasons between 1969 and 2005.

Source: Atlanta Journal-Constitution.

If the Braves bullpen had an ERA of 6.50 (a very bad ERA), how many games

would you expect them to save in a season?

20. The gross domestic product (GDP) of a country is a very common measure of

the vitality of its economy. China’s economy has been growing rapidly, as shown

by the increase in its GDP in the accompanying table.

0

14.7

4

12.6

8

10.9

12

9.3

Altitude x (thousands of feet)

Pressure p (lb/in2)

1875

2850

1900

4850

1925

52,950

1950

92,650

1975

209,600

Year t

Winnings ($)

1988

65.6

1989

36.6

1992

19.8

1994

11.7

1996

10.1

Year t

Millions of units s

2.60

57

3.73

41

5.11

24

3.06

49

4.22

32

ERA

Games saved
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Source: Atlanta Journal-Constitution.

a. According to your model, what will the GDP of China be in 2010?

b. When will the GDP of China rise to 2000 million (2 trillion) dollars?

21. A BlackBerry is an all-in-one mobile device that includes phone, e-mail, Web

browser, and organizer features. The number of BlackBerry subscribers has

grown according to the following table.

Source: USA Today.

a. At what average annual rate did the number of BlackBerry subscribers

grow during this period?

b. If this trend continues, how many BlackBerry subscribers would you expect

there to be in 2010?

22. Suppose a hot cake like the one of Example 2 is taken out of an oven at 175°C

and immediately set out on a cool porch where the temperature is 10°C. During

the next hour the following temperature readings of the cake are taken:

The cake will be brought in and served when it has cooled to 35°C.When do you

expect this to be?

23. A pitcher of buttermilk initially at 25°C is set out on the 10°C porch of Exercise

22. During the next half hour the following temperature readings are taken:

The buttermilk will be brought in and served when it has cooled to 12°C. When

do you expect this to be?

CHAPTER 3 Review 147

1980 

266

1985

306

1990

388

1995

706

2000

1072

2004

1647 

Year t

GDP of China
(billions of dollars)

2001 

165

2002

321

2003

534

2004

1070

2005

2510

Year t

Thousands of
subscribers S

5

175

5:20

125

5:40

85

6

60

Time (PM)

Temperature (°C)

1

25

1:10

20

1:20

17

1:30

15

Time (PM)

Temperature (°C)

In this chapter, you learned about exponential functions and models. After com-

pleting the chapter, you should be able to

• Determine whether a relation described numerically, graphically, or symboli-

cally represents an exponential function.

• Find the output value of an exponential function for a given input value.

• Find the input value of an exponential function for a given output value.

• Solve an equation or inequality involving an exponential function

Chapter 3 Review
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148 CHAPTER 3 Natural Growth Models

Review Exercises
In Exercises 1–7, the given information (table, graph, or for-
mula) gives y as a function of x. Determine whether each
function is linear, exponential, or neither.

1.

2.

3.

4.

5.

6.

7.

8. Suppose that a child who lost her first tooth in 1998 was

left $1.00 by the Tooth Fairy. Let us assume that the

Tooth Fairy leaves the same amount for each tooth, if

y = 3 # 2x

y = 3x2

payments are adjusted for inflation. Then, based on the

Consumer Price Index, the Tooth Fairy should have left

her mother $0.19 for a tooth in 1963 and given her

grandmother $0.09 for a tooth in 1938. Find the best-

fitting exponential function for these data, and use it to

predict how much the Tooth Fairy should leave for the

little girl’s daughter if she loses a tooth in 2023.

Source for conversion factors: Robert Sahr, Political Science

Department, Oregon State University.

9. An accident at a nuclear power plant has left the sur-

rounding area polluted with a radioactive element

that decays naturally. The initial radiation level is 10

times the maximum amount S that is safe, and 100

days later it is still 7 times that amount. How long (to

the nearest day after the original accident) will it be

before it is safe for people to return to the area?

10. Suppose that, as of January 1, 1999, a state’s annual

Medicaid expenditures are $1 billion and increasing

at 6% per year, while its annual Medicaid tax income

is $2 billion and is increasing at 3% per year. If these

rates continue, during what calendar year will the

state’s Medicaid budget go into the red (with expendi-

tures exceeding income)?

11. According the BP Statistical Review of World Energy

2006, the United States produced 7733 thousand bar-

rels of oil a day in 2000 and 6830 thousand barrels

daily in 2005. Use an exponential model to determine

the average annual rate at which U.S. daily oil produc-

tion was declining over this time period.

12. The following table gives the gross revenue R in mil-

lions of dollars for the Broadway season that begins in

the indicated year t. Find the best-fitting exponential

model for these data and use it to predict the year in

which gross revenue will grow to 1000 million (1 tril-

lion) dollars.

Source: League of American Theatres and Producers.

x

y

�3

4.5

�2

2

0

0

4

8

7

24.5

10

50

x

y

�2

32

�1

16

1

4

3

1

4

.5

5

.25

x

y

�4

29

�3

26

�1

20

2

11

4

5

5

2

x

y

x

y

• Find an exponential function model that fits given exponential data.

• Find the best-fitting exponential model for data that are approximately

exponential.

• Find the annual percentage rate of growth or decay for an exponential model.

1984

209

1989

282

1992

328

1996

499

2001

643

2005

862

t (year)

R (millions)
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13. (Chapter Opener Revisited) In the discussion that

introduced this chapter, we looked at a plot that dis-

played the growth of the Internet over the years from

1993 to 1999. The plot was based on data from the

Internet Software Consortium giving the number of

Internet hosts, which is displayed in the following table.

a. Find a natural growth function that models

the number of Internet hosts as a function of years

after 1993 and agrees with the data given for 1993

and 1998.

b. At what average annual rate was the number of

Internet hosts growing over this time period? What

is the sum of squares of errors SSE1 in the model

H1(t) considering the given data for the years

through 1993 through 1998 but ignoring the data

for 1999?

c. Use your model to predict the number of Internet

hosts in 2004. What was the error in your approxi-

mation if the actual value was 317.6 million?

d. Your prediction is so much larger than the actual

value because the number of Internet hosts did not

continue to grow at the rate you found in part (b).

The data in the following table give the number of

Internet hosts for the years 1998 to 2002.

H1(t)

CHAPTER 3 Review 149

Source: ISC Internet Domain Survey.

Find a natural growth function that models

the number of Internet hosts as a function of years

after 1993 and agrees with the data given for 1998

and 2002.

e. At what average annual rate was the number of

Internet hosts growing over this time period? What

is the sum of squares of errors SSE2 in the model

considering the given data for the years

through 1998 through 2002?

f. Use your model to predict the number of Internet

hosts in 2004. Find the error in your approximation,

given that the actual value for 2004 was 317.6 million.

g. The two exponential functions H1(t) and H2(t) in

parts (a) and (d) agree at the point t � 5 correspon-

ding to 1998. Consider the function that equals

for but equals for . Can you

see why might be called a “piecewise-exponen-

tial model” for the number of Internet hosts from

1993 to 2002? What is the SSE of this model consid-

ering the data from 1993 to 2002. Can you find SSE

quickly—without doing any more real computa-

tion—using your answers to parts (b) and (e)?

h. What is the average error in the piecewise-exponen-

tial model H(t) of (g) for the data from 1993 to 2002?

H(t)
t Ú 5H2(t)t … 5H1(t)

H(t)

H2(t)

H2(t)

1998

5

1999

6

2000

7

2001

8

2002

9

Calendar year

t (year after 1993)

H (millions) 29.7 43.2 72.4 109.6 147.3

INVESTIGATION Population Projections for U.S. Cities

In this activity, you will create function models based on

U.S. Census data for one of the 100 largest cities in the

United States. U.S. Census data are available at www.

census.gov.

From the census data for 1990, select the xyth largest

city, where x and y are the last two digits of your student

identification number.This is your city. (For example, if your

student ID number ends in 37, you should find the data for

the 37th largest city in the United States. If your ID number

ends in 00, choose the 100th largest city.) Record the popu-

lations for your city in 1950, 1960, 1970, 1980, and 1990.

1. Find the best-fitting linear model for your popu-

lation data, using years after 1950 as the inde-

pendent variable.

2. Calculate the SSE for your linear model and the

average error in the approximation.

3. Use your linear model to predict your city’s pop-

ulation in 2000.

4. Find the best-fitting exponential model for your

population data.

5. Calculate the SEE for your exponential

model and the average error in the approxi-

mation.

6. Use your exponential model to predict your

city’s population in 2000.

7. On the basis of having the smallest average

error, which model is the best predictor of your

city’s population?

8. Use census data to determine your city’s actual

population in 2000. Which model came closer to

the actual population?

1993

0

1994

1

1995

2

1996

3

1997

5

1998

5

1999

6 

Calendar year

t (years after 1993)

H (millions) 1.3 2.2 4.9 9.5 16.1 29.7 43.2
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