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Swaps are often used to hedge interest rate risk exposure to balance sheets as well as for
bond and loan portfolios. By matching the durations of balance sheet fixed income assets
and liabilities (e.g., bond or loan instruments), swaps can immunize the balance sheet from
interest rate risk. Ideally, the hedge should match both the duration and timing of cash flows
of the fixed income portfolio with that of the swap as closely as possible. For instance, if
a bank has a portfolio of floating-rate loans that have a duration of five years, the bank
can enter a swap with a duration of five years (the duration of the swap is the difference
between the fixed- and floating-leg durations of the swap) to receive the fixed rate and to
pay floating (effectively changing the characterization of the loan from floating to fixed
and thereby locking in a fixed rate of return.) Although in general, basis risk exists because
there is not an exact match between the cash flows—e.g., interest rate payments on the
loans and those of the swap do not match—the bank has reduced its exposure to shifts
in the yield curve. Moreover, institutional money managers can also use a combination
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2 Swaps and Fixed Income Instruments Chapter 1

of Chicago Board of Trade (CBOT) Treasury note futures and swap futures to structure
hedges to protect a portfolio of corporate and Treasury securities from a rise in interest
rates. Due to the liquidity and standardization of swap futures, swap futures are becoming
a cheaper and more efficient way to hedge a fixed income portfolio than entering a swap.1

This chapter discusses the details of hedging interest rate risk and bond portfolios using
swaps and fixed income instruments (e.g., futures).

In §1.1, we discuss using Eurodollar futures to compute LIBOR swap rates. In §1.2, we
discuss Treasury bills and Treasury bonds, including how they are quoted and priced. In
§1.3, we discuss bootstrapping the yield curve to compute discount swap rates. In §1.4, we
discuss hedging debt positions and interest rate movements using fixed income instruments.
In §1.5, we discuss bond duration, modified duration, and DV01 (dollar value of a one-
basis-point move) calculations, which are necessary for computing swap durations and
modified durations because a fixed-for-floating interest rate swap is composed of two legs
that are equivalent to a fixed-rate bond and a floating-rate bond. In §1.6, we discuss term
structure of rates, and in §1.7, we discuss how to numerically bootstrap the yield curve. In
§1.8, we discuss bootstrapping in Matlab and provide examples, while in §1.9, we discuss
bootstrapping using Excel. In §1.10, we discuss general swap pricing in Matlab using the
Black-Derman-Toy (BDT) and Heath-Jarrow-Morton (HJM) interest rate models, and in
§1.11, we discuss swap pricing using term structures like the forward curve built from zero-
coupon and coupon-bearing bond cash flows. In §1.12, we implement and price fixed-for-
floating swaps, including calculations for duration and risk measures, using C++. Finally,
in §1.13, a Bermudan swaption pricing implementation in Matlab is provided.

1.1 EURODOLLAR FUTURES

Eurodollar futures2 contracts maturing in March, June, September, and December are
sometimes used to calculate the LIBOR swap zero rates for swap maturities greater than
one year. The Eurodollar futures interest rate can be used to compute forward rates for
long-dated maturities. In the United States, spot LIBOR rates are usually used to define the
LIBOR zero curve for maturities up to one year. Eurodollar futures are typically then used
for maturities between one and two years and sometimes for maturities up to five, seven,
and ten years. In addition, swap rates, which define par yield bonds, are used to calculate
the zero curve for maturities longer than a year. Using a combination of spot LIBOR rates,
Eurodollar futures, and swap rates, the LIBOR/swap zero curve can be generated using a
bootstrap method procedure.

Typically, a convexity adjustment is made to convert Eurodollar futures rates into for-
ward interest rates. For short maturities (up to one year), the Eurodollar futures interest rate
can be assumed to be the same as the corresponding forward interest rate. But for longer
maturities, the difference between futures and forward contracts becomes important when
interest rates vary unpredictably.3

Suppose the quoted Eurodollar futures price is P ; then the cash contract price is

10000 (100 − 0.25(100− P )) (1.1)

which is equivalent to 10,000 times the cash futures price of 100−0.25(100−P ). Suppose
P = 96.7; then the contract price is
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Section 1.2 Treasury Bills and Bonds 3

10000 (100− 0.25(100− 96.7)) = $991, 750

A Eurodollar contract is like a Treasury bill contract, but with some important differ-
ences. Both the Eurodollar and T-bill contracts have an underlying face value amount of
$1 million. However, for a T-bill, the contract price converges at maturity to the price of a
91-day $1 million face-value Treasury bill, and if the contract held to maturity, this is the
instrument delivered.4 A Eurodollar futures contract is cash settled on the second London
business day before the third Wednesday of the month.5 The final marking to market sets
the contract price equal to

f0 = ($1, 000, 000)
(

100− 0.25R

100

)
= 10, 000(100− 0.25R)

where R is the quoted LIBOR Eurodollar rate at that time.6 This quoted Eurodollar rate
is the actual 90-day rate on Eurodollar deposits with quarterly compounding.7 It is not a
discount rate. As Hull states, “the Eurodollar futures contract is therefore a futures contract
on an interest rate, whereas the Treasury bill futures contract is a futures contract on the
price of a Treasury bill or a discount rate.”8

1.2 TREASURY BILLS AND BONDS

Treasury bills are short-term discount securities issued by the U.S. Treasury. At the time
of sale, a percentage discount is applied to the face value. Treasury bill prices are quotes
as a discount rate on a face value of $100. At maturity, the holder redeems the bill for full
face value. The basis (or day counting convention) for the interest accrual is actual/360 so
that interest accrues on the actual number of elapsed days between purchase and maturity,
assuming each year has 360 days. The Treasury price quote is the annualized dollar return
provided by the Treasury bill in 360 days expressed as a percentage of the face value

360
n

(100 − P ) (1.2)

where P is the cash price of a Treasury bill that has a face value of $100 and n days to
maturity.9 The discount rate is not the rate of return earned on the Treasury bill. If the cash
price of a 90-day Treasury bill is 99, the quoted price would be 1.00. The rate of return
would be 1/99, or 1.01%, per 90 days. This is translates to

1
99

× 360
90

= 0.0404

or 4.04% per annum on an actual/360 basis. Alternatively, it is

1
99

× 365
90

= 0.04096

or approximately 4.10% per annum on an actual/365 basis. Both of these rates are ex-
pressed with a quarterly compounding period of 90 days. In order to directly compare
Treasury yields with yields quoted on Treasury bonds, often semiannual compounding (a
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4 Swaps and Fixed Income Instruments Chapter 1

compounding period of 180 days) is used on an actual/365 basis. The computed rate is
known as the bond equivalent yield. In this case, the bond equivalent yield is

1
99

× 365
180

= 0.02048.

For short-term Treasury bills (fewer than 182 days to maturity), the money-market yield
can be computed as 360/365 of the bond equivalent yield. In this example, it is 2.02%.

T-bill futures call for the delivery or purchase of a T-bill with a maturity of 91 days and
a face value of $1,000,000. They are used for speculating and hedging short-term rates.
Prices of T-bill futures are quoted in terms of the interbank money market (IMM) index or
discount yield Rd:

IMM = 100 − Rd

Theoretical T-bill pricing is done with a carrying cost model

f0 = SM
0 (1 + Rf)T (1.3)

where

f0 = price of T-bill futures

T = time to expiration on futures

SM
0 = price on spot T-bill with maturity of M = 91 + T

Rf = risk-free or repo rate

Following Johnson (2004),10 suppose the rate on a 161-day spot T-bill is 5.7% and the
repo rate (or risk-free rate) for 70 days is 6.38%; then the price on a T-bill futures contract
with an expiration of 70 days would be

f0 = (97.5844)(1.0638)70/365 = 98.7487

where

S161
0 =

100
(1.057)161/365

= 97.5844.

The future price is governed by arbitrage considerations. If the futures market price
is above f∗, arbitrageurs would short the futures contract and go long the spot T-bill. For
example, suppose the futures market price is fM=70/365 = 99. An arbitrageur would go
short in the futures, agreeing to sell a 91-day T-bill at 99, 70 days later, and would go long
the spot, borrowing 97.5844 at 6.38% for 70 days to finance the purchase of the 161-day
T-bill that is trading at 97.5844. Seventy days later at expiration, the arbitrageur would sell
the T-bill (which would now have a maturity of 91 days) on the futures for fM=70/365 = 99
and pay off his financing debt of f∗ = 98.74875, realizing a cash flow (CFT ) of $2,513:

CFT = fM
0 − f∗

0

= fM
0 − SM

0 (1 + Rf)T

= 99 − 97.5844(1.0638)70/365

= 99 − 98.7487 = 0.2513
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Section 1.2 Treasury Bills and Bonds 5

so that the cash flow or profit is

CFT = ($1, 000, 000)
(

0.2513
100

)
= $2, 513.

Note that if fM = 99, a money market manager planning to invest for 70 days in T-bills
at 6.38% could earn a greater return by buying a 161-day bill and going short the 70-day
T-bill futures to lock in the selling price. For example, using the preceding numbers, if a
money manager was planning to invest 97.5844 for 70 days, she could buy a 161-day bill
for that amount and go short in the futures at 99. Her return would be 7.8%, compared to
only 6.38% from the 70-day T-bill:

R =
(

99
97.5844

)365/70

− 1 = 0.078

If the market price is below f∗, then arbitrageurs would go long in the futures and short
in the spot. Suppose fM = 98. An arbitrageur would go long in the futures, agreeing to
buy a 91-day T-bill for 98 seventy days later and would go short in the spot, borrowing
the 161-day T-Bill, selling it for 97.5844 and investing the proceeds at 6.38% for 70 days.
Seventy days later (expiration), the arbitrageur would buy the bill (which now would have
a maturity of 91 days) on the futures for 98 (fm), use the bill to close his short position, and
collect 98.74875 (f∗) from his investment, realizing a cash flow of $7487.

CFT = f∗
0 − fM

0

= SM
0 (1 + Rf)T − fM

0

= 97.5844(1.0638)70/365 − 98
= 98.7487− 98 = 0.2513 = 0.7487

so that the cash flow or profit is

CFT = ($1, 000, 000)
(

0.7487
100

)
= $7, 487

If the carrying-cost model holds, then the spot rate on a 70-day bill (repo rate) will be
equal to the synthetic rate (implied repo rate) formed by buying the 161-day bill and going
short in the 70-day futures:

Buy 161-day T-bill S161
0 = 97.5844.

Short position in T-bill futures at fM
0 = f∗

0 = 98.74875.

R =
(

98.74875
97.5844

)365/70

− 1 = 0.0638.

Furthermore, if the carrying-model holds, then the yield-to-maturity, YTM, of the fu-
tures will be equal to the implied forward rate F . Locking in the 91-day investment to be
made 70 days from now, as follows:
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6 Swaps and Fixed Income Instruments Chapter 1

1. Short 70-day T-bill at S70
0 = 98.821.

2. Buy n = S70
0

S161
0

= 98.821
97.5844

= 1.01267 of 161-day bill at 97.5844.

3. End of 70 days, cover short bill for 100.

4. 90 days later, collect on the investment in the original 161-day bill: 1.01267(100) =
101.267.

R =
(

101.267
100

)365/91

− 1 = 0.0518 = F91,70

which is equal to

YTMf =
(

100
98.74875

)365/91

− 1 = 0.0518.

Hedging with T-Bill Futures

T-bill futures are often used for hedging by money managers. Suppose a money man-
ager is expecting a $5 million cash flow in June, which she plans to invest in a 91-day
T-bill. With June T-bill futures trading at IMM of 91 (June IMM = 91 or RD = 9%), the
manager could lock in a 9.56% rate by going long 5.115 June T-bill contracts:

fJune
0 = ($1, 000, 000)

(
100− (9)(0.25)

100

)
= $977, 500

YTMf =
(

$1, 000, 000
$977, 500

)365/91

− 1 = 0.0956

nf =
CFT

f0
=

$5, 000, 000
$977, 500

= 5.115 long contracts

Suppose in June, the spot 91-day T-bill rate is at 8%. The manager would find T-bill
prices higher at $980,995, but would realize a profit of $17,877 from closing the futures
position. Combining the profit with the $5 million cash flow, the manager would be able to
buy 5.115 T-bills11 and earn a rate off the $5 million investment of 9.56%:

At June contract maturity, rate on T-bill = 8%.

spot rate = S91
T =

$1, 000, 000
(1.08)91/365

= $980, 995.

profit = πf = [$980, 995− $997, 500](5.115) = $17, 877.

hedge ratio = nTB =
CF + πf

S91
T

=
($5, 000, 000+ $17, 877)

$980, 995
= 5.115.

contract price = fJune
0 = ($1, 000, 000)

(
100− (9)(0.25)

100

)
= $977, 500.

rate of return = R =
[
($1, 000, 000)(5.115)

$5, 000, 000

]365/91

− 1 = 0.956 = 9.56%.
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Section 1.2 Treasury Bills and Bonds 7

Suppose instead that in June, the spot 91-day T-bill rate is at 10%. The manager would
find T-bill prices lower at $976,518, but would realize a loss of $5,025 from closing the
futures position. After paying the clearing house $5,025, the manager would still be able to
buy 5.115 T-bills given the lower T-bill prices, earning a rate of return from the $5 million
investment at 9.56%:

At June contract maturity, rate on T-bill = 10%.

S91
T =

$1, 000, 000
(1.10)91/365

= $976, 518.

πf = [$976, 518− $997, 500](5.115) = −$5, 025.

nTB =
CF + πf

S91
T

=
($5, 000, 000− $5, 025)

$976, 518
= 5.115.

fJune
0 = ($1, 000, 000)

(
100− (9)(0.25)

100

)
= $977, 500.

R =
[
($1, 000, 000)(5.115)

$5, 000, 000

]365/91

− 1 = 0.956 = 9.56%.

Note that at any rate, the money market manager earns a rate of return of 9.56%.

Long Futures Hedge: Hedging Synthetic Futures on 182-Day T-Bill

Suppose a money market manager is expecting a $5 million cash flow in June, which
she plans to invest in a 182-day T-bill. Because the T-bill underlying a futures contract has
a maturity of 91 days, the manager would need to go long in both June T-bill futures and a
September T-bill futures (note that there are approximately 91 days between the contract)
in order to lock in a return on a 182-day T-bill instrument. If June T-bill futures were trading
at IMM of 91 and September futures were trading at IMM of 91.4, then the manager could
lock in a 9.3% rate on an instrument in 182-day T-bills by going long in 5.115 June T-bill
futures and 5.11 September contracts:

June IMM = 91 or RD = 9%
Sept IMM = 91.4 or RD = 8.6%

fJune
0 = ($1, 000, 000)

(
100− (9)(0.25)

100

)
= $977, 500

fSept
0 = ($1, 000, 000)

(
100− (8.6)(0.25)

100

)
= $978, 500

YTMJune
f =

[
$1, 000, 000
$977, 500

]365/91

− 1 = 0.0956

YTMSept
f =

[
$1, 000, 000
$978, 500

]365/91

− 1 = 0.091

nJune
f =

CFT

f0
=

$5, 000, 000
$977, 500

= 5.115 long contracts



“London” — 2006/10/5 — 10:17 — page 8 — #32
�

�

�

�

�

�

�

�

8 Swaps and Fixed Income Instruments Chapter 1

nSept
f =

CFT

f0
=

$5, 000, 000
$978, 500

= 5.112 long contracts

so that the return is

YTM182
f =

[
(1.0956)91/35(1.091)91/365

]365/182

− 1 = 0.093.

Suppose in June, the 91-day T-bill rate is at 8% and the spot 182-day T-bill rate is at
8.25%. At these rates, the price on the 91-day spot T-bill would be

S91
T =

$1, 000, 000
(1.08)91/365

= $980, 995

and the price on the 182-day spot T-bill would be

S182
T =

$1, 000, 000
(1.08)182/365

= $961, 245.

If the carrying-cost model holds, then the price on the September futures at the June
date is

fSept
0 = S182

0 (1 + Rf)T = $961, 245(1.08)91/365 = $979, 865.

At these prices, the manager would be able to earn futures profits of

June πf = [$980, 995− $977, 500]5.115 = $17, 877
Sept π = [$979, 865− $978, 500]5.11 = $6, 975

for a total profit of $24,852 from closing both futures contract (which offsets the higher
T-bill futures prices) and would be able to buy

nTB =
$5, 000, 000+ $24, 852

$961, 245
= 5.227

182-day T-bills, yielding a rate of return of

R =
[
(5.227)($1, 000, 000)

$5, 000, 000

]365/182

− 1 = 0.093

or 9.3% from a $5 million investment. Readers can verify for themselves that the rate of
return will still be 9.3% if the 91-day and 182-day T-bill spot rates rise. Thus, Treasury
bond futures contracts call for the delivery or purchase of a T-bond with a face value of
$100,000. The contract allows for the delivery of a number of T-bonds; there is a conversion
factor used to determine the actual price of the futures given the bond that is delivered. In
actuality, the cheapest-to-deliver T-bond is delivered. T-bond futures are quoted in terms of
a T-bond with an 8% coupon, semiannual payments, maturity of 15 years, and face value
of $100.

In Matlab, one can make Treasury bills directly comparable to Treasury notes and bonds
by restating U.S. Treasury bill market parameters in U.S. Treasury bond form as zero-
coupon bonds via the following function:
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[TBondMatrix, Settle] = tbl2bond(TBillMatrix)

TBillMatrix are the Treasury bill parameters. An N -by-5 matrix is where each row
describes a Treasury bill. N is the number of Treasury bills. Columns are [Maturity
DaysMaturity Bid Asked AskYield], as described in Table 1.1.

Table 1.1
Maturity Maturity date, as a serial date number. Use datenum to convert date strings

to serial date numbers.

DaysMaturity Days to maturity, as an integer. Days to maturity is quoted on a skip-day basis;

the actual number of days from settlement to maturity is DaysMaturity

+ 1.

Bid Bid bank-discount rate: the percentage discount from face value at which

the bill could be bought, annualized on a simple-interest basis. A decimal

fraction.

Asked Asked bank-discount rate, as a decimal fraction.

AskYield Asked yield: the bond-equivalent yield from holding the bill to maturity, an-

nualized on a simple-interest basis and assuming a 365-day year. A decimal

fraction.

The output consists of the Treasury bond parameters given in TBondMatrix, an N -
by-5 matrix where each row describes an equivalent Treasury (zero-coupon) bond. Columns
are [CouponRate Maturity Bid Asked AskYield], as described in Table 1.2

Table 1.2
CouponRate Coupon rate, which is always 0.

Maturity Maturity date, as a serial date number. This date is the same as the Treasury

bill Maturity date.

Bid Bid price based on $100 face value.

Asked Asked price based on $100 face value.

AskYield Asked yield to maturity: the effective return from holding the bond to matu-

rity, annualized on a compound-interest basis.

Example 1

Given published Treasury bill market parameters for December 22, 1997:

TBill = [datenum('jan 02 1998') 10 0.0526 0.0522 0.0530
datenum('feb 05 1998') 44 0.0537 0.0533 0.0544
datenum('mar 05 1998') 72 0.0529 0.0527 0.0540];
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10 Swaps and Fixed Income Instruments Chapter 1

Execute the function:

TBond = tbl2bond(TBill)

TBond =
0 729760 99.854 99.855 0.053
0 729790 99.344 99.349 0.0544
0 729820 98.942 98.946 0.054

1.3 COMPUTING TREASURY BILL PRICES AND YIELDS
IN MATLAB

In Matlab, you can specify T-bills yield as money-market or bond-equivalent yield.
Matlab Treasury bill functions all assume a face value of $100 for each Treasury bill.

The price of a T-bill can be computed using the function

Price = prtbill(Settle, Maturity, Face, Discount)

where the arguments are as listed in Table 1.3.

Table 1.3
Settle Enter as serial date number or date string. Settle must be earlier than or

equal to Maturity.

Maturity Enter as serial date number or date string.

Face Redemption (par, face) value.

Discount Discount rate of the Treasury bill. Enter as decimal fraction.

Example 2

Settle = '2/10/2005';
Maturity = '8/7/2005';
Face = 1000;
Discount = 0.0379;
Price = prtbill(Settle, Maturity, Face, Discount);

Price =
981.2606

The yield to maturity of the T-bill can be calculated using the yldtbill function:

Yield = yldtbill(Settle, Maturity, Face, Price)

The yield of the T-bill in this example is:

Yield = 0.0386
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Section 1.4 Hedging Debt Positions 11

The bond equivalent yield of the T-bill is

BEYield = beytbill(Settle, Maturity, Discount)

where Discount is the discount rate of the T-bill, which can be computed from the
discrate function:

Discount = discrate(Settle, Maturity, Face, Price, Basis)

In this example, Basis = 2 (Actual/360 day-count convention) so that

Discount = 0.0379

as expected (as initially given) so that the bond equivalent yield is as follows:

BEYield = 0.0392

1.4 HEDGING DEBT POSITIONS

Hedging a Future 91-Day T-Bill Investment with T-Bill Call

Following Johnson (2004), suppose a treasurer expects higher short-term rates in June
but is still concerned about the possibility of lower rates. To be able to gain from the higher
rates and yet still hedge against lower rates, the treasurer could buy a June call option on
a spot T-bill or a June option on a T-bill futures. For example, suppose there was a June
T-bill futures option with an exercise price of 90 (strike price X = 975, 000), price of 1.25
(C = $3, 125), and June expiration (on both underlying futures and option) occurring at
the same time a $5,000,000 cash inflow is to be received. To hedge the 91-day investment
with this call, the treasurer would need to buy 5.128205 calls (assume divisibility) at a cost
of $16,025.64:

nc =
CFT

X
=

$5, 000, 000
$975, 000

= 5.128205 contracts

Cost = (5.128205)($3, 125) = $16, 025.64
πc = 5.1282085[Max(ST − $975, 000, 0)− $3, 125]

If T-bill rates were lower at the June expiration, then the treasurer would profit from the
calls that she could use to defray part of the cost of the higher priced T-bills. As shown in
Table 1.4, if the spot discount rate on T-bills is 10% or less, the treasurer could buy 5.112
91-day spot T-bills with the $5 million cash inflow and profit from the calls, locking in a
YTM of 9.3% on the $5 million investment. On the other hand, if T-bill rates were higher,
then the treasurer would benefit from lower spot prices, while the losses on the call would
be limited to just the $16,025.64 cost of the calls. In this case, for spot discount rates above
10%, the treasurer could buy more T-bills the higher the rates, resulting in higher yields as
rates increase. Thus, for the cost of the call options, the treasurer can lock in a minimum
YTM on the $5 million June investment of 9.3%, with the chance to earn a higher rate if
short-term rates increase.
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12 Swaps and Fixed Income Instruments Chapter 1

Table 1.4 Hedging $5M CF in June with June T-Bill Futures Call

Source: Johnson, S. (2004)

Note that if the treasurer wanted to hedge a 182-day investment instead of 91-days with
calls, then similar to the futures hedge, she would need to buy both June and September
T-bill futures calls. At the June expiration, the manager would then close both positions and
invest the $5,000,000 inflow plus (minus) the call profits (losses) in 182-day spot T-bills.

Short Hedge: Managing the Maturity Gap

Short hedges are used when corporations, municipal governments, financial institu-
tions, dealers, and underwriters are planning to sell bonds or borrow funds at some future
date and want to lock in the rate. The converse of the preceding example would be a money
market manager who, instead of buying T-bills, was planning to sell her holdings of T-bills
in June when the current bills would have maturities of 91 days or 182 days. To lock in a
given revenue, the manager would go short in June T-bill futures (if she plans to sell 91-day
bills) or June and September futures (if she planned to sell 182-day bills). If short-term rates
increase (decrease), causing T-bill prices to decrease (increase), the money manager would
receive less (more) revenue from selling the bills, but would gain (lose) when she closed
the T-bill futures contracts by going long in the expiring June (and September) contract.

Another important use of short hedges is in locking in the rates on future debt positions.
As an example, consider the case of a small bank with a maturity gap problem in which
its short-term loan portfolio has an average maturity greater than the maturity of the CDs
that it is using to finance the loans. Specifically, suppose in June, the bank makes loans of
$1 million, all with maturities of 180 days. To finance the loan, though, suppose the bank’s
customers prefer 90-day CDs to 180-day, and as a result, the bank has to sell $1 million
worth of 90-day CDs at a rate equal to the current LIBOR of 8.258%. Ninety days later (in
September) the bank would owe $1, 019, 758 = ($1, 000, 000)(1.08258)90/365; to finance
this debt, the bank would have to sell $1,019,758 worth of 90-day CDs at the LIBOR at
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Section 1.4 Hedging Debt Positions 13

that time. In the absence of a hedge, the bank would be subject to market risk. If short-term
rates increase, the bank would have to pay higher interest on its planned September CD
sale, lowering the interest spread it earns (the rate from $1 million 180-day loans minus
interest paid on CDs to finance them); if rates decrease, the bank would increase its spread.

Suppose the bank is fearful of higher rates in September and decides to minimize its
exposure to market risk by hedging its $1,019,758 CD sale in September with a September
Eurodollar futures contract trading at IMM = 92.1. To hedge the liability, the bank would
need to go short in 1.03951 September Eurodollar futures (assume perfect divisibility):

fSept
0 =

100 − (7.9)(0.25)
100

($1, 000, 000) = $981, 000

nf =
$1, 019, 758
$981, 000

= 1.03951 Short Eurodollar Contracts

At a futures price of $981,000, the bank would be able to lock in a rate on its September
CDs of 8.1%.

YTMSept
f =

(
$1, 000, 000
$981, 000

)365/91

− 1 = 0.081

YTM182 =
[
(1.0825)90/365(1.081)90/36

]365/180

− 1 = 0.0817.

With this rate and the 8.25% rate it pays on its first CDs, the bank would pays 8.17%
on its CDs over the 180-day period: That is, when the first CDs mature in September, the
bank will issue new 90-day CDs at the prevailing LIBOR to finance the $1,019,758 first CD
debt plus (minus) any loss (profit) from closing its September Eurodollar futures position.
If the LIBOR in September has increased, the bank will have to pay a greater interest on
the new CDs, but it will realize a profit from its futures that, in turn, will lower the amount
of funds it needs to finance at the higher rate. On the other hand, if the LIBOR is lower, the
bank will have lower interest payments on its new CDs, but it will also incur a loss on its
futures position and therefore will have more funds that need to be financed at the lower
rates. The impact that rates have on the amount of funds needed to be financed and the rate
paid on them will exactly offset each other, leaving the bank with a fixed debt amount when
the September CDs mature in December. As Table 1.5 shows, where the bank’s December

Table 1.5
Sept LIBOR (R) 0.075 0.085

(2) SCD
T = f Sept

T = $1M/(1+ R)90/365 $982,236 $979,640

(3) πt = [981,000 − fT ]1.0391 -$1,378 $1,413

(4) Debt on June CD $1,019,758 $1,019,758

(5) Total Funds to finance for next 90 days: Row (4) − Row (3) $1,021,136 $1,018,345

(6) Debt at end of next 90 days: Row (5) ( 1 + R)90/365 $1,039,509 $1,039,509

(7) Rate for 180-day period:

R180
CD = [$1,039,509/$1,000,000]365/180 − 1 8.17% 8.17%

Source: Johnson, R.S.
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liability (the liability at the end of the initial 180-day period) is shown to be $1,039,509
given September LIBOR rate scenarios of 7.5% and 8.7% (this will be true at any rate).

Note that the debt at the end of 180 days of $1,039,509 equates to a September 90-day
rate of 8.1% and a 180-day rate for the period of 8.17%:

YTMSept
f =

[
$1, 039, 509
$1, 019, 758

]365/90

− 1 = 0.081

RCD180 =
[
$1, 039, 509
$1, 000, 000

]365/180

− 1 = 0.0817

Maturity Gap and the Carrying Cost Model

In the preceding example, we assumed the bank’s maturity gap was created as a re-
sult of the bank’s borrowers wanting 180-day loans and its investors/depositors wanting
90-day CDs. Suppose, though, that the bank does not have a maturity gap problem; that
is, it can easily sell 180-day CDs to finance its 180-day loan assets and 90-day CDs to fi-
nance its 90-day loans. However, suppose that the September Eurodollar futures price was
above its carrying cost value. In this case, the bank would find that instead of financing
with a 180-day spot CD, it would be cheaper if it financed its 180-day June loans with
synthetic 180-day CDs formed by selling 90-day June CDs rolled over three months later
with 90-day September CDs, with the September CD rate locked in with a short position
in the September Eurodollar futures contract. For example, if the June spot 180-day CDs
were trading 96 to yield 8.63%, then the carrying cost value on the September Eurodollar
contract would be 97.897 (97.897 = 96(1.08258)90/365). If the September futures price
were 98.1, then the bank would find it cheaper to finance the 180-day loans with synthetic
180-days CDs with an implied futures rate of 8.17% than with 180-day spot CDs at a rate
of 8.63%. On the other hand, if the futures price is less than the carrying cost value, then
the rate on the synthetic 180-day CDs would exceed the spot 180-day CD rate, and the bank
would obtain a lower financing rate with the spot CDs. Finally, if the carrying cost model
governing Eurodollar futures prices holds, then the rate of the synthetic will be equal to
rate on the spot; in this case, the bank would be indifferent to its choice of financing.

Managing the Maturity Gap with Eurodollar Put

Instead of hedging its future CD sale with Eurodollar futures, the bank could alterna-
tively buy put options on either a Eurodollar or T-bill or put options on a Eurodollar futures
or T-bill futures. In the preceding case, suppose the bank decides to hedge its September
CD sale by buying a September T-bill futures put with an expiration coinciding with the
maturity of its June CD, an exercise price of 90 (X = $975, 000), and a premium of.5
(C = $1, 250). With the September debt from the June CD of $1,019,758, the bank would
need to buy 1.046 September T-bill futures puts at a total cost of $1,307 to hedge the rate it
pays on its September CD:

np =
CFT

X
=

$1, 019, 758
$975, 000

= 1.0459056 puts

Cost = (1.046)($1, 250) = $1, 307
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Section 1.4 Hedging Debt Positions 15

If rates at the September expiration are higher such that the discount rate on T-bills is
greater than 10%, then the bank will profit from the puts. This profit would serve to reduce
part of the $1,019,750 funds it would need to finance the maturing June CD that, in turn,
would help to negate the higher rate it would have to pay on its September CD. As shown
in Table 1.6, if the T-bill discount yield is 10% or higher and the bank’s 90-day CD rate
is 0.25% more than the yield on T-bills, then the bank would be able to lock in a debt
obligation 90 days later of $1,047,500, for an effective 180-day rate of 9.876%.

On the other hand, if rates decrease such that the discount rate on a spot T-bill is less
than 10%, then the bank would be able to finance its $1,047,500 debt at lower rates, while
its losses on its T-bill futures puts would be limited to the premium of $1,307. As a result,
for lower rates, the bank would realize a lower debt obligation 90 days later and therefore a
lower rate paid over the 180-day period. Thus, for the cost of the puts, hedging the maturity
gap with puts allows the bank to lock in a maximum rate paid on debt obligations with the
possibility of paying lower rates if interest rates decrease.

Table 1.6

Source: Johnson, R.S. (2004)

Short Hedge: Hedging a Variable-Rate Loan

As a second example of a short naive hedge, consider the case of a corporation obtaining
a one-year, $1 million variable-rate loan from a bank. In the loan agreement, suppose the
loan starts on date 9/20 at a rate of 9.5% and then is reset on 12/20, 3/20, and 6/20 to equal
the spot LIBOR (annual) plus 150 basis points (.015 or 1.5%) divided by four: (LIBOR +
.015)/4.

To the bank, this loan represents a variable-rate asset, which it can hedge against in-
terest rate changes by issuing 90-day CDs each quarter that are tied to the LIBOR. To the
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corporation, though, the loan subjects them to interest rate risk (unless they are using the
loan to finance a variable-rate asset). To hedge this variable-rate loan, though, the corpo-
ration could go short in a series of Eurodollar futures contracts—Eurodollar strip. For this
case, suppose the company goes short in contracts expiring at 12/20, 3/20, and 6/20 and
trading at the prices shown in Table 4.9.

Table 1.7
T 12/20 3/20 6/20

IMM Index 91.5 91.75 92

f0(per $100 Par) 97.875 97.9375 98

The locked-in rates obtained using Eurodollar futures contracts are equal to 100 minus
the IMM index plus the basis points on the loans:

Locked-in Rate = [100− IMM] + [BP/100]
12/20 : R12/20 = [100− 91.5] + 1.5% = 10%

3/20 : R3/20 = [100− 91.75] + 1.5% = 9.75%
6/20 : R6/20 = [100− 92] + 1.5% = 9.5%

For example, suppose on date 12/20, the assumed spot LIBOR is 9%, yielding a settle-
ment IMM index price of 91 and a closing futures price of 97.75 per $100 face value. At
that rate, the corporation would realize a profit of $1,250 from having it short position on
the 12/20 futures contract. That is:

f0 =
(100 − (100 − 91.5))(0.25)

100
($1, 000, 000) = $978, 750

fT =
(100 − (100 − 91))(0.25)

100
($1, 000, 000) = $977, 500

Profit on 12/20 contract = $978, 750− $977, 500 = $1, 250

At the 12/20 date, though, the new interest that the corporation would have to pay for
the next quarter would be set at $26,250:

12/20 Interest = [(LIBOR + .015)/4]($1, 000, 000)
12/20 Interest = [(.09 + .015)/4]($1, 000, 000)
12/20 Interest = $26, 250

Subtracting the futures profit from the $26,250 interest payment (and ignoring the time
value factor), the corporation’s hedged interest payment for the next quarter is $25,000. On
an annualized basis, this equates to a 10% interest on a $1 million loan, the same rate as
the locked-in rate:

Hedged Rate = RA =
4($25, 000)
$1, 000, 000

= 0.10
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On the other hand, if the 12/20 LIBOR were 8%, then the quarterly interest payment
would be only $23, 750((.08 + .015)/4)($1, 000, 000) = $23, 750). This gain to the cor-
poration, though, would be offset by a $1,250 loss on the futures contract (i.e., at 8%, fT =
$980, 000, therefore, profit on the 12/20 contract is $978, 750 − $980, 000 = −$1, 250).
As a result, the total quarterly debt of the company again would be $25, 000($23, 750 +
$1, 250). Ignoring the time value factor, the annualized hedged rate the company pays
would again be 10%. Thus, the corporation’s short position in the 12/20 Eurodollar futures
contract at 91.5 enables it to lock-in a quarterly debt obligation of $25,000 and 10% annu-
alized borrowing rate. If the LIBOR is at 9% on date 12/20, the company will have to pay
$26,250 on its loan the next quarter, but it will also have a profit on its 12/20 Eurodollar
futures of $1,250, which it can use to defray part of the interest expenses, yielding an ef-
fective hedged rate of 10%. The interest payments, futures profits, and effective interests
are summarized:

12/20 : LIBOR = 9%
Futures:

Settlementprice: ST = 100 − LIBOR

ST = 100 − 9(.25) = 97.75

πf =
97.875− 97.75

100
($1M) = $1, 250

Interest =
LIBOR + 150BP

4
($1M)

=
.09 + .015

4
($1M) = $26, 250

EffectiveInterest = $26, 250− $1, 250 = $25, 000

EffectiveRate = RA =
4($25, 000)

$1M
= .10

If the LIBOR is at 6% on date 12/20, the company will have to pay only $18,750 on its
loan the next quarter, but it will also have to cover a loss on its 12/20 Eurodollar futures of
$6,250. The payment of interest and the loss on the futures yields an effective hedged rate
of 10%:

12/20 : LIBOR = 6%
Futures:

Settlementprice : ST = 100− LIBOR

ST = 100− 6(.25) = 98.5

πf =
97.875− 98.5

100
($1M) = −$6, 250

Interest =
LIBOR + 150BP

4
($1M)

=
.06 + .015

4
($1M) = $18, 750
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18 Swaps and Fixed Income Instruments Chapter 1

EffectiveInterest = $18, 750 + $6, 250 = $25, 000

EffectiveRate = RA =
4($25, 000)

$1M
= .10

Given the other locked-in rates, the one-year fixed rate for the corporation on its variable-
rate loan hedged with the Eurodollar futures contracts would therefore be 9.6873%:

Loan Rate =
[
(1.095).25(1.10).25(1.0975).25(1.095).25

]1 − 1 = .096873.

Note, in practice, the corporation could have obtained a one-year fixed-rate loan. With
futures contracts, though, the company now has a choice of taking either a fixed-rate loan
or a synthetic fixed-rate loan formed with a variable-rate loan and short position in a Eu-
rodollar futures contract, whichever is cheaper. Also, note that the corporation could have
used a series of Eurodollar puts or futures puts to hedge its variable-rate loan. With a put
hedge, each quarter the company would be able to lock in a maximum rate on its loan with
the possibility of a lower rate if interest rates decrease.

1.5 BOND AND SWAP DURATION, MODIFIED DURATION,
AND DV01

Duration (also known as Macauley’s duration) is the present-value-weighted average
time (in years) to maturity of the cash flow payments of a fixed income security. If Ci is
the total cash flow payment at time ti, then duration is computed as

Duration =

n∑
i=1

tiCi

(1+yi)ti

B
(1.4)

where n = number of cash flows, t = time to cash flow (in years), yi is the simple-

compound discount yield at time ti, and B =
n∑

i=1

Ci

(1+yi)ti
is the bond price.12 At maturity,

the cash flow includes both the principal face value and coupon payment. Yield modified
duration13 divides the duration number by (1+1/YTM), where YTM is the yield to maturity
of the bond. However, the YTM used to calculate the yield modified duration of a swap is
the par swap rate (e.g., the swap rate that makes the present value of the swap zero).

To calculate the duration (modified duration) of a swap, we compute the modified dura-
tion of the long leg minus the modified duration of the short leg. Duration for the fixed leg
is the present-value-weighted average maturity of the cash flows, whereas duration of the
floating leg is the time to the next reset for the floating leg. The duration calculations (for
both sides) divided by 1/(1 + YTM) is the modified duration for each side. The modified
duration of an interest rate swap leg can be calculated like a bond

MD =
Leg DV01

Leg PV
∗ 10, 000 (1.5)

where DV01 (sometimes denoted PV01 in the literature) is the dollar value of a basis point
change of the leg14 and PV is the present value of the leg. This calculation should always be
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positive. An alternative, but equivalent, calculation to compute modified duration for each
leg is to compute

MD =
Leg DV01

(Notional Value + Market Value)
∗ 10, 000 (1.6)

where the Market Value is the leg PV. This alternative computation is appropriate if the leg
PV does not include the final exchange of principal. However, the leg DV01 must include
the notional exchange to give a bond-like duration, so the leg DV01 must also include
notional.

The difference between the modified durations of both legs, the net PV, is then taken to
compute the modified duration of the swap:

Swap MD = MD of Receive Leg − MD of Pay Leg (1.7)

Note that if the market value (leg PV) of the swap is zero, then duration is computed.
Thus, for a par swap where the market value is zero, the duration (referred to as deal risk
in Bloomberg) is equal to the modified duration.

For forward-starting swaps—e.g., a 10-year swap that starts in 7 years—typically a
discounted swap modified duration is computed by adjusting equation (1.7) by a factor that
is very close to the discount factor for the start date of the swap. An excellent approximation
for this discount factor is provided by the NPV of the floating leg (including the final
notional exchange), divided by the notional of the trade:

Discounted Swap MD = Swap MD × Floating Leg PV/Notional (1.8)

Note that quantitative differences arise between the yield modified duration (which
assumes a flat discount rate) and the DV01 formulation in (1.5) or (1.6), based on various
factors such as a sloping yield curve, instrument valuations away from par, instruments with
long tenors, and forward-starting instruments. With an upward-sloping discount curve, the
PV of the largest cash flow (at maturity) affects duration the most. Because the yield is
lower than the discount rate at maturity, the value of the yield MD is higher than the value
of the DV01 MD. The effect of the upward-sloping curve is amplified with a longer tenor,
because the largest cash flow at maturity is even more different when discounted using the
curve for DV01 MD and using the yield for yield MD; thus, the yield MD is greater than
the DV01 MD. A downward-sloping discount curve has the opposite affect because the
yield is higher than the discount rate at maturity.

Large NPVs during a tenor with an upward-sloping yield curve result from a coupon
much different from the discount rate. The present value of the coupon cash flows have
a larger weight in the bond price (PV). For DV01 MD, the PV of coupons in the long
end decreases more when the curve is shifted by one basis point, compared to yield MD
where coupons at the end are discounted at a lower rate (the yield) and are less sensitive
to interest rate changes. Also, the DV01 MD is calculated by dividing by a higher value of
bond PV so that the yield MD is greater than the DV01 MD. For a forward starting swap
with an upward-sloping yield curve, yield MD is calculated as the sum of the yield MDs
of two bonds with opposite signs—a long position in a bond starting today and maturing
in T2 years, and a short position in bond starting today and maturity in T1 years, where
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0 < T1 < T2. The cash flows affecting yield are those between T1 +1 and T2 years, which
are discounted at a yield lower than the discount rates at the long end of the curve. As a
result, yield MD is higher than the DV01 MD.

Hedging Bond Portfolios

Consider the following bond portfolio example shown in Table 1.8.15

Of the Treasury bonds in the portfolio, the 5% of August 2011 was the current on-the-
run 10-year, while the 6.5% of February 2010 became the cheapest-to-deliver (CTD) for
the CBOT 10-year Treasury note futures when the data was recorded. The 5.625% of May
08 had recently been CTD. The coupons of the 11 corporate bonds in Table 1.8 range from
a high of 9.375% to a low of 6.15% and have maturities from August 2007 to August 2011.
With the exception of American Standard, all of these issues are investment grade credits
where the credit ratings range from the S&P AA- of the Transamerica issue to the BBB-
of the News America Holdings and Litton Industries issue. American Standard is a BB+
credit.

Table 1.8 shows weighted average durations for the two sectors and for the portfolio
as a whole. The Treasury sector shows that this $262.34 million holding has a duration of
6.56 years. The $436.25 million corporate sector holding has a duration of 5.39 years, and
the $698.59 million portfolio has a duration of 5.83 years.

Fixed income securities with different coupons and maturities respond differently to
yield changes. This price sensitivity to yield change can be captured in terms of the dollar
value of a basis point (DV01) for a given security. To find the DV01 for an individual fixed
income security, given a modified duration and a full price, solve the following:

Table 1.8
 Modified Par Full S&P
 Duration DV01 Amount Price Credit
Issuer Coupon Maturity YTM (years) ($) ($ millions) ($000s) Rating
Treasury 6.5 2/15/10 4.55 6.56 0.0748 67 76,387 
Treasury 5.625 5/15/08 4.64 5.48 0.0588 92 98,762 
Treasury 5 8/15/11 4.57 7.77 0.0807 84 87,192 
Treasury Sector    6.56   262,341 
Time Warner Enterprises 8.18 8/15/07 5.47 4.72 0.0540 82 93,710 BBB+
Texas Utilities 6.375 1/1/08 6.19 5.06 0.0517 30 30,678 BBB
Rockwell International 6.15 1/15/08 6.14 5.13 0.0521 52 52,837 A
Transamerica Corporation 9.375 3/1/08 6.34 4.93 0.0573 15 17,445 AA-
Coastal Corporation 6.5 6/1/08 6.76 5.25 0.0528 30 30,153 BBB
United Airlines 6.831 9/1/08 5.99 5.51 0.0579 38 39,949 A-
Burlington Northern Santa Fe 7.34 9/24/08 5.67 5.36 0.0606 3 3,390 A+
News America Holdings 7.375 10/17/08 6.56 5.34 0.0575 30 32,292 BBB-
Litton Industries 8 10/15/09 5.70 5.81 0.0647 63 66,834 BBB-
American Standard Inc. 7.625 2/15/10 7.59 6.10 0.0615 41 41,332 BB+
Caterpillar Inc. 9.375 8/15/11 6.01 6.79 0.0853 22 27,628 A+
Corporate Sector    5.39   436,248 

Portfolio    5.83   698,589 

Reprinted by permission of the Board of Trade of the City of Chicago, Inc., © 2001. All Rights
Reserved.
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DV 01 =
(Duration/100) ∗ Full Price

100

For instance, using this formula with the price and duration date in Table 1.8, we see
that a $98,762,000 position in the Treasury 5.625% of May 08, with its 5.48 duration, has
a DV01 of $54,122, while an $87,192,000 position in the Treasury 5% of August 11, with
its 7.77 duration, has a $67,748 DV01. These DV01s predict that 1 basis point rise in yield
would drive the value of the 5.625% of May 08 down $54,122, while the same yield change
would drive the value of the smaller holding in the 5% of August 11 down $67,748. Clearly,
the 5% of August 11 is more sensitive to yield changes than the 5.625% of May 08 is.

The portfolio is subject to inflation, interest rate, and credit risk that could sharply
erode the value of the holdings and make it difficult to liquidate them at acceptable prices.
The structuring of hedge positions then requires that the futures position be ratioed to the
positions, and then requires that the futures position be ratioed to the position in the security
being hedged in order that the two positions will respond equally to a given yield change.
Given that the DV01 of the 10-year Treasury note futures contract was $72.50 on the day
these dates were recorded (the 10-year swap futures has a $77.00 DV01), we can solve for
the optimal hedge ratio to see that it would take 747 contracts to hedge the 5.625% of May
08 and 934 contracts to hedge the 5% of August 11:

5.625% of May 08 DV01
futures DV01

=
54, 122
72.50

= 747 contracts

5% of August 11 DV01
futures DV01

=
67, 748
72.50

= 934 contracts

To structure a portfolio hedge, we can use a weighted average duration for the Treasury
sector, the corporate sector, or the entire holding, and then use the total full price of the
relevant sectors to find DV01s. Table 1.9 shows that, based on the data in Table 1.8, the
Treasury sector has a $172,096 DV01, the corporate segment has a $235,138 DV01, and

Table 1.9
   DV01 ($)
Treasury Sector  172,096
Corporate Sector  235,138
Portfolio   402,277
  
10-year Treasury Futures  72.50
10-year Swap Futures  77.00
  
Hedge Ratios  
 To Hedge  Hedge Ratio
 1 Full portfolio with 10-yr. T-note futures  5,618
 2 Full portfolio with swap futures  5,289
 3 Treasury sector with 10-yr. T-note futures 2,374
 4 Corporate sector with swap futures  3,054

Reprinted by permission of the Board of Trade of the City of
Chicago, Inc., © 2001. All Rights Reserved.
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the entire portfolio has a $407,277 DV01 (note that the portfolio DV01 does not equal the
sum of the two sector DV01s due to rounding error).

Plugging in these DV01s into the hedge ratio formulas yields the optimal hedge ra-
tios. Hedging the entire portfolio with Treasury futures requires a short position in 5,618
contracts:

Portfolio DV01 407, 277
10-year Treasury Futures DV01 72.50

= 5, 618 contracts

Similarly, hedging the entire portfolio with swap futures requires a short position of
5,289 10-year swap futures contracts:

Portfolio DV01 407, 277
10-year Swap Futures DV01 77.00

= 5, 289 contracts

Finally, an optimal hedging strategy where the Treasury sector is hedged with Treasury
futures and the corporate sector is hedged with swap futures requires a short position in
2,375 10-year Treasury futures contracts and a short position in 3,054 10-year swap futures
contracts:

Treasury Sector DV01 172, 096
10-year Treasury Futures DV01 72.50

= 2, 375 contracts

Corporate Sector DV01 235, 138
10-year Swap Futures DV01 72.50

= 3, 054 contracts

It is important to note that these hedges are static in nature—they only apply at a given
point in time based on current market data. Because Treasury, corporate yields, and swap
rate cause shifts in the DV01s, these hedges should be monitored constantly and rebalanced
based on the changes in interest rates and thus amount of risk exposure.

Hedging and portfolio performance can be measured by scenario and prediction anal-
ysis of yield shifts. During the summer of 2001, the 10-year Treasury-swap rate credit
spread increased 40 basis points. Corporate yields generally followed the direction of the
swap rate. Should that occur again where the swap rate and corporate yields rise 60 bps
while Treasury yields rise only 20 bps, the underlying portfolio will incur an approximate
$17.55 million loss. Table 1.10 shows that the sector DV01s predict that $3,441,920 of the
loss will come from the Treasury sector and $14,108,280 of it will come from the corporate
sector. The Treasury futures hedge (according to the prediction of $72.50 DV01) will re-
spond to the 20 bp change in the Treasury yield and generate an $8,146,000 gain (see Table
1.10, Scenario 1). Based on this scenario, a hedge mismatch loss of $9,404,100 is incurred
as a result of the fact that the Treasury futures hedge can be expected to offset less than half
the portfolio loss.

Alternatively, swap futures can be used to hedge the entire portfolio. This strategy has
the advantage of responding to the larger change in the swap rate and corporate yields.
However, as Table 1.10 Scenario 2 shows, the relevant DV01s predict that this hedge will
generate a futures gain much larger than the loss the underlying portfolio will incur. As Ta-
ble 1.10, Scenario 3 shows, the relevant DV01s predict that these two hedge positions will
generate a total futures gain of $17,551,780. Thus, Scenario 3 appears far more promising
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Table 1.10
Underlying Portfolio Result
     
   Yield Number of 
 Sector DV01 ($) Change (bps) Contracts Gain/Loss ($)
 Treasury 172,096 20  -3,441,920
 Corporate 235,138 60  -14,108,280
 Portfolio    -17,550,200
Scenario 1 - Hedge Entire Portfolio with Treasury Futures
     
   Yield Number of 
 Sector DV01 ($) Change (bps) Contracts Gain/Loss ($)
 10-year T-note 72.50 20 5,618 8,146,100
 Portfolio    -17,550,200
 Hedge Mistatch    -9,404,100
Scenario 2 - Hedge Entire Portfolio with Swap Futures
     
   Yield Number of 
 Sector DV01 ($) Change (bps) Contracts Gain/Loss ($)
 10-year swap 77.00 60 5,289 24,435,180
 Portfolio    -17,550,200
 Hedge Mistatch    6,884,980
Scenario 3 - Hedge Treasury Sector with Treasury Futures, Hedge Corporate Sector with Swap Futures
     
   Yield Number of 
 Sector DV01 ($) Change (bps) Contracts Gain/Loss ($)
 10-year T-note 72.50 20 2,374 3,442,300
 10-year swap 77.00 60 3,054 14,109,480
 Total Hedge Result    17,550,780
 Portfolio    -17,550,200
 Portfolio Mismatch    1,380
 Treasury to 10-year T-note Mismatch   380
 Corporate to Swap Mismatch   1,200

Reprinted by permission of the Board of Trade of the City of Chicago, Inc., © 2001. All Rights
Reserved.

than either of the first two hedges given the minimal hedge mismatch of $1,580 (which
represents less than a basis point and is far less than normal bid-ask spreads, and so for
practical purposes represents a good offset). It highlights the importance of using exact or
like (highly correlated) sector hedges to hedge underlying sectors: hedge the Treasury sec-
tor with 10-year Treasury note futures and the corporate sector with 10-year swap futures.

The large variation in Scenario 1 and Scenario 2, compared with the small hedge mis-
match in Scenario 3, can be explained by the impact of basis risk that cannot be captured by
single sector hedges of an entire underlying fixed income portfolio with multiple sectors.
A 10-year Treasury futures is not as correlated with the corporate sector as the 10-year
swap futures. In other words, swaps correlate more closely with corporates than Treasuries
do. For example, consider a corporate-swap and corporate-Treasury regression using the
TransAmerica Corp. 9.375% March 2008 corporate bond in Table 1.8. The corporate-swap
correlation regression coefficient R2 is 0.9134, while the corporate-Treasury R2 is 0.7966,
as shown in Figure 1.1.

The 0.9134 R2 of the corporate-swap regression suggests that the variability of the swap
rate accounts for 91.34% of the variability in the corporate yield. In contrast, the 0.7966
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Figure 1.1 Reprinted by permission of the Board of Trade of the City of Chicago, Inc., © 2001.
All Rights Reserved.

R2 of the corporate-Treasury regression suggests that the variability of the Treasury yield
accounts for slightly less than 80% of the variability of the yield of the corporate bond.

1.6 TERM STRUCTURE OF RATES

Term structure modeling is essential for valuation of fixed income securities and deriva-
tives as a means for quantifying the relationship between either price or yield among a set
of securities that differ only in the timing of their cash flows or their term until maturity.
Term structure models describe the evolution of interest rates over time. The relationship
expressed by the term structure is traditionally the par-coupon yield relationship, though
in general, the term structure could be the discount function, the spot-yield curve, or some
other price-yield relationship.

The set of securities that define a term structure is known as the reference set, which
may be a set of U.S. Treasuries, agency debentures, off-the-run Treasury issues, interest rate
swaps, or single-A rated corporate bonds, for instance. The n-year zero coupon yield, also
known as the n-year spot rate, is the interest rate on an investment that is earned for a period
of time starting today and lasting for n years. There is widespread usage of the par yield
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curve for the Treasury market so that many market sectors are defined from a reference set
derived from the Treasury market;16 for example, “the reference set that defines the agency
debenture market is a set of yield spreads on the on-the-run Treasuries, so that the five-year
debenture issued by an agency may be priced at par to yield 15 basis points more than the
current five-year Treasury issue.”17 Other important yield curves include the forward rate
curve and swap curve. Forward interest rates (future spot rates) are the rates of interest
implied by current spot rates for periods of time in the future. The swap curve shows the
fixed rate that is to be paid for receiving a floating rate such as three-month Libor, for a
given swap maturity.

There are typically three types of term structures. The (coupon) yield curve is the yield-
to-maturity structure of coupon bonds. The zero-coupon yield or spot-rate curve is the
term structure of discount rates of zero-coupon bonds. The forward rate curve is the term
structure of forward rates implicit in zero-coupon discount rates.

1.7 BOOTSTRAP METHOD

To construct the zero-coupon yield curve when spot rates cannot be observed directly,
use the bootstrap method to extract it from observable coupon-bearing bond (cash) prices,
swap rates, and interest rate futures. The bootstrap method, an iterative numerical method
for extracting spot rates from previously computed spot rates and observable bond prices,
can be used to construct the discount rate curve. Denote yn as the yield to maturity of an
n-period bond of maturity and dn as the spot (discount) rate of the n-period maturity bond.
The method is based on the idea that a coupon bond can be decomposed into the sum of
zero-coupon bonds:

Pn =
c/m

1 + yn/2
+

c/m

(1 + yn/2)2
+ . . . +

F + c/m

(1 + yn/2)n

=
c/m

1 + dn/2
+

c/m

(1 + dn/2)2
+ . . . +

F + c/m

(1 + dn/2)n

= Z1 + Z2 + . . . + Zn

The standard procedure for bootstrapping the Treasury yield curve, known as recursive
stripping, is as follows:

1. Obtain the current price of U.S. Treasuries (and/or Eurodollar futures).

2. Solve for the yield on the one-period zero-coupon bond, z1.

3. Solve for z2, given the price of the two-period bond and z1 calculated in step 2.

4. Solve for z3, given the price of the three-period bond and z1 and z2.

5. Continue until all the spot rates have been calculated.

Bootstrapping is a process whereby one starts with known data points and then solves
for unknown data points using an underlying arbitrage theory. Every coupon bond can be
valued as a package of zero-coupon bonds that mimic its cash flow and risk characteristics.
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By mapping yields-to-maturity for each theoretical zero-coupon bond, to the dates spanning
the investment horizon, one can create a theoretical zero-rate curve.

The zero spot rates are typically quoted on a bond equivalent basis.
One can use the bootstrap method to extract the zero coupon curve, which can, in turn,

be used to construct a discount rate curve to discount cash flows. The generation of these
curves typically starts with a series of on-the-run and selected off-the-run issues as input.
All cash flows are used to construct the spot curve, and rates between maturities (for these
coupons) are linearly interpolated.

For each bond maturity, we solve for the current yield that equates the current bond
maturity with the sum of its discounted cash flows based on the determination of the yields
of all the shorter maturity bonds. For instance, to determine the short rate yield on a bond
that matures in n-years, we need to solve for dn, which can be achieved only if all the yields
for bonds maturing at periods i = 1, ..., n − 1 are determined. The method is called the
bootstrap method because it determines yields (and thus the short rate curve) by building
on top or “bootstrapping” from all previously determined yields:

Pn =
n−1∑
i=1

Cn

(1 + di)i
+

Cn + FV

(1 + dn/2)n

For a zero-coupon bond, one can compute the (continuously computed) discount rate
dc from a discount spot rate with compounding n times per annum18 via the following
equation:

dc = n ln
(
1 +

cn

n

)
Consider the Treasury bills and bonds listed in Table 1.11. We assume bond prices that

mature every six months are available out to five years.
When computing the spot rates, on-the-run treasuries are typically used as they are

more liquid and normally trade close to par, thereby mitigating any tax-biases associated
with discount or premium bonds. Unfortunately, on-the-run securities are available only at
0.5-, 1-, 2-, 3-, 5-, and 10-year maturities. Of the methods used to obtain spot rates between

Table 1.11
Bond Price Annual Coupon Semiannual Period Maturity (Years) Period Coupon

102.2969 6.125 1 0.5 3.0625

104.0469 6.25 2 1.0 3.125

104.0000 5.25 3 1.5 2.625

103.5469 4.75 4 2.0 2.375

109.5156 7.25 5 2.5 3.625

111.1719 7.5 6 3.0 3.750

122.4844 10.75 7 3.5 5.375

119.6094 9.375 8 4.0 4.687

111.3281 7.0 9 4.5 3.500

108.7031 6.25 10 5.0 3.125
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these values, exponential cubic splines19 is the most common. However, recursive stripping
is also common. We assume the maturity face value is 100.

To bootstrap the curve, we start by computing the discount spot rate that equates the
cash flows to the 0.5-year maturity bond price of 102.27:

102.27 =
(3.0625 + 100)

(1 + d1/2)

or solving for d1:

d1 = (103.0625/102.27− 1) ∗ 2 = 0.014968

We compute the discount sum for semiannual period 1:

DiscountSum1 = 1/(1 + d1) = 1/(1.04968) = 0.9853

We next solve for the one-year spot rate that gives the bond price at semiannual period 2:

104.05 =
3.125

(1 + d1)
+

103.125
(1 + d2/2)2

= 3.125 ∗ DiscountSum1 + 103.125/(1 + d2/2)2

= 2 ∗
((

PeriodCoupon2 + FaceValue
BondPrice2 − PeriodCoupon2 ∗ DiscountSum1

)1/2

− 1

)

so that

d2 = 2.1250%.

We compute the discount sum for semiannual period 2:

DiscountSum2 = DiscountSum1 + 1/(1 + d2)2

= 0.9853 + 1/(1.02125)2

= 1.94407

We next solve for the sport rate that equates the cash flows to the 1.5-year maturity
bond price (third semiannual period):

104 = 2.625 ∗ DiscountSum2 +
102.625

(1 + d3/2)3

or solving

d3 = 2 ∗
((

PeriodCoupon3 + FaceValue
BondPrice3 − PeriodCoupon3 ∗ DiscountSum2

)1/3

− 1

)
= 2.4822%.
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So that, in general, the bootstrapped spot rate for semiannual period n is given by

dn = 2 ∗
((

PeriodCoupon(n) + FaceValue
BondPrice(n) − PeriodCoupon(n) ∗ DiscountSum(n − 1)

)1/n

− 1

)

where

DiscountSum(n − 1) = DiscountSum(n − 2) + 1/(1 + d2)n−1.

If we continue the process, we find the discount sums and spot rates shown in Table
1.12, which yield the term structure of rates shown in Figure 1.2.

In practice, bootstrapping requires the input of T-bills, Treasury bond, Treasury note
futures, Eurodollar futures, or coupon-bearing bond prices. One must interpolate the spot
rate yields for specific maturities not available from the available market prices. For in-
stance, some bond tables list net yields for bonds in a sequence of one, three, and five
years. Interpolation would be used to determine the yield for the second and fourth year.
In effect, interpolation is a process of trial and error utilizing a numerical method like the
Newton-Raphson method. What complicates the procedure is that day count conventions
need to be taken into account for computing accrued interest on coupon-bearing bonds.

Table 1.12
Period Discount Sum Spot Rate

1 0.985252547 1.4968%

2 1.944068996 2.1250%

3 2.87315116 2.4822%

4 3.76649457 2.8597%

5 4.623301565 3.1391%

6 5.442647715 3.3766%

7 6.227073953 3.5295%

8 6.975043088 3.6966%

9 7.682592791 3.9187%

10 8.359670683 3.9767%

1.8 BOOTSTRAPPING IN MATLAB

There are three ways to import data into Matlab: (1) loading the data as a “flat file” in
ASCII format and then converting it to a numerical matrix; (2) loading the data first into
Excel and then using ExcelLink to pass numeric matrices to the Matlab workspace; or (3)
using the Matlab Database Toolbox to pull the data from an ODBC-compliant database.

Matlab, via the Financial Toolbox, provides two bootstrapping functions: zbtprice,
which bootstraps the zero curve from coupon-bond data-given prices and zbtyield,
which bootstraps the zero curve from coupon-bond data-given yields. Suppose we want
to bootstrap the yield curve in Matlab using the corporate bond data in Figure 1.1 to get the
zero rates at the maturity rates of the bonds. Assume the settlement date is January 2, 2006.
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Term Structure of Interest Rates
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Figure 1.2 Term structure of rates

% Bonds = [Maturity CouponRate FaceValue]
Bonds = [datenum('15-Aug-2007') 0.08180 100;

datenum('01-Jan-2008') 0.06375 100;
datenum('15-Jan-2008') 0.06150 100;
datenum('01-Mar-2008') 0.09375 100;
datenum('01-Jun-2008') 0.06500 100;
datenum('01-Sep-2008') 0.06831 100;
datenum('24-Sep-2008') 0.07340 100;
datenum('17-Oct-2008') 0.07375 100;
datenum('15-Oct-2009') 0.08000 100;
datenum('15-Feb-2010') 0.07625 100;
datenum('15-Aug-2011') 0.09375 100];

Yields = [0.0547; 0.0619; 0.0604; 0.0634; 0.0676; 0.0599; 0.0567;
0.0656; 0.0670; 0.0750; 0.0601];

Prices = [114.28; 102.26; 101.61; 116.30; 100.51; 105.13; 113.00;
107.64; 111.39; 100.81; 125.58];

Settle = datenum('02-Jan-2006');

[ZeroRates, CurveDates] = zbtyield(Bonds,Yields,Settle)

ZeroRates =

0.0547
0.0623
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0.0607
0.0641
0.0683
0.0600
0.0565
0.0661
0.0676
0.0769
0.0586

datestr(CurveDates) =

15-Aug-2007
01-Jan-2008
15-Jan-2008
01-Mar-2008
01-Jun-2008
01-Sep-2008
24-Sep-2008
17-Oct-2008
15-Oct-2009
15-Feb-2010
15-Aug-2011

We could also bootstrap using the bond prices:

[ZeroRates] = zbtprices(Bonds,Prices,Settle);

ZeroRates =

0.0251
0.0581
0.0582
0.0400
0.0665
0.0554
0.0362
0.0533
0.0548
0.0810
0.0469

It should be noted that these zero rates are not risk-free discount rates because the
coupon bonds are not risk free. To compute risk-free zero-rates, T-bills, Treasury notes,
and Treasury bonds should be used.

1.9 BOOTSTRAPPING IN EXCEL

Consider the Excel spreadsheet20 (ZC.xls) shown in Figure 1.3 with a worksheet called
“Bootstrap,” which takes zero coupon rates as input and interpolates between maturity
dates. To view the Visual Basic code, click on Tools > Macro > Visual Basic Editor.
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Figure 1.3 Interpolating zero coupon rates between maturity dates

Public ZC(1 To 100) As Double // stores zero coupon rates
Public swaprate(1 To 100) As Double // stores swap rates
Public dataswap(1 To 100) As Double

VB code in ZC.xls: Sub interpolation swap
Sub interpolation_swap()

ReadRates_over10y 'Load swap rates over 10 years

For i = 1 To 12
Sheets("Bootstrapping").Cells(i + 1, 3) =

Sheets("Bootstrapping").Cells(i + 1, 1)
Sheets("Bootstrapping").Cells(i + 1, 4) =

Sheets("Bootstrapping").Cells(i + 1, 2)
Next i

For i = 1 To 9
Sheets("Bootstrapping").Cells(i + 13, 3) =

Sheets("Bootstrapping").Cells(i + 14, 1)
Sheets("Bootstrapping").Cells(i + 13, 4) =

Sheets("Bootstrapping").Cells(i + 14, 2)

Next i

Sheets("Bootstrapping").Cells(24, 3) = swaprate(12)
Sheets("Bootstrapping").Cells(27, 3) = swaprate(15)
Sheets("Bootstrapping").Cells(32, 3) = swaprate(20)
Sheets("Bootstrapping").Cells(37, 3) = swaprate(25)
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Sheets("Bootstrapping").Cells(42, 3) = swaprate(30)

'Start the interpolation procedure for each knot

swaprate(11) = (swaprate(10) + swaprate(12)) * 0.5
Sheets("Bootstrapping").Cells(23, 3) = swaprate(11)

For i = 13 To 14
swaprate(i) = swaprate(12) + ((swaprate(15) - swaprate(12)) *

((i - dataswap(2)) / (dataswap(3)
- dataswap(2))))

Sheets("Bootstrapping").Cells(i + 12, 3) = swaprate(i)
Next i

For i = 16 To 19
swaprate(i) = swaprate(15) + ((swaprate(20) - swaprate(15)) *

((i - dataswap(3)) / (dataswap(4) - dataswap(3))))
Sheets("Bootstrapping").Cells(i + 12, 3) = swaprate(i)

Next i

For i = 21 To 24
swaprate(i) = swaprate(20) + ((swaprate(25) - swaprate(20)) *

((i - dataswap(4)) / (dataswap(5)
- dataswap(4))))

Sheets("Bootstrapping").Cells(i + 12, 3) = swaprate(i)
Next i

For i = 26 To 29
swaprate(i) = swaprate(25) + ((swaprate(30) - swaprate(25)) *

((i - dataswap(5)) / (dataswap(6)
- dataswap(5))))

Sheets("Bootstrapping").Cells(i + 12, 3) = swaprate(i)
Next i

End Sub

Sub ReadRates_over10y()

Dim i As Integer
Dim j As Integer
Sheets("Bootstrapping").Select

For i = 1 To 6
dataswap(i) = Sheets("Bootstrapping").Cells(i + 22, 2)
swaprate(dataswap(i)) = Sheets("Bootstrapping").Cells(i + 22, 1)

Next i

End Sub

Sub ZC_Rates()

Rates_Load
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' Uniform the day-count convention between spot and swap rates
(both 30/360)

For i = 1 To 12

ZC(i) = Sheets("Bootstrapping").Cells(i + 1, 3) * 365 / 360

Next i

For j = 13 To 41

dummy_sum = 0

For i = 1 To j - 12
dummy_sum = dummy_sum + (swaprate(j) / 100) /

((1 + (ZC(11 + i) / 100)) ˆ dataswap(11 + i))
Next i

ZC(j) = ((((1 + (swaprate(j) / 100)) / (1 - dummy_sum)) ˆ
(1 / (dataswap(11 + i)))) - 1) * 100

Next j

For i = 1 To 41
Sheets("Bootstrapping").Cells(i + 1, 5) = ZC(i)

Next i

End Sub

Sub Rates_Load()

Dim i As Integer

For i = 1 To 41
dataswap(i) = Sheets("Bootstrapping").Cells(i + 1, 4)

swaprate(i) = Sheets("Bootstrapping").Cells(i + 1, 3)
Next i

End Sub

1.10 GENERAL SWAP PRICING IN MATLAB

The Matlab Fixed-Income Toolbox21 contains functions that perform swap pricing and
portfolio hedging. The Fixed-Income Toolbox contains the functionliborfloat2fixed,
which computes a fixed-rate par yield that equates the floating-rate side of a swap to the
fixed-rate side. The solver sets the present value of the fixed side to the present value of the
floating side without having to line up and compare fixed and floating periods.

The following assumptions are used for floating-rate input:

• LIBOR rates are quarterly—for example, that of Eurodollar futures.

• Effective date is the first third Wednesday after the settlement date.

• All delivery dates are spaced three months apart.
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• All periods start on the third Wednesday of delivery months.

• All periods end on the same dates of delivery months, three months after the start
dates.

• Accrual basis of floating rates is actual/360.

• Applicable forward rates are estimated by interpolation in months when forward-rate
data in not available.

The following assumptions are used for floating-rate output:

• Design allows you to create a bond of any coupon, basis, or frequency, based upon
the floating-rate input.

• The start date is a valuation date—that is, a date when an agreement to enter into a
contract by the settlement date is made.

• Settlement can be on or after the start date. If it is after, a forward fixed-rate contract
results.

• Effective date is assumed to be the first third Wednesday after settlement—the same
date as that of the floating rate.

• The end date of the bond is a designated number of years away, on the same day and
month as the effective date.

• Coupon payments occur on anniversary dates. The frequency is determined by the
period of the bond.

• Fixed rates are not interpolated. A fixed-rate bond of the same present value as that
of the floating-rate payments is created.

To compute par fixed-rate of swap given three-month LIBOR data, the following function
is used:

[FixedSpec, ForwardDates, ForwardRates] =
liborfloat2fixed(ThreeMonthRates, Settle, Tenor, StartDate,
Interpolation, ConvexAdj, RateParam, InArrears, Sigma,
FixedCompound, FixedBasis)

The input arguments are shown in Table 1.13.
The output is as follows:

FixedBasis computes forward rates, dates, and the swap fixed rate.
FixedSpec specifies the structure of the fixed-rate side of the swap:

• Coupon: Par-swap rate.

• Settle: Start date.

• Maturity: End date.
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Table 1.13
ThreeMonthRates Three-month Eurodollar futures data or forward rate agreement

data. (A forward rate agreement stipulates that a certain inter-

est rate applies to a certain principal amount for a given future

time period.) An n-by-3 matrix in the form of [month year IM-

MQuote]. The floating rate is assumed to compound quarterly and

to accrue on an actual/360 basis.

Settle Settlement date of swap. Scalar.

Tenor Life of the swap. Scalar.

StartDate (Optional) Scalar value to denote reference date for valuation of

(forward) swap. This in effect allows forward swap valuation. De-

fault = Settle.

Interpolation (Optional) Interpolation method to determine applicable forward

rate for months when no Eurodollar data is available. Default is

’linear’or 1. Other possible values are ’Nearest’ or 0, and

’Cubic’or 2.

ConvexAdj (Optional) Default = 0 (off). 1 = on. Denotes whether futures/-

forward convexity adjustment is required. Pertains to forward rate

adjustments when those rates are taken from Eurodollar futures

data.

RateParam (Optional) Short-rate model’s parameters (Hull-White) [a S],

where the short-rate process is:

dr = [θ(t) − ar]dt + Sdz

Default = [0.05 0.015].

InArrears (Optional) Default = 0 (off). Set to 1 for on. If on, the routine

does an automatic convexity adjustment to forward rates.

Sigma (Optional) Overall annual volatility of caplets.

FixedCompound (Optional) Scalar value. Compounding or frequency of payment on

the fixed side. Also, the reset frequency. Default = 4 (quarterly).

Other values are 1, 2, and 12.

FixedBasis (Optional). Scalar value. Basis of the fixed side. 0 = actual/actual,

1 = 30/360 (SIA, default), 2 = actual/360, 3 = actual/365, 4 =

30/360 (PSA), 5 = 30/360 (ISDA), 6 = 30/360 (European), 7 =

act/365 (Japanese).

• Period: Frequency of payment.

• Basis: Accrual basis.

ForwardDates are dates corresponding to ForwardRates (all third Wednesdays of
the month, spread three months apart). The first element is the third Wednesday immedi-
ately after Settle.

ForwardRates are forward rates corresponding to the forward dates, quarterly com-
pounded, and on the actual/360 basis. To preserve input integrity, tenor is rounded upward
to the closest integer. Currently traded tenors are 2, 5, and 10 years. The function assumes
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that floating-rate observations occur quarterly on the third Wednesday of a delivery month.
The first delivery month is the month of the first third Wednesday after Settle. Floating-
side payments occur on the third-month anniversaries of observation dates.

Example 3

Use the supplied EDdata.xls file as input to a liborfloat2fixed computation.

[EDFutData, textdata] = xlsread('EDdata.xls');
Settle = datenum('15-Oct-2002');
Tenor = 2;

[FixedSpec, ForwardDates, ForwardRates] = ...
liborfloat2fixed(EDFutData, Settle, Tenor)

FixedSpec =

Coupon: 0.0222
Settle: '16-Oct-2002'

Maturity: '16-Oct-2004'
Period: 4
Basis: 1

ForwardDates =

731505 (16-Oct-2002)
731596 (15-Jan-2003)
731687 (16-Apr-2003)
731778 (16-Jul-2003)
731869 (15-Oct-2003)
731967 (21-Jan-2004)
732058 (21-Apr-2004)
732149 (21-Jul-2004)

ForwardRates =

0.0177
0.0166
0.0170
0.0188
0.0214
0.0248
0.0279
0.0305

Table 1.14 shows Eurodollar data on Friday 11, 2002 that we will used for bootstrapping
the yield curve and for computing swap rates in MATLAB.

Using this data, you can compute 1-, 2-, 3-, 4-, 5-, 7-, and 10-year swap rates with
the toolbox function liborfloat2fixed. The function requires you to input only Eu-
rodollar data, the settlement date, and tenor of the swap. Matlab then performs the required
computations.

To illustrate how this function works, first load the data contained in the supplied Excel
worksheet, EDdata.xls.
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Table 1.14
Eurodollar Data on Friday 11, 2002

Month Year Settle Month Year Settle

10 2002 98.21 6 2007 94.88

11 2002 98.26 9 2007 94.74

12 2002 98.3 12 2007 94.595

1 2003 98.3 3 2008 94.48

2 2003 98.31 6 2008 94.375

3 2003 98.275 9 2008 94.28

6 2003 98.12 12 2008 94.185

9 2003 97.87 3 2009 94.1

12 2003 97.575 6 2009 94.005

3 2004 97.26 9 2009 93.925

6 2004 96.98 12 2009 93.865

9 2004 96.745 3 2010 93.82

12 2004 96.515 6 2010 93.755

3 2005 96.33 9 2010 93.7

6 2005 96.135 12 2010 93.645

9 2005 95.955 3 2011 93.61

12 2005 95.78 6 2011 93.56

3 2006 95.63 9 2011 93.515

6 2006 95.465 12 2011 93.47

9 2006 95.315 3 2012 93.445

12 2006 95.16 6 2012 93.41

3 2007 95.025 9 2012 93.39

Source: Matlab

[EDRawData, textdata] = xlsread('EDdata.xls');

Extract the month from the first column and the year from the second column. The rate
used as proxy is the arithmetic average of rates on opening and closing.

Month = EDRawData(:,1);
Year = EDRawData(:,2);
IMMData = (EDRawData(:,3);
EDFutData = [Month, Year, IMMData];

Next, input the current date.

Settle = datenum('11-Oct-2002');

To compute for the two-year swap rate, set the tenor to 2.

Tenor = 2;
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38 Swaps and Fixed Income Instruments Chapter 1

Finally, compute the swap rate with liborfloat2fixed.

[FixedSpec, ForwardDates, ForwardRates] =...
liborfloat2fixed(EDFutData, Settle, Tenor)

Matlab returns a par-swap rate of 2.23% using the default setting (quarterly compound-
ing and 30/360 accrual), and forward dates and rates data (quarterly compounded), compa-
rable to 2.17% of Friday’s average broker data in Table H15 of Federal Reserve Statistical
Release (http://www.federalreserve.gov/releases/h15/update/).

FixedSpec =

Coupon: 0.0223
Settle: '16-Oct-2002'

Maturity: '16-Oct-2004'
Period: 4
Basis: 1

datestr(ForwardDates) =

731505 (16-Oct-2002)
731596 (15-Jan-2003)
731687 (16-Apr-2003)
731778 (16-Jul-2003)
731869 (15-Oct-2003)
731967 (21-Jan-2004)
732058 (21-Apr-2004)
732149 (21-Jul-2004)

ForwardRates =

0.0179
0.0170
0.0177
0.0196
0.0222
0.0255
0.0285
0.0311

In the FixedSpec output, note that the swap rate actually goes forward from the third
Wednesday of October 2002 (October 16, 2002), five days after the original Settle input
(October 11, 2002). This, however, is still the best proxy for the swap rate on Settle, as
the assumption merely starts the swap’s effective period and does not affect its valuation
method or its length.

The correction suggested by Hull and White improves the result by turning on convexity
adjustment as part of the input to liborfloat2fixed. (See Hull, J., Options, Futures,
and Other Derivatives, 4th Edition, Prentice Hall, 2000.) For a long swap—e.g., five years
or more—this correction could prove to be substantial.

The adjustment requires additional parameters:

• StartDate, which you make the same as Settle (the default) by providing an
empty matrix [] as input.



“London” — 2006/10/5 — 10:17 — page 39 — #63
�

�

�

�

�

�

�

�

Section 1.10 General Swap Pricing in Matlab 39

• ConvexAdj to tell liborfloat2fixed to perform the adjustment.

• RateParam, which provides the parameters a and S as input to the Hull-White
short-rate process.

• Optional parameters InArrears and Sigma, for which you can use empty matri-
ces [] to accept the Matlab defaults.

• FixedCompound, with which you can facilitate comparison with values cited in
Table H15 of Federal Reserve Statistical Release by turning the default quarterly
compounding into semiannual compounding, with the (default) basis of 30/360.

StartDate = [];
Interpolation = [];
ConvexAdj = 1;
RateParam = [0.03; 0.017];
FixedCompound = 2;
[FixedSpec, ForwardDates, ForwardRates] =...
liborfloat2fixed(EDFutData, Settle, Tenor, StartDate, Interpolation,
ConvexAdj, RateParam, [], [], FixedCompound)

This returns 2.21% as the two-year swap rate, quite close to the reported swap rate for that
date. Analogously, Table 1.15 summarizes the solutions for 1-, 3-, 5-, 7-, and 10-year swap
rates (convexity-adjusted and unadjusted).

Table 1.15
Calculated and Market Average Data of Swap Rates on Friday, October 11, 2002

Swap Length (Years) Unadjusted Adjusted Table H15 Adjusted Error (Basis Points)

1 1.80% 1.79% 1.80% -1

2 2.24% 2.21% 2.22% -1

3 2.70% 2.66% 2.66% 0

4 3.12% 3.03% 3.04% -1

5 3.50% 3.37% 3.36% +1

7 4.16% 3.92% 3.89% +3

10 4.87% 4.42% 4.39% +3

Source: Matlab

To compute the duration of a LIBOR-based interest rate swap, we use the
liborduration function:

[PayFixDuration GetFixDuration] = liborduration(SwapFixRate, Tenor,
Settle)
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The input arguments are shown in Table 4.12.

Table 1.16
SwapFixRate Scalar or column vector of swap fixed rates in decimal.

Tenor Scalar or column vector indicating life of the swap in years. Fractional

numbers are rounded upward.

Settle Scalar or column vector of settlement dates.

The output arguments are as follows:

• PayFixDuration is the modified duration, in years, realized when entering pay-
fix side of the swap.

• GetFixDuration is the modified duration, in years, realized when entering receive-
fix side of the swap.

Example 4

Given the following data

SwapFixRate = 0.0383;
Tenor = 7;
Settle = datenum('11-Oct-2002');

compute the swap durations.

[PayFixDuration GetFixDuration] = liborduration(SwapFixRate,...
Tenor, Settle)

PayFixDuration =

-4.7567

GetFixDuration =

4.7567

A swap can be valued in Matlab using a Black-Derman-Toy (BDT) tree or an HJM tree.
The syntax is as follows:

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate,
Settle, Maturity, LegReset, Basis, Principal, LegType, Options)

The input arguments are shown Table 1.17.
The outputs are as follows:

• Price is the number of instruments (NINST)-by-1 expected prices of the swap at
time 0.

• PriceTree is the tree structure with a vector of the swap values at each node.
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• CFTree is the tree structure with a vector of the swap cash flows at each node.

• SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg such that the
swaps’ values are zero at time 0. This rate is used in calculating the swaps’ prices
when the rate specified for the fixed leg in LegRate is NaN. SwapRate is padded
with NaN for those instruments in which CouponRate is not set to NaN.

Table 1.17
BDTTree Interest rate tree structure created by bdttree.

LegRate Number of instruments (NINST)-by-2 matrix, with each row defined as:

[CouponRate Spread] or [Spread CouponRate]

CouponRate is the decimal annual rate. Spread is the number of basis

points over the reference rate. The first column represents the receiving leg,

while the second column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date numbers or date strings.

Settle must be earlier than or equal to Maturity.

Maturity Maturity date. NINST-by-1 vector of dates representing the maturity date

for each swap.

LegReset (Optional) NINST-by-2 matrix representing the reset frequency per year for

each swap. Default = [1 1].

Basis (Optional) NINST-by-1 vector representing the basis used when annualizing

the input forward rate tree. Default = 0 (actual/actual).

Principal (Optional) NINST-by-1 vector of the notional principal amounts. Default

= 100.

LegType (Optional) NINST-by-2 matrix. Each row represents an instrument. Each

column indicates if the corresponding leg is fixed (1) or floating (0). This

matrix defines the interpretation of the values entered in LegRate. Default

is [1 0]for each instrument.

Options (Optional) Derivatives pricing options structure created with derivset.

Example 5

To price an interest rate swap with a fixed receiving leg and a floating paying leg,
payments are made once a year, and the notional principal amount is $1,000,000. The
values for the remaining parameters are as follows:

• Coupon rate for fixed leg: 0.15 (15%)

• Spread for floating leg: 10 basis points

• Swap settlement date: Jan. 01, 2000

• Swap maturity date: Jan. 01, 2003

Based on the preceding information, set the required parameters and build theLegRate,
LegType, and LegReset matrices.
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Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 1000000;
LegRate = [0.15 10]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

We price the swap using the BDTTree included in the MAT-file deriv.mat.
BDTTree contains the time and forward rate information needed to price the instrument.

load deriv;

Use swapbybdt to compute the price of the swap.

Price = swapbybdt(BDTTree, LegRate, Settle, Maturity,...
LegReset, Basis, Principal, LegType)

Price = 73032

Example 6

Using the previous data, calculate the swap rate, the coupon rate for the fixed leg such that
the swap price at time 0 is zero.

LegRate = [NaN 20];

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,...
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

Price =

-2.8422e-014

PriceTree =

FinObj: 'BDTPriceTree'
tObs: [0 1 2 3 4]
PTree: {1x5 cell}

CFTree =

FinObj: 'BDTCFTree'
tObs: [0 1 2 3 4]
CFTree: {1x5 cell}

SwapRate =
0.1210

A swap can also be valued using an HJM tree.

[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate,
Settle, Maturity, LegReset, Basis, Principal, LegType, Options)
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Table 1.18
HJMTree Forward rate tree structure created by hjmtree.

LegRate Number of instruments (NINST)-by-2 matrix, with each row defined as:

[CouponRate Spread] or [Spread CouponRate]

CouponRate is the decimal annual rate. Spread is the number of basis

points over the reference rate. The first column represents the receiving leg,

while the second column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date numbers or date strings.

Settle must be earlier than or equal to Maturity.

Maturity Maturity date. NINST-by-1 vector of dates representing the maturity date

for each swap.

LegReset (Optional) NINST-by-2 matrix representing the reset frequency per year for

each swap. Default = [1 1].

Basis (Optional) NINST-by-1 vector representing the basis used when annualizing

the input forward rate tree. Default = 0 (actual/actual).

Principal (Optional) NINST-by-1 vector of the notional principal amounts. Default

= 100.

LegType (Optional) NINST-by-2 matrix. Each row represents an instrument. Each

column indicates if the corresponding leg is fixed (1) or floating (0). This

matrix defines the interpretation of the values entered in LegRate. Default

is [1 0] for each instrument.

Options (Optional) Derivatives pricing options structure created with derivset.

The arguments of the swapbyhjm function are shown in Table 1.18.
The Settle date for every swap is set to the ValuationDate of the HJM tree. The

swap argument Settle is ignored. This function also calculates the SwapRate (fixed
rate) so that the value of the swap is initially zero. To do this, enter CouponRate as NaN.

Description

[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,
LegRate, Settle, Maturity, LegReset, Basis, Principal,
LegType) computes the price of a swap instrument from an HJM interest rate tree.

Price The number of instruments (NINST)-by-1 expected prices of the swap at

time 0.

PriceTree The tree structure with a vector of the swap values at each node.

CFTree The tree structure with a vector of the swap cash flows at each node.

SwapRate A NINST-by-1 vector of rates applicable to the fixed leg such that the swaps’

values are zero at time 0. This rate is used in calculating the swaps’ prices

when the rate specified for the fixed leg in LegRate is NaN. SwapRate
is padded with NaN for those instruments in which CouponRate is not set

to NaN.
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Example 7

Price an interest rate swap with a fixed receiving leg and a floating paying leg. Payments are
made once a year, and the notional principal amount is $100. The values for the remaining
parameters are as follows:

• Coupon rate for fixed leg: 0.06 (6%)

• Spread for floating leg: 20 basis points

• Swap settlement date: Jan. 01, 2000

• Swap maturity date: Jan. 01, 2003

Based on the preceding information, set the required parameters and build the LegRate,
LegType, and LegReset matrices.

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

Price the swap using the HJMTree included in the MAT-file deriv.mat. HJMTree
contains the time and forward rate information needed to price the instrument.

load deriv;

Use swapbyhjm to compute the price of the swap.

[Price, PriceTree, CFTree] = swapbyhjm(HJMTree, LegRate,...
Settle, Maturity, LegReset, Basis, Principal, LegType)

Price =

3.6923

PriceTree =

FinObj: 'HJMPriceTree'
tObs: [0 1 2 3 4]

PBush: {1x5 cell}

CFTree =

FinObj: 'HJMCFTree'
tObs: [0 1 2 3 4]

CFBush: {[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}
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1.11 SWAP PRICING IN MATLAB USING
TERM STRUCTURE ANALYSIS

This example illustrates some of the term structure analysis functions found in the
Financial Toolbox. Specifically, it illustrates how to derive implied zero (spot) and forward
curves from the observed market prices of coupon-bearing bonds. The zero and forward
curves implied from the market data are then used to price an interest rate swap agreement.
In an interest rate swap, two parties agree to a periodic exchange of cash flows. One of the
cash flows is based on a fixed interest rate held constant throughout the life of the swap.
The other cash flow stream is tied to some variable index rate. Pricing a swap at inception
amounts to finding the fixed rate of the swap agreement. This fixed rate, appropriately
scaled by the notional principal of the swap agreement, determines the periodic sequence of
fixed cash flows. In general, interest rate swaps are priced from the forward curve such that
the variable cash flows implied from the series of forward rates and the periodic sequence
of fixed-rate cash flows have the same present value. Thus, interest rate swap pricing and
term structure analysis are closely related.

Step 1. Specify values for the settlement date, maturity dates, coupon rates, and market
prices for 10 U.S. Treasury bonds. This data allows us to price a five-year swap with net
cash flow payments exchanged every six months. For simplicity, accept default values for
the end-of-month payment rule (rule in effect) and day-count basis (actual/actual). To avoid
issues of accrued interest, assume that all Treasury bonds pay semiannual coupons and that
settlement occurs on a coupon payment date.

Settle = datenum('15-Jan-1999');

BondData = {'15-Jul-1999' 0.06000 99.93
'15-Jan-2000' 0.06125 99.72
'15-Jul-2000' 0.06375 99.70
'15-Jan-2001' 0.06500 99.40
'15-Jul-2001' 0.06875 99.73
'15-Jan-2002' 0.07000 99.42
'15-Jul-2002' 0.07250 99.32
'15-Jan-2003' 0.07375 98.45
'15-Jul-2003' 0.07500 97.71
'15-Jan-2004' 0.08000 98.15};

BondData is an instance of a Matlab cell array, indicated by the curly braces {}.
Next, assign the date stored in the cell array toMaturity, CouponRate, and Prices

vectors for further processing.

Maturity = datenum(strvcat(BondData{:,1}));
CouponRate = [BondData{:,2}]';
Prices = [BondData{:,3}]';
Period = 2; % semiannual coupons

Step 2. Now that the data has been specified, use the term structure functionzbtprice
to bootstrap the zero curve implied from the prices of the coupon-bearing bonds. This im-
plied zero curve represents the series of zero-coupon Treasury rates consistent with the
prices of the coupon-bearing bonds such that arbitrage opportunities will not exist.
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ZeroRates = zbtprice([Maturity CouponRate], Prices, Settle);

The zero curve, stored in ZeroRates, is quoted on a semiannual bond basis (the
periodic, six-month, interest rate is simply doubled to annualize). The first element of
ZeroRates is the annualized rate over the next six months, the second element is the
annualized rate over the next 12 months, and so on.

Step 3. From the implied zero curve, find the corresponding series of implied forward
rates using the term structure function zero2fwd.

ForwardRates = zero2fwd(ZeroRates, Maturity, Settle);

The forward curve, stored in ForwardRates, is also quoted on a semiannual bond
basis. The first element of ForwardRates is the annualized rate applied to the interval
between settlement and 6 months after settlement, the second element is the annualized
rate applied to the interval from 6 months to 12 months after settlement, and so on. This
implied forward curve is also consistent with the observed market prices such that arbitrage
activities will be unprofitable. Because the first forward rate is also a zero rate, the first
element of ZeroRates and ForwardRates are the same.

Step 4. Now that you have derived the zero curve, convert it to a sequence of discount
factors with the term structure function zero2disc.

DiscountFactors = zero2disc(ZeroRates, Maturity, Settle);

Step 5. From the discount factors, compute the present value of the variable cash flows
derived from the implied forward rates. For plain interest rate swaps, the notional principal
remains constant for each payment date and cancels out of each side of the present value
equation. The next line assumes unit notional principal.

PresentValue = sum((ForwardRates/Period) .* DiscountFactors);

Step 6. Compute the swap’s price (the fixed rate) by equating the present value of the
fixed cash flows with the present value of the cash flows derived from the implied forward
rates. Again, because the notional principal cancels out of each side of the equation, it is
simply assumed to be 1.

SwapFixedRate = Period * PresentValue / sum(DiscountFactors);

The output would be as follows:

Zero Rates Forward Rates
0.0614 0.0614
0.0642 0.0670
0.0660 0.0695
0.0684 0.0758
0.0702 0.0774
0.0726 0.0846
0.0754 0.0925
0.0795 0.1077
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0.0827 0.1089
0.0868 0.1239

Swap Price (Fixed Rate) = 0.0845

All rates are in decimal format. The swap price, 8.45%, would likely be the midpoint
between a market-maker’s bid/ask quotes.

Example 8

Consider a nine-year fixed for floating swap with a notional of $3.3 million and fixed
coupon rate of 3.969%, a floating rate based on three-month T-bill, with a start date of
March 28, 2004, effective date of March 29, 2004, and a maturity of March 28, 2013. As-
sume the fixed side is on a 30/360 day count while the floating leg is on an actual/360 day
count with quarterly resets. Figure 1.4 displays the Bloomberg screen with the swap data
terms.

Figures 1.5–1.7 show the swap cash flow payments and payment schedule. Figures 1.8
provides the swap curve. Figure 1.9, shows the risk measures, DV01, and duration, for both
the pay and receive legs.

<HELP> for explanation, <MENU> for similar functions.                                         P198 Corp    SWPM 
 
 Options     New Deal                    Copy Deal                View                                SWAP MANAGER 

 
Deal        Counterparty        T6qyNWPA12        Ticker  / GIC   Series        0001        Deal# SL6J0C2T                       DETAIL 

Receive Fixed                                        DETAIL 

Ticker // GIC     Series   

Notional 3300000  

Curr USD  

Effective 03/29/04  

Maturity 03/28/13  

FirstPmt 09/28/04 

NxtLastPmt 09/28/12 

DiscountCrv 23   Bid  

Pay Float                                                                                        DETAIL 

Ticker // GIC     Series 0001   

Notional 3300000  

Curr USD  

Effective 03/29/04  

Maturity 03/28/13  

FirstPmt 06/28/04 

NxtLastPmt 12/28/12 

DiscountCrv 23   Bid USD Swaps(30/360, S/A) 

ForwardCrv 23   Bid USD Swaps (30/360, S/A) 

  

Australia 61 2 9777 8600   Brazil 5511 3048 4500  Europe 44 20 7330 7500                                        Germany 49 69 920410 
Hong Kong 852 2977 6000                Japan 81 3 3201 8900                Singapore 65 6212 1000                U.S. 1 212 318 2000                                     Copyright 2005 Bloomberg L.P. 
                                                                                                                                                                                                                                         G566-178-0 12-Oct-05 16:05:22  
 

 

 Leg# SL6J0C2U 

 Cpn 3.96900     % 

 Calc Basis Money Mkt 

 Pay Freq SemiAnnual 

 Day Cnt 30   /   360 

 

 

 

 Leg# SL6J0C2V 

            Index  US0003M 

 Latest Index 4.00000 

 Spread 0.00    bp 

 Reset Freq Quarterly 

 Pay Freq Quarterly 

DayCnt ACT  /  360 

 

 

 

USD Swaps(30/360, S/A) 

Valuation         Curve 10/12/05    Valuation 10/14/05 All Values in USD 

Market Value     3,129,343.55  DV01 1,985.39 

Accrued                               5,821.20 

Market Value        -3,305,321.54                 DV01  -68.28 

Accrued        -5,866.67 

Net Principal   

 Accrued   

 Market Value     

-175,932.53

-45.47

-175,977.99

 Calculate  Premium   

 Premium  -5.33129    

     

 Par Cpn   

 DV01   

     

4.82681

1,917,11

Refresh

Main Curves Cashflow Risk Horizon 

Figure 1.4 Source: Reproduced with permission from Bloomberg.



“London” — 2006/10/5 — 10:17 — page 48 — #72
�

�

�

�

�

�

�

�

48 Swaps and Fixed Income Instruments Chapter 1

<HELP> for explanation.                                            P235 Corp    SWPM

 Options     New Deal                    Copy Deal                View                                SWAP MANAGER

Deal        Counterparty        T6qyNWPA12        Ticker  / GIC   Series        0001        Deal# SL6J0C2T                       DETAIL

Australia 61 2 9777 8600   Brazil 5511 3048 4500  Europe 44 20 7330 7500                                        Germany 49 69 920410
Hong Kong 852 2977 6000                Japan 81 3 3201 8900                Singapore 65 6212 1000                U.S. 1 212 318 2000                                     Copyright 2005 Bloomberg L.P. 
                                                                                                                                                                                                                                         G566-178-0 18-Nov-05 15:08:34 

Main Curves Cashflow Risk Horizon

REC FIXED  Coupon 3.96900   Frequency          S Curr  USD   Notional  3300000
PAY FLOAT  Latest Index 4.00000 + 0.00 bp  Reset/Pmnt FreqQ/Q Curr  USD   Notional  3300000
 
Net                         Cashflo  Currency  USD       EXPORT TO EXCEL

12/28/2005

03/28/2006

06/28/2006

09/28/2006

12/28/2006

03/28/2007

06/28/2007

09/28/2007

12/28/2007

03/28/2008

06/30/2008

09/29/2008

12/29/2008

TOTAL

0.00

65488.50

0.00

65488.50

0.00

65488.50

0.00

65488.50

0.00

65488.50

0.00

65852.32

0.00

-33366.67

-36550.57

-38758.48

-39287.93

-38326.13

-38039.88

-39213.28

-39523.30

-39297.44

-39531.82

-41091.95

-39999.08

-39094.19

-33366.67

28937.93

-38758.48

26200.57

-38326.13

27448.62

-39213.28

25965.20

-39297.44

25956.68

-41091.95

25853.25

-39094.19

0.991587

0.980724

0.969339

0.957935

0.946937

0.936146

0.925152

0.914203

0.903445

0.892750

0.881770

0.871210

0.861010

-33085.94

28380.12

-37570.12

25098.43

-36292.42

25695.90

-36278.26

23737.47

-35503.06

23172.83

-36233.66

22523.61

-33660.49

-176149.58

Payment Dates Payments(Rcv) Payments(Pay) Net Payments Discount Net PV

Figure 1.5 Source: Reproduced with permission from Bloomberg.

<HELP> for explanation.                                            P235 Corp    SWPM

 Options     New Deal                    Copy Deal                View                                SWAP MANAGER

Deal        Counterparty        T6qyNWPA12        Ticker  / GIC   Series        0001        Deal# SL6J0C2T                       DETAIL

Australia 61 2 9777 8600   Brazil 5511 3048 4500  Europe 44 20 7330 7500                                        Germany 49 69 920410
Hong Kong 852 2977 6000                Japan 81 3 3201 8900                Singapore 65 6212 1000                U.S. 1 212 318 2000                                     Copyright 2005 Bloomberg L.P. 
                                                                                                                                                                                                                                         G566-178-0 18-Nov-05 15:09:10 

Main Curves Cashflow Risk Horizon

REC FIXED  Coupon 3.96900   Frequency          S Curr  USD   Notional  3300000
PAY FLOAT  Latest Index 4.00000 + 0.00 bp  Reset/Pmnt FreqQ/Q Curr  USD   Notional  3300000
 
Net                         Cashflo Currency USD       EXPORT TO EXCEL

12/29/2008

03/30/2009

06/29/2009

09/28/2009

12/28/2009

03/29/2010

06/28/2010

09/28/2010

12/28/2010

03/28/2011

06/28/2011

09/28/2011

12/28/2011

TOTAL

0.00

65852.32

0.00

64760.85

0.00

65852.32

0.00

65124.68

0.00

65488.50

0.00

65488.50

0.00

-39094.19

-38911.34

-38927.60

-38938.01

-39881.18

-40177.71

-40274.03

-40807.77

-40583.21

-40243.83

-41217.01

-41282.22

-40707.37

-39094.19

26940.99

-38927.60

25822.84

-39881.18

25674.62

-40274.03

24316.91

-40583.21

25244.67

-41217.01

24206.28

-40707.37

0.861010

0.850976

0.841055

0.831247

0.821321

0.811441

0.801658

0.791866

0.782245

0.772821

0.763287

0.753857

0.744671

-33660.49

22926.13

-32740.24

21465.15

-32755.23

20833.45

-32285.99

19255.72

-31746.04

19509.61

-31460.42

18248.07

-30313.59

-176149.58

Payment Dates Payments(Rcv) Payments(Pay) Net Payments Discount Net PV

Figure 1.6 Source: Reproduced with permission from Bloomberg.
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<HELP> for explanation.                                            P235 Corp    SWPM

 Options     New Deal                    Copy Deal                View                                SWAP MANAGER

Deal        Counterparty        T6qyNWPA12        Ticker  / GIC   Series        0001        Deal# SL6J0C2T                       DETAIL

Australia 61 2 9777 8600   Brazil 5511 3048 4500  Europe 44 20 7330 7500                                        Germany 49 69 920410
Hong Kong 852 2977 6000                Japan 81 3 3201 8900                Singapore 65 6212 1000                U.S. 1 212 318 2000                                     Copyright 2005 Bloomberg L.P. 
                                                                                                                                                                                                                                         G566-178-0 18-Nov-05 15:09:39 

Main Curves Cashflow Risk Horizon

REC FIXED  Coupon 3.96900   Frequency          S Curr  USD   Notional  3300000
PAY FLOAT  Latest Index 4.00000 + 0.00 bp  Reset/Pmnt FreqQ/Q Curr  USD   Notional  3300000
 
Net                         Cashflo Currency USD       EXPORT TO EXCEL

03/29/2010

06/28/2010

09/28/2010

12/28/2010

03/28/2011

06/28/2011

09/28/2011

12/28/2011

03/28/2012

06/28/2012

09/28/2012

12/28/2012

03/28/2013

TOTAL

65852.32

0.00

65124.68

0.00

65488.50

0.00

65488.50

0.00

65488.50

0.00

65488.50

0.00

3365488.50

-40177.71

-40274.03

-40807.77

-40583.21

-40243.83

-41217.01

-41282.22

-40707.37

-40705.47

-41183.89

-41205.10

-41725.89

-3341534.93

25674.62

-40274.03

24316.91

-40583.21

25244.67

-41217.01

24206.28

-40707.37

24783.03

-41183.89

24283.40

-41725.89

23953.57

0.811441

0.801658

0.791866

0.782245

0.772821

0.763287

0.753857

0.744671

0.735597

0.726530

0.717570

0.708611

0.699803

20833.45

-32285.99

19255.72

-31746.04

19509.61

-31460.42

18248.07

-30313.59

18230.33

-29921.34

17425.05

-29567.41

16762.77

-176149.58

Payment Dates Payments(Rcv) Payments(Pay) Net Payments Discount Net PV

Figure 1.7 Source: Reproduced with permission from Bloomberg.

<HELP> for explanation.                                            P198 Corp    SWPM

 Options     New Deal                    Copy Deal                View                                SWAP MANAGER

Deal        Counterparty        T6qyNWPA12        Ticker  / GIC   Series        0001        Deal# SL6J0C2T                       DETAIL

Australia 61 2 9777 8600   Brazil 5511 3048 4500  Europe 44 20 7330 7500                                        Germany 49 69 920410
Hong Kong 852 2977 6000                Japan 81 3 3201 8900                Singapore 65 6212 1000                U.S. 1 212 318 2000                                     Copyright 2005 Bloomberg L.P. 
                                                                                                                                                                                                                                         G566-178-0 12-Oct-05 15:48:54 

Main Curves Cashflow Risk Horizon

Curve      #23                  USD Swaps (30/360,S/A)

Current Market

# Mty/Term Rate # Mty/Term Rate # Mty/Term Rate # Mty/Term Rate

6 Month –50bp 6 Month +0bp 6 Month +50bp

1
2
3
4
5
6
7
8
9

10
11
12

1 DY
2 DY
1 WK
2 WK
3 WK
1 MO
2 MO
3 MO
4 MO
5 MO
6 MO
7 MO

3.50000
3.80000
3.81688
3.82000
3.86000
3.94563
4.02563
4.14000
4.20000
4.26000
4.32875
4.37025

1
2
3
4
5
6
7
8
9

10
11
12

1 DY
2 DY
1 WK
2 WK
3 WK
1 MO
2 MO
3 MO
4 MO
5 MO
6 MO
7 MO

3.00000
3.30000
3.31688
3.32000
3.36000
3.44563
3.52563
3.64000
3.70000
3.76000
3.82875
3.87025

1
2
3
4
5
6
7
8
9

10
11
12

1 DY
2 DY
1 WK
2 WK
3 WK
1 MO
2 MO
3 MO
4 MO
5 MO
6 MO
7 MO

3.50000
3.80000
3.81688
3.82000
3.86000
3.94563
4.02563
4.14000
4.20000
4.26000
4.32875
4.37025

1
2
3
4
5
6
7
8
9

10
11
12

1 DY
2 DY
1 WK
2 WK
3 WK
1 MO
2 MO
3 MO
4 MO
5 MO
6 MO
7 MO

4.00000
4.30000
4.31688
4.32000
4.36000
4.44563
4.52563
4.64000
4.70000
4.46000
4.82875
4.87025

Horizon Curve Date 10/12/05
Horizon Settle Date 10/14/05

GLOBAL CHANGE FIELDS -----    
Pay Leg PV -3,305,321.54
Receive Leg PV 3,128,009.55
Net PV -177,311.99

Horizon Curve Date 04/12/06
Horizon Settle Date 04/18/06

From    1               To    34               Shift    0.00
Pay Leg PV -3,331,694.62
Receive Leg PV 3,239,101.26
Net PV -72,593.36

Horizon Curve Date 04/12/06
Horizon Settle Date 04/18/06

From    1               To    34               Shift    0.00
Pay Leg PV -3,308,454.83
Receive Leg PV 3,143,640.16
Net PV -164,814.67

Horizon Curve Date 04/12/06
Horizon Settle Date 04/18/06

From    1               To    34               Shift    0.00
Pay Leg PV -3,305,221.38
Receive Leg PV 3,051,445.05
Net PV -253,776.32

Figure 1.8 Source: Reproduced with permission from Bloomberg.
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<HELP> for explanation.                                             P198 Corp    SWPM 
 
 Options     New Deal                    Copy Deal                View                                SWAP MANAGER 

 
Deal        Counterparty        T6qyNWPA12        Ticker  / GIC   Series        0001        Deal# SL6J0C2T                       DETAIL 

Risk                                         

 

Key Rate Risk                                                                                        

 

Australia 61 2 9777 8600   Brazil 5511 3048 4500  Europe 44 20 7330 7500                                        Germany 49 69 920410 
Hong Kong 852 2977 6000                Japan 81 3 3201 8900                Singapore 65 6212 1000                U.S. 1 212 318 2000                                     Copyright 2005 Bloomberg L.P. 
                                                                                                                                                                                                                                         G566-178-0 12-Oct-05 15:48:11  
 

 
Valuation Curve 10/12/05 Valuation  10/14/05 All Values in USD 

Market Value     3,128,009.55  DV01    1,984.83 

Accrued                               5,821.20 

Market Value     -3,305,321.54  DV01  -68.28 

Accrued                                 -5,866.67 

Net Principal   

 Accrued   

 Market Value     

-177,766.53

-45.47

-177,311.99

 Calculate  Premium   

 Premium  -5.33129    

     

 Par Cpn   

 DV01   

     

4.83338

1,916.55

Refresh

Main Curves Cashflow Risk Horizon 

Conventional        Receive side         Pay side                Net Mty/Term               Receive side                Pay side                       Net

 

Risk 

DV01 

Modified Duration 

 

6.01 

1984.83 

6.36 

 

-0.21 

-68.28 

-0.22 

 

5.81 

1916.55 

6.14 

 

1 DY 

2 DY 

1 WK 

2 WK 

3 WK 

1 MO 

2 MO 

3 MO 

4 MO 

5 MO 

Total 

 

-0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

1.70 

1985.56 

 

-0.00 

-0.00 

0.00 

0.00 

0.00 

0.00 

-40.17 

-28.12 

0.00 

-0.00 

-68.28 

 

-0.00 

-0.00 

0.00 

0.00 

0.00 

0.00 

-40.17 

-28.12 

0.00 

1.70 

1917.28 

 

 

Figure 1.9 Source: Reproduced with permission from Bloomberg.

1.12 SWAP VALUATION IN C++
To price a vanilla fixed-for-floating swap in C++, we define a Swap class. The Swap

class is composed of two legs—a FloatingLeg class, floatLeg, and a FixedLeg class, fixed-
Leg, which represent the two sides of the swap. Because the calculation of payment dates
based on the start date, effective date, and maturity date is required, the Swap class uti-
lizes a Date class22 that contains methods for computing date operations. The Date class
is defined in the “datecl.h” file and will be used throughout this book to compute payment
dates.

The Swap class contains the following Date data members:

Date maturity_; // swap maturity date
Date fixedAccruedDate_; // fixed interest accrual date
Date floatAccruedDate_; // floating interest accrual date
Date effectiveDate_; // effective date
Date settlementDate_; // settlement date
Date valuationDate_; // valuation date

The Date methods are defined in the “datecl.cpp” source file. The Swap class is defined
with various inline methods to add in the computation of the swap payments, netting, and
pricing:

double getNotional() // return notional amount
double calcDV01() // compute swap DV01
void netPayments() // net fixed and floating payments
void calcPayDates(Date tradeDate, Date endDate, Date valuation)
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// calculate pay dates
void setDiscountRates(std::map<double,double> rate) // set discount rates

The Swap class utilizes the floatLeg and fixedLeg data class members to perform many
of the operations in these methods. The Swap class contains overloaded constructors to
receive and store important data for pricing: the maturity date, effective date, settlement
date, valuation date, floating (libor) rates, discount rates, fixed swap rate, and valuation
type (receive fixed-pay floating or receive floating-pay fixed). The Swap class definition is:

SWAP.h
#ifndef _SWAP_H__
#define _SWAP_H__

#include "TNT\TNT.h"
#include "datecl.h"
#include <string>
#include <vector>
#include <map>
#define NUM_DATES 100
#define THIRTY 30
#define THREE_SIXTY 360
#define THREE_SIXTY_FIVE 365
#define NOTIONAL 1000000

static std::vector<Date> payDates_;

static double interpolate(double rate1, double rate2, double t1, double t2,
double x) {
double dy = rate2 - rate1;
double dt = t2 - t1;
double slope = dy/dt;

return rate1 + slope*x;
}

class FloatingLeg
{

public:
FloatingLeg(std::map<double,double> floatLegRate, double floatLegBasis,

int payFrequency)
: floatLegRate_(floatLegRate),floatLegBasis_(floatLegBasis),

payFrequency_(payFrequency) {}
FloatingLeg() {}
virtual ˜FloatingLeg() {}
inline double calcDuration() {

double duration = 0.0;
duration = (double) (payDates_[0] -
valuationDate_ + 1)/THREE_SIXTY_FIVE;

return duration;
}
inline void setEffectiveDate(Date date) { startDate_ = date; }
inline void setValuationDate(Date date) { valuationDate_ = date; }
inline void setNotional(double notional) { notional_ = notional; }
inline Date getEffectiveDate() { return startDate_; }
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inline void setFrequency(int frequency) { payFrequency_ = frequency; }
inline void setMaturityDate(Date mat) { maturityDate_ = mat; }
inline std::vector<double> getPayFloat() { return floatRates; }
inline void setFloatValue(double value) { value_ = value; }
inline double getFloatValue() {

return value_;
}
inline void setFloatRate(std::map<double,double> rate) {

floatLegRate_ = rate;
}
inline double calcDV01() {

double duration = calcDuration();
double val = getFloatValue();
double DV = 0.0;

DV = -(duration*notional_)*((double)1/10000);
cout << "float DV01 = " << DV << endl;

return -DV;
}
inline double calcModifiedDuration() {

double val = calcDV01();
double marketValue = getFloatValue();
double MD = (val/(notional_ + marketValue))*10000;

cout << "float modified duration = " << MD << endl;

return MD;
}
inline void calcPayFloat() {

std::vector<Date>::iterator iter;
double val = 0;
double diff = 0.0;
int diff1 = 0.0;
int d = 0.0;
int d1 = 0.0;
Date dateDiff;
int cnt = 0;
double floatVal = 0.0;

for (iter = payDates_.begin(); iter != payDates_.end(); iter++)
{

d = payDates_[cnt+1] - payDates_[0] + 1;
d1 = payDates_[cnt+1] - payDates_[cnt] + 1;

diff = payDates_[cnt+1] - payDates_[0]+1;
diff = (double) diff/THREE_SIXTY_FIVE;
floatVal = interpolate(floatLegRate_[floor(diff)],

floatLegRate_[ceil(diff)],floor(diff),ceil(diff),diff);

if (payFrequency_ == 1)
val = notional_*(THIRTY/THREE_SIXTY)*floatVal;

else
val = notional_*((double)d1/THREE_SIXTY_FIVE)*floatVal;
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floatRates.push_back(val);
cnt++;

}
}

private:
double floatLegBasis_;

std::vector<double> floatRates;
std::map<double,double> floatLegRate_;
std::map<double,double> payfloatLeg_;
Date startDate_;
Date maturityDate_;
Date valuationDate_;
double value_;
double spread_;
double notional_;
double duration_;
double accrual_;
int payFrequency_;

};

class FixedLeg
{

public:
FixedLeg(double payfixedLeg, double fixedLegRate,

double fixedLegBasis, int payFrequency)
: payfixedLeg_(payfixedLeg), fixedLegRate_(fixedLegRate),
fixedLegBasis_(fixedLegBasis),

payFrequency_(payFrequency) {}
FixedLeg() {}
virtual ˜FixedLeg() {}
inline double calcDV01() {

double duration = calcDuration();
double val = getFixedValue();
double DV = 0.0;

DV = (duration*notional_)*((double)1/10000);
cout << "fixed DV01 = " << DV << endl;

return DV;
}
inline void setEffectiveDate(Date date) { effectiveDate_ = date; }
inline double calcDuration() {

double sum = 0;
double val = getFixedValue();
double duration = 0.0;
double dis = 0.0;

for (int i = 0; i < payfixedLeg_.size(); i++)
sum = sum + payfixedLeg_[i]*((double)(payDates_[i+1] -

valuationDate_ + 1)/
(maturityDate_ - valuationDate_ + 1));

sum = sum + notional_;
duration = sum/val;
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cout << "fixed duration = " << duration << endl;

return duration;
}
inline double calcModifiedDuration() {

double val = calcDV01();
double marketValue = getFixedValue();
double MD = (val/(notional_ + marketValue))*10000;

return MD;
}
inline void setFixedValue(double val) { value_ = val; }
inline void setValuationDate(Date date) { valuationDate_ = date; }
inline double getFixedValue() {

return value_;
}
inline void setNotional(double notional) { notional_ = notional; }
inline void setFrequency(int frequency) { payFrequency_ =

frequency; }
inline void setFixedRate(double rate) { fixedLegRate_ = rate; }
inline void setMaturityDate(Date mat) { maturityDate_ = mat; }
std::vector<double> getPayFixed() { return payfixedLeg_; }
inline void calcPayFixed()
{

std::vector<Date>::iterator iter;
double val = 0;
int diff = 0;
Date dateDiff;
int cnt = 0;

for (iter = payDates_.begin(); iter != payDates_.end(); iter++)
{

if (payFrequency_ == 1)
{

if (cnt <= payDates_.size())
{

if (cnt + payFrequency_ < payDates_.size())
diff = payDates_[cnt+payFrequency_] -
payDates_[cnt]+1;

else
diff = 0;

if ((cnt != 0) && (cnt % payFrequency_ == 0))
val = notional_*(THIRTY/THREE_SIXTY)*
fixedLegRate_;

else
val = 0;

}
else

val = notional_*(THIRTY/THREE_SIXTY)*fixedLegRate_;
}
else
{

if (cnt <= payDates_.size())
{

if (cnt + payFrequency_ <= payDates_.size())
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{
// subtract five because there are 5 less days in a
// 360 day year

diff = (payDates_[cnt+payFrequency_] -
payDates_[cnt] + 1) - 5;

}
else

diff = 0;

if ((cnt > 0) && ((cnt-1) % payFrequency_ == 0))
val = notional_*((double)diff/THREE_SIXTY)*

fixedLegRate_;
else

val = 0;
}
else
{

val = 0;
}

}
cnt++;
payfixedLeg_.push_back(val);

} // for
}

private:
std::vector<double> payfixedLeg_;
double fixedLegRate_;
double fixedLegBasis_;
double duration_;
double value_;
double accrual_;
double notional_;
double basis_;

int payFrequency_;
Date effectiveDate_;
Date maturityDate_;
Date valuationDate_;

};

class Swap
{

public:
Swap() : notional_(NOTIONAL), maturity_("12/31/2010"),

swapType(0) {}
Swap(double notional, Date maturity, Date effectiveDate,

Date settlementDate, Date valuation,
std::map<double,double> liborRate, std::map<double,double> disc,

double fixedRate, int type)
: notional_(notional), maturity_(maturity),

effectiveDate_(effectiveDate), settlementDate_(settlementDate),
valuationDate_(valuation), floatRates_(liborRate),
fixedRate_(fixedRate), swapType(type)

{
getNotional();
calcPayDates(effectiveDate_,maturity_,valuationDate_);
fixedLeg.setNotional(notional_);
fixedLeg.setValuationDate(valuationDate_);
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fixedLeg.setFrequency(2);
fixedLeg.setFixedRate(fixedRate);
fixedLeg.setMaturityDate(maturity);
fixedLeg.calcPayFixed();
fixedLeg.setEffectiveDate(effectiveDate_);
floatLeg.setMaturityDate(maturity);
floatLeg.setFrequency(4);
floatLeg.setNotional(notional_);
floatLeg.setFloatRate(liborRate);
floatLeg.setValuationDate(valuationDate_);
setDiscountRates(disc);
floatLeg.calcPayFloat();
netPayments();
calcDV01();

}
virtual ˜Swap() {}
inline double getNotional() {

return notional_;
}
inline void setDiscountRates(std::map<double,double> rate) {

discRates_ = rate;
}
inline double calcDV01() {

double val = 0;

if (swapType == 0)
val = fixedLeg.calcDV01() - floatLeg.calcDV01();

else
val = floatLeg.calcDV01() - fixedLeg.calcDV01();

cout << "Swap DV01 = " << val << endl << endl;

return val;
}
inline void calcPayDates(Date tradeDate, Date endDate,

Date valuation)
{

effectiveDate_ = tradeDate-1;

if (effectiveDate_ == Date::SATURDAY)
effectiveDate_ = effectiveDate_ + 2;

else if (effectiveDate_ == Date::SUNDAY)
effectiveDate_ = effectiveDate_ + 1;

Date currDate = effectiveDate_;
int cnt = 0;

while (currDate <= endDate)
{

currDate.AddMonths(3);
while (currDate.day > effectiveDate_.day)

currDate = currDate - 1;

if (currDate <= valuation)
{

if (currDate.day_of_week == Date::SATURDAY)
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currDate = currDate + 2;
else if (currDate.day_of_week == Date::SUNDAY)

currDate = currDate + 1;
else if (currDate ==

currDate.ChristmasDay(currDate.year))
currDate = currDate + 1;

fixedAccruedDate_ = currDate;
}
if ((currDate <= endDate) && (currDate >= valuation))
{

if (currDate.day_of_week == Date::SATURDAY)
currDate = currDate + 2;

else if (currDate.day_of_week == Date::SUNDAY)
currDate = currDate + 1;

else if (currDate ==
currDate.ChristmasDay(currDate.year))
currDate = currDate + 1;

payDates_.push_back(currDate);
cnt++;

}
}

}
inline void netPayments()
{

double val = 0.0;
double y = 0.0;
std::vector<double> fixed = fixedLeg.getPayFixed();
std::vector<double> fl = floatLeg.getPayFloat();
double x = 0;
double sum = 0.0;
double sumfix = 0.0;
double sumfloat = 0.0;

if (swapType == 0)
{

fixedAccrued_ = notional_*fixedRate_*((valuationDate_ -
fixedAccruedDate_))/THREE_SIXTY;

floatAccrued_ = -notional_*floatRates_[0]*
((valuationDate_ - fixedAccruedDate_))/THREE_SIXTY_FIVE;

}
else
{

fixedAccrued_ = -notional_*fixedRate_*((valuationDate_ -
fixedAccruedDate_))/THREE_SIXTY;

floatAccrued_ = notional_*floatRates_[0]*
((valuationDate_ - fixedAccruedDate_))/THREE_SIXTY_FIVE;

}

int cnt = 0;
for (int i = 0; i < payDates_.size(); i++)
{

x = (double) (payDates_[i+1] - payDates_[0] +
1)/THREE_SIXTY_FIVE;

y = interpolate(discRates_[floor(x)],discRates_[ceil(x)],
floor(x),ceil(x),x);
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if (swapType == 0)
{

val = (fixed[i] - fl[i])*y;
sumfix = sumfix + fixed[i]*y;
sumfloat = sumfloat - fl[i]*y;

}
else
{

val = (fl[i] - fixed[i])*y;
sumfix = sumfix - fixed[i]*y;
sumfloat = sumfloat + fl[i]*y;

}
sum = sum + val;

}
fixedLeg.setFixedValue(sumfix);
floatLeg.setFloatValue(sumfloat);

cout << "Fixed Accrued = " << fixedAccrued_ << endl;
cout << "Float Accrued = " << floatAccrued_ << endl;
cout << "Accrued = " << fixedAccrued_ + floatAccrued_ << endl;
cout << "Principal = " << sum << endl;
cout << "Market Value = " << sum + (fixedAccrued_ + floatAccrued_)

<< endl;
}

private:
int swapType;
double notional_;
double fixedAccrued_;
double floatAccrued_;
double fixedRate_;
FloatingLeg floatLeg;
FixedLeg fixedLeg;
Date maturity_;
Date fixedAccruedDate_;
Date floatAccruedDate_;
Date effectiveDate_;
Date settlementDate_;
Date valuationDate_;
std::string index;
std::map<double,double> discRates_;
std::map<double,double> floatRates_;
double value;

};

#endif _SWAP_H__

Consider the preceding swap with the following characteristics:

Notional = $3,300,000
Maturity = March 28, 2013
Effective Date = March 29, 2004
Valuation Date = October 14, 2005
Swap Rate = 3.969%
Floating Rate = 3 Mo. T-Bill
Basis Spread = 0.00
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We read the following (Table 1.19) in the 3-Mo T-Bill data from a file (taken from
Bloomberg).

Table 1.19
Maturity 3-Mo T-Bill Discount Maturity 3-Mo T-Bill Discount

1 DY 0.0400000 0.999708 9 MO 0.0445188 0.967342

2 DY 0000 0.0380000 0.999708 10 MO 0.0448525 0.963507

1 WK 0.0381688 0.999258 11 MO 0.0451725 0.959660

2 WK 0.0382000 0.999258 1 YR 0.0454563 0.955712

3 WK 0.0386000 0.998517 2 YR 0.0463900 0.912185

1 MO 0.0394583 0.996614 3 YR 0.0471200 0.869450

2 MO 0.0402583 0.993225 4 YR 0.0472200 0.829536

3 MO 0.0414000 0.989193 5 YR 0.0475900 0.790131

4 MO 0.0420000 0.985853 6 YR 0.0479100 0.752230

5 MO 0.0426000 0.982445 7 YR 0.0481800 0.715816

6 MO 0.0432875 0.978239 8 YR 0.0486000 0.679864

7 MO 0.0437025 0.974794 9 YR 0.0487000 0.647234

8 MO 0.0441225 0.971079 10 YR 0.0490200 0.614542

To discount the cash flows on the scheduled payment dates, the floating (3-Mo T-Bill)
and discount rates are linearly interpolated using the following globally defined function:

static double interpolate(double rate1, double rate2, double t1, double
t2, double x)
{

double dy = rate2 - rate1;
double dt = t2 - t1;
double slope = dy/dt;

return rate1 + slope*x;

}

We interpolate using the floor and ceil built-in math routines of the rate we want to
interpolate. For instance, in the FloatLeg function calcPayFloat, we call

floatVal = interpolate(floatLegRate_[floor(diff)],floatLegRate_[ceil(diff)],
floor(diff),ceil(diff),diff);

It is important to note that this is a simple form of interpolation. In actual practice to
get more accurate interpolated values, we would want to bootstrap the yield curve using
liquid instruments like T-bill futures and Eurodollar futures or use a numerical technique
like cubic splines.

The main function is

MAIN.cpp
#include <strstrea.h>
#include <fstream.h>
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#include <stdlib.h>
#include <iostream.h>
#include <string.h>
#include <math.h>
#include <map>
#include "Swap.h"
#define SIZE_X 100

void main()
{
cout.setf(ios::showpoint);
cout.precision(8);

cout << "Swap Pricing Pay Fixed " << endl << endl;
Date start = "3/29/2004";
cout << "Start date = " << start << endl;
Date maturity = "3/28/2013";
cout << "Maturity = " << maturity << endl;
Date valuation = "10/14/2005"; //today";
cout << "Valuation = " << valuation << endl;
Date effectiveDate = "today";
double notional = 3300000;
cout << "Notional = " << notional << endl;
double swapRate = 0.03969;
cout << "Swap Rate = " << swapRate << endl;

std::vector<double> mat;
std::map<double,double> libor;
std::map<double,double> discRate;
char buffer[SIZE_X];
char dataBuffer[SIZE_X];
char* str = NULL;
double yr = 0.0;
double rate = 0.0;
int swapType = 1; // receive fixed-pay float ; 1 = pay fixed-receive

// float

const char* file = "c:\\swapData.txt";
ifstream fin; // input file stream
fin.clear();
fin.open(file);

if (fin.good())
{

while (!fin.eof())
{

fin.getline(buffer,sizeof(buffer)/sizeof(buffer[0]));
//cout << buffer << endl;
istrstream str(buffer);
// Get data
str >> dataBuffer;
yr = atof(dataBuffer);

str >> dataBuffer;
if (strcmp(dataBuffer,"MO") == 0)

yr = (double) yr/12;
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else if (strcmp(dataBuffer,"WK") == 0)
yr = (double) yr/52;

else if (strcmp(dataBuffer,"DY") == 0)
yr = (double) yr/365;

mat.push_back(yr);

str >> dataBuffer;
rate = atof(dataBuffer);
libor[yr] = rate;

str >> dataBuffer;
rate = atof(dataBuffer);
discRate[yr] = rate;

}
}
else

cout << "File not good!" << "\n";

fin.close();

Swap s(notional,maturity,start,start+1,valuation,libor,discRate,
swapRate,swapType);

}

We get the following results:

Fixed Accrued = 5821.2000
Float Accrued = -5867.3096
Accrued = -46.109589
Principal = -176178.34
Market Value = -176224.45

The risk measures are as follows:

fixed duration = 5.8713815
fixed DV01 = 1937.5559
float duration = 0.20821918
float DV01 = -68.712329
Swap DV01 = 1868.8436

1.13 BERMUDAN SWAPTION PRICING IN MATLAB

Interest rate swaps have the characteristics of futures contracts. As such, they are used
to lock in future interest rate positions, usually for longer periods than can be obtained with
exchange-traded futures. Financial managers, though, who want downside protection for
their position with the potential for gains if conditions become favorable, can also take a
position in swaptions or options on swaps. Swaptions give the holder the right, but not the
obligation, to enter into a swap at maturity: for example, a fixed-rate payer’s position (or
a floating-rate payer’s position), with the exercise price set by the fixed rate on the swap.
Bermudan swaptions, however, give the holder the right to enter on discrete prespecified
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dates throughout the life of the swaption. The following Matlab implementation23 values a
Bermudan swaption:

bermudan swaption.m
function []=bermudan_swaption()

%This program can work for arbitrary no. of factors. You have to specify no.
%of factors as well as volatility structure for each factor. The volatility
%structure can be obtained from principal component analysis of correlation
%matrix and adjusting to calibrated volatilities as done in excellent paper
%by Rebonato. See my web page for the references
%(http://www.geocities.com/anan2999). It does not take correlation
%structure as input. You can also specify CEV constant alpha for skew.
%Remember changing this constant changes effective volatility.

%randn('state',[1541045451;4027226640]) % add a good random number seed
%here if you wish.
%if you don't matlab will choose its own seed.

delta=.25; %Tenor spacing. usually .25 or .5

P=5000; % No. of paths, do not try more than 5000 paths unless you are
% very patient

T_e1=6.0; %maturity of underlying swap in years(must be an
%exact multiple of delta)

T_x1=5.75; %last exercise date of the swaption (must be an
%exact multiple of delta)

T_s1=3.0; %lockout date (must be an exact multiple of delta)

T_e=T_e1/delta+1;
T_x=T_x1/delta+1;
T_s=T_s1/delta+1;
N=T_e;

F=2; % number of factors. If you change this line also change volatility
% structure appropriately

alpha=1.0;%CEV constant alpha for skew.Remember changing this value changes
%effective volatility

%It is 1.0 for lognormal model.
k=.1; % strike, fixed coupon
pr_flag=+1; %payer receiver flag; assumes value of +1 for a payer swaption
%and a value of -1 for a receiver swaption.

n_spot=2;
L=repmat(.10,[P,T_e+1]);
vol=repmat(0,[T_e,F]);
for n=1:N,

for f=1:F,
if(f==1)

vol(n,f)=.15; %volatility of first factor
end
if(f==2)

vol(n,f)= (.15-(.009*(n)*.25).ˆ.5); %volatility of second factor
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end
end

end
%You can add more volatility factors in the above line but please also
%change F accordingly
%drift=repmat(0,[P,F]);
money_market=repmat(1,[T_x,P]);
swap=repmat(0,[T_x,P]);
B=repmat(1,[P,T_e]);

money_market(2,:)=money_market(1,:).*(1+delta*L(:,1))';
increment=repmat(0,[P,1]);
drift=repmat(0,[P,F]);

for t= 2 : T_x,

t

normal_matrix=randn([P,F]);
drift(:,:)=0;
for n= t : T_e,

increment(:,1)=0;

% n
for f=1:F,

drift(:,f)=drift(:,f)+ delta*vol(n-n_spot+1,f).*
((L(:,n).ˆalpha)./(1+delta.*L(:,n))); %

increment(:,1)=increment(:,1)+vol(n-n_spot+1,f).*
(L(:,n).ˆalpha)./L(:,n)...

.*(normal_matrix(:,f).*sqrt(delta)-.5.*vol(n-n_spot+1,f).*
(L(:,n).ˆalpha)./L(:,n)...

.*delta+drift(:,f).*delta);
end

L(:,n)=L(:,n).*exp(increment(:,1));
L(L(:,n)<.00001,n)=.00001;

end

B(:,t)=1.0;
for n=t+1:T_e,

B(:,n)=B(:,n-1)./(1+delta.*L(:,n-1));
end

money_market(t+1,:)=money_market(t,:).*(1+delta*L(:,n_spot))';

if((t>= T_s) & (t <=T_x))
for n=t:(T_e-1), %//the swap leg is determined one date before

%//the end

swap(t,:)=swap(t,:)+ (B(:,n+1).*
(L(:,n)-k).*pr_flag*delta)' ;
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end
end
n_spot=n_spot+1;

end

value=repmat(0,[P,1]);
stop_rule=repmat(T_x,[P,1]);

value(swap(T_x,:)>0,1) = (swap(T_x,swap(T_x,:)>0))';
coeff=repmat(0,[T_x,6]);

for t=(T_x-1):-1:T_s,
i=0;
a=0;
y=0;
for p=1:P,

if (swap(t,p)> 0.0)
i=i+1;
a(i,1)=1;
a(i,2)=swap(t,p);
a(i,3)=swap(t,p)*swap(t,p);
a(i,4)=money_market(t,p);
a(i,5)=money_market(t,p)*money_market(t,p);
a(i,6)=money_market(t,p)*swap(t,p);

y(i,1)= money_market(t,p)/money_market(stop_rule(p,1),p) *
value(p,1);

end

end

temp=inv(a'*a)*(a'*y);
coeff(t,:)=temp';

expec_cont_value=repmat(0,[P,1]);
exer_value=repmat(0,[P,1]);

expec_cont_value(:,1)=(coeff(t,1)+coeff(t,2).*swap(t,:)+
coeff(t,3).*swap(t,:)...

.*swap(t,:)+coeff(t,4).*money_market(t,:)+
coeff(t,5).*money_market(t,:)...

.*money_market(t,:)+coeff(t,6).*money_market(t,:).*swap(t,:))';

exer_value(swap(t,:)>0,1)=(swap(t,swap(t,:)>0))';

value((exer_value(:,1)>expec_cont_value(:,1))&(swap(t,:)>0)',1)...
=exer_value((exer_value(:,1)> expec_cont_value(:,1))&(swap(t,:)>0)',1);

stop_rule((exer_value(:,1)>expec_cont_value(:,1))&(swap(t,:)>0)',1)=t;
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end

price=0;
for p=1:P,

price=price+ (value(p,1)/(money_market(stop_rule(p,1),p)))/P;

end

price

ENDNOTES

1. This is the case for a plain vanilla fixed-for-floating. A hedge on a bond portfolio with an
amortization of the principal or a hedge on the total return on bond portfolio would require
use of constant maturity swaps (or index amortization swaps) and total return swaps, which
do not have swap futures equivalents (as of today).

2. A Eurodollar is a dollar deposited in a U.S. or foreign bank outside the United States. The
Eurodollar interest rate is the rate of interest earned on Eurodollars deposited by one bank
with another bank.

3. It can be shown that if an underlying asset of a long futures contract is strongly positively
correlated with interest rates, futures prices will be higher than forward prices because
futures are settled daily, and the gain can be invested at a higher-than-average rate of interest
since the positive correlation will make it more likely rates will increase. Similarly, when
the underlying asset is strongly negatively correlated with interest rates, the futures position
will incur an immediate loss, and this loss will tend to be financed at a lower-than-average
rate of interest. An investor with a long position in a forward contract rather than a futures
contract is not affected in this way by rate movements.

4. Hull, J. (1997), 99.
5. Id. 99.
6. Id. 100.
7. Id. 100.
8. Id. 100.
9. Hull, J. (1997), 97.

10. See http://www.academ.xu.edu/johnson/.
11. In actuality, the manager could purchase only five contracts because she can only purchase

an integer multiple of contracts. Thus, she would be underhedged by 0.115 T-bill units, but
if she bought six contracts, she would be overhedged by 0.985 T-bill units.

12. We can also compute the duration using a continuously compounded yield, yi, 1 ≤ i ≤ n,
as

D =
n∑

i=1

ti

[
cie

−yiti

B

]

where B =
n∑

i=1
cie

−yiti .
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13. The term “yield modified duration” refers to the traditional analytic formulation for modi-
fied duration using a flat discount rate.

14. To compute DV01, shift the yield curve up by one basis point, recompute the duration using
yield + 1bp, and then subtract the initial duration before the one basis point shift.

15. Reproduced with permission from “Hedging a Fixed-Income Portfolio with Swap Futures,”
CBOT Interest Rate Swap Complex White Paper.

16. Audley, D., Chin, R, and Ramamuthy, S., “Term Structure Modeling” in Interest Rate, Term
Structure, and Valuation Modeling, edited by Fabozzi, F., Wiley (2002)., pg. 95.

17. Id., pg. 95.
18. Typically, n = 2 as most bonds use semiannual compounding.
19. A cubic “spline” is a piecewise polynomial function, made up of individual polynomial

sections or segments that are joined together at (user-selected) points known as knot points.
A cubic spline is a function of order three, and a piecewise cubic polynomial that is twice
differentiable at each knot point. At each knot point, the slope and curvature of the curve
on either side must match. An exponential cubic function would fit an exponential curve
through the discount points. Thus, cubic and exponential splines are used to fit a smooth
curve to bond prices (yields) given the term discount factors.

See James and Webber (2000), Interest Rate Modeling, Wiley, pp. 430-432; Waggoner,
D. (1997); Pienaar, R. and Choudhry., M. article in Fabozzi (2002), “Fitting the Term
Structure of Interest Rates Using the Cubic Spline Methodology,” pg. 157-185; O. De la
Grandville (2001), Bond Pricing and Portfolio Analysis, MIT Press, pp. 248-252; Vasicek,
O. and Fong, H. (1982), “Term Structure Modeling Using Exponential Splines,” Journal of
Finance 37, 1982, pp. 339-361.

20. Developed by Stefano Galiani (2003).
21. See MATLAB Fixed-Income Toolkit User’s Guide (2002), The MathWorks.
22. The Date class is an open source library written by James M. Curran (1994).
23. Written by Ahsan Amin. See http://www.geocities.com/anan2999/.




