Signals, Systems \& INFERENCE

Alan V. Oppenheim \& George C. Verghese Prentice Hall Signal Processing Series | Alan V. Oppenheim, Series Editor

The content oftinisp OF indulués the first 10

Oppenheim / Verghese Signiats systems and Inference, 1/E
 ISBN-10: 0133943283 | ISBN-13.29388133943283
This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted.

The discussion of systen deschitons to this point has emphasized and used models that represent the teansformationof input signals into output signals. In the case of linear and tmésinvinian (fil) models, we have focused on their impulse response, frequéncy aspense, andtransfer function. Such inputoutput models do not directly consider the udetunal behavior of the systems they represent.

Internal behavior can be important fora inditidy of reasons. For instance, in examining issues of stability, a systín inotel can be stable from an input-output perspective, yet internal variablestanaq,display unstable behavior. This chapter begins a discussion of syster models that display the internal dynamical behavior of the system as well as the input-output characteristics. The discussion is illustrated by numerous examples. The study of such models and their applications continues through Chapters 5 and 6 as well.

4.1 SYSTEM MEMORY

In this chapter we introduce an important model description-the state-space model-that highlights the internal behavior of a system and is especially suited to representing causal systems, particularly for real-time applications such as control. These models arise in both continuous-time (CT) and discretetime (DT) forms. In general they can be nonlinear and time-varying, although we will focus on the LTI case.

A state-space model for a causal system answers a question asked about such systems in many settings. We pose the question for the causal DT case, though it can also be asked for causal CT systems: given the input value $x[n]$ at some arbitrary time n, how much needs to be known about past values of the input, that is, about $x[k]$ for $k<n$, in order to determine the present output $y[n]$? As the system is causal, having all past values $x[k]$, in addition to $x[n]$, will suffice, but the issue is whether all past $x[k]$ are actually needed.

The above question addresses the issue of memory in the system, and is worthwhile for a variety of reasons. For example, the answer conveys an idea of the complexity, or number of degrees of freedom, associated with the dynamic behavior of the system. The more we need to know about past inputs in order to determine the present output, the richer the variety of possible output beqavírss, and the more ways one can be surprised in the absence of knowbedge; ofthepast. We will only consider systems with a finite number of degiees ©f Proedom, or with finite-dimensional memory; these are often referreed to as Mamed systems.

Onfapplication which the above question arises is in implementing a computer atogrithmanateactscausally on a data stream. Thinking of the algorithm as a sysiem, the ansuer to the question indicates how much memory will be needed torunsth£salgorifinin. In a control application, the answer to the memory questiof aberesuggestsche required level of complexity for the controller of a given systend; Tha contieller has to remember enough about the past to determine theoffects otpresentcontrol actions on the response of the system.

With a state-space descriptionp verything about the past that is relevant to the present and future is summafized in the present values of a finite set of state variables. These values togetheospeerifystheapressent state of the system. We are interested in the case of real-plued state mariables. The number of state variables, also referred to as the order state-space description, indicates the number of degrees of freedom, or thedronsion of the memory, associated with the system or model.

4.2 ILLUSTRATIVE EXAMPLES

As a prelude to developing the general form of a state-space model, this section presents in some detail a few CT and DT examples. In addition to illustrating the process of building a state-space model, these examples will suggest how state-space descriptions arise in a variety of contexts. This section may alternatively be read after the more general presentation of statespace models in Section 4.3. Several further examples appear later in the chapter.

To begin, we examine a mechanical system that, despite its simplicity, is rich enough to bring out typical features of a CT state-space model, and serves as a prototype for a variety of other systems.

Example 4.1 Inverted Pendulum

Consider the inverted pendulum shown in Figure 4.1. The pendulum is rigid, with mass m, and can rotate about the pivot at its base, moving in the plane orthogonal to the pivot axis. The distance from the pivot to the center of mass is ℓ, and the pendulum's moment of inertia about the pivot is \mathcal{I}. These parameters are all assumed constant.

The line connecting the pivot to the center of mass is at an angle $\theta(t)$ at time t, measured clockwise from the vertical. An external torque is applied to the pendulum around the axis of the pivot. We treat this torque as the input to our system, and denote it by $x(t)$, taken as positive when it acts counterclockwise.

Suppose the system output variable of interest, $y(t)$, is just the pendulum angle, so that $y(t)=\theta(t)$. In a typical control application, one might want to manipulate $x(t)$-ingesponse to measurements that are fed back to the controller-so as to maint 卒, yt hear, the value 0 , thus balancing the inverted pendulum vertically.
\hbar वThe cxtexna\torque is opposed by the torque due to the acceleration g of gravity acting omethermass which produces a clockwise torque of value $m g \ell \sin (\theta(t))$. Finally, assunga Mictionaloorque that opposes the motion in proportion to the magnitude of the anginar velochy Thois togque is thus given by $-\beta \dot{\theta}(t)$, where $\dot{\theta}(t)=d \theta(t) / d t$ and β is some norigegative egnstant.t,

Althougti, thesinverteen pendulum is a simple system in many respects, it captures some essenfigl features of eystems that arise in diverse balancing applications, for instance, supportingtheogos orf human ankle or a mass on a robot joint or wheel axle. There are also coritrotapplications in which the pendulum is intended to move in the vicinity of its norma, hatgingadobsitioncrather than the inverted position, that is, with $\theta(t) \approx \pi$. One might attexnadiveleyaint the pendulum to rotate through full circles around the pivot. All of these mations ato déscribeg by the equations below.
A Conventional Model The rotational tormrof fewton's law says the rate of change of angular momentum equals tape nebtoraque. Ave can accordingly write

$$
\begin{equation*}
\frac{d}{d t}\left(I \frac{d \theta(t)}{d t}\right)=m g \ell \sin (\theta(t)) \frac{\beta}{d \theta}-x(t) . \tag{4.1}
\end{equation*}
$$

Since \mathcal{I} is constant, the preceding expression can be rexritten in a form that is closer to what is typically encountered in an earlier differential equations course:

$$
\begin{equation*}
\mathcal{I} \frac{d^{2} y(t)}{d t^{2}}+\beta \frac{d y(t)}{d t}-m g \ell \sin (y(t))=-x(t) \tag{4.2}
\end{equation*}
$$

which is a single second-order nonlinear differential equation relating the output $y(t)$ to the input $x(t)$.

Figure 4.1 Inverted pendulum.

State Variables To get at the notion of state variables, we examine what constitutes the memory of the system at some arbitrary time t_{0}. Assume the parameters \mathcal{I}, m, ℓ, and β are all known, as is the external input $x(t)$ for $t \geq t_{0}$. The question is, what more needs to be known about the system at t_{0} in order to solve for the behavior of the system for $t>t_{0}$.

Solving Eq. (4.1) for $\theta(t)$ in the interval $t>t_{0}$ ultimately requires integrating the equation twice, which in turn requires knowledge of the initial position and velocity, $\theta\left(t_{0}\right)$ and $\dot{\theta}\left(t_{0}\right)$ respectively. Another way to recognize the special role of these two variables is by considering the energy of the pendulum at the starting time. The energy is the result of past inputs to the system, and is reflected in the ensuing motion of the system. The potential energy at $t=t_{0}$ is determined by $\theta\left(t_{0}\right)$ and the kinetic energy by $\dot{\theta}\left(t_{0}\right)$, so these variables are key to understanding the behavior of the system for $t>t_{0}$.
State-Spaee Model The above discussion suggests that two natural memory variable of the $8 y s t$ 留 at any time t are $q_{1}(t)=\theta(t)$ and $q_{2}(t)=\dot{\theta}(t)$. Taking these as candidatestaté warídles, a corresponding state-space description is found by trying to express thequteß of change of these variables at time t entirely in terms of the values of thesedraiehlesandoof the input at the same time t. For this simple example, a pair of equations of titeddesiryedsforniocan be obtained quite directly. Invoking the definitions

This description comprises a painoorguphed fast-oxder differential equations, driven by the input $x(t)$. These are referred toss the state evolution equations. The corresponding output equation expresses the output yt j entirely in terms of the values of the state variables and of the input at the same lime Φ, in Ans case, the output equation is simply

The combination of the state evolution equations and trio output equation constitutes a state-space description of the system. The fact Top at such a description of the system is possible in terms of the candidate state variables $\dot{\theta}(t)$ aries $\theta(t)$ confirms these as state variables - the "candidate" label can now be dropped.

Not only does the ordinary differential equation description in Eq. (4.1) or equivalently in Eq. (4.2) suggest what is needed to obtain the state-space model, but the converse is also true: the differential equation in Eq. (4.1), or equivalently in Eq. (4.2), can be obtained from Eqs. (4.3), (4.4), and (4.5).
Some Variations The choice of state variables above is not unique. For instance, the quantities defined by $q_{1}(t)=\theta(t)+\dot{\theta}(t)$ and $q_{2}(t)=\theta(t)-\dot{\theta}(t)$ could have functioned equally well. Equations expressing $\dot{q}_{1}(t), \dot{q}_{2}(t)$, and $y(t)$ as functions of $q_{1}(t), q_{2}(t)$, and $x(t)$ under these new definitions are easily obtained, and yield a different but entirely equivalent state-space representation.

The state-space description obtained above is nonlinear but time-invariant. It is nonlinear because the state variables and input, namely $q_{1}(t), q_{2}(t)$, and $x(t)$, are combined nonlinearly in at least one of the functions defining $\dot{q}_{1}(t), \dot{q}_{2}(t)$, and $y(t)$-in this case, the function defining $\dot{q}_{2}(t)$. The description is time-invariant because all the functions defining $\dot{q}_{1}(t), \dot{q}_{2}(t)$, and $y(t)$ are time-invariant, that is, they combine their arguments $q_{1}(t), q_{2}(t)$, and $x(t)$ according to a prescription that does not depend on time.

For small enough deviations from the fully inverted position, $q_{1}(t)=\theta(t)$ is small, so $\sin \left(q_{1}(t)\right) \approx q_{1}(t)$. With this approximation, Eq. (4.4) is replaced by

$$
\begin{equation*}
\frac{d q_{2}(t)}{d t}=\frac{1}{\mathcal{I}}\left(m g \ell q_{1}(t)-\beta q_{2}(t)-x(t)\right) . \tag{4.6}
\end{equation*}
$$

The function defining $\dot{q}_{2}(t)$ is now an LTI function of its arguments $q_{1}(t), q_{2}(t)$, and $x(t)$, so the resulting state-space model is now also LTI.

For linear models, matrix notation allows a compact representation of the state evolution equations and the output equation. We will use bold lowercase letters for vectors and bold uppercase for matrices. Defining the state vector and its derivative by

$$
\mathbf{q}(t)=\left[\begin{array}{l}
q_{1}(t) \tag{4.7}\\
q_{2}(t)
\end{array}\right], \quad \dot{\mathbf{q}}(t)=\frac{d \mathbf{q}(t)}{d t}=\left[\begin{array}{c}
\dot{q}_{1}(t) \\
\dot{q}_{2}(t)
\end{array}\right],
$$

the lin"errmide mbecomes

where the defnitons offthe inntix \mathbf{A} and vector \mathbf{b} should be clear by comparison with the preceding equalis. Phe corsesponding output equation can be written as

with \mathbf{c}^{T} denoting the transposer fo acofunndyector, that is, a row vector. The time invariance of the system is reffectea jn the Fotit that the coefficient matrices \mathbf{A}, \mathbf{b}, and \mathbf{c}^{T} are constant rather than time-arying

The ideas in the above example candegeneralized to much more elaborate settings. In general, a natural choice of statêtariables for a mechanical system is the set of position and velocity variablersassociated with each component mass. For example, in the case of N point masses in three-dimensional space that are interconnected with each other and to rigid supports by massless springs, the natural choice of state variables would be the associated 3 N position variables and $3 N$ velocity variables. If these masses were confined to move in a plane, we would instead have $2 N$ position variables and $2 N$ velocity variables.

The next example suggests how state-space models arise in describing electrical circuits.

Example 4.2 Electrical Circuit

Consider the resistor-inductor-capacitor (RLC) circuit shown in Figure 4.2. All the component voltages and currents are labeled in the figure.

We begin by listing the characteristics of the various components, which we assume are linear and time-invariant. The defining equations for the inductor,

Figure 4.2 RLC circuit. capacitor aritathegwo esistors take the form, in each case, of an LTI constraint relating the voltagéacross the elementeand the current through it. Specifically, we have

The voltage source is defined by the egndifíntigt tis vodage is a specified or arbitrary $v(t)$, regardless of the current $i(t)$ that is draw trom ies

The next step is to describe the constyaifts, 8ta, these variables that arise from interconnecting the components. The interdeniection constraints for an elec-
 rent law (KCL). Both KVL and KCL produce additionaplLI constraints relating the variables associated with the circuit. Here, KVL anel KCL yield the following equations:

$$
\begin{align*}
v(t) & =v_{L}(t)+v_{R_{2}}(t) \\
v_{R_{2}}(t) & =v_{R_{1}}(t)+v_{C}(t) \\
i(t) & =i_{L}(t) \\
i_{L}(t) & =i_{R_{1}}(t)+i_{R_{2}}(t) \\
i_{R_{1}}(t) & =i_{C}(t) . \tag{4.11}
\end{align*}
$$

Other such KVL and KCL equations can be written for this circuit, but turn out to be consequences of the equations above, rather than new constraints.

Equations (4.10) and (4.11) together represent the individual components in the circuit and their mutual connections. Any set of signals that simultaneously satisfies all these constraint equations constitutes a valid solution-or behavior-of the circuit. Since all the constraints are LTI, it follows that weighted linear combinations or superpositions of behaviors are themselves behaviors of the circuit, and time-shifted behaviors are again behaviors of the circuit, so the circuit itself is LTI.

Input, Output, and State Variables Let us take the source voltage $v(t)$ as the input to the circuit, and also denote this by $x(t)$, our standard symbol for an input. Any of the circuit voltages or currents can be chosen as the output. Choose $v_{R_{2}}(t)$, for instance, and denote it by $y(t)$, our standard symbol for an output.

As in the preceding example, a good choice of state variables is established by determining what constitutes the memory of the system at any time. Apart from the parameters L, C, R_{1}, R_{2}, and the external input $x(t)$ for $t \geq t_{0}$, we ask what needs to be known about the system at a starting time t_{0} in order to solve for the behavior of the system for $t>t_{0}$.

The existence of the derivatives in the defining expressions in Eq. (4.10) for the inductor and capacitor suggests that at least $i_{L}\left(t_{0}\right)$ and $v_{C}\left(t_{0}\right)$ are needed, or quantities equivalent to these. Note that, similarly to what was observed in the previous example, these variables are also associated with energy storage in the system, in this case the energy sione in the inductor and capacitor respectively. We accordingly identify the twonnaral menpory variables of the system at any time t as $q_{1}(t)=i_{L}(t)$ and $q_{2}(t)=$ $v e r t$, (andahese arejour candidate state variables.
Statespace Model now develop a state-space description for the RLC circuit of Figures. ${ }^{2}$ by tryinntas express the rates of change of the candidate state variables at time t entivy in terms ar the palues of these variables and of the input at the same time t. This is indone by recucing the full set of relations in Eqs. (4.10) and (4.11), eliminating all kaziaktes ©other ithantothe input, output, candidate state variables, and derivatives of the cálodi每ate sate hrariales.

This process forthe ryeseat exanike is not as transparent as in Example 4.1, and some attention is required ingordier oncarry out the elimination efficiently. A good strategy - and one that ged the inductor voltage $v_{L}(t)$ and eapagitorncurtent variables, namely $i_{L}(t), v_{C}(t)$, and $\alpha(t)$. Suce thasis is accomplished, we make the substitutions

$$
\begin{equation*}
v_{L}(t)=L \frac{d i_{L}(t)}{d t} \text { antive } \tag{4.12}
\end{equation*}
$$

then rearrange the resulting equations to get the destred $\mathrm{P}_{\text {expressions for the thes of }}$ change of the candidate state variables. Following this PItocedure, and introducing the definition

$$
\begin{equation*}
\alpha=\frac{R_{2}}{R_{1}+R_{2}} \tag{4.13}
\end{equation*}
$$

for notational convenience, we obtain the desired state evolution equations. These are written below in matrix form, exploiting the fact that these state evolution equations turn out to be linear:

$$
\left[\begin{array}{l}
d i_{L}(t) / d t \tag{4.14}\\
d v_{C}(t) / d t
\end{array}\right]=\left[\begin{array}{cc}
-\alpha R_{1} / L & -\alpha / L \\
\alpha / C & -1 /\left(R_{1}+R_{2}\right) C
\end{array}\right]\left[\begin{array}{l}
i_{L}(t) \\
v_{C}(t)
\end{array}\right]+\left[\begin{array}{c}
1 / L \\
0
\end{array}\right] x(t) .
$$

This is of the form

$$
\begin{equation*}
\dot{\mathbf{q}}(t)=\mathbf{A} \mathbf{q}(t)+\mathbf{b} x(t) \tag{4.15}
\end{equation*}
$$

where

$$
\mathbf{q}(t)=\left[\begin{array}{l}
q_{1}(t) \tag{4.16}\\
q_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
i_{L}(t) \\
v_{C}(t)
\end{array}\right]
$$

and the definitions of the coefficient matrices \mathbf{A} and \mathbf{b} are determined by comparison with Eq. (4.14). The fact that these matrices are constant establishes that the description is LTI. The key feature here is that the model expresses the rates of change of the state variables at any time t as constant linear functions of their values and that of the input at the same time instant t.

As we will see in the next chapter, the state evolution equations in Eq. (4.14) can be used to solve for the state variables $i_{L}(t)$ and $v_{C}(t)$ for $t>t_{0}$, given the input $x(t)=$ $v(t)$ for $t \geq t_{0}$ and the initial conditions on the state variables at time t_{0}. Furthermore, knowledge of $i_{L}(t), v_{C}(t)$, and $v(t)$ suffices to reconstruct all the other voltages and currents in the circuit at time t. Having picked the output of interest to be $v_{R_{2}}(t)=y(t)$, we can write (again in matrix notation)

$$
\text { 有; } \quad y(t)=v_{R_{2}}(t)=\left[\begin{array}{ll}
\alpha R_{1} & \alpha
\end{array}\right]\left[\begin{array}{l}
i_{L}(t) \tag{4.17}\\
v_{C}(t)
\end{array}\right]=\mathbf{c}^{T} \mathbf{q}(t) .
$$

Inputsounuts Behavior Transforming Eqs. (4.10) and (4.11) using the bilateral Lapdace cransformb and noting that differentiation in the time domain maps to mul-
 of the system from Laplaet trassormafign of the state-space description in Eqs. (4.14) and (4.17). The next chapter presents artexplicit formula for this transfer function in terms of the

For our RLC Example, ifis transfer function $H(s)$ from input to output is

The corresponding input-output seenndonde Lit differential equation is

$$
\begin{equation*}
\frac{d^{2} y(t)}{d t^{2}}+\alpha\left(\frac{1}{R_{2} C}+\frac{R_{1}}{L}\right) \frac{d y(t)}{d t}+\alpha\left(\frac{1}{L C}\right)(t) \tag{4.19}
\end{equation*}
$$

The procedure for obtaining a state-space deserjption that is illustrated in Example 4.2 can be used even if some of the circuit components are nonlinear. It can then often be helpful to choose inductor flux rather than current as a state variable, and similarly to choose capacitor charge rather than voltage as a state variable. It is generally the case, just as in the Example 4.2, that the natural state variables in an electrical circuit are the inductor currents or fluxes, and the capacitor voltages or charges. The exceptions occur in degenerate situations, for example where a closed path in the circuit involves only capacitors and voltage sources. In the latter instance, KVL applied to this path shows that the capacitor voltages are not all independent.

State-space models arise naturally in many problems that involve tracking subgroups of some population of objects as they interact in time. For instance, in chemical reaction kinetics the interest is in determining the expected molecule numbers or concentrations of the various interacting chemical constituents as the reaction progresses in continuous time. Another instance involves modeling, in either continuous time or discrete time, the spread of a fashion, opinion, idea, or disease through a human population,
or of a software virus through a computer network. The following example develops one such DT model and begins to explore its behavior. Some later examples extend the analysis further.

Example 4.3 Viral Propagation

The DT model presented here captures some essential aspects of viral propagation in a variety of settings. The model is one of a large family of such models, both deterministic and stochastic, that have been widely studied. Though much of the terminology derives from modeling the spread of disease by viruses, the paradigm of viral propagation has been applied to understanding how, for example, malicious software, advertisements, gossip, or cultural memes spread in a population or network.

The deterministic model here tracks three component subpopulations from the nth D ${ }^{2}$ eporgh To, the $(n+1)$ th. Suppose the total population of size P is divided into the "arcing subgrgups, or "compartments," at integer time n :
${ }^{\circ}(\underset{S N}{ }[n]$ 万 0 es acquiring the virus; ${ }^{\circ}$ o

- $i[n] \geq 0$ is the amber passing it ito the susceptible by the next epoch; and
- $r[n] \geq 0$ is numbers ofqecored, no longer carrying the virus and no longer susceptible, béczusefor acquired frimunity.

The model below assumes there vapiabiss are real-valued rather than integer-valued,
 approximation when P is very laxye.on 3 in is Ohx_{x}
 is the (deterministic) fractional increase indtespopalatpon per unit time due to birth. Suppose the death rate is also β, so the dotatsizenf que population remains constant at P. Assume $0 \leq \beta<1$.

Let the rate at which susceptible become Affected be proportional to the concentration of infective in the general population, hence ar rate of the form $\gamma(i[n] / P)$ for some $0<\gamma \leq 1$. The rate at which infective move the recovered compartment is denoted by ρ, with $0<\rho \leq 1$. We take newborns to be susceptible, even if born to infective or recovered members of the population. Suppose also that newborns are provided immunity at a rate $0 \leq v[n] \leq 1$, for instance by vaccination, moving them directly from the susceptible compartment to the recovered compartment. We consider $v[n]$ to be the control input, and denote it by the alternative symbol $x[n]$.

With the above notation and assumptions, we arrive quite directly at the very simple (and undoubtedly simplistic) model below, for the change in each subpopulation over one time step:

$$
\begin{align*}
s[n+1]-s[n] & =-\gamma(i[n] / P) s[n]+\beta(i[n]+r[n])-\beta P x[n] \\
i[n+1]-i[n] & =\gamma(i[n] / P) s[n]-\rho i[n]-\beta i[n] \\
r[n+1]-r[n] & =\rho i[n]-\beta r[n]+\beta P x[n] . \tag{4.20}
\end{align*}
$$

A model of this type is commonly referred to as an SIR model, as it comprises susceptible, infective, and recovered populations. We shall assume that the initial conditions, parameters, and control inputs are chosen so as to maintain all subpopulations at nonnegative values throughout the interval of interest. The actual mechanisms of
viral spread are of course much more intricate and complicated than captured in this elementary model, and also involve substantial randomness and uncertainty.

If some fraction ϕ of the infectives gets counted at each time epoch, then the aggregate number of infectives reported can be taken as our output $y[n]$, so

$$
\begin{equation*}
y[n]=\phi i[n] \tag{4.21}
\end{equation*}
$$

Notice that the expressions in Eq. (4.20) have a very similar form to the CT state evolution equations we arrived at in the earlier two examples. For the DT case, take the rate of change of a variable at time n to be the increment over one time step forward from n. Then Eq. (4.20) expresses the rates of change of the indicated variables at time n as functions of these same variables and the input at time n. It therefore makes sense to think 0 f $s[n], i[n]$, and $r[n]$ as state variables, whose values at time n constitute the state ofthersystem at time n.

Thómodel kere is time-invariant because the three expressions that define the rates ongange end inyolve combining the state variables and input at time n according toprescriptions thatdo not depend on n. The consequence of this feature is that
 also satisfy the modelyequations if they are all shifted arbitrarily by the same time offset. However, the anodebis inot linear; it is nonlinear because the first two expressions involve a nonlinem, congipation of $\left(\frac{1}{8} n\right]$ and $i[n]$, namely their product. The expression in Eq. (4.21) writesthe ©utputatidimerb as a function of the state variables and input at time n-though it Kíppens, iiphbis orse ollat only $i[n]$ is needed.

It is conventional inthe Th Tease torrazrange the state evolution equations into a form that expresses the state atifitan $n=1$ as a function of the state variables and input at time n. Thus Eq. (4.20) oxorid berex ritten as

$$
\begin{align*}
& r[n+1]=r[n]+\rho i[n]-\beta r[n \rho \tag{4.22}
\end{align*}
$$

In this form, the equations give a simple prescrip ion obtaining the state at time $n+1$ from the state and input at time n. Summing the three equations also makes clear that for this example

$$
\begin{equation*}
s[n+1]+i[n+1]+r[n+1]=s[n]+i[n]+r[n]=P . \tag{4.23}
\end{equation*}
$$

Thus, knowing any two of the subgroup populations suffices to determine the third, if P is known. Examining the individual relations in Eqs. (4.20) or (4.22), and noting that the term $i[n]+r[n]$ in the first equation of each set could equivalently have been written as $P-s[n]$, we see that the first two relations in fact only involve the susceptible and infective populations, in addition to the input, and therefore comprise a state evolution description of lower order, namely

$$
\begin{align*}
s[n+1] & =s[n]-\gamma(i[n] / P) s[n]+\beta(P-s[n])-\beta P x[n] \\
i[n+1] & =i[n]+\gamma(i[n] / P) s[n]-\rho i[n]-\beta i[n] . \tag{4.24}
\end{align*}
$$

Figure 4.3 shows a few state-variable trajectories produced by stepping the model in Eq. (4.24) forward from a particular $s[0]$, fixed at 8000 out of a population (P) of 10,000 , using different initial values $i[0]$. Note that in each case the number of

Figure 4.3 Responsé of Str modelqor \&̊articular choice of parameter values and a variety of initial conditions.
infectives, $i[n]$, initially increaseof fion its yale atane starting time $n=0$, before eventually decaying. This initial increase, wowldenrespond to "going viral" in the case of a rumor, advertisement, or fashion thatspreadsthrog fa social network, or to an epidemic in the case of disease propagation Thesecondequation in Eq. (4.24) shows that $i[n+1]>i[n]$ precisely when

Here

$$
\begin{equation*}
\frac{s[n]}{P}>\frac{\rho+b^{2}}{\gamma} \otimes \frac{0}{R_{0}} r_{0} \tag{4.25}
\end{equation*}
$$

$$
\begin{equation*}
R_{0}=\frac{\gamma}{\beta+\rho} \tag{4.26}
\end{equation*}
$$

is a parameter that typically arises in viral propagation models, and is termed the basic reproductive ratio (referring to "reproduction" of infectives, not to population growth). Thus $i[n]$ increases at the next time step whenever the fraction of susceptibles in the population, $s[n] / P$, exceeds the threshold $1 / R_{0}$. As $s[n] / P$ cannot exceed 1 , there can be no epidemic if $R_{0} \leq 1$. The greater the amount by which R_{0} exceeds 1 , the fewer the number of susceptibles required in order for an epidemic to occur.

Figure 4.3 also shows that the system in this case, with the immunization rate fixed at $x[n]=0.5$, reaches a steady state in which there are no infectives. This is termed an infective-free steady state. In Examples 4.8, 4.10, and 5.5, we explore further characteristics of the model in Eq. (4.24). In particular, it will turn out that it is possible-for instance by dropping the immunization rate to $x[n]=0.2$ while keeping the other parameters as in Figure 4.3-for the attained steady state to have a nonzero number of infectives. This is termed an endemic steady state.

Compartmental models of the sort illustrated in the preceding example are ubiquitous，in both continuous time and discrete time．We conclude this section with another DT example，related to implementation of a filter using certain elementary operations．

Example 4．4 Delay－Adder－Gain System

The block diagram in Figure 4.4 shows a causal DT system obtained by interconnecting delay，adder，and gain elements．A（unit）delay has the property that its output value at any integer time n is the value that was present at its input at time $n-1$ ；or equivalently， its input value at any time n is the value that will appear at its output at time $n+1$ ．An adder produces an output that is the sum of its present inputs．A gain element produces an outputtifat is the present input scaled by the gain value．These all correspond to LTI operationsgn the respective input signals．

々，Inercounctioninvolves equating，or＂connecting，＂each input of these various elements Po a selected oftput of one of the elements．The result of such an inter－
 is，provideduck and n8dery free loops．An overall external input $x[n]$ and an overall externatouputting n F grealso included in Figure 4．4．Such delay－adder－gain
 Example 4．5）are wiletry used 自 construeting LTI filters that produce a signal $y[\cdot]$ from a signal $x[\cdot]$ ．

The memory of this system iedenfodiod in the delay elements，so it is natural to consider the outputs of these edenentsoas Eandidate state variables．Accordingly， we label the outputs of the mepnois elements that this example as $q_{1}[n]$ and $q_{2}[n]$ at time n ．For the specific block digran imbigure 9,4 ，the detailed component and interconnection equations relating theindianadedis als ane

$$
\begin{aligned}
q_{1}[n+1] & =q_{2}[n P \\
q_{2}[n+1] & =p[n] \\
p[n] & =x[n]-0.5 q_{1}[n+1 \text { 保 } 10] \\
y[n] & =q_{2}[n]+p[n] .
\end{aligned}
$$

The response of the system for $n \geq n_{0}$ is completely determined by the external input $x[n]$ for times $n \geq n_{0}$ and the values $q_{1}\left[n_{0}\right]$ and $q_{2}\left[n_{0}\right]$ that are stored at the

Figure 4．4 Delay－adder－gain block diagram．
outputs of the delay elements at time n_{0}. The delay elements capture the state of the system at each time step, that is, they summarize all the past history that is relevant to how the present and future inputs to the system determine the present and future response of the system.

The relationships in Eq. (4.27) need to be condensed in order to express the values of the candidate state variables at time $n+1$ in terms of the values of these variables at time n and the value of the external input at the same time instant n. This corresponds to expressing the inputs to all the delay elements at time n in terms of all the delay outputs at time n as well as the external input at this same time. The result for this example is captured in the following matrix equation:

$$
\begin{align*}
\mathbf{q}[n+1]=\left[\begin{array}{l}
q_{1}[n+1] \\
q_{2}[n+1]
\end{array}\right] & =\left[\begin{array}{cc}
0 & 1 \\
-0.5 & 1.5
\end{array}\right]\left[\begin{array}{l}
q_{1}[n] \\
q_{2}[n]
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] x[n] \\
& =\mathbf{A q}[n]+\mathbf{b} x[n] \tag{4.28}
\end{align*}
$$

Sinifarysthe output at time n can be written in terms of the values of the candidate state rasiabtes attimen and the value of the external input at the same time instant n :

$$
\text { 2.5] }\left[\begin{array}{l}
q_{1}[n] \tag{4.29}\\
q_{2}[n]
\end{array}\right]+x[n]=\mathbf{c}^{T} \mathbf{q}[n]+\mathrm{d} x[n] .
$$

Notice that inthis xaxpleé, unlike in the previous examples, the output $y[n]$ at any
 time n.

Equations (4.299and 44 . 2 a establith that $q_{1}[n]$ and $q_{2}[n]$ are indeed valid state variables. Specifically, the equationsexplicitlyshow that if one is given the values $q_{1}\left[n_{0}\right]$
 from n_{0} onward, that is, $x[n]$ fortifngs $n \rightarrow{ }^{2}$. then we can compute the values of the state variables and the output for iomes mon All that is needed is to iteratively apply
 for increasing time arguments, and to use $E \Phi,(4.82)$ ateach time to find the output.

Transforming the relationships in EA_{8} (4×2) Usingethe bilateral z-transform, and noting that time-advancing a signal by one steppape to multiplication by z in the transform domain, we can solve for the transfeefundion $\mathrm{H}_{\mathrm{f}}(z)$ of the system from $x[\cdot]$ to $y[\cdot]$. Alternatively, the same transfer function can be \&btained from z-transformation of the state-space description; the next chapter presents an explicit formula for this transfer function in terms of the coefficient matrices $\mathbf{A}, \mathbf{b}, \mathbf{c}^{T}$, and d. Either way, the resulting transfer function for our example is

$$
\begin{equation*}
H(z)=\frac{Y(z)}{X(z)}=\frac{1+z^{-1}}{1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}} \tag{4.30}
\end{equation*}
$$

which corresponds to the following input-output difference equation:

$$
\begin{equation*}
y[n]-\frac{3}{2} y[n-1]+\frac{1}{2} y[n-2]=x[n]+x[n-1] . \tag{4.31}
\end{equation*}
$$

The development of CT state-space models for integrator-adder-gain systems follows a completely parallel route. Integrators replace the delay elements. Their outputs at time t constitute a natural set of state variables for the system; their values at any starting time t_{0} establish the initial conditions for integration over the interval $t \geq t_{0}$. The state evolution equations result
from expressing the inputs to all the integrators at time t in terms of all the integrator outputs at time t as well as the external input at this same time.

4.3 STATE-SPACE MODELS

As illustrated in the examples of the preceding section, it is often natural and convenient, when studying or modeling physical systems, to focus not just on the input and output signals but rather to describe the interaction and time evolution of several key variables or signals that are associated with the various component processes internal to the system. Assembling the descriptions of the se, components and their interconnections leads to a description that is richer, than an input-output description. In particular, the examples in Section ${ }^{2} 2$ describe system behavior in terms of the time evolution of a set of suate varables, thitit completely capture at any time the past history of the systemps itaffectothegresent and future response. We turn now to a more formal déehnition of state-space models in the DT and CT cases, followed by a discussion ot hee wo de fningycharacteristics of such models.

4.3.1 DT State espacerniders

A state-space model is quitiafonnera set of state variables; we mostly limit our discussion to real-valtied state ariables The number of state variables in a model or system is referredtp ádits ordén. Weshall only deal with state-space models of finite order, which aresalso referred to as lumped models.

For an L th-order model in theD D
 to gather these variables into a state veceer

$$
\mathbf{q}[n]=\left[\begin{array}{c}
q_{1}[n] \tag{4.32}\\
q_{2}[n] \\
\vdots \\
q_{L}[n]
\end{array}\right] \cdot
$$

The value of this vector constitutes the state of the model or system at time n.
DT LTI State-Space Model A DT LTI state-space model with single or scalar input $x[n]$ and single output $y[n]$ takes the following form, written in compact matrix notation

$$
\begin{align*}
\mathbf{q}[n+1] & =\mathbf{A q}[n]+\mathbf{b} x[n], \tag{4.33}\\
y[n] & =\mathbf{c}^{T} \mathbf{q}[n]+\mathrm{d} x[n] . \tag{4.34}
\end{align*}
$$

In Eqs. (4.33) and (4.34), \mathbf{A} is an $L \times L$ matrix, \mathbf{b} is an $L \times 1$ matrix or column vector, and \mathbf{c}^{T} is a $1 \times L$ matrix or row vector, with the superscript ${ }^{T}$ denoting transposition of the column vector \mathbf{c} into the desired row vector. The quantity d is a 1×1 matrix, or a scalar. The entries of all these matrices in the case of an LTI model are numbers, constants, or parameters, so they do not vary with n.

The next value of each state variable and the present value of the output are all expressed as LTI functions of the present state and present input. We refer to Eq. (4.33) as the state evolution equation, and to Eq. (4.34) as the output equation. The model obtained for the delay-adder-gain system in Example 4.4 in the previous section has precisely the above form.

The system in Eqs. (4.33) and (4.34) is termed LTI because of its structure: the next state and current output are LTI functions of the current state and current input. However, this structure also gives rise to a corresponding behavioral sense in which the system is LTI. A particular set of input, state, and output signals $-x[\cdot], \mathbf{q}[\cdot]$, and $y[\cdot]$, respectively - that together satisfy the above state evolution equation and output equation is referred to as a behavior of the DT LTI system. It follows from the linear structure of the above equations that scaling all the signals in a behavior by the same scalar constant again 火eields a behavior of this system. Also, summing two behaviors again yieldso behavidr. More generally, a weighted linear combination of behaviors againgyledds a bethavio, so the behaviors of the system have the superposition propeffy. Simifarly, it fonlows from the time invariance of the defining equations that andabioraretimgs, shift of a behavior-shifting the input, state, and output signas, intinimby he same amount-again yields a behavior. Thus, the LTI structure $\begin{gathered}\text { Presequations isen } \\ \text { irrored by the LTI properties of its solutions }\end{gathered}$ or behaviors.

Delay-Adder-Gain Réalivation fid deay-adder-gain system of the form encountered in Example 4. cand DT LTI model of the typerivivenirn q80 (433) and (4.34). Key to this is the fact that adders and gains suffee te/implement the additions and multiplications associated with the various matry molitiolications in the LTI state-space description.

To set up the simulation, we beginnuith lodelay elements, and label their outputs at time n as $q_{j}[n]$ for $j=1,2, \cdots$, , the coursesponding inputs are then $q_{j}[n+1]$. The i th row of Eq. (4.33) shows what EI Combination of these $q_{j}[n]$ and $x[n]$ is required to compute $q_{i}[n+1]$, for each $\stackrel{\mathscr{V}}{2}=1,2, \cdots, L$. Similarly, Eq. (4.34) shows what LTI combination of the variables is required to compute $y[n]$. Each of these LTI combinations can now be implemented using gains and adders.

The implementation produced by the preceding prescription is not unique: there are multiple ways to implement the linear combinations, depending, for example, on whether there is special structure in the matrices, or on how computation of the various terms in the linear combination is grouped and sequenced. In the case of the system in Example 4.4, for example, starting with the model in Eqs. (4.28) and (4.29) and following the procedure outlined in this paragraph will almost certainly lead to a different realization than the one in Figure 4.4.

Generalizations Although our focus in the DT case will be on the above LTI, single-input, single-output, state-space model, there are various natural generalizations of this description that we mention for completeness. A multiinput DT LTI state-space model replaces the single term $\mathbf{b} x[n]$ in Eq. (4.33)
by a sum of terms， $\mathbf{b}_{1} x_{1}[n]+\cdots+\mathbf{b}_{M} x_{M}[n]$ ，where M is the number of inputs． This corresponds to replacing the scalar input $x[n]$ by an M－component vector $\mathbf{x}[n]$ of inputs，with a corresponding change of \mathbf{b} to a matrix \mathbf{B} of dimension $L \times M$ ．Similarly，for a multi－output DT LTI state－space model，the single out－ put quantity in Eq．（4．34）is replaced by a collection of such output equations， one for each of the P outputs．Equivalently，the scalar output $y[n]$ is replaced by a P－component vector $\mathbf{y}[n]$ of outputs，with a corresponding change of \mathbf{c}^{T} and d to matrices \mathbf{C}^{T} and \mathbf{D} of dimensions $P \times L$ and $P \times M$ respectively．

A linear but time－varying DT state－space model takes the same form as in Eqs．（4．33）and（4．34），except that some or all of the matrix entries are time－ varying．A linear but periodically varying model is a special case of this，with matrix entries that all vary periodically with a common period．

All Of the，above generalizations can also be simulated or realized by delaydadder－gain ${ }^{2 x y s t e m s, ~ e x c e p t ~ t h a t ~ t h e ~ g a i n s ~ w i l l ~ n e e d ~ t o ~ b e ~ t i m e-v a r y i n g ~}$ for the waseoplyime－varying systems．For the nonlinear systems described below，mioras éaboratésimulations are needed，involving nonlinear elements or combingtions．a^{2}

A nonlineax，thate－pryariant，single input，single output model expresses $\mathbf{q}[n+1]$ and $9\{n]$ ass nomplinoar but time－invariant functions of $\mathbf{q}[n]$ and $x[n]$ ， rather than as the fic fufocioms ernbodied by the matrix expressions on the right－hand sides of qu．（44．33），and（94，34）．Our full and reduced models for
 ear time invariant state－spacermodel，for iastance，comprises state evolution equations of the form

$$
\begin{align*}
& q_{3}[n+1]=f_{3}\left(q_{1}[n], q_{2}[\text { 党 } q \text { 解 } n], x\left[b_{\mu}\right]\right) \tag{4.35}
\end{align*}
$$

and an output equation of the form

$$
\begin{equation*}
y[n]=g\left(q_{1}[n], q_{2}[n], q_{3}[n], x[n]\right), \tag{4.36}
\end{equation*}
$$

where the state evolution functions $f_{1}(\cdot), f_{2}(\cdot), f_{3}(\cdot)$ and the output function $g(\cdot)$ are all time－invariant nonlinear functions of the three state variables $q_{1}[n]$ ， $q_{2}[n], q_{3}[n]$ ，and the input $x[n]$ ．Time invariance here means that the functions combine their arguments in the same way，regardless of the time index n ．In vector notation，

$$
\begin{equation*}
\mathbf{q}[n+1]=\mathbf{f}(\mathbf{q}[n], x[n]), \quad y[n]=g(\mathbf{q}[n], x[n]) \tag{4.37}
\end{equation*}
$$

where for the third－order case

$$
\mathbf{f}(\cdot)=\left[\begin{array}{l}
f_{1}(\cdot) \tag{4.38}\\
f_{2}(\cdot) \\
f_{3}(\cdot)
\end{array}\right]
$$

The notation for an L th－order description follows the same pattern．

Finally, a nonlinear, time-varying model expresses $\mathbf{q}[n+1]$ and $y[n]$ as nonlinear, time-varying functions of $\mathbf{q}[n]$ and $x[n]$. In other words, the manner in which the state evolution and output functions combine their arguments can vary with n. For this case, we would write

$$
\begin{equation*}
\mathbf{q}[n+1]=\mathbf{f}(\mathbf{q}[n], x[n], n), \quad y[n]=g(\mathbf{q}[n], x[n], n) . \tag{4.39}
\end{equation*}
$$

Nonlinear, periodically varying models can also be defined as a particular case in which the time variations are periodic with a common period.

4.3.2 CT State-Space Models

Continuous-time state-space descriptions take a very similar form to the DT case. Theostate variables for an L th-order system may be denoted as $q_{i}(t)$, $i=0, i, \%$, and the state vector as

$$
\mathbf{q}_{\text {is }_{\delta}}(t)=\left[\begin{array}{c}
q_{1}(t) \tag{4.40}\\
q_{2}(t) \\
\vdots \\
q_{L}(t)
\end{array}\right] .
$$

In the DT case tate state evolytioffequation expresses the state vector at the next time step in tems of, the curbenestate vector and input values. In the CT case the state evolution quation expresses the rates of change or derivatives of each of the state variabtes is fuctions the present state and inputs.
 sentation takes the form

$$
\begin{array}{r}
\frac{d \mathbf{q}(t)}{d t}=\dot{\mathbf{q}}(t) \in A \boldsymbol{T}(t) \\
y(t)=\mathbf{c}^{T} \mathbf{q}(t)+1, b x(t), \tag{4.42}
\end{array}
$$

where $d \mathbf{q}(t) / d t=\dot{\mathbf{q}}(t)$ denotes the vector whose ehtries are the derivatives of the corresponding entries of $\mathbf{q}(t)$. The entries of all these matrices are numbers or constants or parameters that do not vary with t. Thus, the rate of change of each state variable and the present value of the output are all expressed as LTI functions of the present state and present input. As in the DT LTI case, the LTI structure of the above system is mirrored by the LTI properties of its solutions or behaviors, a fact that will become explicit in Chapter 5. The models in Eqs. (4.8) and (4.9) of Example 4.1 and Eqs. (4.14) and (4.17) of Example 4.2 are precisely of the above form.
Integrator-Adder-Gain Realization Any CT LTI state-space model of the form in Eqs. (4.41) and (4.42) can be simulated or realized using an integrator-adder-gain system. The approach is entirely analogous to the DT LTI case that was described earlier. We begin with L integrators, labeling their outputs as $q_{j}(t)$ for $j=1,2, \cdots, L$. The inputs of these integrators are then the derivatives $\dot{q}_{j}(t)$. The i th row of Eq. (4.41) now determines what LTI combination of the $q_{j}(t)$ and $x(t)$ is required to synthesize $\dot{q}_{i}(t)$, for each $i=1,2, \cdots, L$.

We similarly use Eq. (4.42) to determine what LTI combination of these variables is required to compute $y(t)$. Finally, each of these LTI combinations is implemented using gains and adders. We illustrate this procedure with a specific example below.

Generalizations The basic CT LTI state-space model can be generalized to multi-input and multi-output models, to nonlinear time-invariant models, and to linear and nonlinear time-varying or periodically varying models. These generalizations can be described just as in the case of DT systems, by appropriately relaxing the restrictions on the form of the right-hand sides of Eqs. (4.41) and (4.42). The model for the inverted pendulum in Eqs. (4.3), (4.4), 揘 (4.5) in Example 4.1 was nonlinear and time-invariant, of the form

A gencal ionlinearand time-varying CT state-space model with a single input and singtesoutayexers the form

$$
\begin{equation*}
y(t)=g(\mathbf{q}(t), x(t), t) . \tag{4.44}
\end{equation*}
$$

Example 4.5 Simulation of Invertedzeendulymfforsmall Angles

For sufficiently small angular deviations from Qhe fully inverted position for the inverted pendulum considered in Exampre 4. 4 , the of kginal nonlinear state-space model simplifies to the LTI state-space prodetadesesibed by Eqs. (4.8) and (4.9). This LTI model is repeated here for convenience, ©ut with the ikmerical values of a specific pendulum inserted:

$$
\begin{align*}
\dot{\mathbf{q}}(t)=\left[\begin{array}{l}
\dot{q}_{1}(t) \\
\dot{q}_{2}(t)
\end{array}\right] & =\left[\begin{array}{rr}
0 & 1 \\
8 & -2
\end{array}\right]\left[\begin{array}{l}
q_{1}(t) \\
q_{2}(t)
\end{array}\right]+\hat{q}_{-1} q_{2} \\
& =\mathbf{A} \mathbf{q}(t)+\mathbf{b} x(t) \tag{4.45}
\end{align*}
$$

and

$$
y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
q_{1}(t) \tag{4.46}\\
q_{2}(t)
\end{array}\right]=\mathbf{c}^{T} \mathbf{q}(t)
$$

To simulate this second-order LTI system using integrators, adders, and gains, we begin with two integrators and denote their outputs at time t by $q_{1}(t)$ and $q_{2}(t)$. The inputs to these integrators are then $\dot{q}_{1}(t)$ and $\dot{q}_{2}(t)$, respectively, at time t. The right-hand sides of the two expressions in Eq. (4.45) now show how to synthesize $\dot{q}_{1}(t)$ and $\dot{q}_{2}(t)$ from particular weighted linear combinations of $q_{1}(t), q_{2}(t)$, and $x(t)$. We use gain elements to obtain the appropriate weights, then adders to produce the required weighted linear combinations of $q_{1}(t), q_{2}(t)$, and $x(t)$. By feeding these weighted linear combinations to the inputs of the respective integrators, $\dot{q}_{1}(t)$ and $\dot{q}_{2}(t)$ are set equal to these expressions. The output $y(t)=q_{1}(t)$ is directly read from the output of the first integrator. The block diagram in Figure 4.5 shows the resulting simulation.

Figure 4.5 Integrator-adder-gain simulation of inverted pendulum for small angular deviations from vertical.

4. 3as Defining Properties of State-Space Models

Thedwodefningen anacteristics of state-space models are the following:

- Stater Evolutioneproberty The state at any initial time, along with the inputsover ants inferval from that initial time onward, determine the state trajectoriy, that ise the state as a function of time, over that entire interval. Everythingrabort the, past that is relevant to the future state is embodied in tRe preseenssatae or
- Instantaneous Output PRoperty The outputs at any instant can be written in terms of the state and inputs, at that same instant.

The state evolution property is well suited to describing causal systemo, IfothecDT LTI case, the validity of this state evolution property is evide Rt from . be updated iteratively, moving from timéntơimén +1 using only knowledge of the present state and input. The same afgument oan also be applied to the general DT state evolution expression in Eq. (4.39).

The state evolution property in the general CT case is more subtle to establish, and actually requires that the function $\mathbf{f}(\mathbf{q}(t), x(t), t)$ defining the rate of change of the state vector satisfy certain mild technical conditions. These conditions are satisfied by all the models of interest to us in this text, so we shall not discuss the conditions further. Instead, we describe how the availability of a CT state-space model enables a simple numerical approximation of the state trajectory at a discrete set of times spaced an interval Δ apart. This numerical algorithm is referred to as the forward-Euler method.

The algorithm begins by using the state and input information at the initial time t_{0} to determine the initial rate of change of the state, namely $\mathbf{f}\left(\mathbf{q}\left(t_{0}\right), x\left(t_{0}\right), t_{0}\right)$. As illustrated in Figure 4.6, this initial rate of change is tangent to the state trajectory at t_{0}. The approximation to the actual trajectory is obtained by stepping forward a time increment Δ along this tangent-the forward-Euler step-to arrive at the estimate

$$
\begin{equation*}
\mathbf{q}\left(t_{0}+\Delta\right) \approx \mathbf{q}\left(t_{0}\right)+\mathbf{f}\left(\mathbf{q}\left(t_{0}\right), x\left(t_{0}\right), t_{0}\right) \Delta \tag{4.47}
\end{equation*}
$$

Figure 4.6 Using the CT state evolution equations to obtain the state trajectories over an interval.

This i§equividentto using a first-order Taylor series approximation to the trajectory ofusing a dorward-difference approximation to $\dot{\mathbf{q}}\left(t_{0}\right)$.

Wifh che egtimat ef $\mathbf{q}\left(t_{0}+\Delta\right)$ now available, and knowing the input $x\left(t_{0}+\Delta\right)$ at time ar tos, the same procedure can be repeated at this next time instant, "thergbygevtingoan approximation to $\mathbf{q}\left(t_{0}+2 \Delta\right)$. This iteration can be continued oxersaherentike interval of interest. Under the technical conditions allude Q ato absije, the adgorithm accumulates an error of order Δ^{2} at each time stero, and take $\Omega T A_{8}$ time steps in an interval of length
 val. This error can be made orbitraily omall by choosing a sufficiently small Δ.

The forward-Euler algorthunp suffice tox suggest how a CT statespace description gives rise to the state; evodutizn property. For actual numerical computation, more sophisticated suraerical routines would be used, based for example on higher-oxder háblor oseries approximations, and using variable-length time steps for 货ttereroor control. The CT LTI case is, however, much simpler than the genefat case. We shall demonstrate the state evolution property for this class 84 state-space models in detail in the Chapter 5, when we show how to explicitly solve for their behavior.

The instantaneous output property is evident in the LTI case from the output expressions in Eqs. (4.34) and (4.42). It also holds for the various generalizations of basic single-input, single-output LTI models that we listed earlier, most broadly for the output relations in Eqs. (4.39) and (4.44).

The state evolution and instantaneous output properties are the defining characteristics of a state-space model. In setting up a state-space model, we introduce the additional vector of state variables $\mathbf{q}[n]$ or $\mathbf{q}(t)$ to supplement the input variables $x[n]$ or $x(t)$ and output variables $y[n]$ or $y(t)$. This supplementation is done precisely in order to obtain a description that satisfies these properties.

Often there are natural choices of state variables suggested directly by the particular context or application. As already noted, and illustrated by the
preceding examples in both DT and CT cases，state variables are related to the＂memory＂of the system．In many physical situations involving CT models， the state variables are associated with energy storage because this is what is carried over from the past to the future．

One can always choose any alternative set of state variables that together contain exactly the same information as a given set．There are also situations in which there is no particularly natural or compelling choice of state variables， but in which it is still possible to define supplementary variables that enable a valid state－space description to be obtained．

Our discussion of the two key properties above－and particularly of the role of the state vector in separating past and future－suggests that state－space models arèparticularly suited to describing causal systems．In fact，state－space modelsare dlmost never used to describe noncausal systems．We shall always assume here，when dealing with state－space models，that they represent causal s奴度向s．Altifough causality is not a central issue in analyzing many aspects of conirunfétiog oosignal processing systems，particularly in non－real－time context it is eqne allygentral to control design and operation for dynamic systems，ado and use．

4．4 STATE－SPACE MODELS FROMRTH INPUT－OUTPUT MODELS

State－space representations can wery 唃tughtyand directly generated dur－ ing the modeling process in a variequ of settiqgs，as the examples in Section 4.2 demonstrated．Other－and perhaps 1fore tamiliág descriptions can then be derived from them，for instance input－outinutodesisiptions．

It is also possible to proceed in the reversédirection，constructing state－ space descriptions from transfer functions，unit salmple or impulse responses， or input－output difference or differential equations，for instance．This is often worthwhile as a prelude to simulation，filter implementation，in control design， or simply in order to understand the initial description from another point of view．The state variables associated with the resulting state－space descriptions do not necessarily have interesting or physically meaningful interpretations， but still capture the memory of the system．

The following two examples illustrate this reverse process，of synthesiz－ ing state－space descriptions from input－output descriptions，for the important case of DT LTI systems．Analogous examples can be constructed for the CT LTI case．The first example below also makes the point that state－space models of varying orders can share the same input－output description，a fact that we will understand better following the structural analysis of LTI systems devel－ oped in the next chapter．That structural analysis actually ends up also relating quite closely to the second example in this section．

10 Ranàom Processes

The earlier chapters ingthis text frocused on the effect of linear and timeinvariant (LTI) systems on, dexerministic signals, developing tools for analyzing this class of signals and systerias, and using these to understand applications in communication (e.g., AM atd FM Madalation), control (e.g., stability of feedback systems), and signal processing (e. g_{\bigotimes} fityering). It is important to develop a comparable understandifg and issociated tools for treating the effect of LTI systems on signals modelets the outcome of probabilistic experiments, that is, the class of signals referre dit a aradom signals, alternatively referred to as random processes or stochastic pfocesses. Such signals play a central role in signal and system analysis and design In this chapter, we define random processes through the associated ensemble of signals, and explore their time-domain properties. Chapter 11 examines their characteristics in the frequency domain. The subsequent chapters use random processes as models for random or uncertain signals that arise in communication, control and signal processing applications, and study a variety of related inference problems involving estimation and hypothesis testing.

10.1 DEFINITION AND EXAMPLES OF A RANDOM PROCESS

In Section 7.3, we defined a random variable X as a function that maps each outcome of a probabilistic experiment to a real number. In a similar manner, a real-valued continuous-time (CT) or discrete-time (DT) random process $-X(t)$ or $X[n]$, respectively - is a function that maps each outcome of
a probabilistic experiment to a real CT or DT signal，termed the realization of the random process in that experiment．For any fixed time instant $t=t_{0}$ or $n=n_{0}$ ，the quantities $X\left(t_{0}\right)$ and $X\left[n_{0}\right]$ are simply random variables．The col－ lection of signals that can be produced by the random process is referred to as the ensemble of signals in the random process．

Example 10．1 Random Oscillators

As an example of a random process，consider a warehouse containing N harmonic oscillators，each producing a sinusoidal waveform of some specific amplitude，fre－ quency，and phase．The three parameters may in general differ between oscillators． This collection constitutes the ensemble of signals．The probabilistic experiment that yields aparfícular signal realization consists of selecting an oscillator according to some probabidity mass function（PMF）that assigns a probability to each of the numbers from 1 亿 to outconerofthis expeximent is a specific sinusoidal waveform．Before an oscillator is chosen there qungertainty about what the amplitude，frequency，and phase of the outcomeof the experimentocvill be，that is，the amplitude A ，frequency Φ ，and phase Θ are all randon varables Conkequently，for this example，we might express the random process as

$$
\begin{equation*}
x(t ; 4, \Phi(\Theta)=A \sin (\Phi t+\Theta) \tag{10.1}
\end{equation*}
$$

where，as in Figure 10．$\$$ random variables．As the disclus ion praceede，we will typically simplify the notation to refer to $X(t)$ when it is clear whifh patameters）are random variables；so，for example， Eq．（10．1）will alternativel

The value $X\left(t_{1}\right)$ at some specific time PRis 解分全random variable．In the context of this experiment，knowing the PMF associaped eithone selection of the numbers 1 to N involved in choosing an oscillator，as well ast the speecific amplitude，frequency，and phase of each oscillator，we could determine the probability distributions of any of the underlying random variables A, Φ, Θ ，or $X\left(t_{1}\right)$ mentioned above．

Figure 10．1 A random process．

Throughout this and later chapters，we will consider many examples of random processes．What is important at this point，however，is to develop a good mental picture of what a random process is．A random process is not just one signal but rather an ensemble of signals．This is illustrated schematically in Figure 10．2，for which the outcome of the probabilistic experiment could
be any of the four waveforms indicated. Each waveform is deterministic, but the process is probabilistic or random because it is not known a priori which waveform will be generated by the probabilistic experiment. Consequently, prior to obtaining the outcome of the probabilistic experiment, many aspects of the signal are unpredictable, since there is uncertainty associated with which signal will be produced. After the experiment, or a posteriori, the outcome is totally determined.

If we focus on the values that a CT random process $X(t)$ can take at a particular instant of time, say t_{1}-that is, if we look down the entire ensemble at a fixed time - what we have is a random variable, namely $X\left(t_{1}\right)$. If we focus on the ensemble of values taken at an arbitrary collection of ℓ fixed time instants $t_{1}<t_{2}<\cdots<t_{\ell}$ for some arbitrary positive integer ℓ, we have a set of ℓ jointlydistributed random variables $X\left(t_{1}\right), X\left(t_{2}\right), \cdots, X\left(t_{\ell}\right)$, all determined together the outcome of the underlying probabilistic experiment. Fron engis poiftoffiew, a random process can be thought of as a family of jointly distribinte ebrâtom variables indexed by t. A full probabilistic characterization ${ }^{\circ}$ of this colfection of random variables would require the joint probability derisity funetions(PDFs) of multiple samples of the signal, taken at arbitrary timesor

$$
\begin{equation*}
\left.t_{1} s_{1}\right) \in\left(t_{2}\right) \tag{10.3}
\end{equation*}
$$

for all ℓ and all $t_{1}, t_{2}, \cdots \cdot y, t_{l}$
Correspondingly, a ${ }^{\top}$ Tqandonsproess consists of a collection of random variables $X[n]$ for altińnogeervátues of n, with a full probabilistic characterization consisting of 铝, joint MDFs,
for all ℓ and all integers n_{1}, \cdots, n_{ℓ}.

Figure 10.2 Realizations of the random process $X(t)$.

In a general context, it would be impractical to have a full characterization of a random process through Eqs. (10.3) or (10.4). As we will see in Example 10.2 and in other examples in this chapter, in many useful cases the full characterization can be inferred from a simpler probabilistic characterization. Furthermore, for much of what we deal with in this text, a characterization of a random process through first and second moments, as discussed in Section 10.2, is useful and sufficient.

Example 10.2

An Independent Identically Distributed (I.I.D.) Process

Consider a DT random process whose values $X[n]$ may be regarded as independently chosen $\overline{4}$ gace, time n from a fixed PDF $f_{X}(x)$, so the values are independent and identicalld distribite ${ }^{2}$, thereby yielding what is called an independent identically distributed (in. C . a pragess.Such processes are widely used in modeling and simulation. For example, supposéapatidicutar, DT communication channel corrupts a transmitted signal with addedsnoise. Ifstheqioise takes on independent values at each time instant, but with charactepistiesthat seed unehanging over the time window of interest, then the noise may be weltandelequas ani.i.led, process. It is also easy to generate an i.i.d. process in a simulation énvirónment, provided a random number generator can be arranged to produce samplesGrom sa specified PDF. Processes with more complicated dependence across time sample's gan thensbe sbtaifed by filtering or other operations on the i.i.d. process, as we will see ioxthis chente? as the as the next.

For an i.i.d. processtwégantyritextifejoint PDF as a product of the marginal densities, that is,

for any choice of ℓ and n_{1}, \cdots, n_{ℓ}.

An important set of questions that arises as we work with random processes in later chapters of this text is whether, by observing just part of the outcome of a random process, we can determine the complete outcome. The answer will depend on the details of the random process. For the process in Example 10.1, the answer is yes, but in general the answer is no. For some random processes, having observed the outcome in a given time interval might provide sufficient information to know exactly which ensemble member it corresponds to. In other cases this will not be sufficient. Some of these aspects are explored in more detail later, but we conclude this section with two additional examples that further emphasize these points.

Example 10.3 Ensemble of Batteries

Consider a collection of N batteries, with N_{i} of the batteries having voltage v_{i}, where v_{i} is an integer between 1 and 10. The plot in Figure 10.3 indicates the number of batteries with each value v_{i}. The probabilistic experiment is to choose one of the batteries, with

Figure 10.3 Plot of battery voltage distribution for Example 10.3.
the probability of picking any specific one being $\frac{1}{N}$, that is, any one battery is equally likely to be prikked. Thus, scaling Figure 10.3 by $\frac{1}{N}$ represents the PMF for the battery voltage obtamed/as the outcome of the probabilistic experiment. Since the battery voltage isçsienal ©yhite in this case happens to be constant with time), this probabilistic experiment generates arandom process. In fact, this example is similar to the oscillator exapplesdiscussed eaplier, but with frequency and phase both zero so that only the amplitudex randon, and restricted to be an integer.

For thits example, observation of $X(t)$ at any one time is sufficient information to determine the outcome for allime.

Example 10.3 Bra . Example 10.4, helps to Uisualize son位important general concepts of stationarity and ergodicity associated with

Example 10.4 Ensemble of Coin Tossers

In this example, consider a collection of N pepplezed icelependently having written down a long arbitrary string of 1 s and 0 s , witheaed entry chosen independently of any other entry in their string (similar to a sequehce offindependent coin tosses), and with an identical probability of a 1 at each entry. The râdom process now comprises this ensemble of the strings of 1 s and 0 s . A realization of the process is obtained by randomly selecting a person (and therefore one of the N strings of 1 s and 0 s). After selection, the specific ensemble member of the random process is totally determined.

Next, suppose that you are shown only the 10th entry in the selected string. Because of the manner in which the string was generated, it is clearly not possible from that information to determine the 11th entry. Similarly, if the entire past history up to the 10 th entry was revealed, it would not be possible to determine the remaining sequence beyond the tenth.

While the entire sequence has been determined in advance by the nature of the experiment, partial observation of a given ensemble member is in general not sufficient to fully specify that member.

Rather than looking at the nth entry of a single ensemble member, we can consider the random variable corresponding to the values from the entire ensemble at the nth entry. Looking down the ensemble at $n=10$, for example, we would see 1 s and 0 s in a ratio consistent with the probability of a 1 or 0 being chosen by each individual at $n=10$.

10.2 FIRST- AND SECOND-MOMENT CHARACTERIZATION OF RANDOM PROCESSES

In the above discussion, we noted that a random process can be thought of as a family of jointly distributed random variables indexed by t or n. However it would in general be extremely difficult or impossible to analytically represent a random process in this way. Fortunately, the most widely used random process models have special structure that permits computation of such a statistical specification. Also, particularly when we are processing our signals with linear systems, we often design the processing or analyze the results by consideringonly the first and second moments of the process.

Thefirstmoment or mean function of a CT random process $X(t)$, which we eypieallycdentote as $\mu_{X}(t)$, is the expected value of the random variable $X(t)$ ateaclotinte t, thatis,

$$
\begin{equation*}
\mu_{X}(t)=E[X(t)] \tag{10.6}
\end{equation*}
$$

The autocorrelationfungtion and the autocovariance function represent second moments? कhesautoconelakion function $R_{X X}\left(t_{1}, t_{2}\right)$ is

and the autocovariance function $0 x_{0}\left(\rho_{10} t_{2}\right)$ is
where t_{1} and t_{2} are two arbitrary tirpe instants: The word auto (which is sometimes dropped to simplify the terminology fafers to the fact that both samples in the correlation function or the covariance supgtion come from the same process.

One case in which the first and second moments actually suffice to completely specify the process is a Gaussian process, defined as a process whose samples are always jointly Gaussian, represented by the generalization of the bivariate Gaussian to many variables.

We can also consider multiple random processes, for example, two processes, $X(\cdot)$ and $Y(\cdot)$. A full stochastic characterization of this requires the PDFs of all possible combinations of samples from $X(\cdot)$ and $Y(\cdot)$. We say that $X(\cdot)$ and $Y(\cdot)$ are independent if every set of samples from $X(\cdot)$ is independent of every set of samples from $Y(\cdot)$, so that the joint PDF factors as follows:

$$
\begin{array}{r}
f_{X\left(t_{1}\right), \cdots X\left(t_{k}\right), Y\left(t_{1}^{\prime}\right), \cdots Y\left(t_{\ell}^{\prime}\right)}\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{\ell}\right) \\
=f_{X\left(t_{1}\right), \cdots X\left(t_{k}\right)}\left(x_{1}, \cdots, x_{k}\right) \cdot f_{Y\left(t_{1}^{\prime}\right), \cdots Y\left(t_{\ell}^{\prime}\right)}\left(y_{1}, \cdots, y_{\ell}\right) \tag{10.9}
\end{array}
$$

for all k, ℓ, and all choices of sample times.
If only first and second moments are of interest, then in addition to the individual first and second moments of $X(\cdot)$ and $Y(\cdot)$, we need to consider the
cross-moment functions. Specifically, the cross-correlation function $R_{X Y}\left(t_{1}, t_{2}\right)$ and the cross-covariance function $C_{X Y}\left(t_{1}, t_{2}\right)$ are defined respectively as

$$
\begin{align*}
R_{X Y}\left(t_{1}, t_{2}\right) & =E\left[X\left(t_{1}\right) Y\left(t_{2}\right)\right], \text { and } \tag{10.10}\\
C_{X Y}\left(t_{1}, t_{2}\right) & =E\left[\left(X\left(t_{1}\right)-\mu_{X}\left(t_{1}\right)\right)\left(Y\left(t_{2}\right)-\mu_{Y}\left(t_{2}\right)\right)\right] \\
& =R_{X Y}\left(t_{1}, t_{2}\right)-\mu_{X}\left(t_{1}\right) \mu_{Y}\left(t_{2}\right) \tag{10.11}
\end{align*}
$$

for arbitrary time t_{1}, t_{2}. If $C_{X Y}\left(t_{1}, t_{2}\right)=0$ for all t_{1}, t_{2}, we say that the processes $X(\cdot)$ and $Y(\cdot)$ are uncorrelated. Note again that the term uncorrelated in its common usage means that the processes have zero covariance rather than zero correlation.

The above discussion carries over to the case of DT random processes, with the Exception that now the sampling instants are restricted to integer times IMaccordance with our convention of using square brackets [\cdot] around thentime argumentifor DT signals, we will write $\mu_{X}[n]$ for the mean function 66 a random process $X[\cdot]$ at time n. Similarly, we will write $R_{X X}\left[n_{1}, n_{2}\right]$
 ples at times, notandond and $A_{X X Y}\left[n_{1}, n_{2}\right]$ and $C_{X Y}\left[n_{1}, n_{2}\right]$ for the cross-moment functions of teo Pandem variables $X[\cdot]$ and $Y[\cdot]$ sampled at times n_{1} and n_{2} respectively.

10.3 STATIONARITY

10.3.1 Strict-Sense Stationaríty

In general, we would expect that the, joint ipes associated with the random variables obtained by sampling a randemprocess an an arbitrary number ℓ of arbitrary times will be time-dependent, that is, the joint PDF

$$
\begin{equation*}
f_{X\left(t_{1}\right), \cdots, X\left(t_{t}\right)}\left(x_{1}, \cdots, t_{t}\right)_{0} o_{\mu} \tag{10.12}
\end{equation*}
$$

will depend on the specific values of t_{1}, \cdots, t_{ℓ}. If all the joint PDFs remain the same under arbitrary time shifts, so that if

$$
\begin{equation*}
f_{X\left(t_{1}\right)}, \cdots, X\left(t_{\ell}\right)\left(x_{1}, \cdots, x_{\ell}\right)=f_{X\left(t_{1}+\alpha\right), \cdots, X\left(t_{\ell}+\alpha\right)}\left(x_{1}, \cdots, x_{\ell}\right) \tag{10.13}
\end{equation*}
$$

for arbitrary α, then the random process is said to be strict-sense stationary (SSS). Said another way, for an SSS process, the statistics depend only on the relative times at which the samples are taken, not on the absolute times. The processes in Examples 10.2 and 10.3 are SSS. More generally, any i.i.d. process is strict-sense stationary.

10.3.2 Wide-Sense Stationarity

Of particular use is a less restricted type of stationarity. Specifically, if the mean value $\mu_{X}(t)$ is invariant with time and the autocorrelation $R_{X X}\left(t_{1}, t_{2}\right)$ or, equivalently, the autocovariance $C_{X X}\left(t_{1}, t_{2}\right)$ is a function of only the time difference $\left(t_{1}-t_{2}\right)$, then the process is referred to as wide-sense stationary
(WSS). A process that is SSS is always WSS, but the reverse is not necessarily true. For a WSS random process $X(t)$, we have

$$
\begin{align*}
\mu_{X}(t) & =\mu_{X} \tag{10.14}\\
R_{X X}\left(t_{1}, t_{2}\right) & =R_{X X}\left(t_{1}+\alpha, t_{2}+\alpha\right) \text { for every } \alpha \\
& =R_{X X}\left(t_{1}-t_{2}, 0\right) \\
& =R_{X X}\left(t_{1}-t_{2}\right) \tag{10.15}
\end{align*}
$$

where the last equality defines a more compact notation since a single argument for the time difference $\left(t_{1}-t_{2}\right)$ suffices for a WSS process. Similarly, $C_{X X}\left(t_{1}, t_{2}\right)$ will be written as $C_{X X}\left(t_{1}-t_{2}\right)$ for a WSS process. The time difference ($t_{1}-\lambda_{2}$) will typically be denoted as τ and referred to as the lag variable for the adato correlation and autocovariance functions.
$s_{\square} \mathrm{Fb}$ Gadssian process, that is, a process whose samples are always jointiyoGausspan, 'WSS implies SSS because jointly Gaussian variables are entifely determined day their joint first and second moments.

Too randem processes $X(\cdot)$ and $Y(\cdot)$ are referred to as jointly WSS if
 ary. In this case, quse the potation $R_{X Y}(\tau)$ to denote $E[X(t+\tau) Y(t)]$. It is worth noting toat an attermativeonvention sometimes used elsewhere is to
 denoted by $R_{X Y}(-\tau) \%$ It in irnortantan take account of what notational convention is being followed when fefeending other sources, and you should also be clear about the notational eonvention used in this text.

Example 10.5 Random Oscillators Revisifed

Consider again the harmonic oscillators intedteeddy Example 10.1:

$$
\begin{equation*}
X(t ; A, \Theta)=A \cos \left(\phi_{0}^{0} t / t \Theta_{\phi}\right. \tag{10.16}
\end{equation*}
$$

where A and Θ are independent random variables, and now the frequency is fixed at some known value denoted by ϕ_{0}.

If Θ is also fixed at a constant value θ_{0}, then every outcome is of the form $x(t)=A \cos \left(\phi_{0} t+\theta_{0}\right)$, and it is straightforward to see that this process is not WSS (and consequently also not SSS). For instance, if A has a nonzero mean value, $\mu_{A} \neq 0$, then the expected value of the process, namely $\mu_{A} \cos \left(\phi_{0} t+\theta_{0}\right)$, is time varying. To show that the process is not WSS even when $\mu_{A}=0$, we can examine the autocorrelation function. Note that $x(t)$ is fixed at 0 for all values of t for which $\phi_{0} t+\theta_{0}$ is an odd multiple of $\pi / 2$, and takes the values $\pm A$ halfway between such points; the correlation between such samples taken π / ϕ_{0} apart in time can correspondingly be 0 (in the former case) or $-E\left[A^{2}\right]$ (in the latter). The process is thus not WSS, even when $\mu_{A}=0$.

However, if Θ is distributed uniformly in $[-\pi, \pi]$, then

$$
\begin{align*}
\mu_{X}(t) & =\mu_{A} \int_{-\pi}^{\pi} \frac{1}{2 \pi} \cos \left(\phi_{0} t+\theta\right) d \theta=0, \tag{10.17}\\
C_{X X}\left(t_{1}, t_{2}\right) & =R_{X X}\left(t_{1}, t_{2}\right) \\
& =E\left[A^{2}\right] E\left[\cos \left(\phi_{0} t_{1}+\Theta\right) \cos \left(\phi_{0} t_{2}+\Theta\right)\right] . \tag{10.18}
\end{align*}
$$

Equation (10.18) can be evaluated as

$$
\begin{equation*}
C_{X X}\left(t_{1}, t_{2}\right)=\frac{E\left[A^{2}\right]}{2} \int_{-\pi}^{\pi} \frac{1}{2 \pi}\left[\cos \left(\phi_{0}\left(t_{2}-t_{1}\right)\right)+\cos \left(\phi_{0}\left(t_{2}+t_{1}\right)+2 \theta\right)\right] d \theta \tag{10.19}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
C_{X X}\left(t_{1}, t_{2}\right)=\frac{E\left[A^{2}\right]}{2} \cos \left(\phi_{0}\left(t_{2}-t_{1}\right)\right) . \tag{10.20}
\end{equation*}
$$

For this restricted case, then, the process is WSS. It can also be shown to be SSS, although this is not totally straightforward to show formally.

For the most part, the random processes that we treat will be WSS. As noted eaffier,' ${ }^{\text {to }}$ simplify notation for a WSS process, we write the correlation functionsas $R_{X X}\left(t_{1}-t_{2}\right)$; the argument $\left(t_{1}-t_{2}\right)$ is often denoted by the lag waríableot at which the correlation is computed. When considering only first and second moments and not the entire PDF or cumulative distribution function 6 COF), it widr bed less important to distinguish between the random process $X(t)$ zaria specifac feglization $x(t)$ of it-so a further notational simplification is introduceed byusing lowercase letters to denote the random process itself. We shall thes refertother andom process $x(t)$, and-in the case of a WSS process-denote itsimean μ andits correlation function $E[x(t+\tau) x(t)]$ by $R_{x x}(\tau)$. Correspondingx, \%or D, we refer to the random process $x[n]$ and, in the WSS case, denote its mean by μ_{x} and its correlation function $E[x[n+m] x[n]]$ by $R_{x x}[m]$.

10.3.3 Some Properties of WSs correlantion and Covariance Functions,

For real-valued WSS processes $x(t)$ and $y(t)$, 销e correlation and covariance functions have the following symmetry properties.

$$
\begin{array}{ll}
R_{x x}(\tau)=R_{x x}(-\tau), & C_{x x}(\tau)=C_{x x}(-\tau), \\
R_{x y}(\tau)=R_{y x}(-\tau), & C_{x y}(\tau)=C_{y x}(-\tau) . \tag{10.22}
\end{array}
$$

For example, the symmetry in Eq. (10.22) of the cross-correlation function $R_{x y}(\tau)$ follows directly from interchanging the arguments inside the defining expectations:

$$
\begin{align*}
R_{x y}(\tau) & =E[x(t) y(t-\tau)] \tag{10.23a}\\
& =E[y(t-\tau) x(t)] \tag{10.23b}\\
& =R_{y x}(-\tau) \tag{10.23c}
\end{align*}
$$

The other properties in Eqs. (10.21) and (10.22) follow in a similar manner.
Equation (10.21) indicates that the autocorrelation and autocovariance functions have even symmetry. Equation (10.22) indicates that for crosscorrelation and cross-covariance functions, interchanging the random variables is equivalent to reflecting the function about the τ axis. And of course,

Eq. (10.21) is a special case of Eq. (10.22) with $y(t)=x(t)$. Similar properties hold for DT WSS processes.

Another important property of correlation and covariance functions follows from noting that, as discussed in Section 7.7, Eq. (7.63), the correlation coefficient of two random variables has magnitude not exceeding 1. Specifically since the correlation coefficient between $x(t)$ and $x(t+\tau)$ is given by $C_{x x}(\tau) / C_{x x}(0)$, then

$$
\begin{equation*}
-1 \leq \frac{C_{x x}(\tau)}{C_{x x}(0)} \leq 1 \tag{10.24}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
-C_{x x}(0) \leq C_{x x}(\tau) \leq C_{x x}(0) \tag{10.25}
\end{equation*}
$$

Adding μ_{x}^{2} sto Qach term above, we can conclude that

$$
\begin{equation*}
R_{x} R_{x x}(0)+2 \mu_{x}^{2} \leq R_{x x}(\tau) \leq R_{x x}(0) . \tag{10.26}
\end{equation*}
$$

In Châpters 11, wes dyilfodemonstrate that correlation and covariance functions are charactedizex byyhe property that their Fourier transforms are real and nonnegativert adrequéncies, because these transforms describe the frequency distribution of thie expected power in the random process. The above symmetry constraintsandsbounds dyill then follow as natural consequences, but they are worth highrionting Reve.g

We conclude this sectan witix,twadditional examples. The first, the Bernoulli process, is the more formal nane for repeated independent flips of a possibly biased coin. The second example, rele red to as the random telegraph wave, is often used as a simplifíd, represenntationsof a random square wave or switch in electronics or communicationsystemish in

Example 10.6 The Bernoulli Process

The Bernoulli process is an example of an i.i.d. DT process with

$$
\begin{align*}
P(x[n]=1) & =p \tag{10.27}\\
P(x[n]=-1) & =(1-p) \tag{10.28}
\end{align*}
$$

and with the value at each time instant n independent of the values at all other time instants. The mean, autocorrelation, and covariance functions are:

$$
\begin{align*}
E\{x[n]\} & =2 p-1=\mu_{x} \tag{10.29}\\
E\{x[n+m] x[n]\} & = \begin{cases}1 & m=0 \\
(2 p-1)^{2} & m \neq 0\end{cases} \tag{10.30}\\
C_{x x}[m] & =E\left\{\left(x[n+m]-\mu_{x}\right)\left(x[n]-\mu_{x}\right)\right\} \tag{10.31}\\
& =\left\{1-(2 p-1)^{2}\right\} \delta[m]=4 p(1-p) \delta[m] . \tag{10.32}
\end{align*}
$$

