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4 State-Space Models

The discussion of system descriptions up to this point has emphasized and used
models that represent the transformation of input signals into output signals.
In the case of linear and time-invariant (LTI) models, we have focused on
their impulse response, frequency response, and transfer function. Such input-
output models do not directly consider the internal behavior of the systems
they represent.

Internal behavior can be important for a variety of reasons. For instance,
in examining issues of stability, a system model can be stable from an
input-output perspective, yet internal variables may display unstable behav-
ior. This chapter begins a discussion of system models that display the
internal dynamical behavior of the system as well as the input-output char-
acteristics. The discussion is illustrated by numerous examples. The study
of such models and their applications continues through Chapters 5 and 6
as well.

4.1 SYSTEM MEMORY

In this chapter we introduce an important model description—the state-space
model—that highlights the internal behavior of a system and is especially
suited to representing causal systems, particularly for real-time applications
such as control. These models arise in both continuous-time (CT) and discrete-
time (DT) forms. In general they can be nonlinear and time-varying, although
we will focus on the LTI case.

133
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134 Chapter 4 State-Space Models

A state-space model for a causal system answers a question asked about
such systems in many settings. We pose the question for the causal DT case,
though it can also be asked for causal CT systems: given the input value x[n] at
some arbitrary time n, how much needs to be known about past values of the
input, that is, about x[k] for k < n, in order to determine the present output
y[n]? As the system is causal, having all past values x[k], in addition to x[n],
will suffice, but the issue is whether all past x[k] are actually needed.

The above question addresses the issue of memory in the system, and
is worthwhile for a variety of reasons. For example, the answer conveys an
idea of the complexity, or number of degrees of freedom, associated with the
dynamic behavior of the system. The more we need to know about past inputs
in order to determine the present output, the richer the variety of possible
output behaviors, and the more ways one can be surprised in the absence of
knowledge of the past. We will only consider systems with a finite number
of degrees of freedom, or with finite-dimensional memory; these are often
referred to as lumped systems.

One application in which the above question arises is in implementing a
computer algorithm that acts causally on a data stream. Thinking of the algo-
rithm as a system, the answer to the question indicates how much memory
will be needed to run the algorithm. In a control application, the answer to
the memory question above suggests the required level of complexity for the
controller of a given system. The controller has to remember enough about
the past to determine the effects of present control actions on the response of
the system.

With a state-space description, everything about the past that is relevant
to the present and future is summarized in the present values of a finite set of
state variables. These values together specify the present state of the system.
We are interested in the case of real-valued state variables. The number of
state variables, also referred to as the order of the state-space description,
indicates the number of degrees of freedom, or the dimension of the memory,
associated with the system or model.

4.2 ILLUSTRATIVE EXAMPLES

As a prelude to developing the general form of a state-space model, this
section presents in some detail a few CT and DT examples. In addition
to illustrating the process of building a state-space model, these examples
will suggest how state-space descriptions arise in a variety of contexts. This
section may alternatively be read after the more general presentation of state-
space models in Section 4.3. Several further examples appear later in the
chapter.

To begin, we examine a mechanical system that, despite its simplicity, is
rich enough to bring out typical features of a CT state-space model, and serves
as a prototype for a variety of other systems.
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Example 4.1 Inverted Pendulum

Consider the inverted pendulum shown in Figure 4.1. The pendulum is rigid, with mass
m, and can rotate about the pivot at its base, moving in the plane orthogonal to the
pivot axis. The distance from the pivot to the center of mass is �, and the pendulum’s
moment of inertia about the pivot is I. These parameters are all assumed constant.

The line connecting the pivot to the center of mass is at an angle θ(t) at time t,
measured clockwise from the vertical. An external torque is applied to the pendulum
around the axis of the pivot. We treat this torque as the input to our system, and denote
it by x(t), taken as positive when it acts counterclockwise.

Suppose the system output variable of interest, y(t), is just the pendulum angle,
so that y(t) = θ(t). In a typical control application, one might want to manipulate
x(t)—in response to measurements that are fed back to the controller—so as to
maintain y(t) near the value 0, thus balancing the inverted pendulum vertically.

The external torque is opposed by the torque due to the acceleration g of gravity
acting on the mass, which produces a clockwise torque of value mg� sin(θ(t)). Finally,
assume a frictional torque that opposes the motion in proportion to the magnitude of
the angular velocity. This torque is thus given by −βθ̇(t), where θ̇(t) = dθ(t)/dt and β
is some nonnegative constant.

Although the inverted pendulum is a simple system in many respects, it cap-
tures some essential features of systems that arise in diverse balancing applications, for
instance, supporting the body on a human ankle or a mass on a robot joint or wheel
axle. There are also control applications in which the pendulum is intended to move
in the vicinity of its normal hanging position rather than the inverted position, that is,
with θ(t) ≈ π . One might alternatively want the pendulum to rotate through full circles
around the pivot. All of these motions are described by the equations below.

A Conventional Model The rotational form of Newton’s law says the rate of
change of angular momentum equals the net torque. We can accordingly write

d
dt

(

I dθ(t)
dt

)

= mg� sin(θ(t)) − β dθ(t)
dt
− x(t) . (4.1)

Since I is constant, the preceding expression can be rewritten in a form that is closer
to what is typically encountered in an earlier differential equations course:

I d2y(t)
dt2

+ β dy(t)
dt
−mg� sin(y(t)) = −x(t) , (4.2)

which is a single second-order nonlinear differential equation relating the output y(t)
to the input x(t).

x(t)

mg

θ(t)

Figure 4.1 Inverted pendulum.
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136 Chapter 4 State-Space Models

State Variables To get at the notion of state variables, we examine what constitutes
the memory of the system at some arbitrary time t0. Assume the parameters I, m, �,
and β are all known, as is the external input x(t) for t ≥ t0. The question is, what more
needs to be known about the system at t0 in order to solve for the behavior of the
system for t > t0.

Solving Eq. (4.1) for θ(t) in the interval t > t0 ultimately requires integrating the
equation twice, which in turn requires knowledge of the initial position and velocity,
θ(t0) and θ̇(t0) respectively. Another way to recognize the special role of these two
variables is by considering the energy of the pendulum at the starting time. The energy
is the result of past inputs to the system, and is reflected in the ensuing motion of the
system. The potential energy at t = t0 is determined by θ(t0) and the kinetic energy by
θ̇(t0), so these variables are key to understanding the behavior of the system for t > t0.

State-Space Model The above discussion suggests that two natural memory vari-
ables of the system at any time t are q1(t) = θ(t) and q2(t) = θ̇(t). Taking these as
candidate state variables, a corresponding state-space description is found by trying
to express the rates of change of these variables at time t entirely in terms of the values
of these variables and of the input at the same time t. For this simple example, a pair of
equations of the desired form can be obtained quite directly. Invoking the definitions
of q1(t) and q2(t), as well as Eq. (4.1), and still assuming I is constant, we obtain

dq1(t)
dt

= q2(t) , (4.3)

dq2(t)
dt

= 1
I
(

mg� sin(q1(t)) − βq2(t)− x(t)
)

. (4.4)

This description comprises a pair of coupled first-order differential equations, driven by
the input x(t). These are referred to as the state evolution equations. The corresponding
output equation expresses the output y(t) entirely in terms of the values of the state
variables and of the input at the same time t; in this case, the output equation is simply

y(t) = q1(t) . (4.5)

The combination of the state evolution equations and the output equation constitutes
a state-space description of the system. The fact that such a description of the system
is possible in terms of the candidate state variables θ(t) and θ̇(t) confirms these as state
variables—the “candidate” label can now be dropped.

Not only does the ordinary differential equation description in Eq. (4.1) or equiv-
alently in Eq. (4.2) suggest what is needed to obtain the state-space model, but the
converse is also true: the differential equation in Eq. (4.1), or equivalently in Eq. (4.2),
can be obtained from Eqs. (4.3), (4.4), and (4.5).

Some Variations The choice of state variables above is not unique. For instance, the
quantities defined by q1(t) = θ(t) + θ̇(t) and q2(t) = θ(t) − θ̇(t) could have functioned
equally well. Equations expressing q̇1(t), q̇2(t), and y(t) as functions of q1(t), q2(t), and
x(t) under these new definitions are easily obtained, and yield a different but entirely
equivalent state-space representation.

The state-space description obtained above is nonlinear but time-invariant. It
is nonlinear because the state variables and input, namely q1(t), q2(t), and x(t), are
combined nonlinearly in at least one of the functions defining q̇1(t), q̇2(t), and y(t)—in
this case, the function defining q̇2(t). The description is time-invariant because all the
functions defining q̇1(t), q̇2(t), and y(t) are time-invariant, that is, they combine their
arguments q1(t), q2(t), and x(t) according to a prescription that does not depend on
time.
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For small enough deviations from the fully inverted position, q1(t) = θ(t) is
small, so sin(q1(t)) ≈ q1(t). With this approximation, Eq. (4.4) is replaced by

dq2(t)
dt
= 1

I
(

mg�q1(t)− βq2(t)− x(t)
)

. (4.6)

The function defining q̇2(t) is now an LTI function of its arguments q1(t), q2(t), and
x(t), so the resulting state-space model is now also LTI.

For linear models, matrix notation allows a compact representation of the state
evolution equations and the output equation. We will use bold lowercase letters for
vectors and bold uppercase for matrices. Defining the state vector and its deriva-
tive by

q(t) =
[

q1(t)
q2(t)

]

, q̇(t) = dq(t)
dt
=
[

q̇1(t)
q̇2(t)

]

, (4.7)

the linear model becomes

q̇(t) =
[

q̇1(t)
q̇2(t)

]

=
[

0 1
mg�/I −β/I

] [

q1(t)
q2(t)

]

+
[

0
−1/I

]

x(t)

= Aq(t)+ bx(t) , (4.8)

where the definitions of the matrix A and vector b should be clear by comparison with
the preceding equality. The corresponding output equation can be written as

y(t) = [ 1 0
]

[

q1(t)
q2(t)

]

= cTq(t) , (4.9)

with cT denoting the transpose of a column vector, that is, a row vector. The time
invariance of the system is reflected in the fact that the coefficient matrices A, b, and
cT are constant rather than time-varying.

The ideas in the above example can be generalized to much more elab-
orate settings. In general, a natural choice of state variables for a mechanical
system is the set of position and velocity variables associated with each com-
ponent mass. For example, in the case of N point masses in three-dimensional
space that are interconnected with each other and to rigid supports by mass-
less springs, the natural choice of state variables would be the associated 3N
position variables and 3N velocity variables. If these masses were confined to
move in a plane, we would instead have 2N position variables and 2N velocity
variables.

The next example suggests how state-space models arise in describing
electrical circuits.

Example 4.2 Electrical Circuit

Consider the resistor-inductor-capacitor (RLC) circuit shown in Figure 4.2. All the
component voltages and currents are labeled in the figure.

We begin by listing the characteristics of the various components, which
we assume are linear and time-invariant. The defining equations for the inductor,
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iL(t)

i(t)

iC(t)

vL(t)

L

vR
1
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2
(t)

vC(t)C

R1

R2

+

+
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-

-
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Figure 4.2 RLC circuit.

capacitor, and the two resistors take the form, in each case, of an LTI constraint relating
the voltage across the element and the current through it. Specifically, we have

vL(t) = L
diL(t)

dt

iC(t) = C
dvC(t)

dt

vR1 (t) = R1iR1 (t)

vR2 (t) = R2iR2 (t) . (4.10)

The voltage source is defined by the condition that its voltage is a specified or arbitrary
v(t), regardless of the current i(t) that is drawn from it.

The next step is to describe the constraints on these variables that arise
from interconnecting the components. The interconnection constraints for an elec-
trical circuit are imposed by Kirchhoff’s voltage law (KVL) and Kirchhoff’s cur-
rent law (KCL). Both KVL and KCL produce additional LTI constraints relating
the variables associated with the circuit. Here, KVL and KCL yield the following
equations:

v(t) = vL(t)+ vR2 (t)

vR2 (t) = vR1 (t)+ vC(t)

i(t) = iL(t)

iL(t) = iR1 (t)+ iR2(t)

iR1(t) = iC(t) . (4.11)

Other such KVL and KCL equations can be written for this circuit, but turn out to be
consequences of the equations above, rather than new constraints.

Equations (4.10) and (4.11) together represent the individual components in the
circuit and their mutual connections. Any set of signals that simultaneously satisfies
all these constraint equations constitutes a valid solution—or behavior—of the cir-
cuit. Since all the constraints are LTI, it follows that weighted linear combinations or
superpositions of behaviors are themselves behaviors of the circuit, and time-shifted
behaviors are again behaviors of the circuit, so the circuit itself is LTI.
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Input, Output, and State Variables Let us take the source voltage v(t) as the input
to the circuit, and also denote this by x(t), our standard symbol for an input. Any of the
circuit voltages or currents can be chosen as the output. Choose vR2 (t), for instance,
and denote it by y(t), our standard symbol for an output.

As in the preceding example, a good choice of state variables is established by
determining what constitutes the memory of the system at any time. Apart from the
parameters L, C, R1, R2, and the external input x(t) for t ≥ t0, we ask what needs to
be known about the system at a starting time t0 in order to solve for the behavior of
the system for t > t0.

The existence of the derivatives in the defining expressions in Eq. (4.10) for the
inductor and capacitor suggests that at least iL(t0) and vC(t0) are needed, or quantities
equivalent to these. Note that, similarly to what was observed in the previous example,
these variables are also associated with energy storage in the system, in this case the
energy stored in the inductor and capacitor respectively. We accordingly identify the
two natural memory variables of the system at any time t as q1(t) = iL(t) and q2(t) =
vC(t), and these are our candidate state variables.

State-Space Model We now develop a state-space description for the RLC circuit
of Figure 4.2 by trying to express the rates of change of the candidate state variables at
time t entirely in terms of the values of these variables and of the input at the same
time t. This is done by reducing the full set of relations in Eqs. (4.10) and (4.11),
eliminating all variables other than the input, output, candidate state variables, and
derivatives of the candidate state variables.

This process for the present example is not as transparent as in Example 4.1,
and some attention is required in order to carry out the elimination efficiently. A
good strategy—and one that generalizes to more complicated circuits—is to express
the inductor voltage vL(t) and capacitor current iC(t) as functions of just the allowed
variables, namely iL(t), vC(t), and x(t) = v(t). Once this is accomplished, we make the
substitutions

vL(t) = L
diL(t)

dt
and iC(t) = C

dvC(t)
dt

, (4.12)

then rearrange the resulting equations to get the desired expressions for the rates of
change of the candidate state variables. Following this procedure, and introducing the
definition

α = R2

R1 + R2
(4.13)

for notational convenience, we obtain the desired state evolution equations. These are
written below in matrix form, exploiting the fact that these state evolution equations
turn out to be linear:

[

diL(t)/dt
dvC(t)/dt

]

=
[−αR1/L −α/L

α/C −1/(R1 + R2)C

][

iL(t)
vC(t)

]

+
[

1/L
0

]

x(t) . (4.14)

This is of the form

q̇(t) = Aq(t)+ bx(t) , (4.15)
where

q(t) =
[

q1(t)
q2(t)

]

=
[

iL(t)
vC(t)

]

(4.16)
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and the definitions of the coefficient matrices A and b are determined by comparison
with Eq. (4.14). The fact that these matrices are constant establishes that the descrip-
tion is LTI. The key feature here is that the model expresses the rates of change of the
state variables at any time t as constant linear functions of their values and that of the
input at the same time instant t.

As we will see in the next chapter, the state evolution equations in Eq. (4.14) can
be used to solve for the state variables iL(t) and vC(t) for t > t0, given the input x(t) =
v(t) for t ≥ t0 and the initial conditions on the state variables at time t0. Furthermore,
knowledge of iL(t), vC(t), and v(t) suffices to reconstruct all the other voltages and
currents in the circuit at time t. Having picked the output of interest to be vR2 (t) = y(t),
we can write (again in matrix notation)

y(t) = vR2 (t) = [αR1 α
]

[

iL(t)
vC(t)

]

= cTq(t) . (4.17)

Input-Output Behavior Transforming Eqs. (4.10) and (4.11) using the bilateral
Laplace transform, and noting that differentiation in the time domain maps to mul-
tiplication by s in the transform domain, we can solve for the transfer function H(s)
of the system from x(t) to y(t). Alternatively, we can obtain the same transfer function
from Laplace transformation of the state-space description in Eqs. (4.14) and (4.17).
The next chapter presents an explicit formula for this transfer function in terms of the
coefficient matrices A, b, and cT.

For our RLC example, this transfer function H(s) from input to output is

H(s) = Y(s)
X(s)

=
α
(

R1
L s+ 1

LC

)

s2 + α
(

1
R2C + R1

L

)

s+ α 1
LC

. (4.18)

The corresponding input-output second-order LTI differential equation is

d2y(t)
dt2

+ α
( 1

R2C
+ R1

L

)dy(t)
dt
+ α

( 1
LC

)

y(t) = α
(R1

L

)dx(t)
dt
+ α

( 1
LC

)

x(t) . (4.19)

The procedure for obtaining a state-space description that is illustrated
in Example 4.2 can be used even if some of the circuit components are non-
linear. It can then often be helpful to choose inductor flux rather than current
as a state variable, and similarly to choose capacitor charge rather than volt-
age as a state variable. It is generally the case, just as in the Example 4.2, that
the natural state variables in an electrical circuit are the inductor currents or
fluxes, and the capacitor voltages or charges. The exceptions occur in degen-
erate situations, for example where a closed path in the circuit involves only
capacitors and voltage sources. In the latter instance, KVL applied to this path
shows that the capacitor voltages are not all independent.

State-space models arise naturally in many problems that involve track-
ing subgroups of some population of objects as they interact in time. For
instance, in chemical reaction kinetics the interest is in determining the
expected molecule numbers or concentrations of the various interacting chem-
ical constituents as the reaction progresses in continuous time. Another
instance involves modeling, in either continuous time or discrete time, the
spread of a fashion, opinion, idea, or disease through a human population,
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or of a software virus through a computer network. The following example
develops one such DT model and begins to explore its behavior. Some later
examples extend the analysis further.

Example 4.3 Viral Propagation

The DT model presented here captures some essential aspects of viral propagation in a
variety of settings. The model is one of a large family of such models, both deterministic
and stochastic, that have been widely studied. Though much of the terminology derives
from modeling the spread of disease by viruses, the paradigm of viral propagation has
been applied to understanding how, for example, malicious software, advertisements,
gossip, or cultural memes spread in a population or network.

The deterministic model here tracks three component subpopulations from the
nth DT epoch to the (n+ 1)th. Suppose the total population of size P is divided into
the following subgroups, or “compartments,” at integer time n:

• s[n] ≥ 0 is the number of susceptibles, currently virus-free but vulnerable to
acquiring the virus;

• i[n] ≥ 0 is the number of infectives, carrying the virus and therefore capable of
passing it to the susceptibles by the next epoch; and

• r[n] ≥ 0 is the number of recovered, no longer carrying the virus and no longer
susceptible, because of acquired immunity.

The model below assumes these variables are real-valued rather than integer-valued,
which results in substantial simplification of the model, and may be a satisfactory
approximation when P is very large.

We assume the birth rate in these three subgroups has the same value β; this
is the (deterministic) fractional increase in the population per unit time due to birth.
Suppose the death rate is also β, so the total size of the population remains constant
at P. Assume 0 ≤ β < 1.

Let the rate at which susceptibles become infected be proportional to the con-
centration of infectives in the general population, hence a rate of the form γ (i[n]/P)
for some 0 < γ ≤ 1. The rate at which infectives move to the recovered compartment
is denoted by ρ, with 0 < ρ ≤ 1. We take newborns to be susceptible, even if born to
infective or recovered members of the population. Suppose also that newborns are
provided immunity at a rate 0 ≤ v[n] ≤ 1, for instance by vaccination, moving them
directly from the susceptible compartment to the recovered compartment. We consider
v[n] to be the control input, and denote it by the alternative symbol x[n].

With the above notation and assumptions, we arrive quite directly at the very
simple (and undoubtedly simplistic) model below, for the change in each subpopulation
over one time step:

s[n+ 1]− s[n] = −γ (i[n]/P)s[n]+ β(i[n]+ r[n])− βPx[n]

i[n+ 1]− i[n] = γ (i[n]/P)s[n]− ρi[n]− βi[n]

r[n+ 1]− r[n] = ρi[n]− βr[n]+ βPx[n] . (4.20)

A model of this type is commonly referred to as an SIR model, as it comprises
susceptible, infective, and recovered populations. We shall assume that the initial con-
ditions, parameters, and control inputs are chosen so as to maintain all subpopulations
at nonnegative values throughout the interval of interest. The actual mechanisms of
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viral spread are of course much more intricate and complicated than captured in this
elementary model, and also involve substantial randomness and uncertainty.

If some fraction φ of the infectives gets counted at each time epoch, then the
aggregate number of infectives reported can be taken as our output y[n], so

y[n] = φi[n] . (4.21)

Notice that the expressions in Eq. (4.20) have a very similar form to the CT state evo-
lution equations we arrived at in the earlier two examples. For the DT case, take the
rate of change of a variable at time n to be the increment over one time step forward
from n. Then Eq. (4.20) expresses the rates of change of the indicated variables at
time n as functions of these same variables and the input at time n. It therefore makes
sense to think of s[n], i[n], and r[n] as state variables, whose values at time n constitute
the state of the system at time n.

The model here is time-invariant because the three expressions that define the
rates of change all involve combining the state variables and input at time n accord-
ing to prescriptions that do not depend on n. The consequence of this feature is that
any set of s[·], i[·], and r[·] signals that simultaneously satisfy the model equations will
also satisfy the model equations if they are all shifted arbitrarily by the same time off-
set. However, the model is not linear; it is nonlinear because the first two expressions
involve a nonlinear combination of s[n] and i[n], namely their product. The expression
in Eq. (4.21) writes the output at time n as a function of the state variables and input
at time n—though it happens in this case that only i[n] is needed.

It is conventional in the DT case to rearrange the state evolution equations into
a form that expresses the state at time n+ 1 as a function of the state variables and
input at time n. Thus Eq. (4.20) would be rewritten as

s[n+ 1] = s[n]− γ (i[n]/P)s[n]+ β(i[n]+ r[n])− βPx[n]

i[n+ 1] = i[n]+ γ (i[n]/P)s[n]− ρi[n]− βi[n]

r[n+ 1] = r[n]+ ρi[n]− βr[n]+ βPx[n] . (4.22)

In this form, the equations give a simple prescription for obtaining the state at time
n+ 1 from the state and input at time n. Summing the three equations also makes
clear that for this example

s[n+ 1] + i[n+ 1]+ r[n+ 1] = s[n]+ i[n]+ r[n] = P . (4.23)

Thus, knowing any two of the subgroup populations suffices to determine the third,
if P is known. Examining the individual relations in Eqs. (4.20) or (4.22), and noting
that the term i[n]+ r[n] in the first equation of each set could equivalently have been
written as P − s[n], we see that the first two relations in fact only involve the suscepti-
ble and infective populations, in addition to the input, and therefore comprise a state
evolution description of lower order, namely

s[n+ 1] = s[n]− γ (i[n]/P)s[n]+ β(P− s[n])− βPx[n]

i[n+ 1] = i[n]+ γ (i[n]/P)s[n]− ρi[n]− βi[n] . (4.24)

Figure 4.3 shows a few state-variable trajectories produced by stepping the model
in Eq. (4.24) forward from a particular s[0], fixed at 8000 out of a population (P)
of 10,000, using different initial values i[0]. Note that in each case the number of
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Figure 4.3 Response of SIR model for a particular choice of parameter values and a variety
of initial conditions.

infectives, i[n], initially increases from its value at the starting time n = 0, before even-
tually decaying. This initial increase would correspond to “going viral” in the case of a
rumor, advertisement, or fashion that spreads through a social network, or to an epi-
demic in the case of disease propagation. The second equation in Eq. (4.24) shows that
i[n+ 1] > i[n] precisely when

s[n]
P

>
ρ + β
γ
= 1

R0
. (4.25)

Here

R0 = γ

β + ρ (4.26)

is a parameter that typically arises in viral propagation models, and is termed the
basic reproductive ratio (referring to “reproduction” of infectives, not to population
growth). Thus i[n] increases at the next time step whenever the fraction of susceptibles
in the population, s[n]/P, exceeds the threshold 1/R0. As s[n]/P cannot exceed 1, there
can be no epidemic if R0 ≤ 1. The greater the amount by which R0 exceeds 1, the fewer
the number of susceptibles required in order for an epidemic to occur.

Figure 4.3 also shows that the system in this case, with the immunization rate
fixed at x[n] = 0.5, reaches a steady state in which there are no infectives. This is
termed an infective-free steady state. In Examples 4.8, 4.10, and 5.5, we explore fur-
ther characteristics of the model in Eq. (4.24). In particular, it will turn out that it is
possible—for instance by dropping the immunization rate to x[n] = 0.2 while keeping
the other parameters as in Figure 4.3—for the attained steady state to have a nonzero
number of infectives. This is termed an endemic steady state.
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Compartmental models of the sort illustrated in the preceding example
are ubiquitous, in both continuous time and discrete time. We conclude this
section with another DT example, related to implementation of a filter using
certain elementary operations.

Example 4.4 Delay-Adder-Gain System

The block diagram in Figure 4.4 shows a causal DT system obtained by interconnecting
delay, adder, and gain elements. A (unit) delay has the property that its output value at
any integer time n is the value that was present at its input at time n− 1; or equivalently,
its input value at any time n is the value that will appear at its output at time n+ 1. An
adder produces an output that is the sum of its present inputs. A gain element produces
an output that is the present input scaled by the gain value. These all correspond to LTI
operations on the respective input signals.

Interconnection involves equating, or “connecting,” each input of these various
elements to a selected output of one of the elements. The result of such an inter-
connection turns out to be well behaved if every loop has some delay in it, that
is, provided there are no delay-free loops. An overall external input x[n] and an
overall external output y[n] are also included in Figure 4.4. Such delay-adder-gain
systems (and their CT counterparts, which are integrator-adder-gain systems, as in
Example 4.5) are widely used in constructing LTI filters that produce a signal y[·] from
a signal x[·].

The memory of this system is embodied in the delay elements, so it is natural
to consider the outputs of these elements as candidate state variables. Accordingly,
we label the outputs of the memory elements in this example as q1[n] and q2[n]
at time n. For the specific block diagram in Figure 4.4, the detailed component and
interconnection equations relating the indicated signals are

q1[n+ 1] = q2[n]

q2[n+ 1] = p[n]

p[n] = x[n]− 0.5q1[n]+ 1.5q2[n]

y[n] = q2[n]+ p[n] . (4.27)

The response of the system for n ≥ n0 is completely determined by the external
input x[n] for times n ≥ n0 and the values q1[n0] and q2[n0] that are stored at the

1

-0.5

11.5

1x[n] y[n]p[n]

q2[n]

q1[n]

D

+ +

D

Figure 4.4 Delay-adder-gain block diagram.
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outputs of the delay elements at time n0. The delay elements capture the state of the
system at each time step, that is, they summarize all the past history that is relevant
to how the present and future inputs to the system determine the present and future
response of the system.

The relationships in Eq. (4.27) need to be condensed in order to express the
values of the candidate state variables at time n+ 1 in terms of the values of these
variables at time n and the value of the external input at the same time instant n. This
corresponds to expressing the inputs to all the delay elements at time n in terms of all
the delay outputs at time n as well as the external input at this same time. The result
for this example is captured in the following matrix equation:

q[n+ 1] =
[

q1[n+ 1]
q2[n+ 1]

]

=
[

0 1
−0.5 1.5

] [

q1[n]
q2[n]

]

+
[

0
1

]

x[n]

= Aq[n]+ bx[n] . (4.28)

Similarly, the output at time n can be written in terms of the values of the candidate
state variables at time n and the value of the external input at the same time instant n:

y[n] = [−0.5 2.5
]

[

q1[n]
q2[n]

]

+ x[n] = cTq[n]+ dx[n] . (4.29)

Notice that in this example, unlike in the previous examples, the output y[n] at any
time n depends not only on the state variables at time n but also on the input at that
time n.

Equations (4.28) and (4.29) establish that q1[n] and q2[n] are indeed valid state
variables. Specifically, the equations explicitly show that if one is given the values q1[n0]
and q2[n0] of the state variables at some initial time n0, and also the input trajectory
from n0 onward, that is, x[n] for times n ≥ n0, then we can compute the values of the
state variables and the output for times n ≥ n0. All that is needed is to iteratively apply
Eq. (4.28) to find q1[n0 + 1] and q2[n0 + 1], then q1[n0 + 2] and q2[n0 + 2], and so on
for increasing time arguments, and to use Eq. (4.29) at each time to find the output.

Transforming the relationships in Eq. (4.27) using the bilateral z-transform, and
noting that time-advancing a signal by one step maps to multiplication by z in the
transform domain, we can solve for the transfer function H(z) of the system from x[·]
to y[·]. Alternatively, the same transfer function can be obtained from z-transformation
of the state-space description; the next chapter presents an explicit formula for this
transfer function in terms of the coefficient matrices A, b, cT, and d. Either way, the
resulting transfer function for our example is

H(z) = Y(z)
X(z)

= 1+ z−1

1− 3
2 z−1 + 1

2 z−2
, (4.30)

which corresponds to the following input-output difference equation:

y[n]− 3
2

y[n− 1]+ 1
2

y[n− 2] = x[n]+ x[n− 1] . (4.31)

The development of CT state-space models for integrator-adder-gain
systems follows a completely parallel route. Integrators replace the delay ele-
ments. Their outputs at time t constitute a natural set of state variables for
the system; their values at any starting time t0 establish the initial conditions
for integration over the interval t ≥ t0. The state evolution equations result
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from expressing the inputs to all the integrators at time t in terms of all the
integrator outputs at time t as well as the external input at this same time.

4.3 STATE-SPACE MODELS

As illustrated in the examples of the preceding section, it is often natural
and convenient, when studying or modeling physical systems, to focus not
just on the input and output signals but rather to describe the interaction and
time evolution of several key variables or signals that are associated with the
various component processes internal to the system. Assembling the descrip-
tions of these components and their interconnections leads to a description
that is richer than an input-output description. In particular, the examples in
Section 4.2 describe system behavior in terms of the time evolution of a set
of state variables that completely capture at any time the past history of the
system as it affects the present and future response. We turn now to a more
formal definition of state-space models in the DT and CT cases, followed by a
discussion of the two defining characteristics of such models.

4.3.1 DT State-Space Models

A state-space model is built around a set of state variables; we mostly limit
our discussion to real-valued state variables. The number of state variables in
a model or system is referred to as its order. We shall only deal with state-space
models of finite order, which are also referred to as lumped models.

For an Lth-order model in the DT case, we generically denote the values
of the L real state variables at time n by q1[n], q2[n], · · · , qL[n]. It is convenient
to gather these variables into a state vector

q[n] =

⎡

⎢

⎢

⎢

⎣

q1[n]
q2[n]

...
qL[n]

⎤

⎥

⎥

⎥

⎦

. (4.32)

The value of this vector constitutes the state of the model or system at time n.

DT LTI State-Space Model A DT LTI state-space model with single or scalar
input x[n] and single output y[n] takes the following form, written in compact
matrix notation

q[n+ 1] = Aq[n]+ bx[n] , (4.33)

y[n] = cTq[n]+ dx[n] . (4.34)

In Eqs. (4.33) and (4.34), A is an L× L matrix, b is an L× 1 matrix or column
vector, and cT is a 1×L matrix or row vector, with the superscript T denoting
transposition of the column vector c into the desired row vector. The quantity
d is a 1× 1 matrix, or a scalar. The entries of all these matrices in the case of an
LTI model are numbers, constants, or parameters, so they do not vary with n.

This work is protected by United States copyright laws 

and is provided solely for the use of instructors in teaching  

their courses and assessing student learning. Dissemination or 

sale of any part of this work (including on the W
orld W

ide W
eb) 

will destroy the integrity of the work and is not permitted.



M04_OPPE3283_01_SE_C04 March 4, 2015 14:27

Section 4.3 State-Space Models 147

The next value of each state variable and the present value of the output are
all expressed as LTI functions of the present state and present input. We refer
to Eq. (4.33) as the state evolution equation, and to Eq. (4.34) as the output
equation. The model obtained for the delay-adder-gain system in Example 4.4
in the previous section has precisely the above form.

The system in Eqs. (4.33) and (4.34) is termed LTI because of its struc-
ture: the next state and current output are LTI functions of the current state
and current input. However, this structure also gives rise to a corresponding
behavioral sense in which the system is LTI. A particular set of input, state,
and output signals—x[·], q[·], and y[·], respectively—that together satisfy the
above state evolution equation and output equation is referred to as a behav-
ior of the DT LTI system. It follows from the linear structure of the above
equations that scaling all the signals in a behavior by the same scalar constant
again yields a behavior of this system. Also, summing two behaviors again
yields a behavior. More generally, a weighted linear combination of behaviors
again yields a behavior, so the behaviors of the system have the superposition
property. Similarly, it follows from the time invariance of the defining equa-
tions that an arbitrary time shift of a behavior—shifting the input, state, and
output signals in time by the same amount—again yields a behavior. Thus, the
LTI structure of the equations is mirrored by the LTI properties of its solutions
or behaviors.

Delay-Adder-Gain Realization A delay-adder-gain system of the form en-
countered in Example 4.4 can be used to simulate, or “realize,” any Lth-order,
DT LTI model of the type given in Eqs. (4.33) and (4.34). Key to this is the
fact that adders and gains suffice to implement the additions and multiplica-
tions associated with the various matrix multiplications in the LTI state-space
description.

To set up the simulation, we begin with L delay elements, and label their
outputs at time n as qj[n] for j = 1, 2, · · ·, L; the corresponding inputs are then
qj[n+ 1]. The ith row of Eq. (4.33) shows what LTI combination of these qj[n]
and x[n] is required to compute qi[n+ 1], for each i = 1, 2, · · ·, L. Similarly, Eq.
(4.34) shows what LTI combination of the variables is required to compute
y[n]. Each of these LTI combinations can now be implemented using gains
and adders.

The implementation produced by the preceding prescription is not
unique: there are multiple ways to implement the linear combinations,
depending, for example, on whether there is special structure in the matri-
ces, or on how computation of the various terms in the linear combination is
grouped and sequenced. In the case of the system in Example 4.4, for example,
starting with the model in Eqs. (4.28) and (4.29) and following the procedure
outlined in this paragraph will almost certainly lead to a different realization
than the one in Figure 4.4.

Generalizations Although our focus in the DT case will be on the above
LTI, single-input, single-output, state-space model, there are various natural
generalizations of this description that we mention for completeness. A multi-
input DT LTI state-space model replaces the single term bx[n] in Eq. (4.33)
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by a sum of terms, b1x1[n]+ · · · + bMxM[n], where M is the number of inputs.
This corresponds to replacing the scalar input x[n] by an M-component vector
x[n] of inputs, with a corresponding change of b to a matrix B of dimension
L×M. Similarly, for a multi-output DT LTI state-space model, the single out-
put quantity in Eq. (4.34) is replaced by a collection of such output equations,
one for each of the P outputs. Equivalently, the scalar output y[n] is replaced
by a P-component vector y[n] of outputs, with a corresponding change of cT

and d to matrices CT and D of dimensions P× L and P×M respectively.
A linear but time-varying DT state-space model takes the same form as

in Eqs. (4.33) and (4.34), except that some or all of the matrix entries are time-
varying. A linear but periodically varying model is a special case of this, with
matrix entries that all vary periodically with a common period.

All of the above generalizations can also be simulated or realized by
delay-adder-gain systems, except that the gains will need to be time-varying
for the case of time-varying systems. For the nonlinear systems described
below, more elaborate simulations are needed, involving nonlinear elements
or combinations.

A nonlinear, time-invariant, single input, single output model expresses
q[n+ 1] and y[n] as nonlinear but time-invariant functions of q[n] and x[n],
rather than as the LTI functions embodied by the matrix expressions on the
right-hand sides of Eqs. (4.33) and (4.34). Our full and reduced models for
viral propagation in Example 4.3 were of this type. A third-order nonlin-
ear time invariant state-space model, for instance, comprises state evolution
equations of the form

q1[n+ 1] = f1

(

q1[n], q2[n], q3[n], x[n]
)

q2[n+ 1] = f2

(

q1[n], q2[n], q3[n], x[n]
)

q3[n+ 1] = f3

(

q1[n], q2[n], q3[n], x[n]
)

(4.35)

and an output equation of the form

y[n] = g
(

q1[n], q2[n], q3[n], x[n]
)

, (4.36)

where the state evolution functions f1(·), f2(·), f3(·) and the output function
g(·) are all time-invariant nonlinear functions of the three state variables q1[n],
q2[n], q3[n], and the input x[n]. Time invariance here means that the functions
combine their arguments in the same way, regardless of the time index n. In
vector notation,

q[n+ 1] = f
(

q[n], x[n]
)

, y[n] = g
(

q[n], x[n]
)

, (4.37)

where for the third-order case

f( · ) =
⎡

⎣

f1( · )
f2( · )
f3( · )

⎤

⎦ . (4.38)

The notation for an Lth-order description follows the same pattern.

This work is protected by United States copyright laws 

and is provided solely for the use of instructors in teaching  

their courses and assessing student learning. Dissemination or 

sale of any part of this work (including on the W
orld W

ide W
eb) 

will destroy the integrity of the work and is not permitted.



M04_OPPE3283_01_SE_C04 March 4, 2015 14:27

Section 4.3 State-Space Models 149

Finally, a nonlinear, time-varying model expresses q[n+ 1] and y[n] as
nonlinear, time-varying functions of q[n] and x[n]. In other words, the manner
in which the state evolution and output functions combine their arguments
can vary with n. For this case, we would write

q[n+ 1] = f
(

q[n], x[n], n
)

, y[n] = g
(

q[n], x[n], n
)

. (4.39)

Nonlinear, periodically varying models can also be defined as a particular case
in which the time variations are periodic with a common period.

4.3.2 CT State-Space Models

Continuous-time state-space descriptions take a very similar form to the DT
case. The state variables for an Lth-order system may be denoted as qi(t),
i = 1, 2, . . ., L, and the state vector as

q(t) =

⎡

⎢

⎢

⎢

⎣

q1(t)
q2(t)

...
qL(t)

⎤

⎥

⎥

⎥

⎦

. (4.40)

In the DT case the state evolution equation expresses the state vector at the
next time step in terms of the current state vector and input values. In the CT
case the state evolution equation expresses the rates of change or derivatives
of each of the state variables as functions of the present state and inputs.

CT LTI State-Space Model The general Lth-order CT LTI state-space repre-
sentation takes the form

dq(t)
dt
= q̇(t) = Aq(t)+ bx(t) , (4.41)

y(t) = cTq(t) + dx(t) , (4.42)

where dq(t)/dt = q̇(t) denotes the vector whose entries are the derivatives of
the corresponding entries of q(t). The entries of all these matrices are numbers
or constants or parameters that do not vary with t. Thus, the rate of change of
each state variable and the present value of the output are all expressed as
LTI functions of the present state and present input. As in the DT LTI case,
the LTI structure of the above system is mirrored by the LTI properties of
its solutions or behaviors, a fact that will become explicit in Chapter 5. The
models in Eqs. (4.8) and (4.9) of Example 4.1 and Eqs. (4.14) and (4.17) of
Example 4.2 are precisely of the above form.

Integrator-Adder-Gain Realization Any CT LTI state-space model of the
form in Eqs. (4.41) and (4.42) can be simulated or realized using an integrator-
adder-gain system. The approach is entirely analogous to the DT LTI case
that was described earlier. We begin with L integrators, labeling their out-
puts as qj(t) for j = 1, 2, · · ·, L. The inputs of these integrators are then the
derivatives q̇j(t). The ith row of Eq. (4.41) now determines what LTI combina-
tion of the qj(t) and x(t) is required to synthesize q̇i(t), for each i = 1, 2, · · ·, L.
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We similarly use Eq. (4.42) to determine what LTI combination of these vari-
ables is required to compute y(t). Finally, each of these LTI combinations
is implemented using gains and adders. We illustrate this procedure with a
specific example below.

Generalizations The basic CT LTI state-space model can be generalized
to multi-input and multi-output models, to nonlinear time-invariant mod-
els, and to linear and nonlinear time-varying or periodically varying models.
These generalizations can be described just as in the case of DT systems, by
appropriately relaxing the restrictions on the form of the right-hand sides of
Eqs. (4.41) and (4.42). The model for the inverted pendulum in Eqs.
(4.3), (4.4), and (4.5) in Example 4.1 was nonlinear and time-invariant,
of the form

q̇(t) = f
(

q(t), x(t)
)

, y(t) = g
(

q(t), x(t)
)

. (4.43)

A general nonlinear and time-varying CT state-space model with a single
input and single output takes the form

q̇(t) = f
(

q(t), x(t), t
)

, y(t) = g
(

q(t), x(t), t
)

. (4.44)

Example 4.5 Simulation of Inverted Pendulum for Small Angles

For sufficiently small angular deviations from the fully inverted position for the
inverted pendulum considered in Example 4.1, the original nonlinear state-space
model simplifies to the LTI state-space model described by Eqs. (4.8) and (4.9). This
LTI model is repeated here for convenience, but with the numerical values of a specific
pendulum inserted:

q̇(t) =
[

q̇1(t)
q̇2(t)

]

=
[

0 1
8 −2

] [

q1(t)
q2(t)

]

+
[

0
−1

]

x(t)

= Aq(t)+ bx(t) (4.45)

and

y(t) = [ 1 0
]

[

q1(t)
q2(t)

]

= cTq(t) . (4.46)

To simulate this second-order LTI system using integrators, adders, and gains,
we begin with two integrators and denote their outputs at time t by q1(t) and q2(t).
The inputs to these integrators are then q̇1(t) and q̇2(t), respectively, at time t. The
right-hand sides of the two expressions in Eq. (4.45) now show how to synthesize
q̇1(t) and q̇2(t) from particular weighted linear combinations of q1(t), q2(t), and x(t).
We use gain elements to obtain the appropriate weights, then adders to produce
the required weighted linear combinations of q1(t), q2(t), and x(t). By feeding these
weighted linear combinations to the inputs of the respective integrators, q̇1(t) and
q̇2(t) are set equal to these expressions. The output y(t) = q1(t) is directly read from
the output of the first integrator. The block diagram in Figure 4.5 shows the resulting
simulation.

This work is protected by United States copyright laws 

and is provided solely for the use of instructors in teaching  

their courses and assessing student learning. Dissemination or 

sale of any part of this work (including on the W
orld W

ide W
eb) 

will destroy the integrity of the work and is not permitted.



M04_OPPE3283_01_SE_C04 March 4, 2015 14:27

Section 4.3 State-Space Models 151

-1 •
x(t) y(t)q

.
2(t) q

.
1(t)q2(t) q1(t)

•

-2

8

+

Figure 4.5 Integrator-adder-gain simulation of inverted pendulum for small angular deviations
from vertical.

4.3.3 Defining Properties of State-Space Models

The two defining characteristics of state-space models are the following:

• State Evolution Property The state at any initial time, along with the
inputs over any interval from that initial time onward, determine the
state trajectory, that is, the state as a function of time, over that entire
interval. Everything about the past that is relevant to the future state is
embodied in the present state.

• Instantaneous Output Property The outputs at any instant can be
written in terms of the state and inputs at that same instant.

The state evolution property is what makes state-space models particularly
well suited to describing causal systems. In the DT LTI case, the validity of
this state evolution property is evident from Eq. (4.33), which allows q[n] to
be updated iteratively, moving from time n to time n+ 1 using only knowledge
of the present state and input. The same argument can also be applied to the
general DT state evolution expression in Eq. (4.39).

The state evolution property in the general CT case is more subtle to
establish, and actually requires that the function f(q(t), x(t), t) defining the rate
of change of the state vector satisfy certain mild technical conditions. These
conditions are satisfied by all the models of interest to us in this text, so we
shall not discuss the conditions further. Instead, we describe how the avail-
ability of a CT state-space model enables a simple numerical approximation
of the state trajectory at a discrete set of times spaced an interval
 apart. This
numerical algorithm is referred to as the forward-Euler method.

The algorithm begins by using the state and input information at the
initial time t0 to determine the initial rate of change of the state, namely
f(q(t0), x(t0), t0). As illustrated in Figure 4.6, this initial rate of change is tan-
gent to the state trajectory at t0. The approximation to the actual trajectory
is obtained by stepping forward a time increment 
 along this tangent—the
forward-Euler step—to arrive at the estimate

q(t0 +
) ≈ q(t0)+ f(q(t0), x(t0), t0)
 . (4.47)
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q
.
i(t0)

qi(t)
qi(t0)

t0
t0 + ¢ 

t Figure 4.6 Using the CT state
evolution equations to obtain the state
trajectories over an interval.

This is equivalent to using a first-order Taylor series approximation to the
trajectory, or using a forward-difference approximation to q̇(t0).

With the estimate of q(t0 +
) now available, and knowing the input
x(t0 +
) at time t0 +
, the same procedure can be repeated at this next
time instant, thereby getting an approximation to q(t0 + 2
). This iteration
can be continued over the entire interval of interest. Under the technical
conditions alluded to above, the algorithm accumulates an error of order

2 at each time step, and takes T/
 time steps in an interval of length
T, thereby accumulating an error of order T
 by the end of the inter-
val. This error can be made arbitrarily small by choosing a sufficiently
small 
.

The forward-Euler algorithm suffices to suggest how a CT state-
space description gives rise to the state evolution property. For actual
numerical computation, more sophisticated numerical routines would be
used, based for example on higher-order Taylor series approximations,
and using variable-length time steps for better error control. The CT LTI
case is, however, much simpler than the general case. We shall demon-
strate the state evolution property for this class of state-space models in
detail in the Chapter 5, when we show how to explicitly solve for their
behavior.

The instantaneous output property is evident in the LTI case from the
output expressions in Eqs. (4.34) and (4.42). It also holds for the various gener-
alizations of basic single-input, single-output LTI models that we listed earlier,
most broadly for the output relations in Eqs. (4.39) and (4.44).

The state evolution and instantaneous output properties are the defining
characteristics of a state-space model. In setting up a state-space model, we
introduce the additional vector of state variables q[n] or q(t) to supplement
the input variables x[n] or x(t) and output variables y[n] or y(t). This supple-
mentation is done precisely in order to obtain a description that satisfies these
properties.

Often there are natural choices of state variables suggested directly by
the particular context or application. As already noted, and illustrated by the
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preceding examples in both DT and CT cases, state variables are related to
the “memory” of the system. In many physical situations involving CT models,
the state variables are associated with energy storage because this is what is
carried over from the past to the future.

One can always choose any alternative set of state variables that together
contain exactly the same information as a given set. There are also situations
in which there is no particularly natural or compelling choice of state variables,
but in which it is still possible to define supplementary variables that enable a
valid state-space description to be obtained.

Our discussion of the two key properties above—and particularly of the
role of the state vector in separating past and future—suggests that state-space
models are particularly suited to describing causal systems. In fact, state-space
models are almost never used to describe noncausal systems. We shall always
assume here, when dealing with state-space models, that they represent causal
systems. Although causality is not a central issue in analyzing many aspects
of communication or signal processing systems, particularly in non-real-time
contexts, it is generally central to control design and operation for dynamic
systems, and this is where state-space descriptions find their greatest value
and use.

4.4 STATE-SPACE MODELS FROM LTI
INPUT-OUTPUT MODELS

State-space representations can be very naturally and directly generated dur-
ing the modeling process in a variety of settings, as the examples in Section 4.2
demonstrated. Other—and perhaps more familiar—descriptions can then be
derived from them, for instance input-output descriptions.

It is also possible to proceed in the reverse direction, constructing state-
space descriptions from transfer functions, unit sample or impulse responses,
or input-output difference or differential equations, for instance. This is often
worthwhile as a prelude to simulation, filter implementation, in control design,
or simply in order to understand the initial description from another point of
view. The state variables associated with the resulting state-space descriptions
do not necessarily have interesting or physically meaningful interpretations,
but still capture the memory of the system.

The following two examples illustrate this reverse process, of synthesiz-
ing state-space descriptions from input-output descriptions, for the important
case of DT LTI systems. Analogous examples can be constructed for the CT
LTI case. The first example below also makes the point that state-space models
of varying orders can share the same input-output description, a fact that we
will understand better following the structural analysis of LTI systems devel-
oped in the next chapter. That structural analysis actually ends up also relating
quite closely to the second example in this section.
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10 Random Processes

The earlier chapters in this text focused on the effect of linear and time-
invariant (LTI) systems on deterministic signals, developing tools for analyz-
ing this class of signals and systems, and using these to understand applications
in communication (e.g., AM and FM modulation), control (e.g., stability of
feedback systems), and signal processing (e.g., filtering). It is important to
develop a comparable understanding and associated tools for treating the
effect of LTI systems on signals modeled as the outcome of probabilistic exper-
iments, that is, the class of signals referred to as random signals, alternatively
referred to as random processes or stochastic processes. Such signals play a
central role in signal and system analysis and design. In this chapter, we define
random processes through the associated ensemble of signals, and explore
their time-domain properties. Chapter 11 examines their characteristics in the
frequency domain. The subsequent chapters use random processes as models
for random or uncertain signals that arise in communication, control and sig-
nal processing applications, and study a variety of related inference problems
involving estimation and hypothesis testing.

10.1 DEFINITION AND EXAMPLES OF
A RANDOM PROCESS

In Section 7.3, we defined a random variable X as a function that maps
each outcome of a probabilistic experiment to a real number. In a similar
manner, a real-valued continuous-time (CT) or discrete-time (DT) random
process—X(t) or X[n], respectively—is a function that maps each outcome of

380
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a probabilistic experiment to a real CT or DT signal, termed the realization
of the random process in that experiment. For any fixed time instant t = t0 or
n = n0, the quantities X(t0) and X[n0] are simply random variables. The col-
lection of signals that can be produced by the random process is referred to as
the ensemble of signals in the random process.

Example 10.1 Random Oscillators

As an example of a random process, consider a warehouse containing N harmonic
oscillators, each producing a sinusoidal waveform of some specific amplitude, fre-
quency, and phase. The three parameters may in general differ between oscillators.
This collection constitutes the ensemble of signals. The probabilistic experiment that
yields a particular signal realization consists of selecting an oscillator according to some
probability mass function (PMF) that assigns a probability to each of the numbers from
1 to N, so that the ith oscillator is picked with probability pi. Associated with each
outcome of this experiment is a specific sinusoidal waveform. Before an oscillator is
chosen, there is uncertainty about what the amplitude, frequency, and phase of the
outcome of the experiment will be, that is, the amplitude A, frequency �, and phase �
are all random variables. Consequently, for this example, we might express the random
process as

X(t; A,�,�) = A sin(�t +�) (10.1)

where, as in Figure 10.1, we have listed after the semi-colon the parameters that are
random variables. As the discussion proceeds, we will typically simplify the notation to
refer to X(t) when it is clear which parameters are random variables; so, for example,
Eq. (10.1) will alternatively be written as

X(t) = A sin(�t +�) . (10.2)

The value X(t1) at some specific time t1 is also a random variable. In the context of
this experiment, knowing the PMF associated with the selection of the numbers 1 to
N involved in choosing an oscillator, as well as the specific amplitude, frequency, and
phase of each oscillator, we could determine the probability distributions of any of the
underlying random variables A, �, �, or X(t1) mentioned above.

°

c

Amplitude

tt1

X(t; c)

Figure 10.1 A random process.

Throughout this and later chapters, we will consider many examples of
random processes. What is important at this point, however, is to develop a
good mental picture of what a random process is. A random process is not just
one signal but rather an ensemble of signals. This is illustrated schematically
in Figure 10.2, for which the outcome of the probabilistic experiment could
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be any of the four waveforms indicated. Each waveform is deterministic, but
the process is probabilistic or random because it is not known a priori which
waveform will be generated by the probabilistic experiment. Consequently,
prior to obtaining the outcome of the probabilistic experiment, many aspects
of the signal are unpredictable, since there is uncertainty associated with which
signal will be produced. After the experiment, or a posteriori, the outcome is
totally determined.

If we focus on the values that a CT random process X(t) can take at a
particular instant of time, say t1—that is, if we look down the entire ensem-
ble at a fixed time—what we have is a random variable, namely X(t1). If we
focus on the ensemble of values taken at an arbitrary collection of � fixed
time instants t1 < t2 < · · · < t� for some arbitrary positive integer �, we have a
set of � jointly distributed random variables X(t1), X(t2), · · · , X(t�), all deter-
mined together by the outcome of the underlying probabilistic experiment.
From this point of view, a random process can be thought of as a family of
jointly distributed random variables indexed by t. A full probabilistic char-
acterization of this collection of random variables would require the joint
probability density functions (PDFs) of multiple samples of the signal, taken
at arbitrary times:

fX(t1),X(t2), · · · ,X(t�)(x1, x2, · · · , x�) (10.3)

for all � and all t1, t2, · · · , t�.
Correspondingly, a DT random process consists of a collection of ran-

dom variables X[n] for all integer values of n, with a full probabilistic
characterization consisting of the joint PDF

fX[n1],X[n2], · · · ,X[n�](x1, x2, · · · , x�) (10.4)

for all � and all integers n1, · · · , n�.

t
X(t) = Xa(t)

t
X(t) = Xb(t)

t
X(t) = Xc(t)

t
X(t) = Xd(t)

t2t1

Figure 10.2 Realizations of the random process X (t).
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In a general context, it would be impractical to have a full characteri-
zation of a random process through Eqs. (10.3) or (10.4). As we will see in
Example 10.2 and in other examples in this chapter, in many useful cases
the full characterization can be inferred from a simpler probabilistic char-
acterization. Furthermore, for much of what we deal with in this text, a
characterization of a random process through first and second moments, as
discussed in Section 10.2, is useful and sufficient.

Example 10.2 An Independent Identically Distributed (I.I.D.) Process

Consider a DT random process whose values X[n] may be regarded as independently
chosen at each time n from a fixed PDF fX (x), so the values are independent and identi-
cally distributed, thereby yielding what is called an independent identically distributed
(i.i.d.) process. Such processes are widely used in modeling and simulation. For exam-
ple, suppose a particular DT communication channel corrupts a transmitted signal with
added noise. If the noise takes on independent values at each time instant, but with
characteristics that seem unchanging over the time window of interest, then the noise
may be well modeled as an i.i.d. process. It is also easy to generate an i.i.d. process in
a simulation environment, provided a random number generator can be arranged to
produce samples from a specified PDF. Processes with more complicated dependence
across time samples can then be obtained by filtering or other operations on the i.i.d.
process, as we will see in this chapter as well as the next.

For an i.i.d. process, we can write the joint PDF as a product of the marginal
densities, that is,

fX[n1],X[n2], · · ·X[n�](x1, x2, · · ·, x�) = fX(x1)fX(x2) · · · fX (x�) (10.5)

for any choice of � and n1, · · · , n�.

An important set of questions that arises as we work with random pro-
cesses in later chapters of this text is whether, by observing just part of the
outcome of a random process, we can determine the complete outcome. The
answer will depend on the details of the random process. For the process in
Example 10.1, the answer is yes, but in general the answer is no. For some ran-
dom processes, having observed the outcome in a given time interval might
provide sufficient information to know exactly which ensemble member it cor-
responds to. In other cases this will not be sufficient. Some of these aspects are
explored in more detail later, but we conclude this section with two additional
examples that further emphasize these points.

Example 10.3 Ensemble of Batteries

Consider a collection of N batteries, with Ni of the batteries having voltage vi, where vi
is an integer between 1 and 10. The plot in Figure 10.3 indicates the number of batteries
with each value vi. The probabilistic experiment is to choose one of the batteries, with
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Figure 10.3 Plot of battery voltage distribution for Example 10.3.

the probability of picking any specific one being 1
N , that is, any one battery is equally

likely to be picked. Thus, scaling Figure 10.3 by 1
N represents the PMF for the battery

voltage obtained as the outcome of the probabilistic experiment. Since the battery volt-
age is a signal (which in this case happens to be constant with time), this probabilistic
experiment generates a random process. In fact, this example is similar to the oscilla-
tor example discussed earlier, but with frequency and phase both zero so that only the
amplitude is random, and restricted to be an integer.

For this example, observation of X(t) at any one time is sufficient information to
determine the outcome for all time.

Example 10.3 is a very simple random process that, together with
Example 10.4, helps to visualize some important general concepts of station-
arity and ergodicity associated with random processes.

Example 10.4 Ensemble of Coin Tossers

In this example, consider a collection of N people, each independently having written
down a long arbitrary string of 1s and 0s, with each entry chosen independently of
any other entry in their string (similar to a sequence of independent coin tosses), and
with an identical probability of a 1 at each entry. The random process now comprises
this ensemble of the strings of 1s and 0s. A realization of the process is obtained by
randomly selecting a person (and therefore one of the N strings of 1s and 0s). After
selection, the specific ensemble member of the random process is totally determined.

Next, suppose that you are shown only the 10th entry in the selected string.
Because of the manner in which the string was generated, it is clearly not possible
from that information to determine the 11th entry. Similarly, if the entire past history
up to the 10th entry was revealed, it would not be possible to determine the remaining
sequence beyond the tenth.

While the entire sequence has been determined in advance by the nature of the
experiment, partial observation of a given ensemble member is in general not sufficient
to fully specify that member.

Rather than looking at the nth entry of a single ensemble member, we can con-
sider the random variable corresponding to the values from the entire ensemble at the
nth entry. Looking down the ensemble at n = 10, for example, we would see 1s and 0s
in a ratio consistent with the probability of a 1 or 0 being chosen by each individual
at n = 10.
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10.2 FIRST- AND SECOND-MOMENT
CHARACTERIZATION OF RANDOM
PROCESSES

In the above discussion, we noted that a random process can be thought of as
a family of jointly distributed random variables indexed by t or n. However
it would in general be extremely difficult or impossible to analytically repre-
sent a random process in this way. Fortunately, the most widely used random
process models have special structure that permits computation of such a sta-
tistical specification. Also, particularly when we are processing our signals
with linear systems, we often design the processing or analyze the results by
considering only the first and second moments of the process.

The first moment or mean function of a CT random process X(t), which
we typically denote asμX (t), is the expected value of the random variable X(t)
at each time t, that is,

μX (t) = E[X(t)] . (10.6)

The autocorrelation function and the autocovariance function represent sec-
ond moments. The autocorrelation function RXX (t1, t2) is

RXX(t1, t2) = E[X(t1)X(t2)] (10.7)

and the autocovariance function CXX (t1, t2) is

CXX(t1, t2) = E[(X(t1)− μX (t1))(X(t2)− μX (t2))]

= RXX (t1, t2)− μX (t1)μX (t2) , (10.8)

where t1 and t2 are two arbitrary time instants. The word auto (which is some-
times dropped to simplify the terminology) refers to the fact that both samples
in the correlation function or the covariance function come from the same
process.

One case in which the first and second moments actually suffice to com-
pletely specify the process is a Gaussian process, defined as a process whose
samples are always jointly Gaussian, represented by the generalization of the
bivariate Gaussian to many variables.

We can also consider multiple random processes, for example, two
processes, X(·) and Y(·). A full stochastic characterization of this requires the
PDFs of all possible combinations of samples from X(·) and Y(·). We say that
X(·) and Y(·) are independent if every set of samples from X(·) is independent
of every set of samples from Y(·), so that the joint PDF factors as follows:

fX(t1), · · ·X(tk),Y(t′1), · · ·Y(t′�)(x1, · · · , xk, y1, · · · , y�)

= fX(t1), · · ·X(tk)(x1, · · · , xk).fY(t′1), · · ·Y(t′�)(y1, · · · , y�) (10.9)

for all k, �, and all choices of sample times.
If only first and second moments are of interest, then in addition to the

individual first and second moments of X(·) and Y(·), we need to consider the
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cross-moment functions. Specifically, the cross-correlation function RXY (t1, t2)
and the cross-covariance function CXY (t1, t2) are defined respectively as

RXY (t1, t2) = E[X(t1)Y(t2)], and (10.10)

CXY (t1, t2) = E[(X(t1)− μX(t1))(Y(t2)− μY(t2))]

= RXY(t1, t2)− μX(t1)μY (t2) (10.11)

for arbitrary time t1, t2. If CXY(t1, t2) = 0 for all t1, t2, we say that the processes
X(·) and Y(·) are uncorrelated. Note again that the term uncorrelated in its
common usage means that the processes have zero covariance rather than zero
correlation.

The above discussion carries over to the case of DT random processes,
with the exception that now the sampling instants are restricted to integer
times. In accordance with our convention of using square brackets [ · ] around
the time argument for DT signals, we will write μX [n] for the mean func-
tion of a random process X[ · ] at time n. Similarly, we will write RXX [n1, n2]
and CXX [n1, n2] for the correlation and covariance functions involving sam-
ples at times n1 and n2, and RXY[n1, n2] and CXY[n1, n2] for the cross-moment
functions of two random variables X[ · ] and Y[ · ] sampled at times n1 and n2
respectively.

10.3 STATIONARITY

10.3.1 Strict-Sense Stationarity

In general, we would expect that the joint PDFs associated with the random
variables obtained by sampling a random process at an arbitrary number � of
arbitrary times will be time-dependent, that is, the joint PDF

fX(t1), · · · ,X(t�)(x1, · · · , x�) (10.12)

will depend on the specific values of t1, · · · , t�. If all the joint PDFs remain the
same under arbitrary time shifts, so that if

fX(t1), · · · ,X(t�)(x1, · · · , x�) = fX(t1+α), · · · ,X(t�+α)(x1, · · · , x�) (10.13)

for arbitrary α, then the random process is said to be strict-sense stationary
(SSS). Said another way, for an SSS process, the statistics depend only on the
relative times at which the samples are taken, not on the absolute times. The
processes in Examples 10.2 and 10.3 are SSS. More generally, any i.i.d. process
is strict-sense stationary.

10.3.2 Wide-Sense Stationarity

Of particular use is a less restricted type of stationarity. Specifically, if the mean
value μX(t) is invariant with time and the autocorrelation RXX (t1, t2) or,
equivalently, the autocovariance CXX(t1, t2) is a function of only the time dif-
ference (t1 − t2), then the process is referred to as wide-sense stationary

This work is protected by United States copyright laws 

and is provided solely for the use of instructors in teaching  

their courses and assessing student learning. Dissemination or 

sale of any part of this work (including on the W
orld W

ide W
eb) 

will destroy the integrity of the work and is not permitted.



M10_OPPE3283_01_SE_C10 February 26, 2015 12:24

Section 10.3 Stationarity 387

(WSS). A process that is SSS is always WSS, but the reverse is not necessarily
true. For a WSS random process X(t), we have

μX(t) = μX (10.14)

RXX (t1, t2) = RXX(t1 + α, t2 + α) for every α

= RXX(t1 − t2, 0)

= RXX(t1 − t2) , (10.15)

where the last equality defines a more compact notation since a single argu-
ment for the time difference (t1 − t2) suffices for a WSS process. Similarly,
CXX(t1, t2) will be written as CXX (t1 − t2) for a WSS process. The time differ-
ence (t1 − t2) will typically be denoted as τ and referred to as the lag variable
for the autocorrelation and autocovariance functions.

For a Gaussian process, that is, a process whose samples are always
jointly Gaussian, WSS implies SSS because jointly Gaussian variables are
entirely determined by their joint first and second moments.

Two random processes X(·) and Y(·) are referred to as jointly WSS if
their first and second moments (including the cross-covariance) are station-
ary. In this case, we use the notation RXY (τ ) to denote E[X(t + τ )Y(t)]. It is
worth noting that an alternative convention sometimes used elsewhere is to
define RXY(τ ) as E[X(t)Y(t + τ )]. In our notation, this expectation would be
denoted by RXY (−τ ). It is important to take account of what notational con-
vention is being followed when referencing other sources, and you should also
be clear about the notational convention used in this text.

Example 10.5 Random Oscillators Revisited

Consider again the harmonic oscillators introduced in Example 10.1:

X(t; A,�) = A cos(φ0t +�) (10.16)

where A and � are independent random variables, and now the frequency is fixed at
some known value denoted by φ0.

If � is also fixed at a constant value θ0, then every outcome is of the form
x(t) = A cos(φ0t + θ0), and it is straightforward to see that this process is not WSS (and
consequently also not SSS). For instance, if A has a nonzero mean value, μA �= 0, then
the expected value of the process, namely μA cos(φ0t + θ0), is time varying. To show
that the process is not WSS even when μA = 0, we can examine the autocorrelation
function. Note that x(t) is fixed at 0 for all values of t for which φ0t + θ0 is an odd
multiple of π/2, and takes the values ±A halfway between such points; the correlation
between such samples taken π/φ0 apart in time can correspondingly be 0 (in the former
case) or −E[A2] (in the latter). The process is thus not WSS, even when μA = 0.

However, if � is distributed uniformly in [−π ,π], then

μX (t) = μA

∫ π

−π
1

2π
cos(φ0t + θ) dθ = 0 , (10.17)

CXX (t1, t2) = RXX (t1, t2)

= E[A2]E[cos(φ0t1 +�) cos(φ0t2 +�)] . (10.18)
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Equation (10.18) can be evaluated as

CXX (t1, t2) = E[A2]
2

∫ π

−π
1

2π
[cos(φ0(t2 − t1))+ cos(φ0(t2 + t1)+ 2θ)] dθ (10.19)

to obtain

CXX (t1, t2) = E[A2]
2

cos(φ0(t2 − t1)) . (10.20)

For this restricted case, then, the process is WSS. It can also be shown to be SSS,
although this is not totally straightforward to show formally.

For the most part, the random processes that we treat will be WSS. As
noted earlier, to simplify notation for a WSS process, we write the correla-
tion function as RXX (t1 − t2); the argument (t1 − t2) is often denoted by the
lag variable τ at which the correlation is computed. When considering only
first and second moments and not the entire PDF or cumulative distribution
function (CDF), it will be less important to distinguish between the random
process X(t) and a specific realization x(t) of it—so a further notational simpli-
fication is introduced by using lowercase letters to denote the random process
itself. We shall thus refer to the random process x(t), and—in the case of a WSS
process—denote its mean by μx and its correlation function E[x(t + τ )x(t)]
by Rxx(τ ). Correspondingly, for DT we refer to the random process x[n]
and, in the WSS case, denote its mean by μx and its correlation function
E[x[n+m]x[n]] by Rxx[m].

10.3.3 Some Properties of WSS Correlation
and Covariance Functions

For real-valued WSS processes x(t) and y(t), the correlation and covariance
functions have the following symmetry properties:

Rxx(τ ) = Rxx(−τ ) , Cxx(τ ) = Cxx(−τ ) , (10.21)

Rxy(τ ) = Ryx(−τ ) , Cxy(τ ) = Cyx(−τ ) . (10.22)

For example, the symmetry in Eq. (10.22) of the cross-correlation function
Rxy(τ ) follows directly from interchanging the arguments inside the defining
expectations:

Rxy(τ ) = E[x(t)y(t − τ )] (10.23a)

= E[y(t − τ )x(t)] (10.23b)

= Ryx(−τ ) . (10.23c)

The other properties in Eqs. (10.21) and (10.22) follow in a similar manner.
Equation (10.21) indicates that the autocorrelation and autocovariance

functions have even symmetry. Equation (10.22) indicates that for cross-
correlation and cross-covariance functions, interchanging the random vari-
ables is equivalent to reflecting the function about the τ axis. And of course,

This work is protected by United States copyright laws 

and is provided solely for the use of instructors in teaching  

their courses and assessing student learning. Dissemination or 

sale of any part of this work (including on the W
orld W

ide W
eb) 

will destroy the integrity of the work and is not permitted.



M10_OPPE3283_01_SE_C10 February 26, 2015 12:24

Section 10.3 Stationarity 389

Eq. (10.21) is a special case of Eq. (10.22) with y(t) = x(t). Similar properties
hold for DT WSS processes.

Another important property of correlation and covariance functions
follows from noting that, as discussed in Section 7.7, Eq. (7.63), the corre-
lation coefficient of two random variables has magnitude not exceeding 1.
Specifically since the correlation coefficient between x(t) and x(t + τ ) is given
by Cxx(τ )/Cxx(0), then

−1 ≤ Cxx(τ )
Cxx(0)

≤ 1 , (10.24)

or equivalently,

−Cxx(0) ≤ Cxx(τ ) ≤ Cxx(0) . (10.25)

Adding μ2
x to each term above, we can conclude that

−Rxx(0)+ 2μ2
x ≤ Rxx(τ ) ≤ Rxx(0) . (10.26)

In Chapter 11, we will demonstrate that correlation and covariance func-
tions are characterized by the property that their Fourier transforms are real
and nonnegative at all frequencies, because these transforms describe the fre-
quency distribution of the expected power in the random process. The above
symmetry constraints and bounds will then follow as natural consequences,
but they are worth highlighting here.

We conclude this section with two additional examples. The first, the
Bernoulli process, is the more formal name for repeated independent flips of a
possibly biased coin. The second example, referred to as the random telegraph
wave, is often used as a simplified representation of a random square wave or
switch in electronics or communication systems.

Example 10.6 The Bernoulli Process

The Bernoulli process is an example of an i.i.d. DT process with

P(x[n] = 1) = p (10.27)

P(x[n] = −1) = (1− p) (10.28)

and with the value at each time instant n independent of the values at all other time
instants. The mean, autocorrelation, and covariance functions are:

E
{

x[n]
} = 2p− 1 = μx (10.29)

E
{

x[n+m]x[n]
} =

{

1 m = 0
(2p− 1)2 m �= 0

(10.30)

Cxx[m] = E{(x[n+m]− μx)(x[n] − μx)} (10.31)

= {1− (2p− 1)2}δ[m] = 4p(1− p)δ[m] . (10.32)
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