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State-Space Models

. Q
’}(}OL”O, ?9@/ %@o' %
The discussion of sysfd;n@%c?@t%@s@p to this point has emphasized and used
models that represent tf'@/as % '(ﬁ%)f input signals into output signals.
In the case of linear ando ‘ﬁ'ﬁn@a’n é’mfo 1) models, we have focused on
their impulse response, frequ%gc}oﬁfp @ns‘%‘, andtransfer function. Such input-
output models do not directly 6® s’%%%eo@gﬂgal behavior of the systems
they represent. O{O %, Se QC};.

Internal behavior can be impori@p 16, /)) ; r‘@y of reasons. For instance,
in examining issues of stability, a sysf@n’O@ I can be stable from an
input-output perspective, yet internal Vari%le%ap,display unstable behav-
ior. This chapter begins a discussion of systeré/models that display the
internal dynamical behavior of the system as well as the input-output char-
acteristics. The discussion is illustrated by numerous examples. The study
of such models and their applications continues through Chapters 5 and 6

as well.

4.1 SYSTEM MEMORY

In this chapter we introduce an important model description—the state-space
model—that highlights the internal behavior of a system and is especially
suited to representing causal systems, particularly for real-time applications
such as control. These models arise in both continuous-time (CT) and discrete-
time (DT) forms. In general they can be nonlinear and time-varying, although
we will focus on the LTT case.
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134 Chapter 4 State-Space Models

A state-space model for a causal system answers a question asked about
such systems in many settings. We pose the question for the causal DT case,
though it can also be asked for causal CT systems: given the input value x[n] at
some arbitrary time n, how much needs to be known about past values of the
input, that is, about x[k] for k < n, in order to determine the present output
y[n]? As the system is causal, having all past values x[k], in addition to x[n],
will suffice, but the issue is whether all past x[k] are actually needed.

The above question addresses the issue of memory in the system, and
is worthwhile for a variety of reasons. For example, the answer conveys an
idea of the complexity, or number of degrees of freedom, associated with the
dynamic behavior of the system. The more we need to know about past inputs
in order to determine the present output, the richer the variety of possible
output heBayidys, and the more ways one can be surprised in the absence of
knowle orfs»t @fﬁpast We will only consider systems with a finite number
of dg; ?/eaes @ 'Pr’@g , or with finite-dimensional memory; these are often
referr%td:gscﬁ%n §y tems.

é‘goﬁ(g-n Which the above question arises is in implementing a
computer altg 1‘?&19 {@&cgétausally on a data stream. Thinking of the algo-
rithm as a syste; /%169 s@/@r ¢o the question indicates how much memory
will be needed @ @s}llébél?’é@'l In a control application, the answer to
the memory questld;ﬁ,a S s@he required level of complexity for the
controller of a given u% ler has to remember enough about
the past to determine thé@ (%s%p@;n@&ontrol actions on the response of
the system. O/;f_ %,

With a state-space descrlmorp,/;\%y\g@glgé)aout the past that is relevant
to the present and future is sum 2@;1 @é)p;e@g/nt values of a finite set of
state variables. These values togethép p@glt/%glgsgrgsent state of the system.

We are interested in the case of real @@lu@ riables. The number of
state variables, also referred to as the ofder state-space description,
indicates the number of degrees of freedom,qu tf ension of the memory,
associated with the system or model. G’é/ .

4.2 ILLUSTRATIVE EXAMPLES

As a prelude to developing the general form of a state-space model, this
section presents in some detail a few CT and DT examples. In addition
to illustrating the process of building a state-space model, these examples
will suggest how state-space descriptions arise in a variety of contexts. This
section may alternatively be read after the more general presentation of state-
space models in Section 4.3. Several further examples appear later in the
chapter.

To begin, we examine a mechanical system that, despite its simplicity, is
rich enough to bring out typical features of a CT state-space model, and serves
as a prototype for a variety of other systems.
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S Eln e B Inverted Pendulum

Consider the inverted pendulum shown in Figure 4.1. The pendulum is rigid, with mass
m, and can rotate about the pivot at its base, moving in the plane orthogonal to the
pivot axis. The distance from the pivot to the center of mass is £, and the pendulum’s
moment of inertia about the pivot is Z. These parameters are all assumed constant.

The line connecting the pivot to the center of mass is at an angle 6(¢) at time ¢,
measured clockwise from the vertical. An external torque is applied to the pendulum
around the axis of the pivot. We treat this torque as the input to our system, and denote
it by x(¢), taken as positive when it acts counterclockwise.

Suppose the system output variable of interest, y(¢), is just the pendulum angle,
so that y(r/)\— 6(t). In a typical control application, one might want to manipulate
x(t)—m%syiog to measurements that are fed back to the controller—so as to
mamt 1, the value 0, thus balancing the inverted pendulum vertically.

e@xt@na {sorque is opposed by the torque due to the acceleration g of gravity
act% cﬁ}otgér,m ich produces a clockwise torque of value mg¢sin(6(r)). Finally,
assun%/a ‘ﬁ?ﬁt@@ %rqﬁ%that opposes the motion in proportion to the magnitude of
the angﬁ@/ veg)c%y 'Ign;s G&ue is thus given by —B6(r), where 6(f) = d6(t)/dt and B
is some norﬁ)ggﬁ’f v g&n%fant o

Althoug@}lfé‘ né@rte@-yeﬁ@ulum is a simple system in many respects, it cap-
tures some essen% ¥ @,yst/ that arise in diverse balancing applications, for
instance, supportmglth @ r{@s hu@.an ankle or a mass on a robot joint or wheel
axle. There are also cgfp ol ppyz?t@(n?@ which the pendulum is intended to move
in the vicinity of its norni@l h 19@,})0’9&169 ather than the inverted position, that is,

with 6(¢) ~ 7. One might a (ﬁl‘fé]pendulum to rotate through full circles
around the pivot. All of thesq%@t%o% afb/> @1&51 by the equations below.

A Conventional Model The r@ t1 @1‘8 fs’ wton’s law says the rate of
change of angular momentum equals%@z %btm%pe%%e can accordingly write

y (Idfi(:) — mgt sm(%y@ ‘i@?ﬁ (1) . 1)

Since 7 is constant, the preceding expression can be r@?(jltten in a form that is closer
to what is typically encountered in an earlier differential’'equations course:

2
! dytgt) ﬁdy—() — mgtsin(y(1)) = —x(1) , (4.2)

which is a single second-order nonlinear differential equation relating the output y()
to the input x(¢).

7z

x(1)

Figure 4.1 Inverted pendulum.
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State Variables To get at the notion of state variables, we examine what constitutes
the memory of the system at some arbitrary time fy. Assume the parameters Z, m, ¢,
and B are all known, as is the external input x(¢) for # > #). The question is, what more
needs to be known about the system at fy in order to solve for the behavior of the
system for ¢ > fg.

Solving Eq. (4.1) for 6(¢) in the interval ¢ > fj ultimately requires integrating the
equation twice, which in turn requires knowledge of the initial position and velocity,
0(tp) and 6(ty) respectively. Another way to recognize the special role of these two
variables is by considering the energy of the pendulum at the starting time. The energy
is the result of past inputs to the system, and is reflected in the ensuing motion of the
system. The potential energy at t = £ is determined by 6(zy) and the kinetic energy by
6(ty), so these variables are key to understanding the behavior of the system for ¢ > f,.

State-Sp ﬁodel The above discussion suggests that two natural memory vari-
ables ofhe @ysté@ at any time t are g1(¢f) = 6(¢) and ¢»(¢) = 6(t). Taking these as
. QA8 7y . .. . .
candld%/e sﬁ'zge @n@les, a corresponding state-space description is found by trying
to expi gé}e%ge@gf %‘J@Ange of these variables at time ¢ entirely in terms of the values
of thes@&grii&lﬂf@@g’@&%input at the same time ¢. For this simple example, a pair of
equations@} gdée j edx%}tﬁ’f%@ln be obtained quite directly. Invoking the definitions
of g1(t) and N aSEq. &.1), and still assuming Z is constant, we obtain
91(0) andG) s Vel 2SE]-6.1) g

/’)/@[ (S;y@ o <

% 43
oy s -
At "% Loz o S
o e - pe0 -10). 44

This description comprises a p% 0(/ u(ﬁg&? @?Q@er differential equations, driven by
the input x(z). These are referre({:f%;isQ’be @}e‘%@l/@n equations. The corresponding
output equation expresses the out;%t» /y?t)geﬁ@re@,)}q fgms of the values of the state
variables and of the input at the same tﬁgoe ® % '®c®§,@@e output equation is simply

90 (e, 7, %, 4.5)

The combination of the state evolution equations afe tﬁééoutput equation constitutes

a state-space description of the system. The fact %at? h'a escription of the system

is possible in terms of the candidate state variables 6(r) aﬁ%ﬂ (f) confirms these as state
variables—the “candidate” label can now be dropped.

Not only does the ordinary differential equation description in Eq. (4.1) or equiv-

alently in Eq. (4.2) suggest what is needed to obtain the state-space model, but the

converse is also true: the differential equation in Eq. (4.1), or equivalently in Eq. (4.2),
can be obtained from Egs. (4.3), (4.4), and (4.5).

Some Variations The choice of state variables above is not unique. For instance, the
quantities defined by ¢1(f) = 6(¢) + 6(¢) and g2(f) = 6(t) — 6(¢) could have functioned
equally well. Equations expressing ¢1(), ¢2(t), and y(z) as functions of ¢ (¢), ¢2(¢), and
x(t) under these new definitions are easily obtained, and yield a different but entirely
equivalent state-space representation.

The state-space description obtained above is nonlinear but time-invariant. It
is nonlinear because the state variables and input, namely g1 (¢), g2(¢), and x(¢), are
combined nonlinearly in at least one of the functions defining g1 (¢), ¢»(t), and y(t)—in
this case, the function defining ¢,(¢). The description is time-invariant because all the
functions defining §1(¢), g2(¢), and y(f) are time-invariant, that is, they combine their
arguments q1(¢), q2(t), and x(¢) according to a prescription that does not depend on
time.
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For small enough deviations from the fully inverted position, g1(z) = 0(¢) is
small, so sin(q1(¢)) =~ g1 (). With this approximation, Eq. (4.4) is replaced by

dq;t(f) _ %(mgﬂh(t) — Bax(t) — x(1)) (4.6)

The function defining ¢,(¢) is now an LTI function of its arguments g (¢), g»(¢), and
x(1), so the resulting state-space model is now also LTI.

For linear models, matrix notation allows a compact representation of the state
evolution equations and the output equation. We will use bold lowercase letters for
vectors and bold uppercase for matrices. Defining the state vector and its deriva-

tive by
_[a® o 490 [qi()
% q()_[CIz(f)]’ 10 == —[qz(r)]’ “7)
the J,mé@} C%;@dél@a comes
Lb 1(t) 0 1 q1(1) 0
’//@ @0%8% %)] e ][ [ 17 0
} o % o/ % Aq(?) + bx(1) , (4.8)

where the d?@pat d@t‘l{/e@qalf@} A and vector b should be clear by comparison with
the preceding qi_s "ﬁi@ go@e@%ndmg output equation can be written as

%o ﬁ/gr%j ofﬁ{“gg] — a(). (49)

with ¢ denoting the tranﬁ@s a@o‘f@rﬁv ctor, that is, a row vector. The time
invariance of the system is reffégt@dn ﬂ); ﬁ@t f@ the coefficient matrices A, b, and
¢! are constant rather than timeXary 0

The ideas in the above example (% l% alized to much more elab-
orate settings. In general, a natural ch01cé°@f &zﬁeoglnables for a mechanical
system is the set of position and velocity Varlabl%}ssomated with each com-
ponent mass. For example, in the case of N point masses in three-dimensional
space that are interconnected with each other and to rigid supports by mass-
less springs, the natural choice of state variables would be the associated 3N
position variables and 3N velocity variables. If these masses were confined to
move in a plane, we would instead have 2N position variables and 2N velocity
variables.

The next example suggests how state-space models arise in describing
electrical circuits.

m Electrical Circuit

Consider the resistor-inductor-capacitor (RLC) circuit shown in Figure 4.2. All the
component voltages and currents are labeled in the figure.

We begin by listing the characteristics of the various components, which
we assume are linear and time-invariant. The defining equations for the inductor,
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i (1) L ig (1)

o~

i) ig (1)

+

&gmm
_ +
v(1) (ﬁ) R, § v (1)

ic(f) -

+

)/ . C ;F\ ve(®)
cg%o'.&e

() o
W% 7a, 9 T4 Figure 4.2 RLC circuit.
7, % G Y
capacu% o%&sﬁ» s take the form, in each case, of an LTI constraint relating

the Voltage"%ro%th%ﬁlé\@e Gand the current through it. Specifically, we have
4 .P dlL t
(7 629/
o,'} @O % @(, A dvc(t)
e ¥ _ Syl d
7% 0/5 (/o, Or /@ !
% 1@ —’)8,111@&)

"o, ﬁg-@:%iﬁ% (4.10)
The voltage source is defined by the 2 taﬁ V%ge is a specified or arbitrary
v(t), regardless of the current i(z) that 1s T
The next step is to describe the ;gpn% 86 these variables that arise
from interconnecting the components. The d@l }1&1 constraints for an elec-
trical circuit are imposed by Kirchhoff’s Volt/é{gﬁ ‘E@v (I;;VL) and Kirchhoff’s cur-
rent law (KCL). Both KVL and KCL produce Rddi abLTI constraints relating
the variables associated with the circuit. Here, KVL an@KCL yield the following
equations:

v(t) = vi(t) + vr, (1)
VR, (1) = VR, () + ve(?)

i(t) =ip(0)
ir(t) = ig, (t) + i, (1)
ig, () = ic(t) . (4.11)

Other such KVL and KCL equations can be written for this circuit, but turn out to be
consequences of the equations above, rather than new constraints.

Equations (4.10) and (4.11) together represent the individual components in the
circuit and their mutual connections. Any set of signals that simultaneously satisfies
all these constraint equations constitutes a valid solution—or behavior—of the cir-
cuit. Since all the constraints are LTI, it follows that weighted linear combinations or
superpositions of behaviors are themselves behaviors of the circuit, and time-shifted
behaviors are again behaviors of the circuit, so the circuit itself is LTI
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Input, Output, and State Variables Let us take the source voltage v(¢) as the input
to the circuit, and also denote this by x(z), our standard symbol for an input. Any of the
circuit voltages or currents can be chosen as the output. Choose v, (¢), for instance,
and denote it by y(z), our standard symbol for an output.

As in the preceding example, a good choice of state variables is established by
determining what constitutes the memory of the system at any time. Apart from the
parameters L, C, Ry, Ry, and the external input x(¢) for ¢ > fy, we ask what needs to
be known about the system at a starting time fy in order to solve for the behavior of
the system for ¢ > 1.

The existence of the derivatives in the defining expressions in Eq. (4.10) for the
inductor and capacitor suggests that at least i, (fo) and v¢(#y) are needed, or quantities
equivalent to these. Note that, similarly to what was observed in the previous example,
these Varia’@es are also associated with energy storage in the system, in this case the
energy, o @in the inductor and capacitor respectively. We accordingly identify the
twognaftgyd 4mefery variables of the system at any time ¢ as q(¢) = ir(¢) and g(¢) =
v@t?@ndogé?%are(pur candidate state variables.

Stat ﬂ? now develop a state-space description for the RLC circuit
of Flgu ?g@, %ess the rates of change of the candidate state variables at
time ¢ enturéj f?f te &pyalues of these variables and of the input at the same
time ¢. This 15/,5/1(0 §‘§e®cn@the full set of relations in Egs. (4.10) and (4.11),
eliminating all @a s ‘Gthefthatsthe input, output, candidate state variables, and
derivatives of the c4adi \Q te%arl

This process fofA D e@ai e@/a.ri?@e is not as transparent as in Example 4.1,
and some attention is éq rdb&; oncarry out the elimination efficiently. A
good strategy—and one th af( s'@ n'@te complicated circuits—is to express
the inductor voltage v () an gpg tof;}:ur@)at t) as functions of just the allowed

variables, namely iy (), vc(2), an ‘g v@) t@s is accomplished, we make the
substitutions @
O

diy (¢) @ % //> dv (z)
vi() =L fh /(?@; C : (4.12)

then rearrange the resulting equations to get tgé d canpressmns for the rates of
change of the candidate state variables. Following this ﬁspbcedure and introducing the
definition

CRi+R;

(4.13)

for notational convenience, we obtain the desired state evolution equations. These are
written below in matrix form, exploiting the fact that these state evolution equations
turn out to be linear:

[ =™ e (0] + [ 0. e

This is of the form
q() = Aq(r) +bx(1) (4.15)

q(0) = [g;gg] - [iL(’)] (4.16)

ve()

where
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and the definitions of the coefficient matrices A and b are determined by comparison
with Eq. (4.14). The fact that these matrices are constant establishes that the descrip-
tion is LTI. The key feature here is that the model expresses the rates of change of the
state variables at any time ¢ as constant linear functions of their values and that of the
input at the same time instant ¢.

As we will see in the next chapter, the state evolution equations in Eq. (4.14) can
be used to solve for the state variables iz (f) and vc(¢) for ¢ > 1y, given the input x(¢) =
v(t) for t > to and the initial conditions on the state variables at time fy. Furthermore,
knowledge of iz (¢), vc(t), and v(t) suffices to reconstruct all the other voltages and
currents in the circuit at time ¢. Having picked the output of interest to be vg, () = y(¢),
we can write (again in matrix notation)

/g/ ¥(0) = vy (6) = [Ry oe][ii((?)}chq(z), (417)

Inputs(% u(s\ Vlor Transforming Eqgs. (4.10) and (4.11) using the bilateral
aplgc /éransg)% ardl noting that differentiation in the time domain maps to mul-
tlphcﬁ/ Cbgs(/a@ tf’?g /form domain, we can solve for the transfer function H(s)
of the sﬁ(p 80( y‘?g) Alternatlvely, we can obtain the same transfer function
from Lapla@pt a@@n he state-space description in Egs. (4.14) and (4.17).
The next chapf%s é ad’;:gx formula for this transfer function in terms of the
coefficient matrm‘@r A/
For our RL @xj\ﬁg‘ e%ls?@g@gr function H(s) from input to output is

_,5 f@ (’O’ s+ LC)
H(s) @—‘%’&& //)9 % )Haw (4.18)

The corresponding input-output 5%8@}3/%],% dQ ﬁé}entlal equation is

d*y(1) +a<i +&> dy@® axé% )x(t) (4.19)

dr? R,C dt

/ /
&Oo ,)

The procedure for obtaining a state-space de%}ﬁtion that is illustrated
in Example 4.2 can be used even if some of the circuit components are non-
linear. It can then often be helpful to choose inductor flux rather than current
as a state variable, and similarly to choose capacitor charge rather than volt-
age as a state variable. It is generally the case, just as in the Example 4.2, that
the natural state variables in an electrical circuit are the inductor currents or
fluxes, and the capacitor voltages or charges. The exceptions occur in degen-
erate situations, for example where a closed path in the circuit involves only
capacitors and voltage sources. In the latter instance, KVL applied to this path
shows that the capacitor voltages are not all independent.

State-space models arise naturally in many problems that involve track-
ing subgroups of some population of objects as they interact in time. For
instance, in chemical reaction kinetics the interest is in determining the
expected molecule numbers or concentrations of the various interacting chem-
ical constituents as the reaction progresses in continuous time. Another
instance involves modeling, in either continuous time or discrete time, the
spread of a fashion, opinion, idea, or disease through a human population,
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or of a software virus through a computer network. The following example
develops one such DT model and begins to explore its behavior. Some later
examples extend the analysis further.

S cly R Viral Propagation

The DT model presented here captures some essential aspects of viral propagation in a
variety of settings. The model is one of a large family of such models, both deterministic
and stochastic, that have been widely studied. Though much of the terminology derives
from modeling the spread of disease by viruses, the paradigm of viral propagation has
been applied to understanding how, for example, malicious software, advertisements,
gossip, or gtural memes spread in a population or network.

Tbb)ddte ministic model here tracks three component subpopulations from the
nth D‘é%gj%gh othe (n + 1)th. Suppose the total population of size P is divided into
tl){/‘%égoﬁéng@b ng,ups or “compartments,” at integer time #:

7,, O (/»

.O’ n

° z[n] %5% sku'%e @mfectlves carrying the virus and therefore capable of
passing 119}0 T&; Q‘gsce@t- /bl@ﬁ)by the next epoch; and

e 7[n]>0is % ltmbép 0 80%2red no longer carrying the virus and no longer

susceptible, béééu é‘{o ax;g umty

The model below assumé§ ;%1 V@r}@@} afp real-valued rather than integer-valued,
which results in substanti . model, and may be a satisfactory
approximation when P is Very c. O /)/,) O/‘ /j

We assume the birth rate 19' eﬁ'ﬁt tHr éybg%s has the same value g; this
is the (deterministic) fractional i 1ncr n per unit time due to birth.
Suppose the death rate is also 8, so thé@otﬁ;&z%f%g population remains constant
at P. Assume 0 < 8 < 1.

Let the rate at which susceptibles bec&{@e Qﬁe@ be proportional to the con-
centration of infectives in the general populatlgﬁ e @rate of the form y (i[n]/P)
for some 0 < y < 1. The rate at which infectives move ¥ the recovered compartment
is denoted by p, with 0 < p < 1. We take newborns to be susceptible, even if born to
infective or recovered members of the population. Suppose also that newborns are
provided immunity at a rate 0 < v[n] < 1, for instance by vaccination, moving them
directly from the susceptible compartment to the recovered compartment. We consider
v[n] to be the control input, and denote it by the alternative symbol x[n].

With the above notation and assumptions, we arrive quite directly at the very
simple (and undoubtedly simplistic) model below, for the change in each subpopulation
over one time step:

s[n+1] = s[n] = —y (i[n]/P)s[n] + B(i[n] + r[n]) — BPx[n]
i[n+1] = i[n] = y (i[n]/P)s[n] — pi[n] — Bi[n]
r[n + 1] — r[n] = pi[n] — Br[n] + BPx[n] . (4.20)

A model of this type is commonly referred to as an SIR model, as it comprises
susceptible, infective, and recovered populations. We shall assume that the initial con-
ditions, parameters, and control inputs are chosen so as to maintain all subpopulations
at nonnegative values throughout the interval of interest. The actual mechanisms of

ber of susceptibles, currently virus-free but vulnerable to
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viral spread are of course much more intricate and complicated than captured in this
elementary model, and also involve substantial randomness and uncertainty.

If some fraction ¢ of the infectives gets counted at each time epoch, then the
aggregate number of infectives reported can be taken as our output y[#n], so

yln] = ¢i[n] . (4.21)

Notice that the expressions in Eq. (4.20) have a very similar form to the CT state evo-
lution equations we arrived at in the earlier two examples. For the DT case, take the
rate of change of a variable at time n to be the increment over one time step forward
from n. Then Eq. (4.20) expresses the rates of change of the indicated variables at
time #n as functions of these same variables and the input at time #. It therefore makes
sense to think’ef s[n], i[n], and r[n] as state variables, whose values at time n constitute
the state osgle'éystem at time n.

é 16d¢] Frore is time-invariant because the three expressions that define the
rateg o) z{" ezé)l 1@@1%: combining the state variables and input at time n accord-
ing {64 /po a0do not depend on n. The consequence of this feature is that
any set 6{5\9 %‘T@@n@@[ ?@gnals that simultaneously satisfy the model equations will
also satlsff @e §7e &E,lf they are all shifted arbitrarily by the same time off-
set. However d}le’ﬁﬁg Qb1s%t l@ar it is nonlinear because the first two expressions
involve a nonhne&; bLPeatl@a 0@1] and i[n], namely their product. The expression
in Eq. (4.21) wr1te§5§1e 8\ :a . as a function of the state variables and input
at time n—though it f?éjp 10%1154@156 ¢hat only i[n] is needed.

It is conventional /g range the state evolution equations into
a form that expresses the %n’%l asa function of the state variables and
input at time n. Thus Eq. (4. 2(?@31#)%51 b/ége%tt@,as

stn+11 = sl - y(z?m}/%n@ g?agz?’ yind - ]
ifn+1] = ifn] + y (i[n /%,Lnﬁép%g @@6[%]
Z
+1] = r[n] + 2 422
rln+ 1] = rln] + piln] ﬂr%g%o © (422)
In this form, the equations give a simple prescrlpﬁ?l’on Zy/) }amlng the state at time

n+ 1 from the state and input at time »n. Summing the%ree equations also makes
clear that for this example

sin+ 1] +in+1]+rn+1] =s[n]+i[n]+rn]=P. (4.23)

Thus, knowing any two of the subgroup populations suffices to determine the third,
if P is known. Examining the individual relations in Egs. (4.20) or (4.22), and noting
that the term i[n] + r[n] in the first equation of each set could equivalently have been
written as P — s[n], we see that the first two relations in fact only involve the suscepti-
ble and infective populations, in addition to the input, and therefore comprise a state
evolution description of lower order, namely

s[n+1] = s[n] = y (i[n]/P)s[n] + B(P — s[n]) — BPx[n]
iln + 1] = i[n] + y (i[n]/P)s[n] — pi[n] — Bi[n] . (4.24)

Figure 4.3 shows a few state-variable trajectories produced by stepping the model
in Eq. (4.24) forward from a particular s[0], fixed at 8000 out of a population (P)
of 10,000, using different initial values i[0]. Note that in each case the number of



Section 4.2

[llustrative Examples 143

Evolution of susceptibles and infectives

I I I
P=10,000, 8 =0.01
vy =0.2,p =0.1,x[n] = 0.5 ]
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Figure 4.3 Responﬁ’gf@ﬁ‘%@ﬂéﬂ{er és’@rtlcular choice of parameter values and a variety
of initial conditions. 7 /7, “or O G
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infectives, i[n], initially increas'ésgf%%it ?@a{%; starting time n = 0, before even-
tually decaying. This initial incred$€ woildco espor@ to “going viral” in the case of a
rumor, advertisement, or fashion that) 5t &h@r & social network, or to an epi-
demic in the case of disease propagatiof, c@g Qg,uation in Eq. (4.24) shows that

: . . Q. C, Y 7

i[n 4+ 1] > i[n] precisely when 7. 4. /)6/.‘9
s[n] - M % //) (4.25)

P y “ Ry & O '
Here 7
14

Ry=—"— 4.26
B+p (4:26)

is a parameter that typically arises in viral propagation models, and is termed the
basic reproductive ratio (referring to “reproduction” of infectives, not to population
growth). Thus i[n] increases at the next time step whenever the fraction of susceptibles
in the population, s[n]/P, exceeds the threshold 1/R. As s[n]/P cannot exceed 1, there
can be no epidemic if Ry < 1. The greater the amount by which R exceeds 1, the fewer
the number of susceptibles required in order for an epidemic to occur.

Figure 4.3 also shows that the system in this case, with the immunization rate
fixed at x[n] = 0.5, reaches a steady state in which there are no infectives. This is
termed an infective-free steady state. In Examples 4.8, 4.10, and 5.5, we explore fur-
ther characteristics of the model in Eq. (4.24). In particular, it will turn out that it is
possible —for instance by dropping the immunization rate to x[n] = 0.2 while keeping
the other parameters as in Figure 4.3 —for the attained steady state to have a nonzero
number of infectives. This is termed an endemic steady state.
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Compartmental models of the sort illustrated in the preceding example
are ubiquitous, in both continuous time and discrete time. We conclude this
section with another DT example, related to implementation of a filter using
certain elementary operations.

Syl et s Delay-Adder-Gain System

The block diagram in Figure 4.4 shows a causal DT system obtained by interconnecting
delay, adder, and gain elements. A (unit) delay has the property that its output value at
any integer time # is the value that was present at its input at time n — 1; or equivalently,
its input value at any time # is the value that will appear at its output at time n + 1. An
adder produ yan output that is the sum of its present inputs. A gain element produces
an outpugt '.és‘t)ie present input scaled by the gain value. These all correspond to LTI
opera@m?@gn th l%;fp@ctive input signals.

éz,/} rc@e@g;{&gvolves equating, or “connecting,” each input of these various
elemeﬁ@ e dogput of one of the elements. The result of such an inter-
connectl%%t@msg t %b@o)well behaved if every loop has some delay in it, that
is, provide&tpﬁe anyng/é}e?@y-free loops. An overall external input x[n] and an
overall externé@ olguy| nf’ %eﬁd o included in Figure 4.4. Such delay-adder-gain
systems (and the/ﬁ/ C‘ﬁ{go%tef‘ 1t which are integrator-adder-gain systems, as in

Example 4.5) are w?@e %g%c&létl‘?m&ng LTI filters that produce a signal y[-] from
a signal x[-]. O H_ Sg So Vi

The memory of this? Q%l(f@’é:n%p?{%l in the delay elements, so it is natural
to consider the outputs osf(gé@e/@& )at?dag Q%didate state variables. Accordingly,
we label the outputs of the rf?qn(/f@ g@,méﬁj; ¥, this example as gi[n] and ¢[n]
at time n. For the specific block @@é@m ?r?) ig@é?fﬁﬁ/ the detailed component and

interconnection equations relating the@n% ec@/iéﬁgls@g/e
o, Q) ¢

ailn+11 = qalnf, °0, %, %05
PN ’/)0
qpln+1=plnl 2 T
G % %
pln] = xfn] — 0.5q1 [+ 1

oo
ylnl = ga[n] +pln] . 4

The response of the system for n > ng is completely determined by the external
input x[n] for times n > ny and the values gi[ng] and g»[no] that are stored at the

(4.27)

x[n] o\ 1 pln] Lo y[n]
\

[o]

qo[n]
1.5 1
! D |
q4[n]

-0.5

Figure 4.4 Delay-adder-gain block diagram.
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outputs of the delay elements at time ng. The delay elements capture the state of the
system at each time step, that is, they summarize all the past history that is relevant
to how the present and future inputs to the system determine the present and future
response of the system.

The relationships in Eq. (4.27) need to be condensed in order to express the
values of the candidate state variables at time n 4 1 in terms of the values of these
variables at time » and the value of the external input at the same time instant ». This
corresponds to expressing the inputs to all the delay elements at time # in terms of all
the delay outputs at time n as well as the external input at this same time. The result
for this example is captured in the following matrix equation:

,\q[nH] N [Z;{Ziﬂ] - [—8.5 1%5] [Z;{ZH + [?]X[n]
Qo?/&z/ = Aq[n] +bx[n] . (4.28)

m@fy’% g,@/pffﬁgt at time # can be written in terms of the values of the candidate
&ﬁﬁ /a :Qme@}g and the value of the external input at the same time instant x:

Bs,. %, g

S

/ }t%] %—@ [ql{ZH + x[n] = ¢'q[n] + dx[n] . (4.29)
@/ é

Notice that le é? lé,un e in the previous examples, the output y[r] at any

time n depends %t LZ l%@sté{@ Varlables at time n but also on the input at that

time 7. // O,.

Equations (4. 2 4% that q1[n] and ¢»[n] are indeed valid state
variables. Specifically, thé@ 1t‘1‘x~.show that if one is given the values g1[ng]
and g»[ng] of the state Var%b}e@' S @Jty@jlme no, and also the input trajectory
from ny onward, that is, x[n tt%@s f@gwe can compute the values of the
state variables and the output foroorn S8 fﬁ@t is needed is to iteratively apply

Eq. (4.28) to find g1[no + 1] and qz% 4-@1? q&)(gnf(@ 2] and g;[ng + 2], and so on
for increasing time arguments, and to 437( nyach time to find the output.

Transforming the relationships in ng@]e bilateral z-transform, and
noting that time-advancing a signal by on /.{step’ aps, to multiplication by z in the
transform domain, we can solve for the transfe©functio @(z) of the system from x[-]
to y[-]. Alternatively, the same transfer function can be @bsained from z-transformation
of the state-space description; the next chapter presents an explicit formula for this
transfer function in terms of the coefficient matrices A, b, ¢’, and d. Either way, the
resulting transfer function for our example is

Y 1 !
H(z) = X&) _ AT (4.30)
X(@) 1-3z141z72
which corresponds to the following input-output difference equation:
3 1
y[n] — Y yln —1]+ Y y[n —2] = x[n] + x[n —1]. (4.31)

The development of CT state-space models for integrator-adder-gain
systems follows a completely parallel route. Integrators replace the delay ele-
ments. Their outputs at time ¢ constitute a natural set of state variables for
the system; their values at any starting time fy establish the initial conditions
for integration over the interval ¢ > #y. The state evolution equations result
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from expressing the inputs to all the integrators at time ¢ in terms of all the
integrator outputs at time ¢ as well as the external input at this same time.

4.3 STATE-SPACE MODELS

As illustrated in the examples of the preceding section, it is often natural
and convenient, when studying or modeling physical systems, to focus not
just on the input and output signals but rather to describe the interaction and
time evolution of several key variables or signals that are associated with the
various component processes internal to the system. Assembling the descrip-
tions of thes@ components and their interconnections leads to a description
thatist Re&t‘ﬁybn an input-output description. In particular, the examples in
Secti %S;d’@s system behavior in terms of the time evolution of a set
of s’za}e/ﬁl é‘stl@bcompletely capture at any time the past history of the
systenogs 1 ffg&t%heO%resent and future response. We turn now to a more
formal dgﬂ’gl n gf stage-@gace models in the DT and CT cases, followed by a
discussion @h@’ﬁw ge%l?'giharacterlstlcs of such models.

//)/ /5/ /5 (4)//

4.3.1 DT Stat‘%p@:%?

A state-space model 1( ,guﬂr’l? n@/a @St of state variables; we mostly limit
our discussion to real- Valﬁeg ﬁgteoﬁﬁr?a 165, The number of state variables in

amodel or system is referred)'tp «1& hall only deal with state-space
models of finite order, which ai%)@% 62& lumped models.

For an Lth-order model in t Dé% 9 rlcally denote the values
of the L real state variables at time n%)/v é@ ,qr|n]. Itis convenient
to gather these variables into a state VC(Q@I‘ O’ ?9

q1 [nf{ @/)O
@l | &7

qn]=| . .Y (4.32)
qrln]

The value of this vector constitutes the state of the model or system at time 7.

DT LTI State-Space Model A DT LTI state-space model with single or scalar
input x[n] and single output y[n] takes the following form, written in compact
matrix notation

q[n + 1] = Aq[n] + bx[n] , (4.33)
y[n] = ¢’q[n] + dx[n] . (4.34)

In Egs. (4.33) and (4.34), A is an L x L matrix, b is an L x 1 matrix or column
vector, and ¢’ is a 1 x L matrix or row vector, with the superscript 7 denoting
transposition of the column vector ¢ into the desired row vector. The quantity
disal x 1 matrix, or a scalar. The entries of all these matrices in the case of an
LTT model are numbers, constants, or parameters, so they do not vary with #.
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The next value of each state variable and the present value of the output are
all expressed as LTT functions of the present state and present input. We refer
to Eq. (4.33) as the state evolution equation, and to Eq. (4.34) as the output
equation. The model obtained for the delay-adder-gain system in Example 4.4
in the previous section has precisely the above form.

The system in Egs. (4.33) and (4.34) is termed LTI because of its struc-
ture: the next state and current output are LTI functions of the current state
and current input. However, this structure also gives rise to a corresponding
behavioral sense in which the system is LTI. A particular set of input, state,
and output signals—x[-], q[-], and y[-], respectively—that together satisfy the
above state evolution equation and output equation is referred to as a behav-
ior of th T LTI system. It follows from the linear structure of the above
equatj dﬁ;?j scahng all the signals in a behavior by the same scalar constant
agqg,n ets a haV10r of this system. Also, summing two behaviors again
y{@} Fea b@ha@r %ore generally, a weighted linear combination of behaviors
aga%ylégd a bé%a\/'@r so the behaviors of the system have the superposition
prope‘ﬁ% ?‘fqglﬁ'@ ows from the time invariance of the defining equa-
tions that’ %yb?ﬁ' r@ 1rﬁ'g shift of a behavior—shifting the input, state, and
output mgnﬁ; 11? ,;n%\ y@ @me amount—again yields a behavior. Thus, the
LTI structure @ hc(veqtigm{% 1%11rrored by the LTI properties of its solutions

or behaviors. /} O’;{- 0 @ 6}

Y
Delay-Adder-Gain Rf%fﬁ-t (?(» A;?d%l'a adder—galn system of the form en-
countered in Example 4.4.ca Cﬁ%e’ ulate, or “realize,” any Lth-order,
DT LTI model of the typ V&blg”/}/i(f?/ 4’@2) and (4.34). Key to this is the

fact that adders and gains sufﬁze he additions and multiplica-
tions associated with the Varlous‘?njaﬁ‘yiﬁ}gltr@(géﬁﬁons in the LTT state-space
description. /' %,

()
%,

To set up the simulation, we beg‘? 1172 it elements, and label their
outputs at time 7 as gj[n] forj = 1,2,- % t‘f% c@;espondmg inputs are then
gj[n + 1]. The ith row of Eq. (4. 33) shows what blnatlon of these g;[n]
and x[n] is required to compute ¢;[n + 1], for eachré/— -, L. Similarly, Eq.
(4.34) shows what LTI combination of the variables is required to compute
y[n]. Each of these LTI combinations can now be implemented using gains
and adders.

The implementation produced by the preceding prescription is not
unique: there are multiple ways to implement the linear combinations,
depending, for example, on whether there is special structure in the matri-
ces, or on how computation of the various terms in the linear combination is
grouped and sequenced. In the case of the system in Example 4.4, for example,
starting with the model in Egs. (4.28) and (4.29) and following the procedure
outlined in this paragraph will almost certainly lead to a different realization
than the one in Figure 4.4.

Generalizations Although our focus in the DT case will be on the above
LTI, single-input, single-output, state-space model, there are various natural
generalizations of this description that we mention for completeness. A multi-
input DT LTI state-space model replaces the single term bx[n] in Eq. (4.33)



148

Chapter 4 State-Space Models

by a sum of terms, byx{[n] + - - - + bysxp[n], where M is the number of inputs.
This corresponds to replacing the scalar input x[n] by an M-component vector
x[n] of inputs, with a corresponding change of b to a matrix B of dimension
L x M. Similarly, for a multi-output DT LTI state-space model, the single out-
put quantity in Eq. (4.34) is replaced by a collection of such output equations,
one for each of the P outputs. Equivalently, the scalar output y[n] is replaced
by a P-component vector y[n] of outputs, with a corresponding change of ¢!
and d to matrices C” and D of dimensions P x L and P x M respectively.

A linear but time-varying DT state-space model takes the same form as
in Egs. (4.33) and (4.34), except that some or all of the matrix entries are time-
varying. A linear but periodically varying model is a special case of this, with
matrix entri that all vary periodically with a common period.

All 8 (R ,above generalizations can also be simulated or realized by
delayga dl;,;r gmnqg;zstems except that the gains will need to be time-varying
for &as@08 "@Lnfe varying systems. For the nonlinear systems described
belowoglorf:g efa(b&@@te’@mulatlons are needed, involving nonlinear elements
or comb (9 @o 0

A noﬁ’hge‘%qsg ?ﬁg Qf@ant single input, single output model expresses
q[n + 1] and ﬂ?‘%% 11‘6;& t time-invariant functions of q[n] and x[n],

rather than ast é’é:nbodled by the matrix expressions on the
right-hand sides o é@d (.34). Our full and reduced models for
viral propagation in m@e% Qx.e%o of this type. A third-order nonlin-
ear time invariant state-Sp cg/@o’df)”@,r %stance comprises state evolution
equations of the form O/;{_ % @ (/ .L

%
qi[n+1] f%l%&fjjﬁ]’«%[@lﬁ )
g2l + 11 = fo m]@ﬂ?& %J)ﬂ% )
gsln +11 = f3(a1[n] qz%qﬂnf@gz) (4.35)

and an output equation of the form
yin] = g(ql[nl,qz[n],qg[n],x[n]) : (4.36)

where the state evolution functions f(-), /2(+), f3(-) and the output function
g(+) are all time-invariant nonlinear functions of the three state variables g1 [n],
q2[n], g3[n], and the input x[n]. Time invariance here means that the functions
combine their arguments in the same way, regardless of the time index n. In
vector notation,

aln+ 1] =f(alnl.xnl) . yinl=g(alnlxlnl),  (437)
where for the third-order case
()
()= L) |- (4.38)
50

The notation for an Lth-order description follows the same pattern.
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Finally, a nonlinear, time-varying model expresses q[n + 1] and y[n] as
nonlinear, time-varying functions of q[n] and x[#n]. In other words, the manner
in which the state evolution and output functions combine their arguments
can vary with n. For this case, we would write

aln -+ 1] =f(qlnl.x[nl.n) . ylnl = g(alnlxlnln) . (439)

Nonlinear, periodically varying models can also be defined as a particular case
in which the time variations are periodic with a common period.

4.3.2 CT State-Space Models

Contin Lég;ume state-space descriptions take a very similar form to the DT
case. gh’&yst variables for an Lth-order system may be denoted as g;(t),
i _‘%29/ ‘S\,b}a'ﬁ;l the state vector as

Yo, &, L’dofo q1(t)
., P, QO o B
%, L o q2(t)
% % S0, @
9 X o O/G/ o q@) = . . (4.40)
/
%, % S5, ,5 %, qr(t)

In the DT case‘?ﬁi s’f@te@/(ﬁu&l&i\sequatlon expresses the state vector at the
next time step in teﬁhl/s’é,frtﬁ*é, agittstate vector and input values. In the CT
case the state evoluti t ré‘gses the rates of change or derivatives
of each of the state Varia?ﬂ; @t s'@j, the present state and inputs.

CT LTI State-Space Model 63]5 Og @&ap 'Is*t}-?%der CT LTI state-space repre-
sentation takes the form

dq(t) o, %,
== ,1( b (4.41)
() = c@) %@, (4.42)

where dq(t)/dt = §(t) denotes the vector whose eﬁirles are the derivatives of
the corresponding entries of q(¢). The entries of all these matrices are numbers
or constants or parameters that do not vary with ¢. Thus, the rate of change of
each state variable and the present value of the output are all expressed as
LTI functions of the present state and present input. As in the DT LTI case,
the LTI structure of the above system is mirrored by the LTI properties of
its solutions or behaviors, a fact that will become explicit in Chapter 5. The
models in Egs. (4.8) and (4.9) of Example 4.1 and Egs. (4.14) and (4.17) of
Example 4.2 are precisely of the above form.

Integrator-Adder-Gain Realization Any CT LTI state-space model of the
form in Egs. (4.41) and (4.42) can be simulated or realized using an integrator-
adder-gain system. The approach is entirely analogous to the DT LTI case
that was described earlier. We begin with L integrators, labeling their out-
puts as g;(¢t) for j=1,2,---, L. The inputs of these integrators are then the
derivatives g;(t). The ith row of Eq. (4.41) now determines what LTI combina-
tion of the g;(¢) and x(z) is required to synthesize g;(t), for eachi=1,2,---, L
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We similarly use Eq. (4.42) to determine what LTI combination of these vari-
ables is required to compute y(¢). Finally, each of these LTI combinations
is implemented using gains and adders. We illustrate this procedure with a
specific example below.

Generalizations The basic CT LTI state-space model can be generalized
to multi-input and multi-output models, to nonlinear time-invariant mod-
els, and to linear and nonlinear time-varying or periodically varying models.
These generalizations can be described just as in the case of DT systems, by
appropriately relaxing the restrictions on the form of the right-hand sides of
Egs. (4.41) and (4.42). The model for the inverted pendulum in Egs.
(4.3), (44), /gnd (4.5) in Example 4.1 was nonlinear and time-invariant,
of the forrﬁ) () 4

// %@ (q(o,x(z)) o0 =g(a0.x0) . (4.43)
%, o

A gen Recar” r@» ime-varying CT state-space model with a single

input af?ﬁi?@g he form

q@a 4@@ »gg’&}@, v =g(a0x0.0) . (dad)
/ﬁ / /) (/O, ofef
m Simulation of lnvertewé@i&gﬁfﬁoﬁ%mall Angles
0 0% %

For sufficiently small angular de\f?@tlo t?om *ﬂ} f%ly inverted position for the
inverted pendulum considered in Exﬁ f@mal nonlinear state-space
model simplifies to the LTI state-space 196 g’c@ S8 b?%by Egs. (4.8) and (4.9). This

LTI model is repeated here for convenience, t @erical values of a specific
pendulum inserted: /,;, ’O’ /)
w0-[201-[0 qum}%%]
t) = . = t
4 [fn(l) 8 o | T 0
= Aq(?) + bx(¢) (4.45)
and
Yoy =[1 0] [ql(t)} = cTq(0) . (4.46)
q2(1)

To simulate this second-order LTI system using integrators, adders, and gains,
we begin with two integrators and denote their outputs at time ¢ by ¢1(¢) and ¢»(¢).
The inputs to these integrators are then ¢i1(¢) and ¢,(¢), respectively, at time . The
right-hand sides of the two expressions in Eq. (4.45) now show how to synthesize
G1(t) and §(¢) from particular weighted linear combinations of qi(¢), g2(¢), and x(¢).
We use gain elements to obtain the appropriate weights, then adders to produce
the required weighted linear combinations of gi(¢), g2(t), and x(¢). By feeding these
weighted linear combinations to the inputs of the respective integrators, ¢i(f) and
G»(1) are set equal to these expressions. The output y(¢) = g1 () is directly read from
the output of the first integrator. The block diagram in Figure 4.5 shows the resulting
simulation.



Section 4.3

State-Space Models 151

x(1) [: ®42(l) ] 7(1) 41(0) ] a() ¥

|
8
|

Figure 4.5 Integrator-adder-gain simulation of inverted pendulum for small angular deviations
from vertical.

o= O, -

4@./% Qé‘fd/mﬁg Properties of State-Space Models
AL B

11(@6»8»3 inbg}gﬁﬁ)acteristics of state-space models are the following:

GKS‘ ?// 66‘ (4 GO
(o 9 S0, o .

° Staé’qy@?’pﬁm@oréﬁﬁgerty The state at any initial time, along with the
input®ov&r gk 1n®;6’;{l,from that initial time onward, determine the
state trafe {G y, that {é@t?f@state as a function of time, over that entire
interval. \?g:y 1 ‘};)0%3{ é)ast that is relevant to the future state is

Q

embodied in tﬁé,g) ,:gge

e Instantaneous O?@% P ,g/?ngy@%e outputs at any instant can be
written in terms of tﬁgs@e aﬁg fﬁ%ufs;kgt that same instant.

I NI

The state evolution property i(d\)shzﬁ ) e’g@tgﬁg‘-space models particularly
well suited to describing causal S}@ES ‘&)?T LTI case, the validity of
this state evolution property is evidefRe.f13; i ./%33), which allows q[n] to
be updated iteratively, moving from time/ﬁé@tcf%i{&% + 1 using only knowledge
of the present state and input. The same afgu t can also be applied to the
general DT state evolution expression in Eq. (4.39)

The state evolution property in the general CT case is more subtle to
establish, and actually requires that the function f(q(¢), x(¢), ¢) defining the rate
of change of the state vector satisfy certain mild technical conditions. These
conditions are satisfied by all the models of interest to us in this text, so we
shall not discuss the conditions further. Instead, we describe how the avail-
ability of a CT state-space model enables a simple numerical approximation
of the state trajectory at a discrete set of times spaced an interval A apart. This
numerical algorithm is referred to as the forward-Euler method.

The algorithm begins by using the state and input information at the
initial time fy to determine the initial rate of change of the state, namely
f(q(to),x(t9), to). As illustrated in Figure 4.6, this initial rate of change is tan-
gent to the state trajectory at fy. The approximation to the actual trajectory
is obtained by stepping forward a time increment A along this tangent—the
forward-Euler step—to arrive at the estimate

q(to + A) ~ q(to) + £(q(10), x(t0), 00) A (4.47)
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i)

qi(to) :
| qi(t)
I
Figure 4.6 Using the CT state
hHtA evolution equations to obtain the state
)afo trajectories over an interval.
7
/) (y
% 9,

This }Q;/e@&lvﬁ]@nﬁt}a using a first-order Taylor series approximation to the
traj ?b/ppgjslﬁg aﬁg;rward difference approximation to ().

Cﬂse tu@@t cs)f q(to + A) now available, and knowing the input
x(to + A)’b} tmge% —i—@: t%e same procedure can be repeated at this next
time 1nstant’3§1€?‘gb ge gg@n approximation to q(#y +2A). This iteration

can be contmu’@;j Gdg» 1‘9@ ep 1nterval of interest. Under the technical
conditions allude orithm accumulates an error of order
A? at each time stép» tlme steps in an interval of length

T, thereby accumulatmfgs eﬁt@rofﬁ ‘&tder TA by the end of the inter-
val. This error can be nm(glé’o;%‘%rai}ﬂg %nall by choosing a sufficiently
small A. 0 ‘9/‘ C‘/

The forward-Euler algoﬁ@n? 1@06@ téf Buggest how a CT state-
space description gives rise to t‘hf; &t t@, eguﬁ'@n property. For actual
numerical computation, more soph?sjgcab,e/:i& rlcal routines would be
used, based for example on higher- e, f?gserles approximations,
and using variable-length time steps for B’gtt%e‘f’(aggr control. The CT LTI
case is, however, much simpler than the enel@é dase. We shall demon-
strate the state evolution property for this class & state- -space models in
detail in the Chapter 5, when we show how to explicitly solve for their
behavior.

The instantaneous output property is evident in the LTI case from the
output expressions in Egs. (4.34) and (4.42). It also holds for the various gener-
alizations of basic single-input, single-output LTI models that we listed earlier,
most broadly for the output relations in Eqs. (4.39) and (4.44).

The state evolution and instantaneous output properties are the defining
characteristics of a state-space model. In setting up a state-space model, we
introduce the additional vector of state variables q[n] or q(¢) to supplement
the input variables x[n] or x(¢) and output variables y[n] or y(¢). This supple-
mentation is done precisely in order to obtain a description that satisfies these
properties.

Often there are natural choices of state variables suggested directly by
the particular context or application. As already noted, and illustrated by the
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preceding examples in both DT and CT cases, state variables are related to
the “memory” of the system. In many physical situations involving CT models,
the state variables are associated with energy storage because this is what is
carried over from the past to the future.

One can always choose any alternative set of state variables that together
contain exactly the same information as a given set. There are also situations
in which there is no particularly natural or compelling choice of state variables,
but in which it is still possible to define supplementary variables that enable a
valid state-space description to be obtained.

Our discussion of the two key properties above —and particularly of the
role of the state vector in separating past and future —suggests that state-space
models ar€particularly suited to describing causal systems. In fact, state-space
mode]s%re Almost never used to describe noncausal systems. We shall always
assgm ﬁer{e, vﬂaf_:n dealing with state-space models, that they represent causal
sj@} s 991 gh causality is not a central issue in analyzing many aspects
of ¢ If‘iyn{(sgt{@g cfb,mgnal processing systems, particularly in non-real-time
conteﬁ?&% ﬁ@lgm I"Qggentral to control design and operation for dynamic
systems, %1 Ox'(s>> fééstate -space descriptions find their greatest value

and use. /‘ S D (/
/’7/ ’5/ ) ’zg %,
% 12, %, 0, o
} O%\Q (/@ 0
RN

4.4 STATE-SPACE MODELS FI?QM‘@&'P{)/ ’/)6\/&00
INPUT-OUTPUT MODELS O/:f & @,/;(/ 'Off
/> %, ’o % 0’5/
State-space representations can’&) tﬁp@l nd directly generated dur-
ing the modeling process in a Varleﬁy o% the examples in Section 4.2
demonstrated. Other—and perhaps éﬂ}laf{gdescnptlons can then be
derived from them, for instance input-o e@' tions.

It is also possible to proceed in the re@'ersézdlrwtlon, constructing state-
space descriptions from transfer functions, unit s#ple or impulse responses,
or input-output difference or differential equations, for instance. This is often
worthwhile as a prelude to simulation, filter implementation, in control design,
or simply in order to understand the initial description from another point of
view. The state variables associated with the resulting state-space descriptions
do not necessarily have interesting or physically meaningful interpretations,
but still capture the memory of the system.

The following two examples illustrate this reverse process, of synthesiz-
ing state-space descriptions from input-output descriptions, for the important
case of DT LTT systems. Analogous examples can be constructed for the CT
LTI case. The first example below also makes the point that state-space models
of varying orders can share the same input-output description, a fact that we
will understand better following the structural analysis of LTT systems devel-
oped in the next chapter. That structural analysis actually ends up also relating
quite closely to the second example in this section.
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The earlier chapters % tlﬁs t%:g fby?{%d on the effect of linear and time-
invariant (LTT) systems (ﬁé@rﬁﬁnﬁ?@ ?%nals developing tools for analyz-
ing this class of signals and sﬁfte@ $these to understand applications
in communication (e.g., AM ? @) ul/affo,n) control (e.g., stability of
feedback systems), and signal pf& e %Q&e 2 r1ng) It is important to
develop a comparable understand1 %,%b ted tools for treating the
effect of LTI systems on signals modele c@w of probabilistic exper-
iments, that is, the class of signals referred’}&p om signals, alternatively
referred to as random processes or stochastic pf%:egf.es. Such signals play a
central role in signal and system analysis and des1gnéln this chapter, we define
random processes through the associated ensemble of signals, and explore
their time-domain properties. Chapter 11 examines their characteristics in the
frequency domain. The subsequent chapters use random processes as models
for random or uncertain signals that arise in communication, control and sig-
nal processing applications, and study a variety of related inference problems
involving estimation and hypothesis testing.

10.1 DEFINITION AND EXAMPLES OF
A RANDOM PROCESS

In Section 7.3, we defined a random variable X as a function that maps
each outcome of a probabilistic experiment to a real number. In a similar
manner, a real-valued continuous-time (CT) or discrete-time (DT) random
process— X (¢) or X|[n], respectively—is a function that maps each outcome of

380
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a probabilistic experiment to a real CT or DT signal, termed the realization
of the random process in that experiment. For any fixed time instant ¢ = ¢y or
n = ny, the quantities X (¢y) and X[ng] are simply random variables. The col-
lection of signals that can be produced by the random process is referred to as
the ensemble of signals in the random process.

Random Oscillators

As an example of a random process, consider a warehouse containing N harmonic
oscillators, each producing a sinusoidal waveform of some specific amplitude, fre-
quency, and phase. The three parameters may in general differ between oscillators.
This collection constitutes the ensemble of signals. The probabilistic experiment that
yields a@g lar signal realization consists of selecting an oscillator according to some
pro 1t /@aa yfunction (PMF) that assigns a probability to each of the numbers from

to% S@ th@& thegith oscillator is picked with probability p;. Associated with each
o @:pﬁlynent is a specific sinusoidal waveform. Before an oscillator is
chos tﬁe e%u ta ty about what the amplitude, frequency, and phase of the
outcom@i tﬁ@ 1%@@/111 be, that is, the amplitude A, frequency @, and phase ®
are all ramfégu?@; abi&s.ﬁpr@e?/uently, for this example, we might express the random

process as //>/ //'5 //3 /)/
4/@(8 4 &'{@) Asin(®f + ©) (10.1)

where, as in Figure 10}03‘5 v@)cbg'@g) 119%3 Qf\ter the semi-colon the parameters that are
random variables. As the ;e@@ we will typically simplify the notation to
refer to X (¢) when it is clea?zgzh P%ga ;ﬂ!’@re random variables; so, for example,
Eq. (10.1) will alternatively be%lt@@ a§> %

X(ﬁ/;; g} ggl%t 4{@% (10.2)

The value X(#;) at some specific time 'ﬁf@ls %om variable. In the context of
this experiment, knowing the PMF associ %%1% selection of the numbers 1 to

N involved in choosing an oscillator, as wella Seific amplitude, frequency, and
phase of each oscillator, we could determine the pro f?fty distributions of any of the
underlying random variables A, ®, ©, or X (¢1) mentionéd above.

¥ : ° J Amplitude
[ J
® o X(t:4h)
[ ]
[ ]
‘. e % o
[ t
| f !

Figure 10.1 A random process.

Throughout this and later chapters, we will consider many examples of
random processes. What is important at this point, however, is to develop a
good mental picture of what a random process is. A random process is not just
one signal but rather an ensemble of signals. This is illustrated schematically
in Figure 10.2, for which the outcome of the probabilistic experiment could
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be any of the four waveforms indicated. Each waveform is deterministic, but
the process is probabilistic or random because it is not known a priori which
waveform will be generated by the probabilistic experiment. Consequently,
prior to obtaining the outcome of the probabilistic experiment, many aspects
of the signal are unpredictable, since there is uncertainty associated with which
signal will be produced. After the experiment, or a posteriori, the outcome is
totally determined.

If we focus on the values that a CT random process X(¢) can take at a
particular instant of time, say #; —that is, if we look down the entire ensem-
ble at a fixed time —what we have is a random variable, namely X (¢1). If we
focus on the ensemble of values taken at an arbitrary collection of ¢ fixed
time instants\f; < ) < -+ - < tp for some arbitrary positive integer ¢, we have a
set of £ joigt dlstrlbuted random variables X (1), X (%), - -+, X(t), all deter-
mlnesl g@ the outcome of the underlying probablhstic experiment.
Fram @@s p81 {ylew a random process can be thought of as a family of
]omt/ﬁbd@tgﬁ@ m variables indexed by ¢. A full probabilistic char-
acterlzaﬁprﬁof SQS {O 10n of random variables would require the joint
probablht @f@@@pﬁ%(PDFs) of multiple samples of the signal, taken
at arbitrary Q;ﬁso/“é 6‘@ . (/

/@ 6‘@, & 2
\%Lﬁﬁgﬁzﬁ’@g?%éo’@x(zl)(xl,X2,--- ,X¢) (10.3)

for all £ and all #1, to, - t[./,> %

Correspondingly, a f&g}ﬁo/n? ss consists of a collection of ran-
dom variables X[n] for aﬁ:pﬂ@g%,vé&yeé@of n, with a full probabilistic
characterization c0n51st1ng of 1%8,] g,t’Pé)% 5/

@ N 9 o
X X1, ..OQ}{[ ﬁi{,g?so'é' ,X¢) (10.4)
O 77 .y
for all ¢ and all integers ny, - - - , 1. < ?;Z”o@ /?Q
%, % Yo,
> "4 7.
%
A ~
\‘\V/\VA"AVAV,\V '\VA VAVA'A' S Avl'\ _vAv_ . X(l) — X[,(l)

e N  AAAN N /\M A A N\ IX(t)=Xb(f)

VAVAVI\VA ;-/\’\\ /\VM\/AAVAV ,\V VAVAVAVA‘/\ , X(6)= X (1)

MV.VMV/\A\IAVAV/\-\V WA\/\/ \\"A\/\/V o~ V/ ; X(t) — Xd(l‘)

| 5]

Figure 10.2 Realizations of the random process X(t).
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In a general context, it would be impractical to have a full characteri-
zation of a random process through Eqgs. (10.3) or (10.4). As we will see in
Example 10.2 and in other examples in this chapter, in many useful cases
the full characterization can be inferred from a simpler probabilistic char-
acterization. Furthermore, for much of what we deal with in this text, a
characterization of a random process through first and second moments, as
discussed in Section 10.2, is useful and sufficient.

An Independent Identically Distributed (I.1.D.) Process

Consider @T random process whose values X[n] may be regarded as independently
chose & fime 7 from a fixed PDF fx(x), so the values are independent and identi-
cally ﬂs;/{l 'te@//?_hfareby yielding what is called an independent identically distributed
(1. d7%pprapess/Such processes are widely used in modeling and simulation. For exam-
pl(f @A@%sé’%ﬁé’ﬁ%c /DT communication channel corrupts a transmitted signal with
addegfgpl’s}, &heQi&n fakes on independent values at each time instant, but with
characte%st'@g}}l%e% Lﬁw anging over the time window of interest, then the noise
may be weﬁgm‘ d);le@{gasécfyi. l, process. It is also easy to generate an i.i.d. process in
h . Lo . (e
a simulation e‘ﬁ,gré%n@% ﬁ‘];%;ld a random number generator can be arranged to
produce sample nma sp?&i g E. Processes with more complicated dependence
across time sample? @p'ﬁﬁlep@g Qota@@;l by filtering or other operations on the i.i.d.
process, as we will see id;tl( 8h§§te9§s Well as the next.
For an i.i.d. proce%@vé@ar?@ri /:[Ift"o,&oint PDF as a product of the marginal
densities, that is, O%@/?Qo@@/}) ’(/O/O J/?Qé
% 7
FrtmahXins, - xin [0 385 L) 5 () o fae) (105)
&y % () . @&

f i 2. 78 %
or any choice of £ and ny,- - - ,ny. > . S P,

An important set of questions that arises &, o% work with random pro-
cesses in later chapters of this text is whether, by observing just part of the
outcome of a random process, we can determine the complete outcome. The
answer will depend on the details of the random process. For the process in
Example 10.1, the answer is yes, but in general the answer is no. For some ran-
dom processes, having observed the outcome in a given time interval might
provide sufficient information to know exactly which ensemble member it cor-
responds to. In other cases this will not be sufficient. Some of these aspects are
explored in more detail later, but we conclude this section with two additional
examples that further emphasize these points.

Ensemble of Batteries

Consider a collection of N batteries, with N; of the batteries having voltage v;, where v;
is an integer between 1 and 10. The plot in Figure 10.3 indicates the number of batteries
with each value v;. The probabilistic experiment is to choose one of the batteries, with



384 Chapter 10 Random Processes

Number of
batteries
N W R N

Battery voltage

Figure 10.3 Plot of battery voltage distribution for Example 10.3.

the probabili }7 of picking any specific one being + N, that is, any one battery is equally
likely to be picked. Thus, scaling Figure 10.3 by 4 ~ represents the PMF for the battery
voltage tﬁyed/@s the outcome of the probabilistic experiment. Since the battery volt-
age is s@nal 16}31 in this case happens to be constant with time), this probabilistic
exp@y %g elﬁ es@ andom process. In fact, this example is similar to the oscilla-
tor ex@%’ 156 sé@,ea ier, but with frequency and phase both zero so that only the
amplitu /§4/ 1cted to be an integer.

Fort x@lyp)fe’ ) r%gon of X() at any one time is sufficient information to

determine the @}tc@ge ﬁ@r alyi Iﬁ
S, (;5 ’>/
9 @ ’/) 0
/
Example 10. 3 gm rﬁ/ %q;l{ézgandom process that, together with
Example 10.4, helps to zﬂge spnfe&fﬁpé)rtant general concepts of station-
arity and ergodicity assoc1a@4c_l%h<%ﬁr@grﬁ9rocesses

S % O/~
%0 5.2 %
S Elpdn ] Ensemble of Coin Tossers \S‘,) e @O’\s* % /7@
%, 0, % ‘906

7

In this example, consider a collection of N ﬂ%@é@ @lependently having written
down a long arbitrary string of 1s and Os, w1%ea% é(ﬁ)gy chosen independently of
any other entry in their string (similar to a sequetice dZindgpendent coin tosses), and
with an identical probability of a 1 at each entry. The raftfom process now comprises
this ensemble of the strings of 1s and 0s. A realization of the process is obtained by
randomly selecting a person (and therefore one of the N strings of 1s and 0s). After
selection, the specific ensemble member of the random process is totally determined.

Next, suppose that you are shown only the 10th entry in the selected string.
Because of the manner in which the string was generated, it is clearly not possible
from that information to determine the 11th entry. Similarly, if the entire past history
up to the 10th entry was revealed, it would not be possible to determine the remaining
sequence beyond the tenth.

While the entire sequence has been determined in advance by the nature of the
experiment, partial observation of a given ensemble member is in general not sufficient
to fully specify that member.

Rather than looking at the nth entry of a single ensemble member, we can con-
sider the random variable corresponding to the values from the entire ensemble at the
nth entry. Looking down the ensemble at n = 10, for example, we would see 1s and Os
in a ratio consistent with the probability of a 1 or 0 being chosen by each individual
atn = 10.
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10.2 FIRST- AND SECOND-MOMENT
CHARACTERIZATION OF RANDOM
PROCESSES

In the above discussion, we noted that a random process can be thought of as
a family of jointly distributed random variables indexed by ¢ or n. However
it would in general be extremely difficult or impossible to analytically repre-
sent a random process in this way. Fortunately, the most widely used random
process models have special structure that permits computation of such a sta-
tistical specification. Also, particularly when we are processing our signals
with llneé( systems, we often design the processing or analyze the results by
con&dgn@x\only the first and second moments of the process.

q h@ﬁrftgmoment or mean function of a CT random process X (), which
Vy?‘%yglc‘%lly@srfo&e as ux (1), is the expected value of the random variable X (¢)

é’g,c

lokts sy,
7 nx(1) = E[X(0)] . (10.6)

The autocgi’;el@t}ﬁ%ﬁfngtrﬁ@/and the autocovariance function represent sec-
ond moment @h’&;ﬁut@coépe@%on function Rxx (t1,1) is

% o%/%;@(%? t%, E[X(1)X ()] (10.7)
and the autocovarlanc@&ul@g@r /é%;;(ﬁ‘%z) is
Cxx(t1,10) = E,;@d,tl’?/— i%(@)(xaz) nx(12))]
T @)fﬁ@%(@ (10.8)

where #; and #, are two arbitrary tlrﬁ@‘uf "@;ﬁ word auto (which is some-
times dropped to simplify the termino @1%‘% the fact that both samples
in the correlation function or the covarﬁmc‘g@ﬁglon come from the same
process. /

One case in which the first and second moments actually suffice to com-
pletely specify the process is a Gaussian process, defined as a process whose
samples are always jointly Gaussian, represented by the generalization of the
bivariate Gaussian to many variables.

We can also consider multiple random processes, for example, two
processes, X(-) and Y(-). A full stochastic characterization of this requires the
PDFs of all possible combinations of samples from X (-) and Y (-). We say that
X(-) and Y(-) are independent if every set of samples from X (-) is independent
of every set of samples from Y(-), so that the joint PDF factors as follows:

Fx@). - x@).x(@). - vy &1 X Y1, 5 ye)
=fx(), - x@) ¥ XSy @), vy ye) (10.9)

for all k, £, and all choices of sample times.
If only first and second moments are of interest, then in addition to the
individual first and second moments of X(-) and Y(-), we need to consider the
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cross-moment functions. Specifically, the cross-correlation function Ry (¢1,%)
and the cross-covariance function Cxy(f1,#,) are defined respectively as

ny(tl,tg) = E[X(tl)Y(tg)], and (10.10)
Cxy(t1,12) = E[(X(t1) — ux(t1))(Y(12) — pny(t2))]
= Rxy(t1,2) — ux(t1)pny(t2) (10.11)

for arbitrary time 1, . If Cxy(t1,5,) = 0 for all 1, 1, we say that the processes
X(-) and Y(-) are uncorrelated. Note again that the term uncorrelated in its
common usage means that the processes have zero covariance rather than zero
correlation.

The abgve discussion carries over to the case of DT random processes,
with the @;(c ézon that now the sampling instants are restricted to integer
tlmesﬁp @ce@r e with our convention of using square brackets [ - ] around
the@tu‘?@ rg}rﬁ)@nl/gsfor DT signals, we will write px[n] for the mean func-
tion b L’ process X[ -] at time n. Similarly, we will write Rxx[n1,n,]
and C X)? 1./}1 roﬂqe rrelation and covariance functions involving sam-
ples at tlm Q%"% [n1,n2] and Cxy|[n1,n;] for the cross-moment
functions of Q/ fﬁi} v’é); akﬂcs X[ -] and Y[ -] sampled at times n; and ny
respectively. §Q € ‘9@,/)

O/"f //)\Q % . ©

. O

10.3.1 Strict-Sense Sta % %

Bofagfty ",

In general, we would expect that th@ /](xipt @pﬁg asSociated with the random

variables obtained by sampling a rand@n '?{yo%s %an arbitrary number ¢ of
arbitrary times will be time-dependent, t’ﬁ;}t @/tﬁ@dlﬁnt PDF

%, %
Ixa), - ,X(zl)(m,o: ,4@6 X (10.12)
will depend on the specific values of #{, - - - , . If all ffle joint PDFs remain the
same under arbitrary time shifts, so that if

xa, - xa) X1 5 X0) = fx(oaa), - X(tta) (X155 X0) (10.13)

for arbitrary «, then the random process is said to be strict-sense stationary
(SSS). Said another way, for an SSS process, the statistics depend only on the
relative times at which the samples are taken, not on the absolute times. The
processes in Examples 10.2 and 10.3 are SSS. More generally, any i.i.d. process
is strict-sense stationary.

10.3.2 Wide-Sense Stationarity

Of particular use is a less restricted type of stationarity. Specifically, if the mean
value ux(¢) is invariant with time and the autocorrelation Rxx(t1,%) or,
equivalently, the autocovariance Cyyx(f1, %) is a function of only the time dif-
ference (¢; — ), then the process is referred to as wide-sense stationary
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(WSS). A process that is SSS is always WSS, but the reverse is not necessarily
true. For a WSS random process X (¢), we have

px (1) = nx (10.14)
Rxx(t1,12) = Rxx(t1 + o, + «) for every «
= Rxx(t1 —12,0)
=Rxx(t1 — o), (10.15)

where the last equality defines a more compact notation since a single argu-
ment for the time difference (¢; — #;) suffices for a WSS process. Similarly,
Cxx(t1,t) will be written as Cxx(t; — t2) for a WSS process. The time differ-
ence (¢ 4/3) will typically be denoted as 7 and referred to as the lag variable
fort zﬁét correlation and autocovariance functions.

b%b‘( £) &?msslan process, that is, a process whose samples are always
]@t@ é‘@gsﬁ@u@yss implies SSS because jointly Gaussian variables are
entive f d,gtébm%gdcbg their joint first and second moments.

W L@nd@gl%r/oé'@&ses X(-) and Y(-) are referred to as jointly WSS if
their ﬁrst@g@%eg@(fjx}p@/ents (including the cross-covariance) are station-
ary. In this ca,§c e ‘&se e %tatlon Rxy(7) to denote E[X(t+ 7)Y (¢)]. It is
worth noting %at A Ef% ti{@®,convention sometimes used elsewhere is to
define Ryy(t) asﬂf@)‘? 515‘@_5 ]\S%p our notation, this expectation would be
denoted by Ryy(— I%I t4 ﬁ%oﬁanﬁ’&o take account of what notational con-
vention is being followed,w{@ {%fe@gn other sources, and you should also

be clear about the notatlo?fal @8 g in this text.
O’ zg 0 O
Random Oscillators Revm’é‘e,d 4%, /7’

{O 0,7 G/b Oé
Consider again the harmonic oscillators 1rrﬁ;>d62;;(?cg}ﬁ(ample 10.1:
/
X(A,0)=A cc@(%z;,; @3) (10.16)

where A and ® are independent random variables, alﬁ now the frequency is fixed at
some known value denoted by ¢y.

If ® is also fixed at a constant value 6, then every outcome is of the form
x(t) = A cos(¢ot + 6p), and it is straightforward to see that this process is not WSS (and
consequently also not SSS). For instance, if A has a nonzero mean value, ug # 0, then
the expected value of the process, namely u4 cos(¢ot + 6p), is time varying. To show
that the process is not WSS even when s = 0, we can examine the autocorrelation
function. Note that x(z) is fixed at O for all values of ¢ for which ¢gf + 6y is an odd
multiple of 7 /2, and takes the values +£A halfway between such points; the correlation
between such samples taken 7 /¢ apart in time can correspondingly be 0 (in the former
case) or —E[A?] (in the latter). The process is thus not WSS, even when p4 = 0.

However, if © is distributed uniformly in [—m, 7], then

71
ux () = pna / — cos(¢pt +0)do =0, (10.17)
_z 2T

Cxx(t1,02) = Rxx(t1,12)

= E[A%]E[cos(¢ot1 + O)cos(¢otz + O)] . (10.18)
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Equation (10.18) can be evaluated as

E[A?]
2

Coxtin) = T3 [ eos(a(t — 1)) + costgn(tz +1) +20)] a8 (1019

to obtain
2
2

For this restricted case, then, the process is WSS. It can also be shown to be SSS,
although this is not totally straightforward to show formally.

Cxx(r.) = P2 costo(r - 1)) . (10.20)

For thé most part, the random processes that we treat will be WSS. As
noted € ré‘tg simplify notation for a WSS process, we write the correla-
tion fpn/@lomas%p(x(tl —ty); the argument (#; — ;) is often denoted by the
lag@}}%blé‘o(r/ abwh‘l h the correlation is computed. When considering only
first a s’égoﬁ%rﬁ@m@ts and not the entire PDF or cumulative distribution
functlofdg@g) i \9’1% Jess important to distinguish between the random
process X (f)@r%a clﬁﬁ I%Q ization x(¢) of it—so a further notational simpli-
fication is intrddu Kywercase letters to denote the random process
itself. We shall t réf r‘%ﬁ) tl%; m process x(¢), and —in the case of a WSS
process—denote 1tﬁm ‘QX /85\ n&,lts correlation function E[x(t + 7)x(¢)]
by Ryx(7). Correspo?ﬁ@gb% or DA *%35; refer to the random process x[n]
and, in the WSS case, f&‘p@ncbz uy and its correlation function

Elx[n + m]x[n]] by Rux[m]. % 0@ % J’o

10.3.3 Some Properties of ggr@%ﬂon
and Covariance Funct:i_oﬁ& ’b,

For real-valued WSS processes x(¢) and/))@ @@e cgrrelatlon and covariance
functions have the following symmetry propértie 8 22

Ri(1) = Rar(—17) , Cux(7) = Cxx({f) , (10.21)
Ryy(7) = Ryx(—17) , Cay(t) = Cyx(-1) . (10.22)

For example, the symmetry in Eq. (10.22) of the cross-correlation function
R,y(7) follows directly from interchanging the arguments inside the defining
expectations:

Ryy(t) = E[x(0)y(t — 7)] (10.23a)
= E[y(t — 7)x(1)] (10.23b)
=Ry(-1). (10.23c)

The other properties in Egs. (10.21) and (10.22) follow in a similar manner.
Equation (10.21) indicates that the autocorrelation and autocovariance
functions have even symmetry. Equation (10.22) indicates that for cross-
correlation and cross-covariance functions, interchanging the random vari-
ables is equivalent to reflecting the function about the t axis. And of course,
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Eq. (10.21) is a special case of Eq. (10.22) with y(¢) = x(¢). Similar properties
hold for DT WSS processes.

Another important property of correlation and covariance functions
follows from noting that, as discussed in Section 7.7, Eq. (7.63), the corre-
lation coefficient of two random variables has magnitude not exceeding 1.
Specifically since the correlation coefficient between x(¢) and x(¢ + 7) is given
by Cyx(7)/Cxx(0), then

1< g’;’;g; <1 (10.24)
or equivalently,
% ~Curl0) = Cun() = Cul0). (10.25)
Acldlr/ig,ﬂxgsto Qggch term above, we can conclude that
%//O,GO/’ O(/»/‘ ’O’ ,O, Rxx(O) ~|—2p,x < Ru(1) < R(0). (10.26)

. R
In Ché@ e@;olf@,yves‘oyl emonstrate that correlation and covariance func-
tions are %aﬁgg%&f,b e property that their Fourier transforms are real
and nonnegza;i/ve/gt 4K, Igg,u icies, because these transforms describe the fre-
quency dlstrlbﬁqapif of the p d power in the random process. The above
symmetry constrsﬁg}é’%‘%d};o%d&g‘@lﬂl then follow as natural consequences,
but they are worth hrghr{g(l} l?efre S

We conclude thg Wi ﬁf,i% additional examples. The first, the
Bernoulli process, is the nfdre repeated independent flips of a
possibly biased coin. The secé?gd6

@pled‘;% ed to as the random telegraph
wave, is often used as a s1mp111{€d)r oﬁ(;of a random square wave or

switch in electronics or communic OIQ% (ézgn@j

’z;«/o@/,)
O’@O

i )
S iyl i g The Bernoulli Process )

The Bernoulli process is an example of an i.i.d. DT process with
Px[nl=1)=p (10.27)
Px[n]=-1)=(1-p) (10.28)

and with the value at each time instant n independent of the values at all other time
instants. The mean, autocorrelation, and covariance functions are:

E{x[n]} =2p — 1=y (10.29)

1 m=0
E {x[n + m]x[n]} = 2p— 1) m 0 (10.30)
Cix[m] = E{(x[n + m] — puy)(x[n] — px)} (10.31)

= (1 - (@2p —1)")8[m] = 4p(1 — p)3[m] . (10.32)
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