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406 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

One-to-One Functions    Suppose we define the following function F.

F = 51-2, 22, 1-1, 12, 10, 02, 11, 32, 12, 526
(We have defined F so that each second component is used only once.) We can 
form another set of ordered pairs from F by interchanging the x- and y-values of 
each pair in F. We call this set G.

G = 512, -22, 11, -12, 10, 02, 13, 12, 15, 226
G is the inverse of F. Function F was defined with each second component  
used only once, so set G will also be a function. (Each first component must  
be used only once.) In order for a function to have an inverse that is also a func-
tion, it must exhibit this one-to-one relationship.

In a one-to-one function, each x-value corresponds to only one y-value, and 
each y-value corresponds to only one x-value.

The function ƒ shown in Figure 1 is not one-to-one because the y-value 7 corre-
sponds to two x-values, 2 and 3. That is, the ordered pairs 12, 72 and 13, 72 both 
belong to the function. The function ƒ in Figure 2 is one-to-one.

	 4.1	 Inverse Functions 

■	 One-to-One Functions

■	 Inverse Functions

■	 Equations of Inverses

■	 An Application of 
Inverse Functions to 
Cryptography

Domain

1
f
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3

4
5
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7

8

9

Range

Not One-to-One

Figure 1

1

6

Domain Range

7

8

5

2
3

4

One-to-One

f

Figure 2

One-to-One Function

A function ƒ is a one-to-one function if, for elements a and b in the domain 
of ƒ,

a 3 b implies ƒ 1a 2 3 ƒ 1b 2 .
That is, different values of the domain correspond to different values of the 
range.

Using the concept of the contrapositive from the study of logic, the boldface 
statement in the preceding box is equivalent to

ƒ 1a 2 = ƒ 1b 2 implies a = b.

This means that if two range values are equal, then their corresponding domain 
values are equal. We use this statement to show that a function ƒ is one-to-one 
in Example 1(a).

EXAMPLE 1	 Deciding Whether Functions Are One-to-One

Determine whether each function is one-to-one.

(a)	 ƒ1x2 = -4x + 12	 (b)  ƒ1x2 = 225 - x2

SOLUTION

(a)	 We can determine that the function ƒ1x2 = -4x + 12 is one-to-one by 
showing that ƒ1a2 = ƒ1b2 leads to the result a = b.

 ƒ1a2 = ƒ1b2
 -4a + 12 = -4b + 12    ƒ1x2 = -4x + 12

 -4a = -4b     Subtract 12.

 a = b     Divide by -4.

	 By the definition, ƒ1x2 = -4x + 12 is one-to-one.
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407	 4.1  Inverse Functions 

(b)	 We can determine that the function ƒ1x2 = 225 - x2 is not one-to-one by 
showing that different values of the domain correspond to the same value of 
the range. If we choose a = 3 and b = -3, then 3 ≠ -3, but

 ƒ132 = 225 - 32 = 225 - 9 = 216 = 4

	 and	  ƒ1-32 = 225 - 1-322 = 225 - 9 = 4.

	 Here, even though 3 ≠ -3, ƒ132 = ƒ1-32 = 4. By the definition, ƒ is not a 
one-to-one function.

■✔ Now Try Exercises 17 and 19.

Horizontal Line Test

A function is one-to-one if every horizontal line intersects the graph of the 
function at most once.

–5 5

5

x

y

f(x) = Ë25 – x2

0

(–3, 4) (3, 4)

Figure 3

As illustrated in Example 1(b), a way to show that a function is not one-
to-one is to produce a pair of different domain elements that lead to the same 
function value. There is a useful graphical test for this, the horizontal line test.

EXAMPLE 2	 Using the Horizontal Line Test

Determine whether each graph is the graph of a one-to-one function.

(a)	

x

y1

x1

(x1, y1) (x2, y1) (x3, y1) 

x2 x3

0

y 	 (b) 

x

y

y1

y3

y2 x3
x2x1 0

SOLUTION

(a)	 Each point where the horizontal line intersects the graph has the same value 
of y but a different value of x. Because more than one different value of x 
(here three) lead to the same value of y, the function is not one-to-one.

(b)	 Every horizontal line will intersect the graph at exactly one point, so this 
function is one-to-one.

■✔ Now Try Exercises 11 and 13.

The function graphed in Example 2(b) decreases on its entire domain.

In general, a function that is either increasing or decreasing on its 

entire domain, such as ƒ 1x 2 = −x, g 1x 2 = x3, and h 1x 2 = 1
x , must 

be one-to-one.

NOTE  In Example 1(b), the graph of the function is a semicircle, as 
shown in Figure 3. Because there is at least one horizontal line that inter-
sects the graph in more than one point, this function is not one-to-one.
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408 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Tests to Determine Whether a Function Is One-to-One

1.	 Show that ƒ1a2 = ƒ1b2 implies a = b. This means that ƒ is one-to-one. 
(See Example 1(a).)

2.	 In a one-to-one function, every y-value corresponds to no more than 
one x-value. To show that a function is not one-to-one, find at least two  
x-values that produce the same y-value. (See Example 1(b).)

3.	 Sketch the graph and use the horizontal line test. (See Example 2.)

4.	 If the function either increases or decreases on its entire domain, then it 
is one-to-one. A sketch is helpful here, too. (See Example 2(b).)

Inverse Functions    Certain pairs of one-to-one functions “undo” each 
other. For example, consider the functions

g1x2 = 8x + 5  and  ƒ1x2 =
1

8
 x -

5

8
 .

We choose an arbitrary element from the domain of g, say 10. Evaluate g1102.
 g1x2 = 8x + 5     Given function

 g1102 = 8 # 10 + 5    Let x = 10.

 g1102 = 85     Multiply and then add.

Now, we evaluate ƒ1852.

 ƒ1x2 =
1

8
 x -

5

8
         Given function

 ƒ1852 =
1

8
 1852 -

5

8
     Let x = 85.

 ƒ1852 =
85

8
-

5

8
     Multiply.

 ƒ1852 = 10      Subtract and then divide.

Starting with 10, we “applied” function g and then “applied” function ƒ to the 
result, which returned the number 10. See Figure 4.

10

Function

g(x) = 8x + 5 f(x) =

85

Function

10
1
8

5
8

x –

Figure 4

These functions 
contain inverse 
operations that 
“undo” each other.

As further examples, confirm the following.

 g132 = 29   and   ƒ1292 = 3

 g1-52 = -35  and   ƒ1-352 = -5

 g122 = 21     and   ƒ1212 = 2

 ƒ122 = -  
3

8
  and   ga -  

3

8
b = 2
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409	 4.1  Inverse Functions 

In particular, for the pair of functions g1x2 = 8x + 5 and ƒ1x2 = 1
8 x - 5

8 ,

ƒ1g1222 = 2  and  g1ƒ1222 = 2.

In fact, for any value of x,

ƒ1g1x22 = x  and  g1ƒ1x22 = x.

Using the notation for composition of functions, these two equations can be 
written as follows.

1ƒ ∘ g21x2 = x  and  1g ∘ ƒ21x2 = x     The result is the identity function.

Because the compositions of ƒ and g yield the identity function, they are inverses 
of each other.

Inverse Function

Let ƒ be a one-to-one function. Then g is the inverse function of ƒ if

	  1ƒ ° g 2 1x 2 = x  for every x in the domain of g,

and	  1g ° ƒ 2 1x 2 = x  for every x in the domain of ƒ.

The condition that f is one-to-one in the definition of inverse function is 
essential. Otherwise, g will not define a function.

EXAMPLE 3	 Determining Whether Two Functions Are Inverses

Let functions ƒ and g be defined respectively by

ƒ1x2 = x3 - 1  and  g1x2 = 23 x + 1.

Is g the inverse function of ƒ?

SOLUTION  As shown in Figure 5, the horizontal line test applied to the graph 
indicates that ƒ is one-to-one, so the function has an inverse. Because it is one-
to-one, we now find 1ƒ ∘ g21x2 and 1g ∘ ƒ21x2.

x

y

ƒ(x) = x3 – 1

Figure 5

1ƒ ∘ g21x2
     = ƒ1g1x22
     = A23 x + 1 B3 - 1

     = x + 1 - 1

     = x

1g ∘ ƒ21x2
     = g1ƒ1x22
     = 23 1x3 - 12 + 1

     = 23 x3

     = x

Since 1ƒ ∘ g21x2 = x and 1g ∘ ƒ21x2 = x, function g is the inverse of function ƒ.

■✔ Now Try Exercise 41.

A special notation is used for inverse functions: If g is the inverse of a func-
tion ƒ, then g is written as ƒ−1 (read “ƒ-inverse”).

ƒ1x2 = x3 - 1  has inverse  ƒ-11x2 = 23 x + 1.  See Example 3.
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410 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

By the definition of inverse function, the domain of ƒ is the range of ƒ−1, 
and the range of ƒ is the domain of ƒ−1. See Figure 6.

Domain of  f f

X

x y

Y

Range of  f –1

Range of  f

Domain of  f –1
f –1

Figure 6

Source: www.wunderground.com

 
Year

Number of 
Hurricanes

2009   3

2010 12

2011   7

2012 10

2013   2

EXAMPLE 4	 Finding Inverses of One-to-One Functions

Find the inverse of each function that is one-to-one.

(a)	 F = 51-2, 12, 1-1, 02, 10, 12, 11, 22, 12, 226
(b)	 G = 513, 12, 10, 22, 12, 32, 14, 026
(c)	 The table in the margin shows the number of hurricanes recorded in the 

North Atlantic during the years 2009–2013. Let ƒ be the function defined in 
the table, with the years forming the domain and the numbers of hurricanes 
forming the range.

SOLUTION

(a)	 Each x-value in F corresponds to just one y-value. However, the y-value 2 
corresponds to two x-values, 1 and 2. Also, the y-value 1 corresponds to 
both -2 and 0. Because at least one y-value corresponds to more than one 
x-value, F is not one-to-one and does not have an inverse.

(b)	 Every x-value in G corresponds to only one y-value, and every y-value cor-
responds to only one x-value, so G is a one-to-one function. The inverse 
function is found by interchanging the x- and y-values in each ordered pair.

G-1 = 511, 32, 12, 02, 13, 22, 10, 426
	 Notice how the domain and range of G become the range and domain, 

respectively, of G-1.

(c)	 Each x-value in ƒ corresponds to only one y-value, and each y-value corre-
sponds to only one x-value, so ƒ is a one-to-one function. The inverse function 
is found by interchanging the x- and y-values in the table.

ƒ-11x2 = 513, 20092, 112, 20102, 17, 20112, 110, 20122, 12, 201326
The domain and range of ƒ become the range and domain of ƒ-1.

■✔ Now Try Exercises 37, 51, and 53.

CAUTION  Do not confuse the −1 in ƒ−1 with a negative exponent. 
The symbol ƒ-11x2 represents the inverse function of ƒ, not 1

ƒ1x2 . 

Equations of Inverses    The inverse of a one-to-one function is found by 
interchanging the x- and y-values of each of its ordered pairs. The equation of the 
inverse of a function defined by y = ƒ1x2 is found in the same way.
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411	 4.1  Inverse Functions 

Finding the Equation of the Inverse of y = f 1x 2
For a one-to-one function ƒ defined by an equation y = ƒ1x2, find the  
defining equation of the inverse as follows. (If necessary, replace ƒ1x2 with 
y first. Any restrictions on x and y should be considered.)

Step 1	 Interchange x and y.

Step 2	 Solve for y.

Step 3	 Replace y with ƒ-11x2.

EXAMPLE 5	 Finding Equations of Inverses

Determine whether each equation defines a one-to-one function. If so, find the 
equation of the inverse.

(a)	 ƒ1x2 = 2x + 5	 (b)  y = x2 + 2	 (c)  ƒ1x2 = 1x - 223
SOLUTION

(a)	 The graph of y = 2x + 5 is a nonhorizontal line, so by the horizontal line 
test, ƒ is a one-to-one function. Find the equation of the inverse as follows.

	  ƒ1x2 = 2x + 5 	 Given function

	  y = 2x + 5 	 Let y = ƒ1x2.
Step 1	  x = 2y + 5 	 Interchange x and y.

Step 2	  x - 5 = 2y 	 Subtract 5.    
(+
1)
+
1* y =

x - 5

2
 	�

Divide by 2. 
Rewrite.

Solve for y.

Step 3	  ƒ-11x2 =
1

2
 x -

5

2
	�

Replace y with ƒ-11x2.  
a - b

c = A1c B  a - b
c

	 Thus, the equation ƒ-11x2 = x - 5
2 = 1

2 x - 5
2 represents a linear function. In 

the function y = 2x + 5, the value of y is found by starting with a value of x, 
multiplying by 2, and adding 5.

The equation ƒ-11x2 = x - 5
2  for the inverse subtracts 5 and then divides 

by 2. An inverse is used to “undo” what a function does to the variable x.

(b)	 The equation y = x2 + 2 has a parabola opening up as its graph, so some 
horizontal lines will intersect the graph at two points. For example, both 
x = 3 and x = -3 correspond to y = 11. Because of the presence of the  
x2-term, there are many pairs of x-values that correspond to the same  
y-value. This means that the function defined by y = x2 + 2 is not one-to-
one and does not have an inverse.

Proceeding with the steps for finding the equation of an inverse leads to

 y = x2 + 2

 x = y2 + 2     Interchange x and y.

 x - 2 = y2      Solve for y.

 {2x - 2 = y.      Square root property

Remember 
both roots.

	 The last equation shows that there are two y-values for each choice of x 
greater than 2, indicating that this is not a function.
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412 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

(c)	 Figure 7 shows that the horizontal line test assures us that this horizontal 
translation of the graph of the cubing function is one-to-one.

	  ƒ1x2 = 1x - 223 	 Given function

	  y = 1x - 223 	 Replace ƒ1x2 with y.

Step 1	  x = 1y - 223 	 Interchange x and y.

Step 2	        23 x = 23 1y - 223	 Take the cube root on each side. 

(+
+
1)
+
+
1*

 23 x = y - 2 	 23 a3 = a

y

20

This graph
passes the
horizontal
line test.

–8

8

1
x

f (x) = (x – 2)3

Figure 7

Solve for y.

 23 x + 2 = y 	 Add 2.

Step 3	  ƒ-11x2 = 23 x + 2 	 Replace y with ƒ-11x2. Rewrite.

■✔ Now Try Exercises 59(a), 63(a), and 65(a).

One way to graph the inverse of a function ƒ whose equation is known follows.

Step 1	 Find some ordered pairs that are on the graph of ƒ.

Step 2	 Interchange x and y to find ordered pairs that are on the graph of ƒ-1.

Step 3	 Plot those points, and sketch the graph of ƒ-1 through them.

Another way is to select points on the graph of ƒ and use symmetry to find 
corresponding points on the graph of ƒ-1.

Solve for y.

In the final line, we give the condition x ≠ 2. (Note that 2 is not in the range of 
ƒ, so it is not in the domain of ƒ-1.)

Step 3	                   ƒ-11x2 =
4x + 3

x - 2
 , x ≠ 2	 Replace y with ƒ-11x2.

■✔ Now Try Exercise 71(a).

Pay close  
attention here.

EXAMPLE 6	 �Finding the Equation of the Inverse of a  
Rational Function

The following rational function is one-to-one. Find its inverse.

ƒ1x2 =
2x + 3

x - 4
 , x ≠ 4

SOLUTION	  ƒ1x2 =
2x + 3

x - 4
 , x ≠ 4	 Given function

		   y =
2x + 3

x - 4
	 Replace ƒ1x2 with y.

Step 1		   x =
2y + 3

y - 4
 , y ≠ 4	 Interchange x and y.

Step 2	   x1y - 42 = 2y + 3 	 Multiply by y - 4.     
(11+
+
+
+
)
+
+
+
+
11*

		   xy - 4x = 2y + 3 	 Distributive property

		   xy - 2y = 4x + 3 	 Add 4x and -2y.

		   y1x - 22 = 4x + 3 	 Factor out y.

		   y =
4x + 3

x - 2
 , x ≠ 2	 Divide by x - 2.
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413	 4.1  Inverse Functions 

For example, suppose the point 1a, b2 shown in Figure 8 is on the graph of 
a one-to-one function ƒ. Then the point 1b, a2 is on the graph of ƒ-1. The line 
segment connecting 1a, b2 and 1b, a2 is perpendicular to, and cut in half by, the 
line y = x. The points 1a, b2 and 1b, a2 are “mirror images” of each other with 
respect to y = x.

Thus, we can find the graph of ƒ−1 from the graph of ƒ by locating the 
mirror image of each point in ƒ with respect to the line y = x.

(a, b)

(b, a)

y = x

y

a0

a

b

b

x

Figure 8 EXAMPLE 7	 Graphing f −1 Given the Graph of f

In each set of axes in Figure 9, the graph of a one-to-one function ƒ is shown in 
blue. Graph ƒ-1 in red.

SOLUTION  In Figure 9, the graphs of two functions ƒ shown in blue are given 
with their inverses shown in red. In each case, the graph of ƒ-1 is a reflection of 
the graph of ƒ with respect to the line y = x.

x

y

(3, 1)

(0, –4)

(–4, 0)

f –1

f

y = x

(1, 3)

0

–2

5

–2 5

     

x

y

(4, 2)

f

y = x

(2, 4)

0

–2

5

–2 5

f –1

(1, 1)

Figure 9

■✔ Now Try Exercises 77 and 81.

EXAMPLE 8	 Finding the Inverse of a Function (Restricted Domain)

Let ƒ1x2 = 2x + 5, x Ú -5. Find ƒ-11x2.
SOLUTION  The domain of ƒ is restricted to the interval 3-5, ∞2. Function ƒ is 
one-to-one because it is an increasing function and thus has an inverse function. 
Now we find the equation of the inverse.

	  ƒ1x2 = 2x + 5,  x Ú -5    Given function

	  y = 2x + 5, x Ú -5    Replace ƒ1x2 with y.

Step 1	  x = 2y + 5, y Ú -5    Interchange x and y.

Step 2	  x2 = A2y + 5 B2                Square each side.        
(1+
11)
1111*

	  x2 = y + 5     A2a B2 = a for a Ú 0

	  y = x2 - 5     Subtract 5. Rewrite.

Solve for y.

However, we cannot define ƒ-11x2 as x2 - 5. The domain of ƒ is 3-5, ∞2, and 
its range is 30, ∞2. The range of ƒ is the domain of ƒ-1, so ƒ-1 must be defined 
as follows.

Step 3	 ƒ-11x2 = x2 - 5, x Ú 0

As a check, the range of ƒ-1, 3-5, ∞2, is the domain of ƒ.
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414 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Important Facts about Inverses

1.	 If ƒ is one-to-one, then ƒ-1 exists.

2.	 The domain of ƒ is the range of ƒ-1, and the range of ƒ is the domain of ƒ-1.

3.	 If the point 1a, b2 lies on the graph of ƒ, then 1b, a2 lies on the graph of ƒ-1. 
The graphs of ƒ and ƒ-1 are reflections of each other across the line y = x.

4.	 To find the equation for ƒ-1, replace ƒ1x2 with y, interchange x and y, 
and solve for y. This gives ƒ-11x2.

  Some graphing calculators have the capability of “drawing” the reflection 
of a graph across the line y = x. This feature does not require that the function be 
one-to-one, however, so the resulting figure may not be the graph of a function.  
See Figure 12. It is necessary to understand the mathematics to interpret 
results correctly.  ■

y = x2

−4.1

−6.6

4.1

6.6

x = y2

Despite the fact that y = x2 is not 
one-to-one, the calculator will draw its 
“inverse,” x = y2.

Figure 12

An Application of Inverse Functions to Cryptography    A one-to-one 
function and its inverse can be used to make information secure. The function is 
used to encode a message, and its inverse is used to decode the coded message. 
In practice, complicated functions are used.

EXAMPLE 9	 Using Functions to Encode and Decode a Message

Use the one-to-one function ƒ1x2 = 3x + 1 and the following numerical values 
assigned to each letter of the alphabet to encode and decode the message BE 
MY FACEBOOK FRIEND.

A 1
B 2
C 3
D 4
E 5
F 6
G 7

H   8
I   9
J 10
K 11
L 12
M 13
N 14

O 15
P 16
Q 17
R 18
S 19
T 20
U 21

V 22
W 23
X 24
Y 25
Z 26

f –1(x) = x2 – 5, x $ 0

y

50–5

y = x

–5

5

x

f (x) = !x + 5,
 x $ – 5

Figure 10

f(x) = !x+5, x  ≥ −5

y = x

−10

−16.1

10

16.1

f –1(x) = x2 − 5, x ≥ 0

Figure 11

■✔ Now Try Exercise 75.

Graphs of ƒ and ƒ-1 are shown in Figures 10 and 11. The line y = x  
is included on the graphs to show that the graphs of ƒ and ƒ-1 are mirror images 
with respect to this line.
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415	 4.1  Inverse Functions 

SOLUTION  The message BE MY FACEBOOK FRIEND would be encoded as

  7  16  40  76  19    4  10  16    7 
46  46  34  19  55  28  16  43  13

because

B corresponds to 2  and  ƒ122 = 3122 + 1 = 7,

E corresponds to 5  and  ƒ152 = 3152 + 1 = 16,  and so on.

Using the inverse ƒ-11x2 = 1
3 x - 1

3 to decode yields

 ƒ-1172 =
1

3
 172 -

1

3
= 2,   which corresponds to B,

 ƒ-11162 =
1

3
 1162 -

1

3
= 5,  which corresponds to E,  and so on.

■✔ Now Try Exercise 97.

A   1
B   2
C   3
D   4
E   5
F   6
G   7
H   8
I   9
J 10
K 11
L 12
M 13

N 14
O 15
P 16
Q 17
R 18
S 19
T 20
U 21
V 22
W 23
X 24
Y 25
Z 26

Source: U.S. Federal Highway Administration.

 
Year

Registered Passenger Cars 
(in thousands)

2008 137,080

2009 134,880

2010 139,892

2011 125,657

2012 111,290

CONCEPT PREVIEW  Determine whether the function represented in each table is 
one-to-one.

	 4.1	 Exercises

	 2.	 The table gives the number of representatives currently in Congress from each of 
five New England states.

	 1.	 The table shows the number of registered passenger cars in the United States for the 
years 2008–2012.

CONCEPT PREVIEW  Fill in the blank(s) to correctly complete each sentence.

	 3.	 For a function to have an inverse, it must be .

	 4.	 If two functions ƒ and g are inverses, then 1ƒ ∘ g21x2 =  and = x.

	 5.	 The domain of ƒ is equal to the  of ƒ-1, and the range of ƒ is equal to the 
 of ƒ-1.

	 6.	 If the point 1a, b2 lies on the graph of ƒ, and ƒ has an inverse, then the point 
 lies on the graph of ƒ-1.

 
State

Number of  
Representatives

Connecticut 5

Maine 2

Massachusetts 9

New Hampshire 2

Vermont 1

Source: www.house.gov
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416 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Concept Check  Answer each question.

29.	 Can a constant function, such as ƒ1x2 = 3, defined over the set of real numbers, be 
one-to-one?

30.	 Can a polynomial function of even degree defined over the set of real numbers have 
an inverse?

Concept Check  An everyday activity is described. Keeping in mind that an inverse  
operation “undoes” what an operation does, describe each inverse activity.

	31.	 tying your shoelaces	 32.	 starting a car

	33.	 entering a room	 34.	 climbing the stairs

35.	 screwing in a light bulb	 36.	 filling a cup

	 7.	 If ƒ1x2 = x3, then ƒ-11x2 = .

	 8.	 If a function ƒ has an inverse, then the graph of ƒ-1 may be obtained by reflecting 
the graph of ƒ across the line with equation .

	 9.	 If a function ƒ has an inverse and ƒ1-32 = 6, then ƒ-1162 = .

	10.	 If ƒ1-42 = 16 and ƒ142 = 16, then ƒ  have an inverse because 
.	 (does/does not)

Determine whether each function graphed or defined is one-to-one. See Examples 1  
and 2.

11.

x

y

0

	 12.

x

y

0

	

13.

x

y

0

	 14.

x

y

0

15.

x

y

0

	 16.

x

y

0

17.	 y = 2x - 8	 18.	 y = 4x + 20	 19.	 y = 236 - x2

20.	 y = -2100 - x2	 21.	 y = 2x3 - 1	 22.	 y = 3x3 - 6

23.	 y =
-1

x + 2
	 24.	 y =

4

x - 8
	 25.	 y = 21x + 122 - 6

	26.	 y = -31x - 622 + 8	 27.	 y = 23 x + 1 - 3	 28.	 y = -23 x + 2 - 8
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417	 4.1  Inverse Functions 

x ƒ 1x 2
3 -4
2 -6
5    8
1    9
4    3

x g 1x 2
-4 3
-6 2
   8 5
   9 1
   3 4

38. x ƒ 1x 2
-2 -8
-1 -1
   0    0
   1    1
   2    8

x g 1x 2
   8 -2
   1 -1
   0    0
-1    1
-8    2

39.	 ƒ = 512, 52, 13, 52, 14, 526; g = 515, 226
40.	 ƒ = 511, 12, 13, 32, 15, 526; g = 511, 12, 13, 32, 15, 526

Determine whether the given functions are inverses. See Example 4.

37.	

Use the definition of inverses to determine whether f and g are inverses. See Example 3.

41.	 ƒ1x2 = 2x + 4, g1x2 =
1

2
 x - 2	 42.	 ƒ1x2 = 3x + 9, g1x2 =

1

3
 x - 3

43.	 ƒ1x2 = -3x + 12, g1x2 = -  
1

3
 x - 12	 44.	 ƒ1x2 = -4x + 2, g1x2 = -  

1

4
 x - 2

45.	 ƒ1x2 =
x + 1

x - 2
 , g1x2 =

2x + 1

x - 1
	 46.	 ƒ1x2 =

x - 3

x + 4
 , g1x2 =

4x + 3

1 - x

47.	 ƒ1x2 =
2

x + 6
 , g1x2 =

6x + 2
x

	 48.	 ƒ1x2 =
-1

x + 1
 , g1x2 =

1 - x
x

49.	 ƒ1x2 = x2 + 3, x Ú 0; g1x2 = 2x - 3, x Ú 3

50.	 ƒ1x2 = 2x + 8, x Ú -8; g1x2 = x2 - 8, x Ú 0

Find the inverse of each function that is one-to-one. See Example 4.

51.	 51-3, 62, 12, 12, 15, 826	 52.	 e 13, -12, 15, 02, 10, 52, a4, 
2

3
b f

53.	 511, -32, 12, -72, 14, -32, 15, -526	 54.	 516, -82, 13, -42, 10, -82, 15, -426

Determine whether each pair of functions graphed are inverses. See Example 7.

55.	

x

y

0 3

3
4

4

y = x

	 56.	

x

y

0 4

4

y = x

	57.	

x

y

0 2

22

y = x

	 58.	

x

y

0 222

y = x
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418 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

71.	 ƒ1x2 =
x + 1

x - 3
 , x ≠ 3	 72.	 ƒ1x2 =

x + 2

x - 1
 , x ≠ 1

73.	 ƒ1x2 =
2x + 6

x - 3
 , x ≠ 3	 74.	 ƒ1x2 =

-3x + 12

x - 6
 , x ≠ 6

	75.	 ƒ1x2 = 2x + 6, x Ú -6	 76.	 ƒ1x2 = -2x2 - 16, x Ú 4

Concept Check  The graph of a function ƒ is shown in the figure. Use the graph to find 
each value.

83.	 ƒ-1142	 84.	 ƒ-1122
85.	 ƒ-1102	 86.	 ƒ-11-22
87.	 ƒ-11-32	 88.	 ƒ-11-42 –2

2

–2

–4

4

2–4 40
x

y

Graph the inverse of each one-to-one function. See Example 7.

77.	  78.	  79.	

0
x

y

	80.		  81.	

0
x

y 	 82.	

0
x

y

0
x

y

0
x

y

0
x

y

Concept Check  Answer each of the following.

	 89.	 Suppose ƒ1x2 is the number of cars that can be built for x dollars. What does 
ƒ-1110002 represent?

	 90.	 Suppose ƒ1r2 is the volume (in cubic inches) of a sphere of radius r inches. What 
does ƒ-1152 represent?

	 91.	 If a line has slope a, what is the slope of its reflection across the line y = x?

	 92.	 For a one-to-one function ƒ, find 1ƒ-1 ∘ ƒ2122, where ƒ122 = 3.

For each function that is one-to-one, (a) write an equation for the inverse function,  
(b) graph ƒ and ƒ-1 on the same axes, and (c) give the domain and range of both f and 
ƒ-1. If the function is not one-to-one, say so. See Examples 5–8.

59.	 ƒ1x2 = 3x - 4	 60.	 ƒ1x2 = 4x - 5	 61.	 ƒ1x2 = -4x + 3

62.	 ƒ1x2 = -6x - 8	 63.	 ƒ1x2 = x3 + 1	 64.	 ƒ1x2 = -x3 - 2

65.	 ƒ1x2 = x2 + 8	 66.	 ƒ1x2 = -x2 + 2	 67.	 ƒ1x2 =
1
x

 , x ≠ 0

68.	 ƒ1x2 =
4
x

 , x ≠ 0	 69.	 ƒ1x2 =
1

x - 3
 , x ≠ 3	 70.	 ƒ1x2 =

1

x + 2
 , x ≠ -2
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419	 4.2  Exponential Functions

Use a graphing calculator to graph each function defined as follows, using the given 
viewing window. Use the graph to decide which functions are one-to-one. If a function is 
one-to-one, give the equation of its inverse.

	 93.	 ƒ1x2 = 6x3 + 11x2 - 6;

		  3-3, 24 by 3-10, 104
94.	 ƒ1x2 = x4 - 5x2;

		  3-3, 34 by 3-8, 84

	 95.	 ƒ1x2 =
x - 5

x + 3
 ,  x ≠ -3;

		  3-8, 84 by 3-6, 84

96.	 ƒ1x2 =
-x

x - 4
 , x ≠ 4;

		  3-1, 84 by 3-6, 64

Use the following alphabet coding assignment to work each problem. See Example 9.

	 4.2	 Exponential Functions

Exponents and Properties    Recall the definition of am/n: If a is a real 
number, m is an integer, n is a positive integer, and 2n a is a real number, then

am/n = A!n a  Bm.

For example,	 163/4 = A24 16 B3 = 23 = 8,

27-1/3 =
1

271/3 =
123 27

=
1

3
 ,  and  64-1/2 =

1

641/2 =
1264

=
1

8
 .

■	 Exponents and 
Properties

■	 Exponential Functions

■	 Exponential Equations

■	 Compound Interest

■	 The Number e 
and Continuous 
Compounding

■	 Exponential Models

	 97.	 The function ƒ1x2 = 3x - 2 was used to encode a message as

37  25  19  61  13  34  22  1  55  1  52  52  25  64  13  10.

		  Find the inverse function and determine the message.

	 98.	 The function ƒ1x2 = 2x - 9 was used to encode a message as

-5  9  5  5  9  27  15  29  -1  21  19  31  -3  27  41.

		  Find the inverse function and determine the message.

	 99.	 Encode the message SEND HELP, using the one-to-one function

ƒ1x2 = x3 - 1.

		  Give the inverse function that the decoder will need when the message is received.

	100.	 Encode the message SAILOR BEWARE, using the one-to-one function

ƒ1x2 = 1x + 123.
		  Give the inverse function that the decoder will need when the message is received.

A	 1
B	 2
C	 3
D	 4
E	 5
F	 6
G	 7

H	   8
I	   9
J	 10
K	 11
L	 12
M	 13
N	 14

O	 15
P	 16
Q	 17
R	 18
S	 19
T	 20
U	 21

V	 22
W	 23
X	 24
Y	 25
Z	 26
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420 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

y

2–2

y = 2 x;
integers as domain

2

4

6

8

x

    

y

2–2

y = 2x;
selected rational numbers

as domain

8

6

4

2

x

    

y

–2

2

y = 2x;
real numbers

as domain

8

6

4

2

x

2!3

!3

Figure 13

Additional Properties of Exponents

For any real number a 7 0, a ≠ 1, the following statements hold.

Property Description
(a) � ax is a unique real number 

for all real numbers x.

(b) � ab = ac if and only if b = c.

(c) � If a + 1 and m * n, then 
am * an.

(d) � If 0 * a * 1 and m * n, 
then am + an.

y = ax can be considered a function 
ƒ1x2 = ax with domain 1-∞, ∞2.
The function ƒ1x2 = ax is one-to-one.

Example:  23 6 24  1a 7 12
Increasing the exponent leads to 
a greater number. The function 
ƒ1x2 = 2x is an increasing function.

Example:  A12 B2 7 A12 B3  10 6 a 6 12
Increasing the exponent leads to 
a lesser number. The function 

ƒ1x2 = A12 Bx is a decreasing function.

In this section, we extend the definition of ar to include all real (not just 
rational) values of the exponent r. Consider the graphs of y = 2x for different 
domains in Figure 13. 

The equations that use just integers or selected rational numbers as domain in 
Figure 13 leave holes in the graphs. In order for the graph to be continuous, we 
must extend the domain to include irrational numbers such as 23. We might 
evaluate 223 by approximating the exponent with the rational numbers 1.7, 
1.73, 1.732, and so on. Because these values approach the value of 23 more 
and more closely, it is reasonable that 223 should be approximated more and 
more closely by the numbers 21.7, 21.73, 21.732, and so on. These expressions can 
be evaluated using rational exponents as follows.

21.7 = 217/10 = Q210 2 R17
≈ 3.249009585

Because any irrational number may be approximated more and more closely 
using rational numbers, we can extend the definition of ar to include all real 
number exponents and apply all previous theorems for exponents. In addition 
to the rules for exponents presented earlier, we use several new properties in 
this chapter.
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421	 4.2  Exponential Functions

We repeat the final graph of y = 2x (with real num-
bers as domain) from Figure 13 and summarize impor-
tant details of the function ƒ1x2 = 2x here.

•	 The y-intercept is 10, 12.
•	 Because 2x 7 0 for all x and 2x S 0 as x S -∞,  

the x-axis is a horizontal asymptote.

•	 As the graph suggests, the domain of the function is 
1-∞, ∞2 and the range is 10, ∞2.

•	 The function is increasing on its entire domain. 
Therefore, it is one-to-one.

These observations lead to the following generaliza-
tions about the graphs of exponential functions.

Exponential Function

If a 7 0 and a ≠ 1, then the exponential function with base a is

ƒ 1x 2 = ax.

NOTE  The restrictions on a in the definition of an exponential function 
are important. Consider the outcome of breaking each restriction.

If a 6 0, say a = -2, and we let x = 1
2 , then ƒ A12 B = 1-221/2 = 2-2, 

which is not a real number.

If a = 1, then the function becomes the constant function ƒ1x2 = 1x = 1, 
which is not an exponential function.

EXAMPLE 1	 Evaluating an Exponential Function

For ƒ1x2 = 2x, find each of the following.

(a)	 ƒ1-12	 (b)  ƒ132	 (c)  ƒa 5

2
b 	 (d)  ƒ14.922

SOLUTION

(a)	 ƒ1-12 = 2-1 =
1

2
     Replace x with -1.	 (b)  ƒ132 = 23 = 8

(c)	 ƒ a 5

2
b = 25/2 = 12521/2 = 321/2 = 232 = 216 # 2 = 422

(d)	 ƒ14.922 = 24.92 ≈ 30.2738447    Use a calculator.

■✔ Now Try Exercises 13, 19, and 23.

Exponential Functions    We now define a function ƒ1x2 = ax whose 
domain is the set of all real numbers. Notice how the independent variable x  
appears in the exponent in this function. In earlier chapters, this was not  
the case.

y

–2 2

f(x) = 2x
8

(2, 4)

(1, 2)

(0, 1)

6

4

2

x

Q–1,   R1
2

Figure 13 
(repeated) 

Graph of ƒ 1x 2 = 2x with 
domain 1−H, H 2
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422 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Recall that the graph of y = ƒ1-x2 is the graph of y = ƒ1x2 reflected across 
the y-axis. Thus, we have the following.

If ƒ1x2 = 2x,  then  ƒ1-x2 = 2-x = 2-1 #  x = 12-12x = a 1

2
b

x

.

This is supported by the graphs in Figures 14 and 15.
The graph of ƒ1x2 = 2x is typical of graphs of ƒ1x2 = ax where a 7 1. For 

larger values of a, the graphs rise more steeply, but the general shape is similar 
to the graph in Figure 14. When 0 6 a 6 1, the graph decreases in a manner 

similar to the graph of ƒ1x2 = A12 Bx in Figure 15.

Exponential Function  f 1x 2 = ax

Domain: 1-∞, ∞2    Range: 10, ∞2
For ƒ1x2 = 2x:

•	 ƒ 1x 2 = ax, for a + 1, is increasing and continuous on its entire domain, 
1-∞, ∞2.

•	The x-axis is a horizontal asymptote as x S -∞.

•	The graph passes through the points A -1, 1a B, 10, 12, and 11, a2.

For ƒ1x2 = A12 Bx:

•	 ƒ 1x 2 = ax, for 0 * a * 1, is decreasing and continuous on its entire  
domain, 1-∞, ∞2.

•	The x-axis is a horizontal asymptote as x S ∞.

•	The graph passes through the points A -1, 1a B, 10, 12, and 11, a2.

Figure 14

x ƒ 1x 2
-2 1

4

-1 1
2

0 1
1 2
2 4
3 8

f (x) = ax, a > 1

x

y

0

(0, 1)

(1, a)
(–1,    )a

1

This is the general behavior seen on  
a calculator graph for any base a,  
for a + 1.

f(x) = ax, a > 1

x ƒ 1x 2
-3 8
-2 4
-1 2

0 1

1 1
2

2 1
4

Figure 15

f (x) = ax, 0 < a < 1

x

y

0

(0, 1) (1, a)
(–1,    )a

1

f(x) = ax, 0 < a < 1

This is the general behavior seen on  
a calculator graph for any base a,  
for 0 * a * 1.
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423	 4.2  Exponential Functions

–1–2 1 2

5

10

15

20

25

x

y

0

(–2, 25)

(–1, 5) (0, 1)
(1,   )1

5

f(x) = (  )x1
5

Figure 17

x ƒ 1x 2
-2 25
-1   5

0   1

1 1
5

2 1
25

This function has domain 1-∞, ∞2, range 10, ∞2, and is one-to-one. It is 
decreasing on its entire domain.

■✔ Now Try Exercise 29.

EXAMPLE 2	 Graphing an Exponential Function

Graph ƒ1x2 = A15 Bx. Give the domain and range.

SOLUTION  The y-intercept is 10, 12, and the x-axis is a horizontal asymptote. 
Plot a few ordered pairs, and draw a smooth curve through them as shown in 
Figure 17.

In summary, the graph of a function of the form ƒ1x2 = ax has the following 
features.

Characteristics of the Graph of f 1x 2 = ax

1.	 The points A -1, 1a B, 10, 12, and 11, a2 are on the graph.

2.	 If a 7 1, then ƒ is an increasing function.

	 If 0 6 a 6 1, then ƒ is a decreasing function.

3.	 The x-axis is a horizontal asymptote.

4.	 The domain is 1-∞, ∞2, and the range is 10, ∞2.

x

y

–2 –1 1 2 3–3 0

3

4

5 f(x) = 10x

f(x) = 3x

f(x) = 2x
f(x) = (  )x1

2

f(x) = (  )x1
3

f(x) = (   )x1
10 For a > 1,

the function
is increasing.

f(x) = ax

Domain: (–∞, ∞); Range: (0, ∞)

For 0 < a < 1,
the function
is decreasing.

The x-axis is
a horizontal
asymptote.

Figure 16

In Figure 16, the graphs of several typical exponential functions illustrate 
these facts.
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424 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

EXAMPLE 3	 Graphing Reflections and Translations

Graph each function. Show the graph of y = 2x for comparison. Give the domain 
and range.

(a)	 ƒ1x2 = -2x	 (b)  ƒ1x2 = 2x+3	 (c)  ƒ1x2 = 2x-2 - 1

SOLUTION  In each graph, we show in particular how the point 10, 12 on the 
graph of y = 2x has been translated.

(a)	 The graph of ƒ1x2 = -2x is that of ƒ1x2 = 2x reflected across the x-axis. See 
Figure 18. The domain is 1-∞, ∞2, and the range is 1-∞, 02.

(b)	 The graph of ƒ1x2 = 2x+3 is the graph of ƒ1x2 = 2x translated 3 units to the 
left, as shown in Figure 19. The domain is 1-∞, ∞2, and the range is 10, ∞2.

(c)	 The graph of ƒ1x2 = 2x-2 - 1 is that of ƒ1x2 = 2x translated 2 units to the 
right and 1 unit down. See Figure 20. The domain is 1-∞, ∞2, and the range 
is 1-1, ∞2.

x

y

2

f (x) = –2x
(0, 21)

(0, 1)–2

–2

2

– 4

0

y = 2x

Figure 18

(23, 1)
(0, 1)

y

x
–6 –3

2

2

4

6

8

f(x) = 2x+3

0

y = 2x

Figure 19

y

4

y 5 21
0

4

x

y = 2x

(2, 0)
(0, 1)

f(x) = 2x22 2 1

Figure 20

■✔ Now Try Exercises 39, 41, and 47.

Exponential Equations    Because the graph of ƒ1x2 = ax is that of a 
one-to-one function, to solve ax1 = ax2, we need only show that x1 = x2. This 
property is used to solve an exponential equation, which is an equation with 
a variable as exponent.

EXAMPLE 4	 Solving an Exponential Equation

Solve A13 Bx = 81.

SOLUTION  Write each side of the equation using a common base.

 a 1

3
b

x

= 81

 13-12x = 81      Definition of negative exponent

 3-x = 81      1am2n = amn

 3-x = 34      Write 81 as a power of 3.

 -x = 4      Set exponents equal (Property (b) given earlier).

 x = -4     Multiply by -1.

Check by substituting -4 for x in the original equation. The solution set is 5-46.
■✔ Now Try Exercise 73.

−100

−5

100

1

The x-intercept of the graph of 

y = A13 Bx - 81 can be used to verify the 

solution in Example 4.
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425	 4.2  Exponential Functions

EXAMPLE 5	 Solving an Exponential Equation

Solve 2x+4 = 8x-6.

SOLUTION  Write each side of the equation using a common base.

 2x+4 = 8x-6

 2x+4 = 1232x-6      Write 8 as a power of 2.

 2x+4 = 23x-18      1am2n = amn

 x + 4 = 3x - 18     Set exponents equal (Property (b)).

 -2x = -22      Subtract 3x and 4.

 x = 11      Divide by -2.

Check by substituting 11 for x in the original equation. The solution set is 5116.
■✔ Now Try Exercise 81.

Later in this chapter, we describe a general method for solving exponential 
equations where the approach used in Examples 4 and 5 is not possible. For 
instance, the above method could not be used to solve an equation like

7x = 12

because it is not easy to express both sides as exponential expressions with the 
same base.

In Example 6, we solve an equation that has the variable as the base of an 
exponential expression.

EXAMPLE 6	 Solving an Equation with a Fractional Exponent

Solve x4/3 = 81.

SOLUTION  Notice that the variable is in the base rather than in the exponent.

 x4/3 = 81

 A23 x B4 = 81	 Radical notation for am/n

 23 x = {3 	
Take fourth roots on each side. 

	 Remember to use {.

 x = {27	 Cube each side.

Check both solutions in the original equation. Both check, so the solution set is 
5{276.
Alternative Method  There may be more than one way to solve an exponential 
equation, as shown here.

 x4/3 = 81

 1x4/323 = 813 	 Cube each side.

 x4 = 13423 	 Write 81 as 34.

 x4 = 312 	 1am2n = amn

 x = {24 312	 Take fourth roots on each side.

 x = {33 	 Simplify the radical.

 x = {27 	 Apply the exponent.

The same solution set, 5{276, results.� ■✔ Now Try Exercise 83.
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426 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Compound Interest    Recall the formula for simple interest, I = Prt, where 
P is principal (amount deposited), r is annual rate of interest expressed as a deci-
mal, and t is time in years that the principal earns interest. Suppose t = 1 yr. 
Then at the end of the year, the amount has grown to the following. 

P + Pr = P11 + r2     Original principal plus interest

If this balance earns interest at the same interest rate for another year, the bal-
ance at the end of that year will increase as follows.

 3P11 + r24 + 3P11 + r24r = 3P11 + r2411 + r2     Factor.

 = P11 + r22      a # a = a2

After the third year, the balance will grow in a similar pattern.

 3P11 + r224 + 3P11 + r224r = 3P11 + r22411 + r2     Factor.

 = P11 + r23      a2 # a = a3

Continuing in this way produces a formula for interest compounded annually.

A = P 11 + r 2 t
The general formula for compound interest can be derived in the same way.

Compound Interest

If P dollars are deposited in an account paying an annual rate of interest r 
compounded (paid) n times per year, then after t years the account will con-
tain A dollars, according to the following formula.

A = P a1 +
r
n
b tn

EXAMPLE 7	 Using the Compound Interest Formula

Suppose $1000 is deposited in an account paying 4% interest per year com-
pounded quarterly (four times per year).

(a)	 Find the amount in the account after 10 yr with no withdrawals.

(b)	 How much interest is earned over the 10-yr period?

SOLUTION

(a)	  A = P a1 +
r
n
b

t n

	 Compound interest formula

 A = 1000a1 +
0.04

4
b

10142
	 Let P = 1000, r = 0.04, n = 4, and t = 10.

 A = 100011 + 0.01240 	 Simplify.

 A = 1488.86 	 Round to the nearest cent.

	 Thus, $1488.86 is in the account after 10 yr.

(b)	 The interest earned for that period is

$1488.86 - $1000 = $488.86.

■✔ Now Try Exercise 97(a).
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427	 4.2  Exponential Functions

In the formula for compound interest

A = P a1 +
r
n
b

t n

 ,

A is sometimes called the future value and P the present value. A is also called 
the compound amount and is the balance after interest has been earned.

EXAMPLE 8 	 Finding Present Value

Becky must pay a lump sum of $6000 in 5 yr.

(a)	 What amount deposited today (present value) at 3.1% compounded annually 
will grow to $6000 in 5 yr?

(b)	 If only $5000 is available to deposit now, what annual interest rate is neces-
sary for the money to increase to $6000 in 5 yr?

SOLUTION

(a)	  A = P a1 +
r
n
b

t n

      Compound interest formula

 6000 = P a1 +
0.031

1
b

5112
      Let A = 6000, r = 0.031, n = 1, and t = 5.

 6000 = P11.03125       Simplify.

 P =
6000

11.03125       Divide by 11.03125 to solve for P.

 P ≈ 5150.60       Use a calculator.

	 If Becky leaves $5150.60 for 5 yr in an account paying 3.1% compounded 
annually, she will have $6000 when she needs it. Thus, $5150.60 is the 
present value of $6000 if interest of 3.1% is compounded annually for 5 yr.

(b)	  A = P a1 +
r
n
b

t n

	 Compound interest formula

 6000 = 500011 + r25	 Let A = 6000, P = 5000, n = 1, and t = 5.

 
6

5
= 11 + r25 	 Divide by 5000.

 a 6

5
b

1/5

= 1 + r 	 Take the fifth root on each side.

 a 6

5
b

1/5

- 1 = r 	 Subtract 1.

 r ≈ 0.0371 	 Use a calculator.

An interest rate of 3.71% will produce enough interest to increase the $5000 
to $6000 by the end of 5 yr.

■✔ Now Try Exercises 99 and 103.

CAUTION  When performing the computations in problems like those in 
Examples 7 and 8, do not round off during intermediate steps. Keep all cal-
culator digits and round at the end of the process.
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428 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

The Number e and Continuous Compounding    The more often inter-
est is compounded within a given time period, the more interest will be earned. 
Surprisingly, however, there is a limit on the amount of interest, no matter how 
often it is compounded.

Suppose that $1 is invested at 100% interest per year, compounded n times 
per year. Then the interest rate (in decimal form) is 1.00, and the interest rate per 
period is 1n . According to the formula (with P = 1), the compound amount at the 

end of 1 yr will be

A = a1 +
1
n
b

n

.

A calculator gives the results in the margin for various values of n. The table sug-

gests that as n increases, the value of A1 + 1
n Bn gets closer and closer to some fixed 

number. This is indeed the case. This fixed number is called e. (In mathematics, 
e is a real number and not a variable.)

n a1 +
1
n
b

n

(rounded)

1 2
2 2.25
5 2.48832

10 2.59374
100 2.70481

1000 2.71692
10,000 2.71815

1,000,000 2.71828

Figure 21 shows graphs of the functions

y = 2x,  y = 3x,  and  y = ex.

Because 2 6 e 6 3, the graph of y = ex lies “between” the other two graphs.
As mentioned above, the amount of interest earned increases with the fre-

quency of compounding, but the value of the expression A1 + 1
n Bn approaches e 

as n gets larger. Consequently, the formula for compound interest approaches 
a limit as well, called the compound amount from continuous compounding.

Value of e

e ? 2.718281828459045

x

y

0–1

1
2

3
4

5
6
7
8

1 2

y = 2x

y = e x

y = 3x

Figure 21

Continuous Compounding

If P dollars are deposited at a rate of interest r compounded continuously 
for t years, then the compound amount A in dollars on deposit is given by 
the following formula.

A = Pert

EXAMPLE 9	 Solving a Continuous Compounding Problem

Suppose $5000 is deposited in an account paying 3% interest compounded con-
tinuously for 5 yr. Find the total amount on deposit at the end of 5 yr.

SOLUTION

 A = Pert      Continuous compounding formula

 A = 5000e0.03152      Let P = 5000, r = 0.03, and t = 5.

 A = 5000e0.15      Multiply exponents.

 A ≈ 5809.17 or $5809.17     Use a calculator.

Check that daily compounding would have produced a compound amount about 
$0.03 less.

■✔ Now Try Exercise 97(b).
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429	 4.2  Exponential Functions

EXAMPLE 10	 �Comparing Interest Earned as Compounding Is More  
Frequent

In Example 7, we found that $1000 invested at 4% compounded quarterly for 
10 yr grew to $1488.86. Compare this same investment compounded annually, 
semiannually, monthly, daily, and continuously.

SOLUTION  Substitute 0.04 for r, 10 for t, and the appropriate number of com-
pounding periods for n into the formulas

 A = P a1 +
r
n
b

t n

     Compound interest formula

and	  A = Pert.      Continuous compounding formula

The results for amounts of $1 and $1000 are given in the table.

Compounded $1 $1000

Annually          11 + 0.04210 ≈ 1.48024 $1480.24

Semiannually    a1 +
0.04

2
b

10122
≈ 1.48595 $1485.95

Quarterly    a1 +
0.04

4
b

10142
≈ 1.48886 $1488.86

Monthly  a1 +
0.04

12
b

101122
≈ 1.49083 $1490.83

Daily a1 +
0.04

365
b

1013652
≈ 1.49179 $1491.79

Continuously                    e1010.042 ≈ 1.49182 $1491.82

Comparing the results for a $1000 investment, we notice the following.

•	 Compounding semiannually rather than annually increases the value of the 
account after 10 yr by $5.71.

•	 Quarterly compounding grows to $2.91 more than semiannual compounding 
after 10 yr.

•	 Daily compounding yields only $0.96 more than monthly compounding.

•	 Continuous compounding yields only $0.03 more than daily compounding.

Each increase in compounding frequency earns less additional interest.

■✔ Now Try Exercise 105.

LOOKING AHEAD TO CALCULUS
In calculus, the derivative allows us 

to determine the slope of a tangent 

line to the graph of a function. For the 

function

ƒ1x2 = ex,

the derivative is the function ƒ itself:

ƒ′1x2 = ex.

Therefore, in calculus the exponential 

function with base e is much easier to 

work with than exponential functions 

having other bases.

Exponential Models    The number e is important as the base of an expo-
nential function in many practical applications. In situations involving growth or 
decay of a quantity, the amount or number present at time t often can be closely 
modeled by a function of the form

y = y0ekt,

where y0 is the amount or number present at time t = 0 and k is a constant.
Exponential functions are used to model the growth of microorganisms in a 

culture, the growth of certain populations, and the decay of radioactive material.
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430 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

EXAMPLE 11	 Using Data to Model Exponential Growth

Data from recent years indicate that future amounts of carbon dioxide in the 
atmosphere may grow according to the table. Amounts are given in parts per 
million.

(a)	 Make a scatter diagram of the data. Do 
the carbon dioxide levels appear to grow 
exponentially?

(b)	 One model for the data is the function

y = 0.001942e0.00609x,

	 where x is the year and 1990 … x … 2275. 
Use a graph of this model to estimate 
when future levels of carbon dioxide will 
double and triple over the preindustrial 
level of 280 ppm.

Source: International Panel on Climate 
Change (IPCC).

Year Carbon Dioxide (ppm)

1990   353

2000   375

2075   590

2175 1090

2275 2000

SOLUTION

(a)	 We show a calculator graph for the data in Figure 22(a). The data appear to 
resemble the graph of an increasing exponential function.

(b)	 A graph of y = 0.001942e0.00609x in Figure 22(b) shows that it is very 
close to the data points. We graph y2 = 2 # 280 = 560 in Figure 23(a) and 
y2 = 3 # 280 = 840 in Figure 23(b) on the same coordinate axes as the given 
function, and we use the calculator to find the intersection points.

(a)

300
1975

2100

2300

y = 0.001942e0.00609x

300
1975

2100

2300

(b)

Figure 22

  Graphing calculators are capable of fitting exponential curves to scatter 
diagrams like the one found in Example 11. The TI-84 Plus displays another 
(different) equation in Figure 24(a) for the atmospheric carbon dioxide exam-
ple, approximated as follows.

y = 0.00192311.0061092x

This calculator form differs from the model in Example 11. Figure 24(b) shows 
the data points and the graph of this exponential regression equation.  ■

(a)

Figure 24

(b)

y1 = 0.001923(1.006109)x

300
1975

2100

2300

y1 = 0.001942e0.00609x

y2 = 560

1975

−500

2100

2300

(a)

y1 = 0.001942e0.00609x

y2 = 840

1975

−500

2100

2300

(b)

Figure 23

The graph of the function intersects the horizontal lines at x-values of 
approximately 2064.4 and 2130.9. According to this model, carbon dioxide 
levels will have doubled during 2064 and tripled by 2131.

■✔ Now Try Exercise 107.
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431	 4.2  Exponential Functions

CONCEPT PREVIEW  Fill in the blank(s) to correctly complete each sentence.

	 1.	 If ƒ1x2 = 4x, then ƒ122 =  and ƒ1-22 = .

	 2.	 If a 7 1, then the graph of ƒ1x2 = ax  from left to right.
			   (rises/falls)

	 3.	 If 0 6 a 6 1, then the graph of ƒ1x2 = ax  from left to right.
			   (rises/falls)

	 4.	 The domain of ƒ1x2 = 4x is  and the range is  .

	 5.	 The graph of ƒ1x2 = 8x passes through the points (-1,  ), (0,  ), and (1,  ).

	 6.	 The graph of ƒ1x2 = - A13 Bx+ 4
- 5 is that of ƒ1x2 = A13 Bx reflected across the  

-axis, translated  units to the left and  units down.

	 4.2	 Exercises

CONCEPT PREVIEW  Solve each equation. Round answers to the nearest hundredth 
as needed.

	 7.	 a1

4
b

x

= 64	 8.	 x2/3 = 36

	 9.	 A = 2000 a1 +
0.03

4
b

8142
	 10.	 10,000 = 500011 + r225

For ƒ1x2 = 3x and g1x2 = A14 Bx, find each of the following. Round answers to the nearest 

thousandth as needed. See Example 1.

11.	 ƒ122	 12.	 ƒ132	 13.	 ƒ1-22	 14.	 ƒ1-32
15.	 g122	 16.	 g132	 17.	 g1-22	 18.	 g1-32

19.	 ƒa3

2
b 	 20.	 ƒa -  

5

2
b 	 21.	 ga3

2
b 	 22.	 ga -  

5

2
b

23.	 ƒ12.342	 24.	 ƒ1-1.682	 25.	 g1-1.682	 26.	 g12.342

Graph each function. See Example 2.

27.	 ƒ1x2 = 3x	 28.	 ƒ1x2 = 4x	 29.	 ƒ1x2 = a1

3
b

x

30.	 ƒ1x2 = a1

4
b

x

	 31.	 ƒ1x2 = a3

2
b

x

	 32.	 ƒ1x2 = a5

3
b

x

33.	 ƒ1x2 = a 1

10
b

-x

	 34.	 ƒ1x2 = a1

6
b

-x

	 35.	 ƒ1x2 = 4-x

36.	 ƒ1x2 = 10-x	 37.	 ƒ1x2 = 2�x�	 38.	 ƒ1x2 = 2-�x�

Graph each function. Give the domain and range. See Example 3.

39.	 ƒ1x2 = 2x + 1	 40.	 ƒ1x2 = 2x - 4	 41.	 ƒ1x2 = 2x+1

42.	 ƒ1x2 = 2x-4	 43.	 ƒ1x2 = -2x+2	 44.	 ƒ1x2 = -2x-3

45.	 ƒ1x2 = 2-x	 46.	 ƒ1x2 = -2-x	 47.	 ƒ1x2 = 2x-1 + 2

48.	 ƒ1x2 = 2x+3 + 1	 49.	 ƒ1x2 = 2x+2 - 4	 50.	 ƒ1x2 = 2x-3 - 1
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432 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Graph each function. Give the domain and range. See Example 3.

51.	 ƒ1x2 = a1

3
b

x

- 2	 52.	 ƒ1x2 = a1

3
b

x

+ 4	 53.	 ƒ1x2 = a1

3
b

x+2

54.	 ƒ1x2 = a1

3
b

x-4

	 55.	 ƒ1x2 = a1

3
b

-x+1

	 56.	 ƒ1x2 = a1

3
b

-x-2

57.	 ƒ1x2 = a1

3
b

-x

	 58.	 ƒ1x2 = -  a1

3
b

-x

	 59.	 ƒ1x2 = a1

3
b

x-2

+ 2

60.	 ƒ1x2 = a1

3
b

x-1

+ 3	 61.	 ƒ1x2 = a1

3
b

x+2

- 1	 62.	 ƒ1x2 = a1

3
b

x+3

- 2

Connecting Graphs with Equations  Write an equation for the graph given. Each repre-
sents an exponential function ƒ with base 2 or 3, translated and/or reflected.

63.

0

(2, 7)

(1, 1)

(0, –1)
y = –2

y

x

	 64.

0

(4, 9)

(2, 1)

y

x

(3, 3)

	 65.

0

(0, 7)

(–2, 1)
(–3, 0)

y = –1

y

x

66.

(1, 7)

(0, 5)(–1, 4)

0

y = 3

y

x

	 67.

(–1, 1)

(–2, 2)

0

y = 3

(0, –1)

y

x

	 68.

(–1, –1)

(–2, 1)

0

y = –3

(0, –2)

y

x

69.

(–1, 4)

0

y = 1 (0, 2)
(1,    )4

3

y

x

	 70.

(–1, 3)

0

y = 5

(0, 4)

(–3, –3)

x

y

Solve each equation. See Examples 4–6.

71.	 4x = 2	 72.	 125x = 5	 73.	 a5

2
b

x

=
4

25
	 74.	 a2

3
b

x

=
9

4

75.	 23-2x = 8	 76.	 52+2x = 25	 77.	 e4x-1 = 1e22x	 78.	 e3-x = 1e32-x

79.	 274x = 9x+1	 80.	 322x = 16x-1	 81.	 4x-2 = 23x+3	 82.	 26-3x = 8x+1

83.	 x2/3 = 4	 84.	 x2/5 = 16	 85.	 x5/2 = 32	 86.	 x3/2 = 27

87.	 x-6 =
1

64
	 88.	 x-4 =

1

256
	 89.	 x5/3 = -243	 90.	 x7/5 = -128

91.	 a1
e
b

-x

= a 1

e2 b
x+1

	 92.	 ex-1 = a 1

e4 b
x+1

	 93.	 A22 Bx+ 4
= 4x

94.	 A23 5 B-x
= a1

5
b

x+2

	 95.	
1

27
= x-3	 96.	

1

32
= x-5
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433	 4.2  Exponential Functions

Source: Miller, A. and J. Thompson, Elements of  
Meteorology, Fourth Edition, Charles E. Merrill  
Publishing Company, Columbus, Ohio.

Altitude Pressure Altitude Pressure

      0 1013 6000 472

1000   899 7000 411

2000   795 8000 357

3000   701   9000 308

4000   617 10,000 265

5000   541    

Solve each problem. See Examples 7–9.

	 97.	 Future Value  Find the future value and interest earned if $8906.54 is invested for 
9 yr at 3% compounded

(a)  semiannually	 (b)  continuously.

	 98.	 Future Value  Find the future value and interest earned if $56,780 is invested at 
2.8% compounded

(a)  quarterly for 23 quarters	 (b)  continuously for 15 yr.

	 99.	 Present Value Find the present value that will grow to $25,000 if interest is 3.2% 
compounded quarterly for 11 quarters.

	100.	 Present Value  Find the present value that will grow to $45,000 if interest is 3.6% 
compounded monthly for 1 yr.

	101.	 Present Value  Find the present value that will grow to $5000 if interest is 3.5% 
compounded quarterly for 10 yr.

	102.	 Interest Rate  Find the required annual interest rate to the nearest tenth of a percent 
for $65,000 to grow to $65,783.91 if interest is compounded monthly for 6 months.

	103.	 Interest Rate  Find the required annual interest rate to the nearest tenth of a percent 
for $1200 to grow to $1500 if interest is compounded quarterly for 9 yr.

	104.	 Interest Rate  Find the required annual interest rate to the nearest tenth of a percent 
for $5000 to grow to $6200 if interest is compounded quarterly for 8 yr.

Solve each problem. See Example 10.

	105.	 Comparing Loans  Bank A is lending money at 6.4% interest compounded annu-
ally. The rate at Bank B is 6.3% compounded monthly, and the rate at Bank C is 
6.35% compounded quarterly. At which bank will we pay the least interest?

	106.	 Future Value  Suppose $10,000 is invested at an annual rate of 2.4% for 10 yr. 
Find the future value if interest is compounded as follows.

(a)  annually       (b)  quarterly       (c)  monthly       (d)  daily (365 days)

(Modeling)  Solve each problem. See Example 11.

	107.	 Atmospheric Pressure  The atmospheric pressure (in millibars) at a given altitude 
(in meters) is shown in the table.

(a)	 �Use a graphing calculator to make a scatter diagram of the data for atmospheric 
pressure P at altitude x.

(b)	 Would a linear or an exponential function fit the data better?

(c)	 The following function approximates the data.

P1x2 = 1013e-0.0001341x

	 Use a graphing calculator to graph P and the data on the same coordinate axes.

(d)	�� Use P to predict the pressures at 1500 m and 11,000 m, and compare them to 
the actual values of 846 millibars and 227 millibars, respectively.
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434 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

108.	 World Population Growth  World population in millions closely fits the exponen-
tial function

ƒ1x2 = 6084e0.0120x,

where x is the number of years since 2000. (Source: U.S. Census Bureau.)

(a) � The world population was about 6853 million in 2010. How closely does the 
function approximate this value?

(b)  Use this model to predict world population in 2020 and 2030.

109.	 Deer Population   The exponential 
growth of the deer population in Mas-
sachusetts can be approximated using the 
model

ƒ1x2 = 50,00011 + 0.062x,
	 where 50,000 is the initial deer population 

and 0.06 is the rate of growth. ƒ1x2 is the 
total population after x years have passed. 
Find each value to the nearest thousand.

(a)  Predict the total population after 4 yr.

(b) � If the initial population was 30,000 and 
the growth rate was 0.12, how many 
deer would be present after 3 yr?

(c) � How many additional deer can we expect in 5 yr if the initial population is 45,000 
and the current growth rate is 0.08?

110.	 Employee Training  A person learning certain skills involving repetition tends 
to learn quickly at first. Then learning tapers off and skill acquisition approaches 
some upper limit. Suppose the number of symbols per minute that a person using a 
keyboard can type is given by

ƒ1t2 = 250 - 12012.82-0.5t,

where t is the number of months the operator has been in training. Find each value 
to the nearest whole number.

(a)  ƒ122	 (b)  ƒ142	 (c)  ƒ1102
(d) � What happens to the number of symbols per minute after several months of 

training?

Use a graphing calculator to find the solution set of each equation. Approximate the 
solution(s) to the nearest tenth.

111.	 5e3x = 75	 112.	 6-x = 1 - x	 113.	 3x + 2 = 4x	 114.	 x = 2x

115.	 A function of the form ƒ 1x 2 = xr, where r is a constant, is a power function. 
Discuss the difference between an exponential function and a power function.

	116.	 Concept Check  If ƒ1x2 = ax and ƒ132 = 27, determine each function value.

(a)  ƒ112	 (b)  ƒ1-12	 (c)  ƒ122	 (d)  ƒ102

Concept Check  Give an equation of the form ƒ1x2 = ax to define the exponential func-
tion whose graph contains the given point.

117.	 13, 82	 118.	 13, 1252	 119.	 1-3, 642	 120.	 1-2, 362

Concept Check  Use properties of exponents to write each function in the form 
ƒ1t2 = kat, where k is a constant. (Hint: Recall that ax+y = ax # ay.)

121.	 ƒ1t2 = 32t+3	 122.	 ƒ1t2 = 23t+2	 123.	 ƒ1t2 = a1

3
b

1-2t

	 124.	 ƒ1t2 = a1

2
b

1-2t
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4354.3  Logarithmic Functions

In calculus, the following can be shown.

ex = 1 + x +
x2

2 # 1
+

x3

3 # 2 # 1
+

x4

4 # 3 # 2 # 1
+

x5

5 # 4 # 3 # 2 # 1
+ g

Using more terms, one can obtain a more accurate approximation for ex.

125.	 Use the terms shown, and replace x with 1 to approximate e1 = e to three decimal 
places. Check the result with a calculator.

126.	 Use the terms shown, and replace x with -0.05 to approximate e-0.05 to four deci-
mal places. Check the result with a calculator.

Relating Concepts

For individual or collaborative investigation (Exercises 127—132)
Consider ƒ1x2 = ax, where a 7 1. Work these exercises in order.

127.	 Is ƒ a one-to-one function? If so, what kind of related function exists for ƒ?

128.	 If ƒ has an inverse function ƒ-1, sketch ƒ and ƒ-1 on the same set of axes.

129.	 If ƒ-1 exists, find an equation for y = ƒ-11x2. (You need not solve for y.)

130.	 If a = 10, what is the equation for y = ƒ-11x2? (You need not solve for y.)

131.	 If a = e, what is the equation for y = ƒ-11x2? (You need not solve for y.)

132.	 If the point 1p, q2 is on the graph of ƒ, then the point  is on the graph 
of ƒ-1.

	 4.3	 Logarithmic Functions

Logarithms    The previous section dealt with exponential functions of the 
form y = ax for all positive values of a, where a ≠ 1. The horizontal line test 
shows that exponential functions are one-to-one and thus have inverse functions. 
The equation defining the inverse of a function is found by interchanging x and y 
in the equation that defines the function. Starting with y = ax and interchanging 
x and y yields

x = ay.

Here y is the exponent to which a must be raised in order to obtain x. We call 
this exponent a logarithm, symbolized by the abbreviation “log.” The expres-
sion log a x represents the logarithm in this discussion. The number a is the base 
of the logarithm, and x is the argument of the expression. It is read “logarithm 
with base a of x,” or “logarithm of x with base a,” or “base a logarithm of x.”

■	 Logarithms

■	 Logarithmic Equations

■	 Logarithmic Functions

■	 Properties of 
Logarithms

Logarithm

For all real numbers y and all positive numbers a and x, where a ≠ 1,

y = log  a x  is equivalent to  x = a  

y.

The expression log  a x represents the exponent to which the base a must be 
raised in order to obtain x.

M05_LIAL4988_12_AIE_C04_405-496.indd   435 14/09/17   2:12 PM

SAMPLE CHAPTER. NOT FOR DISTRIBUTION.

Copyright Pearson. All Rights Reserved.



436 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

EXAMPLE 1	 Writing Equivalent Logarithmic and Exponential Forms

The table shows several pairs of equivalent statements, written in both logarith-
mic and exponential forms.

SOLUTION

■✔ Now Try Exercises 11, 13, 15, and 17.

Logarithmic Equations    The definition of logarithm can be used to solve 
a logarithmic equation, which is an equation with a logarithm in at least one term.

EXAMPLE 2	 Solving Logarithmic Equations

Solve each equation.

(a)	 logx 
8

27
= 3        (b)  log4 x =

5

2
        (c)  log4923 7 = x

SOLUTION  Many logarithmic equations can be solved by first writing the 
equation in exponential form.

(a)		   logx 
8

27
= 3

	  x3 =
8

27
	 Write in exponential form.

	  x3 = a 2

3
b

3

	 8
27 = A23 B3

	  x =
2

3
	 Take cube roots.

CHECK	  logx 
8

27
= 3  	  Original equation

	  log2/3 
8

27
≟ 3  	  Let x = 2

3 .

	  a 2

3
b

3
≟ 8

27
 	  Write in exponential form.

	  
8

27
=

8

27
  ✓	 True

The solution set is E 2
3 F.

To remember the relationships among  
a, x, and y in the two equivalent forms 
y = loga x and x = ay, refer to these  
diagrams.

A logarithm is an exponent.

	 Exponent

	
Logarithmic form: y = loga x
	
	 Base
	 Exponent

	
Exponential form: ay = x
	
	 Base

Logarithmic Form Exponential Form

log2 8 = 3 23 = 8

log1/2 16 = -4 A12 B-4
= 16

log10 100,000 = 5 105 = 100,000

log3 
1

81 = -4 3-4 = 1
81

log5 5 = 1 51 = 5

log3/4 1 = 0 A34 B0 = 1
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4374.3  Logarithmic Functions

Logarithmic Function

If a 7 0, a ≠ 1, and x 7 0, then the logarithmic function with base a is

ƒ 1x 2 = log a x.

Exponential and logarithmic functions are inverses of each other. To show 
this, we use the three steps for finding the inverse of a function.

	  ƒ1x2 = 2x      Exponential function with base 2

	  y = 2x      Let y = ƒ1x2.
Step 1	  x = 2y      Interchange x and y.

Step 2	  y = log2 x     Solve for y by writing in equivalent logarithmic form.

Step 3	  ƒ-11x2 = log2 x     Replace y with ƒ-11x2.

The graph of ƒ1x2 = 2x has the x-axis as horizontal asymptote and is shown 
in red in Figure 25. Its inverse, ƒ-11x2 = log2 x, has the y-axis as vertical asymp-
tote and is shown in blue. The graphs are reflections of each other across the line 
y = x. As a result, their domains and ranges are interchanged.

(b)	  log4 x =
5

2
 45/2 = x 	

�Write in exponential 
form.

 141/225 = x 	 amn = 1am2n

 25 = x 	 41/2 = 12221/2 = 2

 32 = x	 Apply the exponent.

CHECK   log4 32 ≟ 5

2
	 Let x = 32.

	  45/2 ≟ 32

	  25 ≟ 32	 45/2 = A24 B5 = 25

	    32 = 32  ✓	 True

	 The solution set is 5326.

(c)	  log4923 7 = x

 49x = 23 7     �Write in exponential 
form.

 1722x = 71/3      �Write with the same 
base.

 72x = 71/3      
�Power rule for  
exponents

 2x =
1

3
     Set exponents equal.

 x =
1

6
     Divide by 2.

�A check shows that the solution set 

is E 1
6 F.

■✔ Now Try Exercises 19, 29, and 35.

Logarithmic Functions    We define the logarithmic function with base a.

x

y

–2
–2

6

4

8

4 6 8

f –1(x) = log2 x
Domain: (0, ∞)
Range: (–∞, ∞)

0

y = x

(0, 1)

(1, 2)

(2, 1)

(1, 0)

(   , –1)1
2

(–1,   )1
2

f(x) = 2x

Domain: (–∞, ∞)
Range: (0, ∞)

Figure 25

x ƒ 1x 2 = 2 x

-2 1
4

-1 1
2

0 1
1 2
2 4

x ƒ−1 1x 2 = log2 x

1
4 -2
1
2 -1

1 0
2 1
4 2
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438 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

The domain of an exponential function is the set of all real numbers, so the 
range of a logarithmic function also will be the set of all real numbers. In the same 
way, both the range of an exponential function and the domain of a logarithmic 
function are the set of all positive real numbers.

Thus, logarithms can be found for positive numbers only.

Logarithmic Function  f 1x 2 = loga x

Domain: 10, ∞2    Range: 1-∞, ∞2
For ƒ1x2 = log2 x:

•	 ƒ 1x 2 = log a x, for a + 1, is increasing and continuous on its entire  
domain, 10, ∞2.

•	The y-axis is a vertical asymptote as x S 0 from the right.

•	The graph passes through the points A1a , -1 B, 11, 02, and 1a, 12.

For ƒ1x2 = log1/2 x:

•	 ƒ 1x 2 = log a x, for 0 * a * 1, is decreasing and continuous on its entire 
domain, 10, ∞2.

•	The y-axis is a vertical asymptote as x S 0 from the right.

•	The graph passes through the points A1a , -1 B, 11, 02, and 1a, 12.

x ƒ 1x 2
1
4 -2
1
2 -1

1 0
2 1
4 2
8 3

Figure 26

f (x) = loga x, a > 1

x

y

0 (1, 0)

(a, 1)

(   , –1)a
1

f(x) = loga x, a > 1

This is the general behavior seen on  
a calculator graph for any base a,  
for a + 1.

x ƒ 1x 2
1
4 2
1
2 1

1 0
2 -1
4 -2
8 -3 f (x) = loga x, 0 < a < 1

x

y

0
(1, 0)

(a, 1)

(   , –1)a
1

f(x) = loga x, 0 < a < 1

This is the general behavior seen on  
a calculator graph for any base a,  
for 0 * a * 1.

Figure 27
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4394.3  Logarithmic Functions

  Calculator graphs of logarithmic functions sometimes do not give an accu-
rate picture of the behavior of the graphs near the vertical asymptotes. While it 
may seem as if the graph has an endpoint, this is not the case. The resolution of 
the calculator screen is not precise enough to indicate that the graph approaches 
the vertical asymptote as the value of x gets closer to it. Do not draw incorrect 
conclusions just because the calculator does not show this behavior.  ■

The graphs in Figures 26 and 27 and the information with them suggest the 
following generalizations about the graphs of logarithmic functions of the form 
ƒ1x2 = loga x.

Characteristics of the Graph of f 1x 2 = loga x

1.	 The points A1a , -1 B, 11, 02, and 1a, 12 are on the graph.

2.	 If a 7 1, then ƒ is an increasing function.

	 If 0 6 a 6 1, then ƒ is a decreasing function.

3.	 The y-axis is a vertical asymptote.

4.	 The domain is 10, ∞2, and the range is 1-∞, ∞2.

(b)	 Another way to graph a logarithmic function is to write ƒ1x2 = y = log3 x 
in exponential form as x = 3y, and then select y-values and calculate corre-
sponding x-values. Several selected ordered pairs are shown in the table for 
the graph in Figure 29.

■✔ Now Try Exercise 55.

x

y

–2

4

4

y = (  )x

f(x) = log1/2 x

0

y = x1
2

Figure 28

x y = A12 B x
-2 4
-1 2

0 1

1 1
2

2 1
4

4 1
16

x ƒ 1x 2 = log1/2 x

4 -2
2 -1
1 0
1
2 1
1
4 2
1

16 4

3 9
–2

3

x

y

0

f(x) = log3 x

Figure 29

EXAMPLE 3	 Graphing Logarithmic Functions

Graph each function.

(a)	 ƒ1x2 = log1/2 x	 (b)  ƒ1x2 = log3 x

SOLUTION

(a)	 One approach is to first graph y = A12 Bx, which defines the inverse function of ƒ,  

by plotting points. Some ordered pairs are given in the table with the graph 
shown in red in Figure 28.

		  The graph of ƒ1x2 = log1/2 x is the reflection of the graph of y = A12 Bx 
across the line y = x. The ordered pairs for y = log1/2 x are found by inter-

changing the x- and y-values in the ordered pairs for y = A12 Bx. See the graph 
in blue in Figure 28.

Think: x = 3y 

x	 ƒ 1x 2 = log3 x

1
3	 -1

1	    0
3	    1
9	    2
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440 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

More general logarithmic functions can be obtained by forming the compo-
sition of ƒ1x2 = loga x with a function g1x2. For example, if ƒ1x2 = log2 x and 
g1x2 = x - 1, then

1ƒ ∘ g21x2 = ƒ1g1x22 = log2 1x - 12.
The next example shows how to graph such functions.

CAUTION  If we write a logarithmic function in exponential form in  
order to graph it, as in Example 3(b), we start first with y-values to calcu-
late corresponding x-values. Be careful to write the values in the ordered 
pairs in the correct order.

EXAMPLE 4	 Graphing Translated Logarithmic Functions

Graph each function. Give the domain and range.

(a)	 ƒ1x2 = log2 1x - 12	 (b)  ƒ1x2 = 1log3 x2 - 1

(c)	 ƒ1x2 = log4 1x + 22 + 1

SOLUTION

(a)	 The graph of ƒ1x2 = log2 1x - 12 is the graph of g1x2 = log2 x translated  
1 unit to the right. The vertical asymptote has equation x = 1. Because loga-
rithms can be found only for positive numbers, we solve x - 1 7 0 to find 
the domain, 11, ∞2. To determine ordered pairs to plot, use the equivalent 
exponential form of the equation y = log2 1x - 12.

 y = log2 1x - 12
 x - 1 = 2y      Write in exponential form.

 x = 2y + 1      Add 1.

	 We first choose values for y and then calculate each of the corresponding 
x-values. The range is 1-∞, ∞2. See Figure 30.

(b)	 The function ƒ1x2 = 1log3 x2 - 1 has the same graph as g1x2 = log3 x 
translated 1 unit down. We find ordered pairs to plot by writing the equation 
y = 1log3 x2 - 1 in exponential form.

 y = 1log3 x2 - 1

 y + 1 = log3 x      Add 1.

 x = 3y+1      Write in exponential form.

	 Again, choose y-values and calculate the corresponding x-values. The graph 
is shown in Figure 31. The domain is 10, ∞2, and the range is 1-∞, ∞2.

f(x) = log2 (x – 1)

x = 1

(3, 1)

(2, 0)

(5, 2)
x

4

2

–2

4

6 8

y

0

Figure 30

x
3 6 9

f(x) = (log3 x) – 1

0

(1, 21)

(3, 0)
(9, 1)2

–2

4

y

Figure 31
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4414.3  Logarithmic Functions

(c)	 The graph of ƒ1x2 = log4 1x + 22 + 1 
is obtained by shifting the graph of 
y = log4 x to the left 2 units and up  
1 unit. The domain is found by solving 

x + 2 7 0,

	 which yields 1-2, ∞2. The vertical  
asymptote has been shifted to the left 
2 units as well, and it has equation 
x = -2. The range is unaffected by 
the vertical shift and remains 1-∞, ∞2. 
See Figure 32.

■✔ Now Try Exercises 43, 47, and 61.

y

x 5 22

20

4

22

x

(21, 1) (2, 2)

f(x) 5 log4 (x 1 2) 1 1

Figure 32

Properties of Logarithms

For x 7 0, y 7 0, a 7 0, a ≠ 1, and any real number r, the following 
properties hold.

Property Description
Product Property 
log

 a xy = log
 a x + log

 a y
The logarithm of the product of two num-
bers is equal to the sum of the logarithms 
of the numbers.

Quotient Property 

log
 a 

x
y

= log
 a x − log

 a y

The logarithm of the quotient of two num-
bers is equal to the difference between the 
logarithms of the numbers.

Power Property 
log

 a xr = r log
 a x

The logarithm of a number raised to a 
power is equal to the exponent multiplied 
by the logarithm of the number.

Logarithm of 1 
log

 a 1 = 0
The base a logarithm of 1 is 0.

Base a Logarithm of a 
log

 a a = 1
The base a logarithm of a is 1.

Proof  To prove the product property, let m = loga x and n = loga y.

loga x = m  means  am = x 
Write in exponential form.

loga y = n  means  an = y

NOTE  If we are given a graph such as the one in Figure 31 and asked to 
find its equation, we could reason as follows: The point 11, 02 on the basic 
logarithmic graph has been shifted down 1 unit, and the point 13, 02 on the 
given graph is 1 unit lower than 13, 12, which is on the graph of y = log3 x. 
Thus, the equation will be

y = 1log3 x2 - 1.

Properties of Logarithms    The properties of logarithms enable us to 
change the form of logarithmic statements so that products can be converted to sums, 
quotients can be converted to differences, and powers can be converted to products.
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442 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

LOOKING AHEAD TO CALCULUS
A technique called logarithmic  

differentiation, which uses the  

properties of logarithms, can often be 

used to differentiate complicated  

functions.

 

 

EXAMPLE 5	 Using Properties of Logarithms

Use the properties of logarithms to rewrite each expression. Assume all vari-
ables represent positive real numbers, with a ≠ 1 and b ≠ 1.

(a)	 log6 17 # 92	 (b)  log9 
15

7
	 (c)  log5 28

(d)	 loga 23 m2	 (e)  loga 
mnq

p2t4 	 (f)  logb Bn x3y5

zm

SOLUTION

(a)	 log6 17 # 92
   = log6 7 + log6 9     �

Product  
property

(b)	 log9 
15

7

   = log9 15 - log9 7     �
Quotient  
property

(c)	 log5 28

   = log5 181/22  2a = a1/2

   =
1

2
 log5 8        Power property

(d)	 loga 23 m2

   = loga m2/3    2n am = am/n

   =
2

3
 loga m    Power property

(e)	 loga 
mnq

p2t4

    = loga m + loga n + loga q - 1loga p2 + loga t42      �
Product and quotient 
properties

    = loga m + loga n + loga q - 12 loga p + 4 loga t2     Power property

    = loga m + loga n + loga q - 2 loga p - 4 loga t      Distributive property 

Be careful  
with signs.

Use parentheses  
to avoid errors.

(f )	 logb Bn x3y5

zm

    = logb 
 

a x3y5

zm
b

1/n

    2n a = a1/n

    =
1
n

 logb 
x3y5

zm
    Power property

    =
1
n

 1logb x3 + logb y5 - logb zm2     Product and quotient properties

    =
1
n

 13 logb x + 5 logb y - m logb z2    Power property

    =
3
n

 logb x +
5
n

 logb y -
m
n

 logb z     Distributive property

■✔ Now Try Exercises 71, 73, and 77.

Now consider the product xy.

 xy = am # an      x = am and y = an; Substitute.

 xy = am+n      Product rule for exponents

 loga xy = m + n      Write in logarithmic form.

 loga xy = loga x + loga y     Substitute.

The last statement is the result we wished to prove. The quotient and power 
properties are proved similarly and are left as exercises. 
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4434.3  Logarithmic Functions

CAUTION  There is no property of logarithms to rewrite a logarithm of 
a sum or difference. That is why, in Example 6(a),

log3 1x + 22  cannot be written as  log3 x + log3 2.

The distributive property does not apply here because log3 1x + y2 is one 
term. The abbreviation “log” is a function name, not a factor.

EXAMPLE 6	 Using Properties of Logarithms

Write each expression as a single logarithm with coefficient 1. Assume all vari-
ables represent positive real numbers, with a ≠ 1 and b ≠ 1.

(a)	 log3 1x + 22 + log3 x - log3 2	 (b)  2 loga m - 3 loga n

(c)	
1

2
 logb m +

3

2
 logb 2n - logb m2n

SOLUTION

(a)	 log3 1x + 22 + log3 x - log3 2

		  = log3 
1x + 22x

2
     �

Product and  
quotient  
properties

(b)	 2 loga m - 3 loga n

		   = loga m2 - loga n3     �
Power  
property

	  = loga 
m2

n3      �
Quotient  
property

■✔ Now Try Exercises 83, 87, and 89.

(c)	
1

2
 logb m +

3

2
 logb 2n - logb m2n

	  = logb m1/2 + logb 12n23/2 - logb m2n	 Power property

	  = logb 
m1/212n23/2

m2n
	 Product and quotient properties

	  = logb 
23/2n1/2

m3/2 	 Rules for exponents

	  = logb a 23n

m3 b
1/2

	 Rules for exponents

	  = logb B 8n

m3	 Definition of a1/n

Use parentheses  
around 2n.

EXAMPLE 7	 Using Properties of Logarithms with Numerical Values

Given that log10 2 ≈ 0.3010, find each logarithm without using a calculator.

(a)	 log10 4	 (b)  log10 5

SOLUTION

(a)	 log10 4

	     = log10 22

	     = 2 log10 2

	     ≈ 210.30102
	     ≈ 0.6020

(b)	 log10 5

    = log10 
10

2

    = log10 10 - log10 2

    ≈ 1 - 0.3010

    ≈ 0.6990

■✔ Now Try Exercises 93 and 95.

Napier’s Rods

The search for ways to make  
calculations easier has been a 
long, ongoing process. Machines 
built by Charles Babbage and 
Blaise Pascal, a system of “rods” 
used by John Napier, and slide 
rules were the forerunners of  
today’s calculators and computers. 
The invention of logarithms by 
John Napier in the 16th century 
was a great breakthrough in the 
search for easier calculation  
methods.

Source: IBM Corporate Archives.
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444 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Recall that for inverse functions ƒ and g, 1ƒ ∘ g21x2 = 1g ∘ ƒ21x2 = x. We 
can use this property with exponential and logarithmic functions to state two 
more properties. If ƒ1x2 = ax and g1x2 = loga x, then

1ƒ ∘ g21x2 = aloga x = x  and  1g ∘ ƒ21x2 = loga 1ax2 = x.

NOTE  The values in Example 7 are approximations of logarithms, so the 
final digit may differ from the actual 4-decimal-place approximation after 
properties of logarithms are applied.

Theorem on Inverses

For a 7 0, a ≠ 1, the following properties hold.

alog
 
a x = x 1 for x + 0 2   and  log a ax = x

Examples:  7log7 10 = 10,  log5 53 = 3,  and  logr rk+1 = k + 1

The second statement in the theorem will be useful when we solve logarithmic 
and exponential equations.

	 4.3	 Exercises

CONCEPT PREVIEW  Match the logarithm in Column I with its value in Column II. 
Remember that loga x is the exponent to which a must be raised in order to obtain x.

I

	 1.	 (a)	 log2 16

(b)	 log3 1

(c)	 log10 0.1

(d)	 log2 22

(e)	 loge 
1

e2

(f )	 log1/2 8

II

A.	 0

B.	
1

2

C.	 4

D.	 -3

E.	 -1

F.	 -2

I

	 2.	 (a)	 log3 81

(b)	 log3 
1

3

(c)	 log10 0.01

(d)	 log6 26

(e)	 loge 1

(f )	 log3 273/2

II

A.	 -2

B.	 -1

C.	 0

D.	
1

2

E.	
9

2

F.	 4

CONCEPT PREVIEW  Write each equivalent form.

	 3.	 Write log2 8 = 3 in exponential form.	 4.	 Write 103 = 1000 in logarithmic form.

CONCEPT PREVIEW  Solve each logarithmic equation.

	 5.	 logx 
16

81
= 2	 6.	 log36 23 6 = x

CONCEPT PREVIEW  Sketch the graph of each function. Give the domain and range.

	 7.	 ƒ1x2 = log5 x	 8.	 g1x2 = log1/5 x
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4454.3  Logarithmic Functions

CONCEPT PREVIEW  Use the properties of logarithms to rewrite each expression. As-
sume all variables represent positive real numbers.

	 9.	 log10 
2x

7
	 10.	 3 log4 x - 5 log4 y

If the statement is in exponential form, write it in an equivalent logarithmic form. If the 
statement is in logarithmic form, write it in exponential form. See Example 1.

11.	 34 = 81	 12.	 25 = 32	 13.	 a2

3
b

-3

=
27

8
	 14.	 10-4 = 0.0001

15.	 log6 36 = 2	 16.	 log5 5 = 1	 17.	 log23
 81 = 8	 18.	 log4 

1

64
= -3

Solve each equation. See Example 2.

19.	 x = log5 
1

625
	 20.	 x = log3 

1

81
	 21.	 logx 

1

32
= 5	 22.	 logx 

27

64
= 3

23.	 x = log8 24 8	 24.	 x = log7 25 7	 25.	 x = 3log3 8	 26.	 x = 12log12 5

27.	 x = 2log2 9	 28.	 x = 8log8 11	 29.	 logx 25 = -2	 30.	 logx 16 = -2

31.	 log4 x = 3	 32.	 log2 x = 3	 33.	 x = log4 23 16	 34.	 x = log5 24 25

	35.	 log9 x =
5

2
	 36.	 log4 x =

7

2

37.	 log1/2 1x + 32 = -4	 38.	 log1/3 1x + 62 = -2

39.	 log1x+32 6 = 1	 40.	 log1x-42 19 = 1

41.	 3x - 15 = logx 1 1x 7 0, x ≠ 12	 42.	 4x - 24 = logx 1 1x 7 0, x ≠ 12

Graph each function. Give the domain and range. See Example 4.

43.	 ƒ1x2 = 1log2 x2 + 3	 44.	 ƒ1x2 = log2 1x + 32	 45.	 ƒ1x2 = 0 log2 1x + 32 0

Graph each function. Give the domain and range. See Example 4.

46.	 ƒ1x2 = 1log1/2 x2 - 2	 47.	 ƒ1x2 = log1/2 1x - 22	 48.	 ƒ1x2 = 0 log1/2 1x - 22 0

Concept Check  In Exercises 49–54, match the function with its graph from choices A–F.

49.	 ƒ1x2 = log2 x	 50.	 ƒ1x2 = log2 2x	 51.	 ƒ1x2 = log2 
1
x

52.	 ƒ1x2 = log2 a1

2
 xb 	 53.	 ƒ1x2 = log2 1x - 12	 54.	 ƒ1x2 = log2 1-x2

	A.	

1

1
x

y

0

	 B.	

1 1
x

y

0

	 C.	

1 1
x

y

0

	D.	

1

1
x

y

0

	 E.	

1

1
x

y

0

	 F.	

1

0 2
x

y
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446 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Graph each function. See Examples 3 and 4.

55.	 ƒ1x2 = log5 x	 56.	 ƒ1x2 = log10 x	 57.	 ƒ1x2 = log5 1x + 12	
58.	 ƒ1x2 = log6 1x - 22	 59.	 ƒ1x2 = log1/2 11 - x2	 60.	 ƒ1x2 = log1/3 13 - x2
61.	 ƒ1x2 = log3 1x - 12 + 2	 62.	 ƒ1x2 = log2 1x + 22 - 3	 63.	 ƒ1x2 = log1/2 1x + 32 - 2

Connecting Graphs with Equations  Write an equation for the graph given. Each repre-
sents a logarithmic function ƒ with base 2 or 3, translated and/or reflected. See the Note 
following Example 4.

65.

(7, 0)

0

x = –1

(0, –3)
(1, –2)

x

y 	 66.

(7, 1)

0

x = 3

(4, –1)

(5, 0)
x

y 	 67.

(1, –1)

0

x = 3

(2, –2)
(–1, 0)

x

y

68.

0

x = –3

(–2, 0)

(–1, –1)
(1, –2)

x

y 	 69.

0

x = 1

(2, 0)

(4, –1)

(  , 1)4
3

x

y 	 70.

0

x = 5

(–3, –3)
(3, –1)

(4, 0)
x

y

Use the properties of logarithms to rewrite each expression. Simplify the result if pos-
sible. Assume all variables represent positive real numbers. See Example 5.

71.	 log2 
6x
y

	 72.	 log3 
4p

q
	 73.	 log5 

527

3

74.	 log2 
223

5
	 75.	 log4 12x + 5y2	 76.	 log6 17m + 3q2

77.	 log2 B5r3

z5 	 78.	 log3 B3  
m5n4

t2 	 79.	 log2 
ab

cd

80.	 log2 
xy

tqr
	 81.	 log3 

2x # 23 y

w22z
	 82.	 log4 

23 a # 24 b2c # 23 d2

Write each expression as a single logarithm with coefficient 1. Assume all variables rep-
resent positive real numbers, with a ≠ 1 and b ≠ 1. See Example 6.

83.	 loga x + loga y - loga m	 84.	 logb k + logb m - logb a

85.	 loga m - loga n - loga t	 86.	 logb p - logb q - logb r

87.	
1

3
 logb x4y5 -

3

4
 logb x2y	 88.	

1

2
 loga p3q4 -

2

3
 loga p4q3

89.	 2 loga 1z + 12 + loga 13z + 22	 90.	 5 loga 1z + 72 + loga 12z + 92

91.	 -  
2

3
 log5 5m2 +

1

2
 log5 25m2	 92.	 -  

3

4
 log3 16p4 -

2

3
 log3 8p3

 

 

64.	 Concept Check  To graph the function ƒ1x2 = - log5 1x - 72 - 4, reflect the graph 
of y = log5 x across the -axis, then shift the graph  units to the right and 

 units down.
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4474.3  Logarithmic Functions

Given that log10 2 ≈ 0.3010 and log10 3 ≈ 0.4771, find each logarithm without using a 
calculator. See Example 7.

	 93.	 log10 6	 94.	 log10 12	 95.	 log10 
3

2
	 96.	 log10 

2

9

	 97.	 log10 
9

4
	 98.	 log10 

20

27
	 99.	 log10 230	 100.	 log10 361/3

Solve each problem.

	101.	 (Modeling) Interest Rates of Treasury Securities  The 
table gives interest rates for various U.S. Treasury Securities 
on January 2, 2015.

(a)	 Make a scatter diagram of the data.

(b)	� Which type of function will model this data best: linear, 
exponential, or logarithmic?

Source:www.federal  
reserve.gov

Time Yield

3-month 0.02%

6-month 0.10%

2-year 0.66%

5-year 1.61%

10-year 2.11%

30-year 2.60%

102.	 Concept Check  Use the graph to estimate each 
logarithm.

(a)	 log3 0.3        (b)  log3 0.8

–2 –1.5 –1 –0.5 0

0.2

0.4

0.6

0.8

1

x

y

y = 3 x

	103.	 Concept Check  Suppose ƒ1x2 = loga x and ƒ132 = 2. Determine each function 
value.

(a)  ƒ a1

9
b         (b)  ƒ1272        (c)  ƒ192        (d)  ƒ ¢23

3
≤

104.	 Use properties of logarithms to evaluate each expression.

(a)  100log10 3    (b)  log10 10.0123    (c)  log10 10.000125    (d)  1000log10 5

	105.	 Using the compound interest formula A = P A1 + r
n Bt n

, show that the amount of 
time required for a deposit to double is

1

log2 A1 + r
n Bn

 .

	106.	 Concept Check  If 15, 42 is on the graph of the logarithmic function with base a, 
which of the following statements is true:

5 = loga 4  or  4 = loga 5?

Use a graphing calculator to find the solution set of each equation. Give solutions to the 
nearest hundredth.

107.	 log10 x = x - 2	 108.	 2-x = log10 x

109.	 Prove the quotient property of logarithms:  loga 
x
y = loga x - loga y.

110.	 Prove the power property of logarithms:  loga xr = r loga x.
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448 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

The following exercises are designed to help solidify your understanding of inverse, 
exponential, and logarithmic functions from Sections 4.1–4.3.

Determine whether the functions in each pair are inverses of each other.

	 1.	 ƒ1x2 = 3x - 4, g1x2 =
1

3
 x +

4

3
	 2.	 ƒ1x2 = 8 - 5x, g1x2 = 8 +

1

5
 x

	 3.	 ƒ1x2 = 1 + log2 x, g1x2 = 2x-1	 4.	 ƒ1x2 = 3x/5 - 2, g1x2 = 5 log3 1x + 22

Summary Exercises on Inverse, Exponential, and Logarithmic  
Functions

Determine whether each function is one-to-one. If it is, then sketch the graph of its 
inverse function.

	 5.

x

y = x
y 	 6. 

1
x

y
y = x

	 7.

x

y
y = x

	 8. 

x

y
y = x

In Exercises 9–12, match each function with its graph from choices A–D.

	 9.	 y = log3 1x + 22	 10.	 y = 5 - 2x

11.	 y = log2 15 - x2	 12.	 y = 3x - 2

A. 

1

1
x

y

0

	 B.	

1

1
x

y

0

C. 

1

1
x

y

0

	 D.	

1

1
x

y

0

	13.	 The functions in Exercises 9–12 form two pairs of inverse functions. Determine 
which functions are inverses of each other.

	14.	 Determine the inverse of the function ƒ1x2 = log5 x. (Hint: Replace ƒ1x2 with y, 
and write in exponential form.)
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4494.4  Evaluating Logarithms and the Change-of-Base Theorem

For each function that is one-to-one, write an equation for the inverse function. Give the 
domain and range of both ƒ and ƒ-1. If the function is not one-to-one, say so.

15.	 ƒ1x2 = 3x - 6	 16.	 ƒ1x2 = 21x + 123

17.	 ƒ1x2 = 3x2	 18.	 ƒ1x2 =
2x - 1

5 - 3x

19.	 ƒ1x2 = 23 5 - x4	 20.	 ƒ1x2 = 2x2 - 9,  x Ú 3

Write an equivalent statement in logarithmic form.

21.	 a 1

10
b

-3

= 1000	 22.	 ab = c	 23.	 A23 B4 = 9

24.	 4-3/2 =
1

8
	 25.	 2x = 32	 26.	 274/3 = 81

Solve each equation.

27.	 3x = 7log7 6	 28.	 x = log10 0.001	 29.	 x = log6 
1

216

30.	 logx 5 =
1

2
	 31.	 log10 0.01 = x	 32.	 logx 3 = -1

33.	 logx 1 = 0	 34.	 x = log228	 35.	 logx23 5 =
1

3

36.	 log1/3 x = -5	 37.	 log10 1log2 2102 = x	 38.	 x = log4/5 
25

16

39.	 2x - 1 = log6 6x	 40.	 x = B log1/2 
1

16
	 41.	 2x = log2 16

42.	 log3 x = -2	 43.	 a1

3
b

x+1

= 9x	 44.	 52x-6 = 25x-3

	 4.4	 Evaluating Logarithms and the Change-of-Base Theorem

Common Logarithms    Two of the most important bases for logarithms 
are 10 and e. Base 10 logarithms are common logarithms. The common loga-
rithm of x is written log x, where the base is understood to be 10.

■	 Common Logarithms

■ 	 Applications and 
Models with Common 
Logarithms

■ 	 Natural Logarithms

■ 	 Applications and 
Models with Natural 
Logarithms

■ 	 Logarithms with Other 
Bases

Common Logarithm

For all positive numbers x,

log x = log10 x.

A calculator with a log key can be used to find the base 10 logarithm of any 
positive number.
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450 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

EXAMPLE 1	 Evaluating Common Logarithms with a Calculator

Use a calculator to find the values of

log 1000,  log 142,  and  log 0.005832.

SOLUTION  Figure 33 shows that the exact 
value of log 1000 is 3 (because 103 = 1000), 
and that

	  log 142 ≈ 2.152288344

and	  log 0.005832 ≈ -2.234182485.

Most common logarithms that appear in cal-
culations are approximations, as seen in the  
second and third displays.

■✔ Now Try Exercises 11, 15, and 17.

Figure 33

For a + 1, base a logarithms of numbers between 0 and 1 are always 
negative, and base a logarithms of numbers greater than 1 are always positive.

Applications and Models with Common Logarithms    In chemistry, 
the pH of a solution is defined as

pH = − log 3H3O+ 4 ,
where 3H3O+4  is the hydronium ion concentration in moles* per liter. The  
pH value is a measure of the acidity or alkalinity of a solution. Pure water has pH 
7.0, substances with pH values greater than 7.0 are alkaline, and substances with 
pH values less than 7.0 are acidic. See Figure 34. It is customary to round pH 
values to the nearest tenth.

EXAMPLE 2	 Finding pH

(a)	 Find the pH of a solution with 3H3O+4 = 2.5 * 10-4.

(b)	 Find the hydronium ion concentration of a solution with pH = 7.1.

SOLUTION

(a)   pH = - log3H3O+4
 pH = - log12.5 * 10-42 	 Substitute 3H3O+4 = 2.5 * 10-4.

 pH = -1log 2.5 + log 10-42	 Product property

 pH = -10.3979 - 42 	 log 10-4 = -4

 pH = -0.3979 + 4 	 Distributive property

 pH ≈ 3.6	 Add.

*A mole is the amount of a substance that contains the same number of molecules as the number of atoms 
in exactly 12 grams of carbon-12.

Figure 34

1 7 14

Acidic Neutral Alkaline
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4514.4  Evaluating Logarithms and the Change-of-Base Theorem

(b)	  pH = - log3H3O+4
 7.1 = - log3H3O+4	 Substitute pH = 7.1.

 -7.1 = log3H3O+4 	 Multiply by -1.

 3H3O+4 = 10-7.1	 Write in exponential form.

 3H3O+4 ≈ 7.9 * 10-8 	 Evaluate 10-7.1 with a calculator.

■✔ Now Try Exercises 29 and 33.

EXAMPLE 3	 Using pH in an Application

Wetlands are classified as bogs, fens, marshes, and swamps based on pH values. 
A pH value between 6.0 and 7.5 indicates that the wetland is a “rich fen.” When 
the pH is between 3.0 and 6.0, it is a “poor fen,” and if the pH falls to 3.0 or less,  
the wetland is a “bog.” (Source: R. Mohlenbrock, “Summerby Swamp, Michigan,” 
Natural History.)

Suppose that the hydronium ion concentration of a sample of water from a 
wetland is 6.3 * 10-5. How would this wetland be classified?

SOLUTION	  pH = - log3H3O+4 	 Definition of pH

	  pH = - log16.3 * 10-52 	 Substitute for 3H3O+4.
	  pH = -1log 6.3 + log 10-52	 Product property

	  pH = - log 6.3 - 1-52 	 Distributive property; log 10n = n

	  pH = - log 6.3 + 5 	 Definition of subtraction

	  pH ≈ 4.2 	 Use a calculator.

The pH is between 3.0 and 6.0, so the wetland is a poor fen.

■✔ Now Try Exercise 37.

EXAMPLE 4	 Measuring the Loudness of Sound

The loudness of sounds is measured in decibels. We first assign an intensity of 
I0 to a very faint threshold sound. If a particular sound has intensity I, then the 
decibel rating d of this louder sound is given by the following formula.

d = 10 log 
I
I0

Find the decibel rating d of a sound with intensity 10,000I0 .

SOLUTION	  d = 10 log 
10,000I0

I0
	 Let I = 10,000I0.

	  d = 10 log 10,000 	 I0

I0
= 1

	  d = 10142 	 log 10,000 = log 104 = 4

	  d = 40 	 Multiply.

The sound has a decibel rating of 40.� ■✔ Now Try Exercise 63.

NOTE  In the fourth line of the solution in Example 2(a), we use the 
equality symbol, = , rather than the approximate equality symbol, ≈ , when 
replacing log 2.5 with 0.3979. This is often done for convenience, despite 
the fact that most logarithms used in applications are indeed approximations.
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452 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Natural Logarithms    In most practical applications of logarithms, the 
irrational number e is used as the base. Logarithms with base e are natural 
logarithms because they occur in the life sciences and economics in natural 
situations that involve growth and decay. The base e logarithm of x is written  
ln x (read “el-en x”). The expression ln x represents the exponent to which e 
must be raised in order to obtain x.

2 6 84
x

–2

2
f(x) = ln x

0

y

Figure 35

Natural Logarithm

For all positive numbers x,

ln x = log
 e x.

A graph of the natural logarithmic function ƒ1x2 = ln x is given in Figure 35.

EXAMPLE 5	 Evaluating Natural Logarithms with a Calculator

Use a calculator to find the values of

ln e3, ln 142,  and  ln 0.005832.

SOLUTION  Figure 36 shows that the exact 
value of ln e3 is 3, and that

	  ln 142 ≈ 4.955827058

and	  ln 0.005832 ≈ -5.144395284.

■✔ Now Try Exercises 45, 51, and 53.

Figure 36

Figure 37 illustrates that ln x is the exponent to which e must be raised in 
order to obtain x.

Figure 37

Applications and Models with Natural Logarithms

EXAMPLE 6	 Measuring the Age of Rocks

Geologists sometimes measure the age of rocks by using “atomic clocks.” By 
measuring the amounts of argon-40 and potassium-40 in a rock, it is possible to 
find the age t of the specimen in years with the formula

t = 11.26 * 1092 
ln A1 + 8.33AAK B B

ln 2
 ,

where A and K are the numbers of atoms of argon-40 and potassium-40, respec-
tively, in the specimen.

(a)	 How old is a rock in which A = 0 and K 7 0?

(b)	 The ratio 
A
K  for a sample of granite from New Hampshire is 0.212. How old 

is the sample?
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4534.4  Evaluating Logarithms and the Change-of-Base Theorem

SOLUTION

(a)	 If A = 0, then A
K = 0 and the equation is as follows.

 t = 11.26 * 1092 
ln A1 + 8.33AAK B B

ln 2
	 Given formula

 t = 11.26 * 1092 
ln 1

ln 2
	 A

K = 0, so ln 11 + 02 = ln 1

 t = 11.26 * 1092102 	 ln 1 = 0

 t = 0

	 The rock is new (0 yr old).

(b)	 Because A
K = 0.212, we have the following.

 t = 11.26 * 1092 
ln 11 + 8.3310.21222

ln 2
     Substitute.

 t ≈ 1.85 * 109      Use a calculator.

	 The granite is about 1.85 billion yr old.� ■✔ Now Try Exercise 77.

LOOKING AHEAD TO CALCULUS
The natural logarithmic function 

ƒ1x2 = ln x and the reciprocal function 

g1x2 = 1
x have an important relation-

ship in calculus. The derivative of the 

natural logarithmic function is the  

reciprocal function. Using Leibniz  

notation (named after one of the  

co-inventors of calculus), we write  

this fact as d
dx  1ln x2 = 1

x  .

EXAMPLE 7	 Modeling Global Temperature Increase

Carbon dioxide in the atmosphere traps heat from the sun. The additional solar 
radiation trapped by carbon dioxide is radiative forcing. It is measured in 
watts per square meter 1w/m22. In 1896 the Swedish scientist Svante Arrhenius 
modeled radiative forcing R caused by additional atmospheric carbon dioxide, 
using the logarithmic equation

R = k ln 
C

C0
 ,

where C0 is the preindustrial amount of carbon dioxide, C is the current carbon 
dioxide level, and k is a constant. Arrhenius determined that 10 … k … 16 when 
C = 2C0 . (Source: Clime, W., The Economics of Global Warming, Institute for 
International Economics, Washington, D.C.)

(a)	 Let C = 2C0. Is the relationship between R and k linear or logarithmic?

(b)	 The average global temperature increase T (in °F) is given by T1R2 =  1.03R. 
Write T as a function of k.

SOLUTION

(a)	 If C = 2C0 , then 
C
C0

= 2, so R = k ln 2 is a linear relation, because ln 2 is a 
constant.

(b)		   T1R2 = 1.03R

 T1k2 = 1.03k ln 
C

C0
     Use the given expression for R.

■✔ Now Try Exercise 75.

Logarithms with Other Bases    We can use a calculator to find the values  
of either natural logarithms (base e) or common logarithms (base 10). However,  
sometimes we must use logarithms with other bases. The change-of-base  
theorem can be used to convert logarithms from one base to another.
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454 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

LOOKING AHEAD TO CALCULUS
In calculus, natural logarithms are 

more convenient to work with than 

logarithms with other bases. The 

change-of-base theorem enables us to 

convert any logarithmic function to a 

natural logarithmic function.

Change-of-Base Theorem

For any positive real numbers x, a, and b, where a ≠ 1 and b ≠ 1, the fol-
lowing holds.

log a x =
log b x

log b a

Proof	 Let	  y = loga x.

	 Then	  ay = x 	 Write in exponential form.

		   logb ay = logb x	 Take the base b logarithm on each side.

		   y logb a = logb x 	 Power property

		   y =
logb x

logb a
	 Divide each side by logb a.

		   loga x =
logb x

logb a
 .	 Substitute loga x for y.

Any positive number other than 1 can be used for base b in the change-of-base 
theorem, but usually the only practical bases are e and 10 since most calculators 
give logarithms for these two bases only.

  Using the change-of-base theorem, we can graph an equation such as 

y = log2 x  by directing the calculator to graph y = log x
log 2 , or, equivalently, y = ln x

ln 2 .  ■

         
	 (a)	 (b)

Figure 38

EXAMPLE 8	 Using the Change-of-Base Theorem

Use the change-of-base theorem to find an approximation to four decimal places 
for each logarithm.

(a)	 log5 17	 (b)  log2 0.1

SOLUTION

(a)	 We use natural logarithms to approximate this logarithm. Because log5 5 = 1 
and log5 25 = 2, we can estimate log5 17 to be a number between 1 and 2.

log5 17 =
ln 17

ln 5
≈ 1.7604 Check: 51.7604 ≈ 17

	 The first two entries in Figure 38(a) show that the results are the same 
whether natural or common logarithms are used.
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4554.4  Evaluating Logarithms and the Change-of-Base Theorem

(b)	 We use common logarithms for this approximation.

log2 0.1 =
log 0.1

log 2
≈ -3.3219 Check: 2-3.3219 ≈ 0.1

	 The last two entries in Figure 38(a) show that the results are the same whether 
natural or common logarithms are used.

Some calculators, such as the TI-84 Plus, evaluate these logarithms directly 
without using the change-of-base theorem. See Figure 38(b).

■✔ Now Try Exercises 79 and 81.

EXAMPLE 9	 Modeling Diversity of Species

One measure of the diversity of the species in an ecological community is mod-
eled by the formula

H = - 3P1 log2 P1 + P2 log2 P2 + g +  Pn log2 Pn4,
where P1, P2,c , Pn are the proportions of a sample that belong to each of  
n species found in the sample. (Source: Ludwig, J., and J. Reynolds, Statistical 
Ecology: A Primer on Methods and Computing, © 1988, John Wiley & Sons, NY.)

Find the measure of diversity in a community with two species where there 
are 90 of one species and 10 of the other.

SOLUTION  There are 100 members in the community, so P1 = 90
100 = 0.9 and 

P2 = 10
100 = 0.1.

H = - 30.9 log2 0.9 + 0.1 log2 0.14     Substitute for P1 and P2.

In Example 8(b), we found that log2 0.1 ≈ -3.32. Now we find log2 0.9.

log2 0.9 =
log 0.9

log 2
≈ -0.152     Change-of-base theorem

Now evaluate H.

 H = - 30.9 log2 0.9 + 0.1 log2 0.14
 H ≈ - 30.91-0.1522 + 0.11-3.3224    Substitute approximate values.

 H ≈ 0.469     Simplify.

Verify that H ≈ 0.971 if there are 60 of one species and 40 of the other. 
As the proportions of n species get closer to 1

n each, the measure of diversity 
increases to a maximum of log2 n.

■✔ Now Try Exercise 73.

y = 1.479 + 0.809 lnx

−2

−5

5

35

Figure 39

  We saw previously that graphing calculators are capable of fitting expo-
nential curves to data that suggest such behavior. The same is true for logarithmic 
curves. For example, during the early 2000s on one particular day, interest rates 
for various U.S. Treasury Securities were as shown in the table.

Source: U.S. Treasury.

Time 3-mo 6-mo 2-yr 5-yr 10-yr 30-yr

Yield 0.83% 0.91% 1.35% 2.46% 3.54% 4.58%

Figure 39 shows how a calculator gives the best-fitting natural logarithmic curve 
for the data, as well as the data points and the graph of this curve.  ■
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456 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

	 4.4	 Exercises

CONCEPT PREVIEW  Answer each of the following.

	 1.	 For the exponential function ƒ1x2 = ax, where a 7 1, is the function increasing or 
decreasing over its entire domain?

	 2.	 For the logarithmic function g1x2 = loga x, where a 7 1, is the function increasing 
or decreasing over its entire domain?

	 3.	 If ƒ1x2 = 5x, what is the rule for ƒ-11x2?
	 4.	 What is the name given to the exponent to which 4 must be raised to obtain 11?

	 5.	 A base e logarithm is called a(n)  logarithm, and a base 10 logarithm is 
called a(n)  logarithm.

	 6.	 How is log3 12 written in terms of natural logarithms using the change-of-base 
theorem?

	 7.	 Why is log2 0 undefined?

	 8.	 Between what two consecutive integers must log2 12 lie?

	 9.	 The graph of y = log x shows a point on the graph. Write the logarithmic equation 
associated with that point.

4 8

–1

1

x

y

(8, 0.90308999)

y = log x

0

Find each value. If applicable, give an approximation to four decimal places. See 
Example 1.

11.	 log 1012	 12.	 log 107	 13.	 log 0.1	 14.	 log 0.01

15.	 log 63	 16.	 log 94	 17.	 log 0.0022	 18.	 log 0.0055

19.	 log 1387 * 232	 20.	 log 1296 * 122	 21.	 log 
518

342
	 22.	 log 

643

287

	23.	 log 387 + log 23	 24.	 log 296 + log 12

	25.	 log 518 - log 342	 26.	 log 643 - log 287

Answer each question.

	27.	 Why is the result in Exercise 23 the same as that in Exercise 19?

	28.	 Why is the result in Exercise 25 the same as that in Exercise 21?

	10.	 The graph of y = ln x shows a point on the graph. Write the logarithmic equation 
associated with that point.

2 4 6 8
–1

1

x

y

y = ln x

(2.75, 1.0116009)

0
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4574.4  Evaluating Logarithms and the Change-of-Base Theorem

For each substance, find the pH from the given hydronium ion concentration. See  
Example 2(a).

	29.	 grapefruit, 6.3 * 10-4	 30.	 limes, 1.6 * 10-2

31.	 crackers, 3.9 * 10-9	 32.	 sodium hydroxide (lye), 3.2 * 10-14

Find the 3H3O+4 for each substance with the given pH. See Example 2(b).

33.	 soda pop, 2.7	 34.	 wine, 3.4

35.	 beer, 4.8	 36.	 drinking water, 6.5

Suppose that water from a wetland area is sampled and found to have the given hydro-
nium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. 
See Example 3.

37.	 2.49 * 10-5	 38.	 6.22 * 10-5	 39.	 2.49 * 10-2

40.	 3.14 * 10-2	 41.	 2.49 * 10-7	 42.	 5.86 * 10-7

Solve each problem.

43.	 Use a calculator to find an approximation for each logarithm.

(a)  log 398.4	 (b)  log 39.84	 (c)  log 3.984

(d) � From the answers to parts (a)–(c), make a conjecture concerning the decimal 
values in the approximations of common logarithms of numbers greater than 1 
that have the same digits.

	44.	 Given that log 25 ≈ 1.3979, log 250 ≈ 2.3979, and log 2500 ≈ 3.3979, make a 
conjecture for an approximation of log 25,000. Why does this pattern continue?

Find each value. If applicable, give an approximation to four decimal places. See  
Example 5.

45.	 ln e1.6	 46.	 ln e5.8	 47.	 ln 
1

e2

48.	 ln 
1

e4	 49.	 ln 2e	 50.	 ln 23 e

51.	 ln 28	 52.	 ln 39	 53.	 ln 0.00013

54.	 ln 0.0077	 55.	 ln 127 * 9432	 56.	 ln 133 * 5682

57.	 ln 
98

13
	 58.	 ln 

84

17
	 59.	 ln 27 + ln 943

60.	 ln 33 + ln 568	 61.	 ln 98 - ln 13	 62.	 ln 84 - ln 17

Solve each problem. See Examples 4, 6, 7, and 9.

63.	 Decibel Levels  Find the decibel ratings of sounds having the following intensities.

(a)	 100I0	 (b)  1000I0	 (c)  100,000I0	 (d)  1,000,000I0

(e)	� If the intensity of a sound is doubled, by how much is the decibel rating  
increased? Round to the nearest whole number.

64.	 Decibel Levels  Find the decibel ratings of the following sounds, having intensities 
as given. Round each answer to the nearest whole number.

(a)	 whisper, 115I0	 (b) busy street, 9,500,000I0

(c)	 heavy truck, 20 m away, 1,200,000,000I0

(d)	 rock music, 895,000,000,000I0

(e)	 jetliner at takeoff, 109,000,000,000,000I0
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458 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

65.	 Earthquake Intensity  The magnitude of an earthquake, measured on the Richter 

scale, is log10 
I
I0

 , where I is the amplitude registered on a seismograph 100 km from 

the epicenter of the earthquake, and I0 is the amplitude of an earthquake of a certain 
(small) size. Find the Richter scale ratings for earthquakes having the following 
amplitudes.

(a)  1000I0	 (b)  1,000,000I0	 (c)  100,000,000I0

66.	 Earthquake Intensity  On December 26, 2004, an earthquake struck in the Indian 
Ocean with a magnitude of 9.1 on the Richter scale. The resulting tsunami killed an 
estimated 229,900 people in several countries. Express this reading in terms of I0 to 
the nearest hundred thousand.

67.	 Earthquake Intensity  On February 27, 2010, a massive earthquake struck Chile 
with a magnitude of 8.8 on the Richter scale. Express this reading in terms of I0 to 
the nearest hundred thousand.

68.	 Earthquake Intensity Comparison  Compare the answers to Exercises 66 and 67. 
How many times greater was the force of the 2004 earthquake than that of the 2010 
earthquake?

69.	 (Modeling) Bachelor’s Degrees in Psychology  The table gives the number of 
bachelor’s degrees in psychology (in thousands) earned at U.S. colleges and univer-
sities for selected years from 1980 through 2012. Suppose x represents the number 
of years since 1950. Thus, 1980 is represented by 30, 1990 is represented by 40, and 
so on.

Source: National Center for  
Education Statistics.

 
Year

Degrees Earned 
(in thousands)

1980   42.1

1990   54.0

2000   74.2

2010   97.2

2011 100.9

2012 109.0

		  The following function is a logarithmic model for the data.

ƒ1x2 = -273 + 90.6 ln x

		  Use this function to estimate the number of bachelor’s degrees in psychology earned 
in the year 2016 to the nearest tenth thousand. What assumption must we make to 
estimate the number of degrees in years beyond 2012?

70.	 (Modeling) Domestic Leisure Travel  
The bar graph shows numbers of  
leisure trips within the United States 
(in millions of person-trips of 50 or 
more miles one-way) over the years 
2009–2014. The function

ƒ1t2 = 1458 + 95.42 ln t, t Ú 1,

		  where t represents the number of years 
since 2008 and ƒ1t2 is the number 
of person-trips, in millions, approxi-
mates the curve reasonably well.

	      Use the function to approximate the number of person-trips in 2012 to the nearest 
million. How does this approximation compare to the actual number of 1588 million?

2009 2010 2011 2012 2013 2014
0

500

1000

1500

2000

Year
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 (
in

 m
ill

io
ns

)

U.S. Domestic Leisure Travel Volume

Source: Statista 2014.
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4594.4  Evaluating Logarithms and the Change-of-Base Theorem

71.	 (Modeling) Diversity of Species  The number of species S1n2 in a sample is  
given by

S1n2 = a ln a1 +
n
a
b  ,

		  where n is the number of individuals in the sample, and a is a constant that indicates 
the diversity of species in the community. If a = 0.36, find S1n2 for each value of n. 
(Hint: S1n2 must be a whole number.)

(a)  100	 (b)  200	 (c)  150	 (d)  10

72.	 (Modeling) Diversity of Species  In Exercise 71, find S1n2 if a changes to 0.88. Use 
the following values of n.

(a)  50	 (b)  100	 (c)  250

73.	 (Modeling) Diversity of Species Suppose a sample of a small community shows 
two species with 50 individuals each. Find the measure of diversity H.

74.	 (Modeling) Diversity of Species  A virgin forest in northwestern Pennsylvania has 
4 species of large trees with the following proportions of each:

hemlock, 0.521;  beech, 0.324;  birch, 0.081;  maple, 0.074.

		  Find the measure of diversity H to the nearest thousandth.

	75.	 (Modeling) Global Temperature Increase  In Example 7, we expressed the aver-
age global temperature increase T (in °F) as

T1k2 = 1.03k ln 
C

C0
 ,

		  where C0 is the preindustrial amount of carbon dioxide, C is the current carbon 
dioxide level, and k is a constant. Arrhenius determined that 10 … k … 16 when C 
was double the value C0 . Use T1k2 to find the range of the rise in global tempera-
ture T (rounded to the nearest degree) that Arrhenius predicted. (Source: Clime, 
W., The Economics of Global Warming, Institute for International Economics, 
Washington, D.C.)

	76.	 (Modeling) Global Temperature Increase  (Refer to Exercise 75.) According to 
one study by the IPCC, future increases in average global temperatures (in °F) can 
be modeled by

T1C2 = 6.489 ln 
C

280
 ,

		  where C is the concentration of atmospheric carbon dioxide (in ppm). C can be 
modeled by the function

C1x2 = 35311.0062x-1990,

		  where x is the year. (Source: International Panel on Climate Change (IPCC).)

(a)	 Write T as a function of x.

(b)	� Using a graphing calculator, graph C1x2 and T1x2 on the interval [1990, 2275] 
using different coordinate axes. Describe the graph of each function. How are C 
and T related?

(c)	 Approximate the slope of the graph of T. What does this slope represent?

(d)	 Use graphing to estimate x and C1x2 when T1x2 = 10°F.

77.	 Age of Rocks  Use the formula of Example 6 to estimate the age of a rock sample 

having A
K = 0.103. Give the answer in billions of years, rounded to the nearest 

hundredth.
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460 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Use the change-of-base theorem to find an approximation to four decimal places for 
each logarithm. See Example 8.

  79.	 log2 5	 80.	 log2 9	 81.	 log8 0.59	 82.	 log8 0.71

  83.	 log1/2 3	 84.	 log1/3 2	 85.	 logp e	 86.	 logp22

  87.	 log213 12	 88.	 log219 5	 89.	 log0.32 5	 90.	 log0.91 8

Let u = ln a and v = ln b. Write each expression in terms of u and v without using the 
ln function.

  91.	 ln Ab42a B	 92.	 ln 
a3

b2	 93.	 lnB a3

b5	 94.	 ln A23 a # b4 B

Concept Check  Use the various properties of exponential and logarithmic functions to 
evaluate the expressions in parts (a)  –  (c).

  95.	 Given g1x2 = ex, find	 (a)  g1ln 42	 (b)  g1ln 522	 (c)  g A ln 1e B.
  96.	 Given ƒ1x2 = 3x, find	 (a)  ƒ1log3 22	 (b)  ƒ1log3 1ln 322	 (c)  ƒ1log3 12 ln 322.
  97.	 Given ƒ1x2 = ln x, find	 (a)  ƒ1e62	 (b)  ƒ1eln 32	 (c)  ƒ1e2 ln 32.
	  98.	 Given ƒ1x2 = log2 x, find	 (a)  ƒ1272	 (b)  ƒ12log2 22	 (c)  ƒ122 log2 22.

Work each problem.

	 99.	 Concept Check  Which of the following is equivalent to 2 ln 13x2 for x 7 0?

		  A.  ln 9 + ln x	 B.  ln 6x	 C.  ln 6 + ln x	 D.  ln 9x2

	100.	 Concept Check  Which of the following is equivalent to ln 14x2 - ln 12x2 for x 7 0?

		  A.  2 ln x	 B.  ln 2x	 C. 
ln 4x

ln 2x
	 D.  ln 2

101.	 The function ƒ1x2 = ln 0 x 0  plays a prominent role in calculus. Find its domain, its 
range, and the symmetries of its graph.

102.	 Consider the function ƒ1x2 = log3 0 x 0 .
(a)	 What is the domain of this function?

(b)	� Use a graphing calculator to graph ƒ1x2 = log3 0 x 0  in the window 3-4, 44 by 
3-4, 44.

(c)	� How might one easily misinterpret the domain of the function by merely  
observing the calculator graph?

			 

	 78.	 (Modeling) Planets’ Distances from the Sun 
and Periods of Revolution  The table contains 
the planets’ average distances D from the sun and 
their periods P of revolution around the sun in 
years. The distances have been normalized so that 
Earth is one unit away from the sun. For example, 
since Jupiter’s distance is 5.2, its distance from 
the sun is 5.2 times farther than Earth’s.

(a)	� Using a graphing calculator, make a scatter 
diagram by plotting the point (ln D, ln P) for 
each planet on the xy-coordinate axes. Do 
the data points appear to be linear?

(b)	� Determine a linear equation that models the 
data points. Graph the line and the data on 
the same coordinate axes.

Source: Ronan, C., The Natural 
History of the Universe, MacMillan 
Publishing Co., New York.

Planet D P

Mercury   0.39     0.24

Venus   0.72     0.62

Earth   1     1

Mars   1.52     1.89

Jupiter   5.2   11.9

Saturn   9.54   29.5

Uranus 19.2   84.0

Neptune 30.1 164.8

(c)	� Use this linear model to predict the period of Pluto if its distance is 39.5. 
Compare the answer to the actual value of 248.5 yr.
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4614.5  Exponential and Logarithmic Equations

Use properties of logarithms to rewrite each function, and describe how the graph of the 
given function compares to the graph of g1x2 = ln x.

	103.	 ƒ1x2 = ln 1e2x2	 104.	 ƒ1x2 = ln 
x
e

	 105.	 ƒ1x2 = ln 
x

e2

	 1.	 For the one-to-one function ƒ1x2 = 23 3x - 6, find ƒ-11x2.
	 2.	 Solve 42x+1 = 83x-6.

	 3.	 Graph ƒ1x2 = -3x. Give the domain and range.

	 4.	 Graph ƒ1x2 = log4 1x + 22. Give the domain and range.

	 5.	 Future Value  Suppose that $15,000 is deposited in a bank certificate of deposit at 
an annual rate of 2.7% for 8 yr. Find the future value if interest is compounded as 
follows.

(a)  annually      (b)  quarterly      (c)  monthly      (d)  daily (365 days)

	 6.	 Use a calculator to evaluate each logarithm to four decimal places.

(a)  log 34.56	 (b)  ln 34.56

	 7.	 What is the meaning of the expression log6 25?

	 8.	 Solve each equation.

(a)  x = 3log3 4	 (b)  logx 25 = 2	 (c)  log4 x = -2

	 9.	 Assuming all variables represent positive real numbers, use properties of logarithms 
to rewrite

log3 
2x # y

pq4  .

	10.	 Given logb 9 = 3.1699 and logb 5 = 2.3219, find the value of logb 225.

	11.	 Find the value of log3 40 to four decimal places.

	12.	 If ƒ1x2 = 4x, what is the value of ƒ1log4 122?

		  Chapter 4	 Quiz (Sections 4.1—4.4)

	 4.5	 Exponential and Logarithmic Equations

Exponential Equations    We solved exponential equations in earlier sec-
tions. General methods for solving these equations depend on the property below, 
which follows from the fact that logarithmic functions are one-to-one.

■	 Exponential Equations

■	 Logarithmic Equations

■	 Applications and 
Models

Property of Logarithms

If x 7 0, y 7 0, a 7 0, and a ≠ 1, then the following holds.

x = y  is equivalent to  log  a x = log  a y.
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462 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

EXAMPLE 1	 Solving an Exponential Equation

Solve 7x = 12. Give the solution to the nearest thousandth.

SOLUTION  The properties of exponents cannot be used to solve this equation, 
so we apply the preceding property of logarithms. While any appropriate base b 
can be used, the best practical base is base 10 or base e. We choose base e (natural) 
logarithms here.

 7x = 12

 ln 7x = ln 12 	 Property of logarithms

 x ln 7 = ln 12 	 Power property

 x =
ln 12

ln 7
	 Divide by ln 7.

 x ≈ 1.277	 Use a calculator.

−20

−2

15

5

As seen in the display at the bottom  
of the screen, when rounded to three 
decimal places, the solution of 
7x - 12 = 0 agrees with that found  
in Example 1.

This is approximate.

This is exact.

The solution set is 51.2776.
■✔ Now Try Exercise 11.

CAUTION  Do not confuse a quotient like ln 12
ln 7  in Example 1 with ln 12

7  , 
which can be written as ln 12 - ln 7. We cannot change the quotient of two 
logarithms to a difference of logarithms.

ln 12

ln 7
≠ ln 

12

7

EXAMPLE 2	 Solving an Exponential Equation

Solve 32x-1 = 0.4x+2. Give the solution to the nearest thousandth.

SOLUTION	    32x-1 = 0.4x+2

 ln 32x-1 = ln 0.4x+2 	 Take the natural logarithm on each side.

 12x - 12 ln 3 = 1x + 22 ln 0.4 	 Power property

 2x ln 3 - ln 3 = x ln 0.4 + 2 ln 0.4	 Distributive property

 2x ln 3 - x ln 0.4 = 2 ln 0.4 + ln 3 	�
Write so that the terms with x are  
on one side.

 x12 ln 3 - ln 0.42 = 2 ln 0.4 + ln 3 	 Factor out x.

 x =
2 ln 0.4 + ln 3

2 ln 3 - ln 0.4
	 Divide by 2 ln 3 - ln 0.4.

 x =
ln 0.42 + ln 3

ln 32 - ln 0.4
	 Power property

 x =
ln 0.16 + ln 3

ln 9 - ln 0.4
	 Apply the exponents.

 x =
ln 0.48

ln 22.5
	 Product and quotient properties

 x ≈ -0.236 	 Use a calculator.

This is exact.

This is approximate.
The solution set is 5-0.2366.

■✔ Now Try Exercise 19.

−3

−4

3

4

This screen supports the solution  
found in Example 2.
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4634.5  Exponential and Logarithmic Equations

EXAMPLE 3	 Solving Base e Exponential Equations

Solve each equation. Give solutions to the nearest thousandth.

(a)	 e   x2 = 200	 (b)  e2x+1 # e-4x = 3e

SOLUTION

(a)		   e x2 = 200

	  ln e x2 = ln 200	 Take the natural logarithm on each side.

	  x2 = ln 200 	 ln e  x2 = x2

	  x = {2ln 200	 Square root property

	  x ≈ {2.302 	 Use a calculator.

Remember  
both roots.

	 The solution set is 5{2.3026.

(b)		   e2x+1 # e-4x = 3e

	  e-2x+1 = 3e 	 am # an = am+n

	  e-2x = 3 	 Divide by e; e
-2x+1

e1 = e-2x+1-1 = e-2x.

	  ln e-2x = ln 3 	 Take the natural logarithm on each side.

	  -2x ln e = ln 3 	 Power property

	  -2x = ln 3 	 ln e = 1

	  x = -  
1

2
 ln 3	 Multiply by -  12 .

	  x ≈ -0.549 	 Use a calculator.

	 The solution set is 5-0.5496.
� ■✔ Now Try Exercises 21 and 23.

EXAMPLE 4	 �Solving an Exponential Equation (Quadratic in Form)

Solve e2x - 4e x + 3 = 0. Give exact value(s) for x.

SOLUTION  If we substitute u = e x, we notice that the equation is quadratic in 
form.

 e2x - 4e x + 3 = 0

 1e x22 - 4e x + 3 = 0	 am n = 1an2m

 u2 - 4u + 3 = 0	 Let u = e x.

 1u - 121u - 32 = 0	 Factor.

 u - 1 = 0   or   u - 3 = 0 	 Zero-factor property

 u = 1   or   u = 3 	 Solve for u.

       e x = 1      or   e x = 3	 Substitute e x for u.

ln e x = ln 1    or   ln e x = ln 3	 �Take the natural logarithm  
on each side.

 x = 0   or   x = ln 3	 ln e x = x; ln 1 = 0

Both values check, so the solution set is 50, ln 36.
■✔ Now Try Exercise 35.
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464 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Logarithmic Equations    The following equations involve logarithms of 
variable expressions.

EXAMPLE 5	 Solving Logarithmic Equations

Solve each equation. Give exact values.

(a)	 7 ln x = 28	 (b)  log2 1x3 - 192 = 3

SOLUTION

(a)		   7 ln x = 28

	  loge x = 4 	 ln x = loge x; Divide by 7.

	  x = e4 	 Write in exponential form.

	 The solution set is 5e46.

(b)		   log2 1x3 - 192 = 3

	  x3 - 19 = 23 	 Write in exponential form.

	  x3 - 19 = 8 	 Apply the exponent.

	  x3 = 27 	 Add 19.

	  x = 23 27	 Take cube roots.

	  x = 3 	 23 27 = 3

	 The solution set is 536.
� ■✔ Now Try Exercises 41 and 49.

EXAMPLE 6	 Solving a Logarithmic Equation

Solve log 1x + 62 - log 1x + 22 = log x. Give exact value(s).

SOLUTION  Recall that logarithms are defined only for nonnegative numbers.

 log 1x + 62 - log 1x + 22 = log x

 log 
x + 6

x + 2
= log x 	 Quotient property

 
x + 6

x + 2
= x  	 Property of logarithms

 x + 6 = x1x + 22	 Multiply by x + 2.

 x + 6 = x2 + 2x  	 Distributive property

 x2 + x - 6 = 0 	 Standard form

 1x + 321x - 22 = 0 	 Factor.

   x + 3 = 0   or   x - 2 = 0     	      Zero-factor property

   x = -3  or   x = 2	 Solve for x.

The proposed negative solution 1-32 is not in the domain of log x in the origi-
nal equation, so the only valid solution is the positive number 2. The solution set 
is 526.

■✔ Now Try Exercise 69.
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4654.5  Exponential and Logarithmic Equations

CAUTION  Recall that the domain of y = loga x is 10, ∞2. For this reason, 
it is always necessary to check that proposed solutions of a logarithmic 
equation result in logarithms of positive numbers in the original equation.

EXAMPLE 7	 Solving a Logarithmic Equation

Solve log2 313x - 721x - 424 = 3. Give exact value(s).

SOLUTION	  log2 313x - 721x - 424 = 3

	  13x - 721x - 42 = 23	 Write in exponential form.

	  3x2 - 19x + 28 = 8 	 Multiply. Apply the exponent.

	  3x2 - 19x + 20 = 0 	 Standard form

	  13x - 421x - 52 = 0 	 Factor.

 3x - 4 = 0  or   x - 5 = 0	 Zero-factor property

 x =
4

3
  or   x = 5	 Solve for x.

A check is necessary to be sure that the argument of the logarithm in the given 
equation is positive. In both cases, the product 13x - 721x - 42 leads to 8, and 

log2 8 = 3 is true. The solution set is E 4
3 , 5 F.

■✔ Now Try Exercise 53.

EXAMPLE 8	 Solving a Logarithmic Equation

Solve log 13x + 22 + log 1x - 12 = 1. Give exact value(s).

SOLUTION	  log 13x + 22 + log 1x - 12 = 1

	  log10 313x + 221x - 124 = 1 	 log x = log10 x; product property

	  13x + 221x - 12 = 101	 Write in exponential form.

	  3x2 - x - 2 = 10 	 Multiply; 101 = 10.

	  3x2 - x - 12 = 0 	 Subtract 10.

	  x =
-b { 2b2 - 4ac

2a
		  Quadratic formula

	  x =
-1-12 { 21-122 - 41321-122

2132
Substitute a = 3, b = -1, c = -12.

The two proposed solutions are

1 - 2145

6
  and 

1 + 2145

6
 .

The first proposed solution, 1 - 2145
6  , is negative. Substituting for x in 

log 1x - 12 results in a negative argument, which is not allowed. Therefore, this 
solution must be rejected.

The second proposed solution, 1 + 2145
6  , is positive. Substituting it for x in 

log 13x + 22 results in a positive argument. Substituting it for x in log 1x + 12 
also results in a positive argument. Both are necessary conditions. Therefore, the 

solution set is E 1 + 2145
6 F . ■✔ Now Try Exercise 77.
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466 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

NOTE  We could have replaced 1 with log10 10 in Example 8 by first 
writing

 log 13x + 22 + log 1x - 12 = 1      Equation from Example 8

 log10 313x + 221x - 124 = log10 10     Substitute.

 13x + 221x - 12 = 10,      Property of logarithms

and then continuing as shown on the preceding page.

EXAMPLE 9	 Solving a Base e Logarithmic Equation

Solve ln eln x - ln 1x - 32 = ln 2. Give exact value(s).

SOLUTION  This logarithmic equation differs from those in Examples 7 and 8 
because the expression on the right side involves a logarithm.

 ln eln x - ln 1x - 32 = ln 2

 ln x - ln 1x - 32 = ln 2      eln x = x

 ln 
x

x - 3
= ln 2      Quotient property

 
x

x - 3
= 2      Property of logarithms

 x = 21x - 32     Multiply by x - 3.

 x = 2x - 6      Distributive property

 x = 6      Solve for x.

Check that the solution set is 566.
■✔ Now Try Exercise 79.

Solving an Exponential or Logarithmic Equation

To solve an exponential or logarithmic equation, change the given equation 
into one of the following forms, where a and b are real numbers, a 7 0 and 
a ≠ 1, and follow the guidelines.

1.	 aƒ
 

1x2 = b

	 Solve by taking logarithms on each side.

2.	 log a ƒ 1x 2 = b

	 Solve by changing to exponential form ab = ƒ1x2.
3.	 log a ƒ 1x 2 = log a g 1x 2
	 The given equation is equivalent to the equation ƒ1x2 = g1x2. Solve  

algebraically.

4.	 In a more complicated equation, such as

e2x+1 # e-4x = 3e,     See Example 3(b).

	 it may be necessary to first solve for aƒ1x2 or loga ƒ1x2 and then solve the 
resulting equation using one of the methods given above.

5.	 Check that each proposed solution is in the domain.
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4674.5  Exponential and Logarithmic Equations

Applications and Models

EXAMPLE 10 	 �Applying an Exponential Equation to the Strength  
of a Habit

The strength of a habit is a function of the number of times the habit is repeated. 
If N is the number of repetitions and H is the strength of the habit, then, accord-
ing to psychologist C.L. Hull,

H = 100011 - e-kN2,
where k is a constant. Solve this equation for k.

SOLUTION	  H = 100011 - e-kN2

	  
H

1000
= 1 - e-kN 	 Divide by 1000.

	  
H

1000
- 1 = -e-kN 	 Subtract 1.

	  e-kN = 1 -
H

1000
	 Multiply by -1 and rewrite.

	  ln e-kN = ln a1 -
H

1000
b 	� Take the natural logarithm  

on each side.

	  -kN = ln a1 -
H

1000
b 	 ln ex = x

	  k = -  
1

N
 ln a1 -

H

1000
b 	 Multiply by -  1N .

First solve for 
e-kN.

Now solve  
for k.

With the final equation, if one pair of values for H and N is known, k can be found, 
and the equation can then be used to find either H or N for given values of the 
other variable.

■✔ Now Try Exercise 91.

EXAMPLE 11 	 Modeling PC Tablet Sales in the U.S.

The table gives U.S. tablet sales (in millions) for several years. The data can be 
modeled by the function

ƒ1t2 = 20.57 ln t + 10.58, t Ú 1,

where t is the number of years after 2009.

(a)	 Use the function to estimate the number of tablets sold in the United States 
in 2015.

(b)	 If this trend continues, approximately when will annual sales reach 60 million?

SOLUTION

(a)	 The year 2015 is represented by t = 2015 - 2009 = 6.

 ƒ1t2 = 20.57 ln t + 10.58	 Given function

 ƒ162 = 20.57 ln 6 + 10.58	 Let t = 6.

 ƒ162 ≈ 47.4 	 Use a calculator.

	 Based on this model, 47.4 million tablets were sold in 2015.

Source: Forrester Research.

 
Year

Sales  
(in millions)

2010 10.3

2011 24.1

2012 35.1

2013 39.8

2014 42.1
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468 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

(b)	 Replace ƒ1t2 with 60 and solve for t.

	  ƒ1t2 = 20.57 ln t + 10.58	 Given function

	  60 = 20.57 ln t + 10.58	 Let ƒ1t2 = 60.

	  49.42 = 20.57 ln t 	 Subtract 10.58.

	     ln t =
49.42

20.57
	 Divide by 20.57 and rewrite.

	  t = e49.42/20.57 	 Write in exponential form.

	  t ≈ 11.05 	 Use a calculator.

Adding 11 to 2009 gives the year 2020. Based on this model, annual sales 
will reach 60 million in 2020.

■✔ Now Try Exercise 111.

	 4.5	 Exercises

CONCEPT PREVIEW  Match each equation in Column I with the best first step for 
solving it in Column II.

	 I

	 1.	 10x = 150

	 2.	 e2x-1 = 24

	 3.	 log4 1x2 - 102 = 2

	 4.	 e2x # ex = 2e

	 5.	 2e2x - 5ex - 3 = 0

	 6.	 log 12x - 12 + log 1x + 42 = 1

	 II

A.	 Use the product rule for exponents.

B.	� Take the common logarithm on each side.

C.	� Write the sum of logarithms as the  
logarithm of a product.

D.	� Let u = ex and write the equation in  
quadratic form.

E.	 Change to exponential form.

F.	 Take the natural logarithm on each side.

Solve each equation. In Exercises 11–34, give irrational solutions as decimals correct  
to the nearest thousandth. In Exercises 35– 40, give solutions in exact form. See  
Examples 1–4.

11.	 3x = 7	 12.	 5x = 13	 13.	 a1

2
b

x

= 5

14.	 a 1

3
b

x

= 6	 15.	 0.8x = 4	 16.	 0.6x = 3

17.	 4x-1 = 32x	 18.	 2x+3 = 52x	 19.	 6x+1 = 42x-1

CONCEPT PREVIEW  An exponential equation such as

5x = 9

can be solved for its exact solution using the meaning of logarithm and the change-of-
base theorem. Because x is the exponent to which 5 must be raised in order to obtain 9, 
the exact solution is

log5 9,  or 
log 9

log 5
 ,  or 

ln 9

ln 5
 .

For each equation, give the exact solution in three forms similar to the forms above.

	 7.	 7x = 19	 8.	 3x = 10	 9.	 a1

2
b

x

= 12	 10.	 a1

3
b

x

= 4
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4694.5  Exponential and Logarithmic Equations

20.	 3x-4 = 72x+5	 21.	 ex2 = 100	 22.	 ex4 = 1000

23.	 e3x-7 # e-2x = 4e	 24.	 e1-3x # e5x = 2e	 25.	 a1

3
b

x

= -3

26.	 a1

9
b

x

= -9	 27.	 0.0511.152x = 5	 28.	 1.210.92x = 0.6

29.	 3122x-2 + 1 = 100	 30.	 511.223x-2 + 1 = 7	 31.	 211.052x + 3 = 10

32.	 311.42x - 4 = 60	 33.	 511.0152x-1980 = 8	 34.	 611.0242x-1900 = 9

35.	 e2x - 6ex + 8 = 0	 36.	 e2x - 8ex + 15 = 0	 37.	 2e2x + ex = 6

38.	 3e2x + 2ex = 1	 39.	 52x + 315x2 = 28	 40.	 32x - 1213x2 = -35

Solve each equation. Give solutions in exact form. See Examples 5–9.

41.	 5 ln x = 10	 42.	 3 ln x = 9

43.	 ln 4x = 1.5	 44.	 ln 2x = 5

45.	 log 12 - x2 = 0.5	 46.	 log 13 - x2 = 0.75

47.	 log6 12x + 42 = 2	 48.	 log5 18 - 3x2 = 3

49.	 log4 1x3 + 372 = 3	 50.	 log7 1x3 + 652 = 0

51.	 ln x + ln x2 = 3	 52.	 log x + log x2 = 3

53.	 log3 31x + 521x - 324 = 2	 54.	 log4 313x + 821x - 624 = 3

55.	 log2 312x + 821x + 424 = 5	 56.	 log5 313x + 521x + 124 = 1

57.	 log x + log 1x + 152 = 2	 58.	 log x + log 12x + 12 = 1

59.	 log 1x + 252 = log 1x + 102 + log 4	 60.	 log 13x + 52 - log 12x + 42 = 0

61.	 log 1x - 102 - log 1x - 62 = log 2	 62.	 log 1x2 - 92 - log 1x - 32 = log 5

63.	 ln 17 - x2 + ln 11 - x2 = ln 125 - x2	 64.	 ln 13 - x2 + ln 15 - x2 = ln 150 - 6x2
65.	 log8 1x + 22 + log8 1x + 42 = log8 8	 66.	 log2 15x - 62 - log2 1x + 12 = log2 3

67.	 log2 1x2 - 1002 - log2 1x + 102 = 1	 68.	 log2 1x - 22 + log2 1x - 12 = 1

69.	 log x + log 1x - 212 = log 100	 70.	 log x + log 13x - 132 = log 10

71.	 log 19x + 52 = 3 + log 1x + 22	 72.	 log 111x + 92 = 3 + log 1x + 32
73.	 ln 14x - 22 - ln 4 = - ln 1x - 22	 74.	 ln 15 + 4x2 - ln 13 + x2 = ln 3

75.	 log5 1x + 22 + log5 1x - 22 = 1	 76.	 log2 1x - 72 + log2 x = 3

77.	 log2 12x - 32 + log2 1x + 12 = 1	 78.	 log5 13x + 22 + log5 1x - 12 = 1

79.	 ln ex - 2 ln e = ln e4	 80.	 ln ex - ln e3 = ln e3

81.	 log2 1log2 x2 = 1	 82.	 log x = 2log x

83.	 log x2 = 1log x22	 84.	 log222x2 =
3

2

85.	 Concept Check  Consider the following statement: “We must reject any negative 
proposed solution when we solve an equation involving logarithms.” Is this correct? 
Why or why not?

86.	 Concept Check  What values of x could not possibly be solutions of the following 
equation?

loga 14x - 72 + loga 1x2 + 42 = 0
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470 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Solve each equation for the indicated variable. Use logarithms with the appropriate 
bases. See Example 10.

	 87.	 p = a +
k

ln x
 ,  for x	 88.	 r = p - k ln t, for t

	 89.	 T = T0 + 1T1 - T0210-kt, for t	 90.	 A =
Pr

1 - 11 + r2-n
 , for n

	 91.	 I =
E

R
 11 - e-Rt/22,  for t	 92.	 y =

K

1 + ae-bx
 , for b

	 93.	 y = A + B11 - e-Cx2, for x	 94.	 m = 6 - 2.5 log 
M

M0
 , for M

	 95.	 log A = log B - C log x, for A	 96.	 d = 10 log 
I

I0
 , for I

	 97.	 A = P a1 +
r
n
b

t n

, for t	 98.	 D = 160 + 10 log x, for x

To solve each problem, refer to the formulas for compound interest.

A = P a1 +
r
n
b

tn

 and A = Pert

	 99.	 Compound Amount  If $10,000 is invested in an account at 3% annual interest 
compounded quarterly, how much will be in the account in 5 yr if no money is 
withdrawn?

	100.	 Compound Amount  If $5000 is invested in an account at 4% annual interest com-
pounded continuously, how much will be in the account in 8 yr if no money is 
withdrawn?

	101.	 Investment Time  Kurt wants to buy a $30,000 truck. He has saved $27,000. Find 
the number of years (to the nearest tenth) it will take for his $27,000 to grow to 
$30,000 at 4% interest compounded quarterly.

	102.	 Investment Time  Find t to the nearest hundredth of a year if $1786 becomes 
$2063 at 2.6%, with interest compounded monthly.

	103.	 Interest Rate  Find the interest rate to the nearest hundredth of a percent that will 
produce $2500, if $2000 is left at interest compounded semiannually for 8.5 yr.

	104.	 Interest Rate  At what interest rate, to the nearest hundredth of a percent, will 
$16,000 grow to $20,000 if invested for 7.25 yr and interest is compounded  
quarterly?

(Modeling)  Solve each application. See Example 11.

105.	 In the central Sierra Nevada (a mountain range in California), the percent of mois-
ture that falls as snow rather than rain is approximated reasonably well by

ƒ1x2 = 86.3 ln x - 680,

where x is the altitude in feet and ƒ1x2 is the percent of moisture that falls as snow. 
Find the percent of moisture, to the nearest tenth, that falls as snow at each altitude.

(a)  3000 ft	 (b)  4000 ft	 (c)  7000 ft

106.		 Northwest Creations finds that its total sales in dollars, T1x2, from the distribution 
of x thousand catalogues is approximated by

T1x2 = 5000 log 1x + 12.
Find the total sales, to the nearest dollar, resulting from the distribution of each 
number of catalogues.

(a)  5000	 (b)  24,000	 (c)  49,000
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4714.5  Exponential and Logarithmic Equations

	107.	 Average Annual Public University Costs  The  
table shows the cost of a year’s tuition, room 
and board, and fees at 4-year public colleges 
for the years 2006–2014. Letting y represent 
the cost in dollars and x the number of years 
since 2006, the function

ƒ1x2 = 13,01711.052x
		  models the data quite well. According to this 

function, in what year will the 2006 cost be 
doubled?

	108.	 Race Speed  At the World Championship races held at Rome’s Olympic Stadium 
in 1987, American sprinter Carl Lewis ran the 100-m race in 9.86 sec. His speed in 
meters per second after t seconds is closely modeled by the function

ƒ1t2 = 11.6511 - e-t/1.272.
			   (Source: Banks, Robert B., Towing Icebergs, Falling Dominoes, and Other Adven-

tures in Applied Mathematics, Princeton University Press.)

(a)  How fast, to the nearest hundredth, was he running as he crossed the finish line?

(b) � After how many seconds, to the nearest hundredth, was he running at the rate 
of 10 m per sec?

	109.	 Women in Labor Force  The percent of women in the U.S. civilian labor force can 
be modeled fairly well by the function

ƒ1x2 =
67.21

1 + 1.081e-x/24.71 ,

		  where x represents the number of years since 1950. (Source: Monthly Labor 
Review, U.S. Bureau of Labor Statistics.)

(a)	� What percent, to the nearest whole number, of U.S. women were in the civilian 
labor force in 2014?

(b)	 In what year were 55% of U.S. women in the civilian labor force?

	110.	 Height of the Eiffel Tower  One side of 
the Eiffel Tower in Paris has a shape that 
can be approximated by the graph of the 
function

ƒ1x2 = -301 ln 
x

207
 , x 7 0,

		  where x and ƒ1x2 are both measured in 
feet. (Source: Banks, Robert B., Towing 
Icebergs, Falling Dominoes, and Other 
Adventures in Applied Mathematics, 
Princeton University Press.)

(a)	� Why does the shape of the left side of the graph of the Eiffel Tower have the 
formula given by ƒ1-x2?

(b)	� The short horizontal segment at the top of the figure has length 7.8744 ft. How 
tall, to the nearest foot, is the Eiffel Tower?

(c)	� How far from the center of the tower is the point on the right side that is 500 ft 
above the ground? Round to the nearest foot.

100

100
x

y

f(x) = –301 ln , x > 0
207
x

Source: The College Board, Annual 
Survey of Colleges.

Year Average Annual Cost

2006 $12,837

2007 $13,558

2008 $14,372

2009 $15,235

2010 $16,178

2011 $17,156

2012 $17,817

2013 $18,383

2014 $18,943
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472 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

	111.	 CO2 Emissions Tax  One action that government could take to reduce carbon 
emissions into the atmosphere is to levy a tax on fossil fuel. This tax would be 
based on the amount of carbon dioxide emitted into the air when the fuel is burned. 
The cost-benefit equation

ln 11 - P2 = -0.0034 - 0.0053x

		  models the approximate relationship between a tax of x dollars per ton of carbon 
and the corresponding percent reduction P (in decimal form) of emissions of car-
bon dioxide. (Source: Nordhause, W., “To Slow or Not to Slow: The Economics of 
the Greenhouse Effect,” Yale University, New Haven, Connecticut.)

(a)	 Write P as a function of x.

(b)	� Graph P for 0 … x … 1000. Discuss the benefit of continuing to raise taxes on 
carbon.

(c)	 Determine P, to the nearest tenth, when x = $60. Interpret this result.

(d)	 What value of x will give a 50% reduction in carbon emissions?

	112.	 Radiative Forcing  Radiative forcing, R, measures the influence of carbon dioxide 
in altering the additional solar radiation trapped in Earth’s atmosphere. The Inter-
national Panel on Climate Change (IPCC) in 1990 estimated k to be 6.3 in the 
radiative forcing equation

R = k ln 
C

C0
 ,

where C0 is the preindustrial amount of carbon dioxide and C is the current level. 
(Source: Clime, W., The Economics of Global Warming, Institute for International 
Economics, Washington, D.C.)

(a)	� Use the equation R = 6.3 ln C
C0

 to determine the radiative forcing R (in watts  

per square meter to the nearest tenth) expected by the IPCC if the carbon diox-

ide level in the atmosphere doubles from its preindustrial level.

(b)	� Determine the global temperature increase T, to the nearest tenth, that the IPCC 
predicted would occur if atmospheric carbon dioxide levels were to double, 
given T1R2 = 1.03R.

Find ƒ-11x2, and give the domain and range.

	113.	 ƒ1x2 = ex-5	 114.	 ƒ1x2 = ex + 10	 115.	 ƒ1x2 = ex+1 - 4

	116.	 ƒ1x2 = ln 1x + 22	 117.	 ƒ1x2 = 2 ln 3x	 118.	 ƒ1x2 = ln 1x - 12 + 6

Use a graphing calculator to solve each equation. Give irrational solutions correct to 
the nearest hundredth.

119.	 ex + ln x = 5	 120.	 ex - ln 1x + 12 = 3	 121.	 2ex + 1 = 3e-x

	122.	 ex + 6e-x = 5	 123.	 log x = x2 - 8x + 14	 124.	 ln x = -23 x + 3

125.	 Find the error in the following “proof” that 2 6 1.

 
1

9
6

1

3
	 True statement

 a1

3
b

2

6
1

3
	 Rewrite the left side.

 log a1

3
b

2

6 log 
1

3
	 Take the logarithm on each side.

 2 log 
1

3
6 1 log 

1

3
	 Property of logarithms; identity property

 2 6 1 	 Divide each side by log 13 .
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4734.6  Applications and Models of Exponential Growth and Decay 

	 4.6	 Applications and Models of Exponential Growth  
and Decay

The Exponential Growth or Decay Function    In many situations in 
ecology, biology, economics, and the social sciences, a quantity changes at a 
rate proportional to the amount present. The amount present at time t is a special 
function of t called an exponential growth or decay function.

■	 The Exponential 
Growth or Decay 
Function

■	 Growth Function 
Models

■	 Decay Function 
Models

Exponential Growth or Decay Function

Let y0 be the amount or number present at time t = 0. Then, under certain 
conditions, the amount y present at any time t is modeled by

y = y0  e kt,    where k is a constant.
LOOKING AHEAD TO CALCULUS
The exponential growth and decay 

function formulas are studied in  

calculus in conjunction with the  

topic known as differential equations. The constant k determines the type of function.

•	 When k 7 0, the function describes growth. Examples of exponential growth 
include compound interest and atmospheric carbon dioxide. 

•	 When k 6 0, the function describes decay. One example of exponential decay 
is radioactive decay.

Growth Function Models    The amount of time it takes for a quantity that 
grows exponentially to become twice its initial amount is its doubling time.

EXAMPLE 1	 Determining a Function to Model Exponential Growth

Earlier in this chapter, we discussed the growth of atmospheric carbon dioxide 
over time using a function based on the data from the table. Now we determine 
such a function from the data.

(a)	 Find an exponential function that gives the amount of carbon dioxide y in 
year x.

(b)	 Estimate the year when future levels of carbon dioxide will be double the 
preindustrial level of 280 ppm.

SOLUTION

(a)	 The data points exhibit exponential growth, so the equation will take the form

y = y0 

ekx.

	 We must find the values of y0 and k. The data begin with the year 1990, so  
to simplify our work we let 1990 correspond to x = 0, 1991 correspond  
to x = 1, and so on. Here y0 is the initial amount and y0 = 353 in 1990 when 
x = 0. Thus the equation is

y = 353ekx.     Let y0 = 353.

	 From the last pair of values in the table, we know that in 2275 the carbon 
dioxide level is expected to be 2000 ppm. The year 2275 corresponds to 
2275 - 1990 = 285. Substitute 2000 for y and 285 for x, and solve for k.

Source: International Panel on 
Climate Change (IPCC).

 
Year

Carbon Dioxide  
(ppm)

1990   353

2000   375

2075   590

2175 1090

2275 2000
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474 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

 y = 353ekx 	 Solve for k.

 2000 = 353ek12852 	 Substitute 2000 for y and 285 for x.

 
2000

353
= e285k 	 Divide by 353.

 ln 
2000

353
= ln e285k 	 Take the natural logarithm on each side.

 ln 
2000

353
= 285k 	 ln ex = x, for all x.

 k =
1

285
# ln 

2000

353
	 Multiply by 1

285 and rewrite.

 k ≈ 0.00609 	 Use a calculator.

	 A function that models the data is

y = 353e0.00609x.

(b)	   y = 353e0.00609x 	 Solve the model from part (a) for the year x.

	  560 = 353e0.00609x 	 To double the level 280, let y = 212802 = 560.

	  
560

353
= e0.00609x 	 Divide by 353.

	  ln 
560

353
= ln e0.00609x 	 Take the natural logarithm on each side.

	  ln 
560

353
= 0.00609x 	 ln ex = x, for all x.

	  x =
1

0.00609
# ln 

560

353
	 Multiply by 1

0.00609 and rewrite.

	  x ≈ 75.8 	 Use a calculator.

Since x = 0 corresponds to 1990, the preindustrial carbon dioxide level will 
double in the 75th year after 1990, or during 2065, according to this model.

■✔ Now Try Exercise 43.

EXAMPLE 2	 Finding Doubling Time for Money

How long will it take for money in an account that accrues interest at a rate of 
3%, compounded continuously, to double?

SOLUTION  A = Per t 	 Continuous compounding formula

	  2P = Pe0.03t 	 Let A = 2P and r = 0.03.

	  2 = e0.03t 	 Divide by P.

	  ln 2 = ln e0.03t	 Take the natural logarithm on each side.

	  ln 2 = 0.03t 	 ln ex = x

	  
ln 2

0.03
= t 	 Divide by 0.03.

	  23.10 ≈ t 	 Use a calculator.

It will take about 23 yr for the amount to double.� ■✔ Now Try Exercise 31.
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4754.6  Applications and Models of Exponential Growth and Decay 

EXAMPLE 3	 �Using an Exponential Function to Model  
Population Growth

According to the U.S. Census Bureau, the world population reached 6 billion 
people during 1999 and was growing exponentially. By the end of 2010, the pop-
ulation had grown to 6.947 billion. The projected world population (in billions 
of people) t years after 2010 is given by the function

ƒ1t2 = 6.947e0.00745t.

(a)	 Based on this model, what will the world population be in 2025?

(b)	 If this trend continues, approximately when will the world population reach 
9 billion?

SOLUTION

(a)	 Since t = 0 represents the year 2010, in 2025, t would be 2025 - 2010 =  
15 yr. We must find ƒ1t2 when t is 15.

 ƒ1t2 = 6.947e0.00745t      Given function

 ƒ1152 = 6.947e0.007451152     Let t = 15.

 ƒ1152 ≈ 7.768      Use a calculator.

	 The population will be 7.768 billion at the end of 2025.

(b)		   ƒ1t2 = 6.947e0.00745t	 Given function

	  9 = 6.947e0.00745t	 Let ƒ1t2 = 9.

	  
9

6.947
= e0.00745t 	 Divide by 6.947.

	  ln 
9

6.947
= ln e0.00745t 	 Take the natural logarithm on each side.

	  ln 
9

6.947
= 0.00745t 	 ln ex = x, for all x.

	  t =
ln 9

6.947

0.00745
	 Divide by 0.00745 and rewrite.

	  t ≈ 34.8 	 Use a calculator.

Thus, 34.8 yr after 2010, during the year 2044, world population will reach 
9 billion.

■✔ Now Try Exercise 39.

Decay Function Models    Half-life is the amount of time it takes for a 
quantity that decays exponentially to become half its initial amount.

NOTE  In Example 4 on the next page, the initial amount of substance is 
given as 600 g. Because half-life is constant over the lifetime of a decaying 

quantity, starting with any initial amount, y0 , and substituting 
1
2 y0 for y in 

y = y0 ek t would allow the common factor y0 to be divided out. The rest of 
the work would be the same.
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476 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

EXAMPLE 5	 Solving a Carbon Dating Problem

Carbon-14, also known as radiocarbon, is a radioactive form of carbon that is 
found in all living plants and animals. After a plant or animal dies, the radiocar-
bon disintegrates. Scientists can determine the age of the remains by comparing 
the amount of radiocarbon with the amount present in living plants and animals. 
This technique is called carbon dating. The amount of radiocarbon present 
after t years is given by

y = y0 

e-0.0001216t,

where y0 is the amount present in living plants and animals.

(a)	 Find the half-life of carbon-14.

(b)	 Charcoal from an ancient fire pit on Java contained 
1
4 the carbon-14 of a 

living sample of the same size. Estimate the age of the charcoal.

EXAMPLE 4	 �Determining an Exponential Function to Model  
Radioactive Decay

Suppose 600 g of a radioactive substance are present initially and 3 yr later only 
300 g remain.

(a)	 Determine an exponential function that models this decay.

(b)	 How much of the substance will be present after 6 yr?

SOLUTION

(a)	 We use the given values to find k in the exponential equation

y = y0 

ekt.

	 Because the initial amount is 600 g, y0 = 600, which gives y = 600ekt. The 
initial amount (600 g) decays to half that amount (300 g) in 3 yr, so its half-
life is 3 yr. Now we solve this exponential equation for k.

 y = 600ekt 	 Let y0 = 600.

 300 = 600e3k 	 Let y = 300 and t = 3.

 0.5 = e3k 	 Divide by 600.

 ln 0.5 = ln e3k 	 Take the natural logarithm on each side.

 ln 0.5 = 3k 	 ln e x = x, for all x.

 
ln 0.5

3
= k 	 Divide by 3.

 k ≈ -0.231	 Use a calculator.

	 A function that models the situation is

y = 600e-0.231t.

(b)	 To find the amount present after 6 yr, let t = 6.

 y = 600e-0.231t	 Model from part (a) 

 y = 600e-0.231162	 Let t = 6.

 y = 600e-1.386 	 Multiply.

 y ≈ 150 	 Use a calculator.

	 After 6 yr, 150 g of the substance will remain.� ■✔ Now Try Exercise 19.
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SOLUTION

(a)	 If y0 is the amount of radiocarbon present in a living thing, then 12 y0 is half 
this initial amount. We substitute and solve the given equation for t.

 y = y0 

e-0.0001216t	 Given equation

 
1

2
 y0 = y0 

e-0.0001216t	 Let y = 1
2 y0 

.

 
1

2
= e-0.0001216t 	 Divide by y0 .

 ln 
1

2
= ln e-0.0001216t 	 Take the natural logarithm on each side.

 ln 
1

2
= -0.0001216t	 ln e x = x, for all x.

 
ln 12

-0.0001216
= t 	 Divide by -0.0001216.

 5700 ≈ t 	 Use a calculator.

	 The half-life is 5700 yr.

(b)	 Solve again for t, this time letting the amount y = 1
4 y0 .

 y = y0 

e-0.0001216t 	 Given equation

 
1

4
 y0 = y0 

e-0.0001216t 	 Let y = 1
4 y0 .

 
1

4
= e-0.0001216t 	 Divide by y0 .

 ln 
1

4
= ln e-0.0001216t	 Take the natural logarithm on each side.

 
ln 14

-0.0001216
= t 	 ln e x = x; Divide by -0.0001216.

 t ≈ 11,400 	 Use a calculator.

	 The charcoal is 11,400 yr old.� ■✔ Now Try Exercise 23.

EXAMPLE 6 	 Modeling Newton’s Law of Cooling

Newton’s law of cooling says that the rate at which a body cools is proportional 
to the difference in temperature between the body and the environment around 
it. The temperature ƒ1t2 of the body at time t in appropriate units after being 
introduced into an environment having constant temperature T0 is

ƒ1t2 = T0 + Ce-kt,  where C and k are constants.

A pot of coffee with a temperature of 100°C is set down in a room with a tem-
perature of 20°C. The coffee cools to 60°C after 1 hr.

(a)	 Write an equation to model the data.

(b)	 Find the temperature after half an hour.

(c)	 How long will it take for the coffee to cool to 50°C?
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SOLUTION

(a)	 We must find values for C and k in the given formula. As given, when t = 0, 
T0 = 20, and the temperature of the coffee is ƒ102 = 100.

 ƒ1t2 = T0 + Ce-kt      Given function

 100 = 20 + Ce-0k     Let t = 0, ƒ102 = 100, and T0 = 20.

 100 = 20 + C      e0 = 1

 80 = C      Subtract 20.

	 The following function models the data.

 ƒ1t2 = 20 + 80e-kt     Let T0 = 20 and C = 80.

	 The coffee cools to 60°C after 1 hr, so when t = 1, ƒ112 = 60.

 ƒ1t2 = 20 + 80e-kt      Above function with T0 = 20 and C = 80

 60 = 20 + 80e-1k     Let t = 1 and ƒ112 = 60.

 40 = 80e-k      Subtract 20.

 
1

2
= e-k      Divide by 80.

 ln 
1

2
= ln e-k      Take the natural logarithm on each side.

 ln 
1

2
= -k      ln e x = x, for all x.

 k ≈ 0.693      Multiply by -1, rewrite, and use a calculator.

	 Thus, the model is ƒ1t2 = 20 + 80e-0.693t.

(b)	 To find the temperature after 12 hr, let t = 1
2 in the model from part (a).

 ƒ1t2 = 20 + 80e-0.693t      Model from part (a)

 ƒ a 1

2
b = 20 + 80e1-0.693211/22     Let t = 1

2 .

 ƒ a 1

2
b ≈ 76.6°C      Use a calculator.

(c)	 To find how long it will take for the coffee to cool to 50°C, let ƒ1t2 = 50.

 ƒ1t2 = 20 + 80e-0.693t     Model from part (a)

 50 = 20 + 80e-0.693t     Let ƒ1t2 = 50.

 30 = 80e-0.693t      Subtract 20.

 
3

8
= e-0.693t      Divide by 80.

 ln 
3

8
= ln e-0.693t      Take the natural logarithm on each side.

 ln 
3

8
= -0.693t      ln e x = x, for all x.

 t =
ln 38

-0.693
     Divide by -0.693 and rewrite.

 t ≈ 1.415 hr, or about 1 hr, 25 min� ■✔ Now Try Exercise 27.
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CONCEPT PREVIEW  Population Growth  A population is increasing according to the 
exponential function

y = 2e0.02x,

where y is in millions and x is the number of years. Match each question in Column I 
with the correct procedure in Column II to answer the question.

	 4.6	 Exercises

I

	 1.	 How long will it take for the population to  
triple?

	 2.	 When will the population reach 3 million?

	 3.	 How large will the population be in 3 yr?

	 4.	 How large will the population be in 4 months?

II

A.  Evaluate y = 2e0.0211/32.

B.  Solve 2e0.02x = 6.

C.  Evaluate y = 2e0.02132.

D.  Solve 2e0.02x = 3.

CONCEPT PREVIEW  Radioactive Decay  Strontium-90 decays according to the expo-
nential function 

y = y0 e-0.0241t,

where t is time in years. Match each question in Column I with the correct procedure in 
Column II to answer the question.

I

	 5.	 If the initial amount of Strontium-90 is 200 g, 
how much will remain after 10 yr?

	 6.	 If the initial amount of Strontium-90 is 200 g, 
how much will remain after 20 yr?

	 7.	 What is the half-life of Strontium-90?

	 8.	 How long will it take for any amount of 
Strontium-90 to decay to 75% of its initial 
amount?

II

A.  Solve 0.75y0 = y0 e-0.0241t.

B.  Evaluate y = 200e-0.02411102.

C.  Solve 12 y0 = y0 e-0.0241t
 .

D.  Evaluate y = 200e-0.02411202.

(Modeling)  The exercises in this set are grouped according to discipline. They involve 
exponential or logarithmic models. See Examples 1–6.

Physical Sciences  (Exercises 9–28)

An initial amount of a radioactive substance y0 is given, along with information about 
the amount remaining after a given time t in appropriate units. For an equation of the 
form y = y0 ekt that models the situation, give the exact value of k in terms of natural 
logarithms.

	 9.	 y0 = 60 g; After 3 hr, 20 g remain.	 10.	 y0 = 30 g; After 6 hr, 10 g remain.

11.	 y0 = 10 mg; The half-life is 100 days.	 12.	 y0 = 20 mg; The half-life is 200 days.

13.	 y0 = 2.4 lb; After 2 yr, 0.6 lb remains.	 14.	 y0 = 8.1 kg; After 4 yr, 0.9 kg remains.

Solve each problem.

	15.	 Decay of Lead  A sample of 500 g of radioactive lead-210 decays to polonium-210 
according to the function

A1t2 = 500e-0.032t,

		  where t is time in years. Find the amount of radioactive lead remaining after

(a)  4 yr,       (b)  8 yr,       (c)  20 yr.       (d)  Find the half-life.
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480 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

16.	 Decay of Plutonium  Repeat Exercise 15 for 500 g of plutonium-241, which decays 
according to the function A1t2 = A0 e-0.053t, where t is time in years.

17.	 Decay of Radium  Find the half-life of radium-226, which decays according to the 
function A1t2 = A0 e-0.00043t, where t is time in years.

18.	 Decay of Tritium  Find the half-life of tritium, a radioactive isotope of hydrogen, 
which decays according to the function A1t2 = A0 e-0.056t, where t is time in years.

	19.	 Radioactive Decay  If 12 g of a radioactive substance are present initially and 4 yr 
later only 6.0 g remain, how much of the substance will be present after 7 yr?

20.	 Radioactive Decay  If 1 g of strontium-90 is present initially, and 2 yr later 0.95 g 
remains, how much strontium-90 will be present after 5 yr?

21.	 Decay of Iodine  How long will it take any quantity of iodine-131 to decay to 25% 
of its initial amount, knowing that it decays according to the exponential function 
A1t2 = A0 e-0.087t, where t is time in days?

	22.	 Magnitude of a Star  The magnitude M 
of a star is modeled by

M = 6 -
5

2
 log 

I

I0
 ,

		  where I0 is the intensity of a just-visible 
star and I is the actual intensity of the 
star being measured. The dimmest stars 
are of magnitude 6, and the brightest 
are of magnitude 1. Determine the ratio 
of light intensities between a star of 
magnitude 1 and a star of magnitude 3.

23.	 Carbon-14 Dating  Suppose an Egyptian mummy is discovered in which the 
amount of carbon-14 present is only about one-third the amount found in living 
human beings. How long ago did the Egyptian die?

24.	 Carbon-14 Dating  A sample from a refuse deposit near the Strait of Magellan had 
60% of the carbon-14 of a contemporary sample. How old was the sample?

25.	 Carbon-14 Dating  Paint from the Lascaux caves of France contains 15% of the 
normal amount of carbon-14. Estimate the age of the paintings.

26.	 Dissolving a Chemical  The amount of a chemical that will dissolve in a solution 
increases exponentially as the (Celsius) temperature t is increased according to the 
model

A1t2 = 10e0.0095t.

		  At what temperature will 15 g dissolve?

27.	 Newton’s Law of Cooling  Boiling water, at 100°C, is placed in a freezer at 0°C. 
The temperature of the water is 50°C after 24 min. Find the temperature of the water 
to the nearest hundredth after 96 min. (Hint: Change minutes to hours.)

28.	 Newton’s Law of Cooling  A piece of metal is heated to 300°C and then placed in 
a cooling liquid at 50°C. After 4 min, the metal has cooled to 175°C. Find its tem-
perature to the nearest hundredth after 12 min. (Hint: Change minutes to hours.)

Finance  (Exercises 29–34)

29.	 Comparing Investments  Russ, who is self-employed, wants to invest $60,000 in 
a pension plan. One investment offers 3% compounded quarterly. Another offers 
2.75% compounded continuously.

(a)	 Which investment will earn more interest in 5 yr?

(b)	 How much more will the better plan earn?
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30.	 Growth of an Account  If Russ (see Exercise 29) chooses the plan with continuous 
compounding, how long will it take for his $60,000 to grow to $70,000?

31.	 Doubling Time  Find the doubling time of an investment earning 2.5% interest if 
interest is compounded continuously.

32.	 Doubling Time  If interest is compounded continuously and the interest rate is 
tripled, what effect will this have on the time required for an investment to double?

33.	 Growth of an Account  How long will it take an investment to triple if interest is 
compounded continuously at 3%?

34.	 Growth of an Account  Use the Table feature of a graphing calculator to find how 
long it will take $1500 invested at 2.75% compounded daily to triple in value. 
Zoom in on the solution by systematically decreasing the increment for x. Find the 
answer to the nearest day. (Find the answer to the nearest day by eventually letting 

the increment of x equal 1
365 . The decimal part of the solution can be multiplied by  

365 to determine the number of days greater than the nearest year. For example, 

if the solution is determined to be 16.2027 yr, then multiply 0.2027 by 365 to get 
73.9855. The solution is then, to the nearest day, 16 yr, 74 days.) Confirm the 
answer algebraically.

Social Sciences  (Exercises 35–44)

	35.	 Legislative Turnover  The turnover of leg-
islators is a problem of interest to political 
scientists. It was found that one model of 
legislative turnover in a particular body was

M1t2 = 434e-0.08t,

		  where M1t2 represents the number of con-
tinuously serving members at time t. Here, 
t = 0 represents 1965, t = 1 represents 1966, 
and so on. Use this model to approximate the 
number of continuously serving members in 
each year.

(a)  1969      (b)  1973      (c)  1979

36.	 Legislative Turnover  Use the model in Exercise 35 to determine the year in which 
the number of continuously serving members was 338.

37.	 Population Growth  In 2000 India’s population reached 1 billion, and it is projected 
to be 1.4 billion in 2025. (Source: U.S. Census Bureau.)

(a)	� Find values for P0 and a so that P1x2 = P0 ax-2000 models the population of India 
in year x. Round a to five decimal places.

(b)	 Predict India’s population in 2020 to the nearest tenth of a billion.

(c)	 In what year is India’s population expected to reach 1.5 billion?

38.	 Population Decline  A midwestern city finds its residents moving to the suburbs. Its 
population is declining according to the function

P1t2 = P0 e-0.04t,

		  where t is time measured in years and P0 is the population at time t = 0. Assume that 
P0 = 1,000,000.

(a)	 Find the population at time t = 1 to the nearest thousand.

(b)	� How long, to the nearest tenth of a year, will it take for the population to decline 
to 750,000?

(c)	� How long, to the nearest tenth of a year, will it take for the population to decline 
to half the initial number?
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482 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

	39.	 Health Care Spending  Out-of-pocket spending in the United States for health care 
increased between 2008 and 2012. The function

ƒ1x2 = 7446e0.0305x

		  models average annual expenditures per household, in dollars. In this model, x rep-
resents the year, where x = 0 corresponds to 2008. (Source: U.S. Bureau of Labor 
Statistics.)

(a)	� Estimate out-of-pocket household spending on health care in 2012 to the nearest 
dollar.

(b)	 In what year did spending reach $7915 per household?

40.	 Recreational Expenditures  Personal 
consumption expenditures for recre-
ation in billions of dollars in the United 
States during the years 2000–2013 can 
be approximated by the function

A1t2 = 632.37e0.0351t,

		  where t = 0 corresponds to the year 
2000. Based on this model, how much 
were personal consumption expenditures 
in 2013 to the nearest billion? (Source: 
U.S. Bureau of Economic Analysis.)

41.	 Housing Costs  Average annual per-household spending on housing over the years 
2000–2012 is approximated by

H = 12,744e0.0264t,

		  where t is the number of years since 2000. Find H to the nearest dollar for each year. 
(Source: U.S. Bureau of Labor Statistics.)

(a) 2005         (b) 2009         (c) 2012

42.	 Evolution of Language  The number of years, n, since two independently evolving 
languages split off from a common ancestral language is approximated by

n ≈ -7600 log r,

		  where r is the proportion of words from the ancestral language common to both 
languages. Find each of the following to the nearest year.

(a)	 Find n if r = 0.9.	 (b)  Find n if r = 0.3.

(c)	� How many years have elapsed since the split if half of the words of the ancestral 
language are common to both languages?

43.	 School District Growth  Student enrollment in the Wentzville School District, one 
of the fastest-growing school districts in the state of Missouri, has projected growth 
as shown in the graph.
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(a)	� Use the model y = y0 ekx to find an exponential function that gives projected 
number of views y after number of hours x. Let hour 20 correspond to x = 0, 
hour 25 correspond to x = 5, and so on, and use the first and last data values 
given in the table.

(b)	 Estimate the number of views after 50 hr.

(a)	� Use the model y = y0 ekx to find an exponential function that gives the projected 
enrollment y in school year x. Let the school year 2013–14 correspond to x = 0, 
2014–15 correspond to x = 1, and so on, and use the two points indicated on the 
graph.

(b)	 Estimate the school year for which projected enrollment will be 21,500 students.

44.	 YouTube Views  The number of views of a YouTube video increases after the num-
ber of hours posted as shown in the table.

Life Sciences  (Exercises 45–50)

45.	 Spread of Disease  During an epidemic, the number of people who have never had 
the disease and who are not immune (they are susceptible) decreases exponentially 
according to the function

ƒ1t2 = 15,000e-0.05t,

		  where t is time in days. Find the number of susceptible people at each time.

(a)	 at the beginning of the epidemic    (b)  after 10 days    (c)  after 3 weeks

46.	 Spread of Disease  Refer to Exercise 45 and determine how long it will take, to 
the nearest day, for the initial number of people susceptible to decrease to half its 
amount.

47.	 Growth of Bacteria  The growth of bacteria makes it necessary to time-date some 
food products so that they will be sold and consumed before the bacteria count is 
too high. Suppose for a certain product the number of bacteria present is given by

ƒ1t2 = 500e0.1t,

		  where t is time in days and the value of ƒ1t2 is in millions. Find the number of bac-
teria, in millions, present at each time.

(a)	 2 days      (b)  4 days      (c)  1 week

48.	 Growth of Bacteria  How long will it take the bacteria population in Exercise 47 to 
double? Round the answer to the nearest tenth.

49.	 Medication Effectiveness  Drug effectiveness decreases over time. If, each hour, a 
drug is only 90% as effective as the previous hour, at some point the patient will not 
be receiving enough medication and must receive another dose. If the initial dose 
was 200 mg and the drug was administered 3 hr ago, the expression 20010.9023, 
which equals 145.8, represents the amount of effective medication still in the system. 
(The exponent is equal to the number of hours since the drug was administered.)

The amount of medication still available in the system is given by the function

ƒ1t2 = 20010.902t.
		  In this model, t is in hours and ƒ1t2 is in milligrams. How long will it take for this 

initial dose to reach the dangerously low level of 50 mg? Round the answer to the 
nearest tenth.

Hour Number of Views

20 100

25 517

30 2015

35 10,248
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50.	 Population Size  Many environmental situations place effective limits on the growth 
of the number of an organism in an area. Many such limited-growth situations are 
described by the logistic function

G1x2 =
MG0

G0 + 1M - G02e-kMx
 ,

		  where G0 is the initial number present, M is the maximum possible size of the popu-
lation, and k is a positive constant. The screens illustrate a typical logistic function 
calculation and graph.

    −5
−1

70

65

		  Assume that G0 = 100, M = 2500, k = 0.0004, and x = time in decades (10-yr 
periods).

(a)	 Use a calculator to graph the function, using 0 … x … 8 and 0 … y … 2500.

(b)	� Estimate the value of G122 from the graph. Then evaluate G122 algebraically to 
find the population after 20 yr.

(c)	� Find the x-coordinate of the intersection of the curve with the horizontal line 
y = 1000 to estimate the number of decades required for the population to reach 
1000. Then solve G1x2 = 1000 algebraically to obtain the exact value of x.

Economics  (Exercises 51–56)

51.	 Consumer Price Index  The U.S. Consumer Price Index for the years 1990–2013 is 
approximated by

A1t2 = 100e0.0264t,

		  where t represents the number of years after 1990. (Since A1162 is about 153, the 
amount of goods that could be purchased for $100 in 1990 cost about $153 in 2006.) 
Use the function to determine the year in which costs will be 125% higher than in 
1990. (Source: U.S. Bureau of Labor Statistics.)

52.	 Product Sales  Sales of a product, under relatively stable market conditions but  
in the absence of promotional activities such as advertising, tend to decline at a  
constant yearly rate. This rate of sales decline varies considerably from product to  
product, but it seems to remain the same for any particular product. The sales 
decline can be expressed by the function

S1t2 = S0 e-at,

		  where S1t2 is the rate of sales at time t measured in years, S0 is the rate of sales at 
time t = 0, and a is the sales decay constant.

(a)	� Suppose the sales decay constant for a particular product is a = 0.10. Let 
S0 = 50,000 and find S112 and S132 to the nearest thousand.

(b)	 Find S122 and S1102 to the nearest thousand if S0 = 80,000 and a = 0.05.

53.	 Product Sales  Use the sales decline function given in Exercise 52. If a = 0.10,
S0 = 50,000, and t is time measured in years, find the number of years it will take 
for sales to fall to half the initial sales. Round the answer to the nearest tenth.

54.	 Cost of Bread  Assume the cost of a loaf of bread is $4. With continuous compound-
ing, find the number of years, to the nearest tenth, it would take for the cost to triple 
at an annual inflation rate of 4%.
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55.	 Electricity Consumption  Suppose that in a certain area the consumption of elec-
tricity has increased at a continuous rate of 6% per year. If it continued to increase 
at this rate, find the number of years, to the nearest tenth, before twice as much elec-
tricity would be needed.

56.	 Electricity Consumption  Suppose a conservation campaign, together with higher 
rates, caused demand for electricity to increase at only 2% per year. (See Exercise 55.)  
Find the number of years, to the nearest tenth, before twice as much electricity 
would be needed.

(Modeling)  Solve each problem that uses a logistic function.

57.	 Heart Disease  As age increases, so does the likelihood of coronary heart disease 
(CHD). The fraction of people x years old with some CHD is modeled by

ƒ1x2 =
0.9

1 + 271e-0.122x
 .

		  (Source: Hosmer, D., and S. Lemeshow, Applied Logistic Regression, John Wiley 
and Sons.)

(a)	 Evaluate ƒ1252 and ƒ1652 to the nearest hundredth. Interpret the results.

(b)	 At what age, to the nearest year, does this likelihood equal 50%?

58.	 Tree Growth  The height of a certain tree in feet 
after x years is modeled by

ƒ1x2 =
50

1 + 47.5e-0.22x
 .

(a)	� Make a table for ƒ starting at x = 10, and 
incrementing by 10. What appears to be the 
maximum height of the tree?

(b)	� Graph ƒ and identify the horizontal asymptote. 
Explain its significance.

(c)	� After how many years was the tree 30 ft tall? 
Round to the nearest tenth.

Summary Exercises on Functions: Domains and Defining Equations

Finding the Domain of a Function: A Summary    To find the domain of 
a function, given the equation that defines the function, remember that the value 
of x input into the equation must yield a real number for y when the function is 
evaluated. For the functions studied so far in this book, there are three cases to 
consider when determining domains.

Guidelines for Domain Restrictions

1.	 No input value can lead to 0 in a denominator, because division by 0 is 
undefined.

2.	 No input value can lead to an even root of a negative number, because this 
situation does not yield a real number.

3.	 No input value can lead to the logarithm of a negative number or 0,  
because this situation does not yield a real number.
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486 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Unless otherwise specified, we determine domains as follows.

•	 The domain of a polynomial function is the set of all real numbers.

•	 The domain of an absolute value function is the set of all real numbers 
for which the expression inside the absolute value bars (the argument) is 
defined.

•	 If a function is defined by a rational expression, the domain is the set of 
all real numbers for which the denominator is not zero.

•	 The domain of a function defined by a radical with even root index is the 
set of all real numbers that make the radicand greater than or equal to zero. 

	 If the root index is odd, the domain is the set of all real numbers for which 
the radicand is itself a real number.

•	 For an exponential function with constant base, the domain is the set of all 
real numbers for which the exponent is a real number.

•	 For a logarithmic function, the domain is the set of all real numbers that 
make the argument of the logarithm greater than zero.

Determining Whether an Equation Defines y as a Function of x 

For y to be a function of x, it is necessary that every input value of x in 
the domain leads to one and only one value of y. 

To determine whether an equation such as

x - y3 = 0  or  x - y2 = 0

represents a function, solve the equation for y. In the first equation above, doing 
so leads to

y = 23 x.

Notice that every value of x in the domain (that is, all real numbers) leads to one 
and only one value of y. So in the first equation, we can write y as a function of x. 
However, in the second equation above, solving for y leads to

y = {2x.

If we let x = 4, for example, we get two values of y: -2 and 2. Thus, in the  
second equation, we cannot write y as a function of x.

EXERCISES

Find the domain of each function. Write answers using interval notation.

	 1.	 ƒ1x2 = 3x - 6	 2.	 ƒ1x2 = 22x - 7	 3.	 ƒ1x2 = 0 x + 4 0

	 4.	 ƒ1x2 =
x + 2

x - 6
	 5.	 ƒ1x2 =

-2

x2 + 7
	 6.	 ƒ1x2 = 2x2 - 9

	 7.	 ƒ1x2 =
x2 + 7

x2 - 9
	 8.	 ƒ1x2 = 23 x3 + 7x - 4	 9.	 ƒ1x2 = log5116 - x22

	10.	 ƒ1x2 = log 
x + 7

x - 3
	 11.	 ƒ1x2 = 2x2 - 7x - 8	 12.	 ƒ1x2 = 21/x

	13.	 ƒ1x2 =
1

2x2 - x + 7
	 14.	 ƒ1x2 =

x2 - 25

x + 5
	 15.	 ƒ1x2 = 2x3 - 1
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487  Summary Exercises on Functions: Domains and Defining Equations

	16.	 ƒ1x2 = ln 0 x2 - 5 0 	 17.	 ƒ1x2 = e x2+x+4	 18.	 ƒ1x2 =
x3 - 1

x2 - 1

	19.	 ƒ1x2 = B -1

x3 - 1
	 20.	 ƒ1x2 = B3  

1

x3 - 8

	21.	 ƒ1x2 = ln 1x2 + 12	 22.	 ƒ1x2 = 21x - 321x + 221x - 42

	23.	 ƒ1x2 = log a x + 2

x - 3
b

2

	 24.	 ƒ1x2 = 212 14 - x221x + 32

	25.	 ƒ1x2 = e 01/x 0	 26.	 ƒ1x2 =
1

0 x2 - 7 0
	27.	 ƒ1x2 = x100 - x50 + x2 + 5	 28.	 ƒ1x2 = 2-x2 - 9

	29.	 ƒ1x2 = 24 16 - x4	 30.	 ƒ1x2 = 23 16 - x4

	31.	 ƒ1x2 = Bx2 - 2x - 63

x2 + x - 12
	 32.	 ƒ1x2 = 25 5 - x

	33.	 ƒ1x2 = P25 - x P 	 34.	 ƒ1x2 = B -1

x - 3

	35.	 ƒ1x2 = log ` 1

4 - x
` 	 36.	 ƒ1x2 = 6x2-9

	37.	 ƒ1x2 = 62x2-25	 38.	 ƒ1x2 = 623 x2-25

	39.	 ƒ1x2 = ln a -3

1x + 221x - 62 b 	 40.	 ƒ1x2 =
-2

log x

Determine which one of the choices (A, B, C, or D) is an equation in which y can be 
written as a function of x.

41.	 A.  3x + 2y = 6	 B.  x = 2 0 y 0 	 C.  x = 0 y + 3 0 	 D.  x2 + y2 = 9

42.	 A.  3x2 + 2y2 = 36	 B.  x2 + y - 2 = 0	 C.  x - 0 y 0 = 0	 D.  x = y2 - 4

43.	 A.  x = 2y2	 B.  x = log y2	 C.  x3 + y3 = 5	 D.  x =
1

y2 + 3

44.	 A. 
x2

4
+

y2

4
= 1	 B.  x = 5y2 - 3	 C. 

x2

4
-

y2

9
= 1	 D.  x = 10y

45.	 A.  x =
2 - y

y + 3
	 B.  x = ln 1y + 122	 C.  2x = 0 y + 1 0 	 D.  24 x = y2	

46.	 A.  ey2 = x	 B.  ey+2 = x	 C.  e 0y 0 = x	 D.  10 0y+2 0 = x

47.	 A.  x2 =
1

y2	 B.  x + 2 =
1

y2	 C.  3x =
1

y4	 D.  2x =
1

y3

48.	 A.  0 x 0 = 0 y 0 	 B.  x = 0 y2 0 	 C.  x =
1
y

	 D.  x4 + y4 = 81

49.	 A. 
x2

4
-

y2

9
= 1	 B. 

y2

4
-

x2

9
= 1	 C. 

x

4
-

y

9
= 0	 D. 

x2

4
-

y2

9
= 0

50.	 A.  y2 - 21x + 222 = 0	 B.  y - 21x + 222 = 0

C.  y6 - 21x + 122 = 0	 D.  y4 - 2x2 = 0
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488 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Chapter 4 Test Prep

Key Terms

4.1	 one-to-one function 
inverse function 

4.2	 exponential function 
exponential equation 
compound interest 

future value 
present value 
compound amount 
continuous  

compounding 

4.3	 logarithm 
base 
argument 
logarithmic equation 
logarithmic function 

4.4	 common logarithm 
pH 
natural logarithm 

4.6	 doubling time 
half-life 

New Symbols

ƒ−1 1x 2 	 inverse of ƒ1x2
e	� a constant, approximately 2.718281828459045

log a x	 logarithm of x with the base a

log x	 common (base 10) logarithm of x

ln x	 natural (base e) logarithm of x

Quick Review

Concepts	 Examples

The function y = ƒ1x2 = x2 is not one-to-one, because 
y = 16, for example, corresponds to both x = 4 and 
x = -4.

The graph of ƒ1x2 = 2x - 1 is a straight line with slope 2. 
ƒ is a one-to-one function by the horizontal line test.

Find the inverse of ƒ.

     ƒ1x2 = 2x - 1	 Given function

     y = 2x - 1	 Let y = ƒ1x2.
 x = 2y - 1 	 Interchange x and y.

 y =
x + 1

2
	 Solve for y.

 ƒ-11x2 =
x + 1

2
	 Replace y with ƒ-11x2.

 ƒ-11x2 =
1

2
 x +

1

2
	 x + 1

2 = x
2 + 1

2 = 1
2 x + 1

2

 Inverse Functions

One-to-One Function
In a one-to-one function, each x-value corresponds to only 
one y-value, and each y-value corresponds to only one  
x-value.

A function ƒ is one-to-one if, for elements a and b in the 
domain of ƒ, 

a 3 b  implies  ƒ 1a 2 3 ƒ 1b 2 .

Horizontal Line Test
A function is one-to-one if every horizontal line intersects 
the graph of the function at most once.

Inverse Functions
Let ƒ be a one-to-one function. Then g is the inverse func-
tion of ƒ if

1ƒ ° g 2 1x 2 = x  for every x in the domain of g

and

1g ° ƒ 2 1x 2 = x  for every x in the domain of ƒ.

To find g1x2, interchange x and y in y = ƒ1x2, solve for y, 
and replace y with g1x2, which is ƒ-11x2.

4.1
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489CHAPTER 4  Test Prep

Concepts	 Examples

 Exponential Functions

Additional Properties of Exponents
For any real number a 7 0, a ≠ 1, the following hold true.

(a)  ax is a unique real number for all real numbers x.

(b)  ab = ac if and only if b = c.

(c)  If a 7 1 and m 6 n, then am 6 an.

(d)  If 0 6 a 6 1 and m 6 n, then am 7 an.

Exponential Function
If a 7 0 and a ≠ 1, then the exponential function with base 
a is ƒ 1x 2 = ax.

Graph of ƒ 1x 2 = ax

1.	 The points A -1, 1a B, 10, 12, and 11, a2 are on the graph.

2.	 If a 7 1, then ƒ is an increasing function. 
	 If 0 6 a 6 1, then ƒ is a decreasing function.

3.	 The x-axis is a horizontal asymptote.

4.	 The domain is 1-∞, ∞2, and the range is 10, ∞2.

4.2

(a)  2x is a unique real number for all real numbers x.

(b)  2x = 23 if and only if x = 3.

(c)  25 6 210, because 2 7 1 and 5 6 10.

(d)  A12 B5 7 A12 B10
 because 0 6 1

2 6 1 and 5 6 10.

ƒ1x2 = 3x is the exponential function with base 3.

x y

-1 1
3

0 1
1 3

 Logarithmic Functions

Logarithm
For all real numbers y and all positive numbers a and x, 
where a ≠ 1, y = log a x is equivalent to x = a y.

Logarithmic Function
If a 7 0, a ≠ 1, and x 7 0, then the logarithmic function 
with base a is ƒ 1x 2 = log a x.

Graph of ƒ 1x 2 = log a x

1.	 The points A1a , -1 B, 11, 02, and 1a, 12 are on the graph.

2.	 If a 7 1, then ƒ is an increasing function.
	 If 0 6 a 6 1, then ƒ is a decreasing function.

3.	 The y-axis is a vertical asymptote.

4.	 The domain is 10, ∞2, and the range is 1-∞, ∞2.
Properties of Logarithms
For x 7 0, y 7 0, a 7 0, a ≠ 1, and any real number r, the 
following properties hold.

 log a xy = log a x + log a y  Product property

 log a 
x
y

= log a x − log a y  Quotient property

 log a xr = r log a x   Power property

 log a 1 = 0   Logarithm of 1

 log a a = 1   Base a logarithm of a

Theorem on Inverses
For a 7 0 and a ≠ 1, the following properties hold.

alog a x = x  1x + 0 2   and  log a ax = x

4.3

log3 81 = 4  is equivalent to  34 = 81.

ƒ1x2 = log3 x is the logarithmic function with base 3.

x y

1
3 -1

1 0
3 1

 log2 13 # 52 = log2 3 + log2 5

 log2 
3

5
= log2 3 - log2 5

 log6 35 = 5 log6 3

 log10 1 = 0

 log10 10 = 1

2log2 5 = 5  and  log2 25 = 5

0 1

y

2

4

f(x) = 3x

(1, 3)

(0, 1)
x

Q–1,   R1
3

0 1 3
x

–2

1

y

f(x) = log3 x

(3, 1)(1, 0)

Q  , –1R1
3
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490 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Concepts	 Examples

 Evaluating Logarithms and the Change-of-Base Theorem4.4

Approximate log 0.045 and ln 247.1.

 log 0.045 ≈ -1.3468 
Use a calculator.

 ln 247.1 ≈ 5.5098

Approximate log8 7.

log8 7 =
log 7

log 8
=

ln 7

ln 8
≈ 0.9358  Use a calculator.

Common and Natural Logarithms
For all positive numbers x, base 10 logarithms and base e 
logarithms are written as follows.

 log x = log10  x  Common logarithm

 ln x = log e  x   Natural logarithm

Change-of-Base Theorem
For any positive real numbers x, a, and b, where a ≠ 1 and 
b ≠ 1, the following holds.

log a  x =
log b  x

log b  a

 Exponential and Logarithmic Equations4.5

Solve.

 e5x = 10

 ln e5x = ln 10   Take natural logarithms.

 5x = ln 10   ln e x = x, for all x.

 x =
ln 10

5
  Divide by 5.

 x ≈ 0.461  Use a calculator.

The solution set can be written with the exact value, 

E ln 10
5 F, or with the approximate value, 50.4616.

 log2 1x2 - 32 = log2 6

 x2 - 3 = 6   Property of logarithms

 x2 = 9   Add 3.

 x = {3   Take square roots.

Both values check, so the solution set is 5{36.

Property of Logarithms
If x 7 0, y 7 0, a 7 0, and a ≠ 1, then the following holds.

x = y  is equivalent to  log a x = log a y.

Applications and Models of Exponential Growth and Decay4.6

The formula for continuous compounding,

A = Pe r t,

is an example of exponential growth. Here, A is the 
compound amount if P dollars are invested at an annual  
interest rate r for t years.

If P = $200, r = 3%, and t = 5 yr, find A.

A = Pert

 A = 200e0.03152  Substitute.

 A ≈ $232.37   Use a calculator.

Exponential Growth or Decay Function
Let y0 be the amount or number present at time t = 0. 
Then, under certain conditions, the amount present at any 
time t is modeled by

y = y0 ekt,  where k is a constant.
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491CHAPTER 4  Review Exercises

Determine whether each function as graphed or defined is one-to-one.

	 1.	

x

y

0

	 2.	

x

y

0

	 3.	

x

y

0

	 4.	 y = x3 + 1	 5.	 y = 1x + 322	 6.	 y = 23x2 + 2

	 Chapter 4	 Review Exercises

Find the inverse of each function that is one-to-one.

	 7.	 ƒ1x2 = x3 - 3	 8.	 ƒ1x2 = 225 - x2

Concept Check  Work each problem.

	 9.	 Suppose ƒ1t2 is the amount an investment will grow to t years after 2004. What does 
ƒ-11$50,0002 represent?

	10.	 The graphs of two functions are shown. Based on their graphs, are these functions 
inverses?

−10

−16.1

10

16.1

	11.	 To have an inverse, a function must be a(n)  function.

	12.	 True or false?  The x-coordinate of the x-intercept of the graph of y = ƒ1x2 is the 
y-coordinate of the y-intercept of the graph of y = ƒ-11x2.

Match each equation with the figure that most closely resembles its graph.

	13.	 y = log0.3 x	 14.	 y = ex	 15.	 y = ln x	 16.	 y = 0.3x

A.

x

y

0

	 B.

x

y

0

	 C.

x

y

0

	 D. 

x

y

0

Write each equation in logarithmic form.

	17.	 25 = 32	 18.	 1001/2 = 10	 19.	 a3

4
b

-1

=
4

3

	20.	 Graph ƒ1x2 = A15 Bx+ 2
- 1. Give the domain and range.

Write each equation in exponential form.

	21.	 log 1000 = 3	 22.	 log9 27 =
3

2
	 23.	 ln 2e =

1

2
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492 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

	24.	 Concept Check  What is the base of the logarithmic function whose graph contains 
the point 181, 42?

	25.	 Concept Check  What is the base of the exponential function whose graph contains 

the point A -4, 1
16 B?

Use properties of logarithms to rewrite each expression. Simplify the result if possible. 
Assume all variables represent positive real numbers.

	26.	 log5 Ax2y425 m3p B	 27.	 log3 
mn

5r
	 28.	 log7 17k + 5r22

Use a calculator to find an approximation to four decimal places for each logarithm.

	29.	 log 0.0411	 30.	 log 45.6	 31.	 ln 144,000

	32.	 ln 470	 33.	 log2/3 
5

8
	 34.	 log3 769

Solve each equation. Unless otherwise specified, give irrational solutions as decimals 
correct to the nearest thousandth.

	35.	 16x+4 = 83x-2	 36.	 4x = 12	 37.	 32x-5 = 13

	38.	 2x+3 = 5x	 39.	 6x+3 = 4x	 40.	 e x-1 = 4

	41.	 e2-x = 12	 42.	 2e5x+2 = 8	 43.	 10e3x-7 = 5

	44.	 5x+2 = 22x-1	 45.	 6x-3 = 34x+1	 46.	 e8x # e2x = e20

	47.	 e6x # e x = e21	 48.	 10011.022x/4 = 200	 49.	 2e2x - 5e x - 3 = 0  
				    (Give exact form.)

	50.	 a1

2
b

x

+ 2 = 0	 51.	 411.062x + 2 = 8

52.	 Concept Check  Which one or more of the following choices is the solution set of 
5x = 9?

A.  5log5 96       B.  5log9 56       C.  e log 9

log 5
f        D.  e ln 9

ln 5
f

Solve each equation. Give solutions in exact form.

	53.	 3 ln x = 13	 54.	 ln  5x = 16

	55.	 log 12x + 72 = 0.25	 56.	 ln x + ln x3 = 12

	57.	 log2 1x3 + 52 = 5	 58.	 log3 1x2 - 92 = 3

	59.	 log4 313x + 121x - 424 = 2	 60.	 ln eln x - ln 1x - 42 = ln 3

	61.	 log x + log 113 - 3x2 = 1	 62.	 log7 13x + 22 - log7 1x - 22 = 1

	63.	 ln 16x2 - ln 1x + 12 = ln 4	 64.	 log162x + 1 =
1

4

	65.	 ln 3ln e-x4 = ln 3	 66.	 S = a ln a1 +
n
a
b , for n

	67.	 d = 10 log 
I

I0
 , for I0	 68.	 D = 200 + 100 log x, for x

	69.	 Use a graphing calculator to solve the equation e x = 4 - ln x. Give solution(s) to 
the nearest thousandth.
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493CHAPTER 4  Review Exercises

Solve each problem.

	70.	 (Modeling) Decibel Levels  Decibel rating of the loudness of a sound is modeled by

d = 10 log 
I

I0
 ,

		  where I is the intensity of a particular sound, and I0 is the intensity of a very faint 
threshold sound. A few years ago, there was a controversy about a proposed gov-
ernment limit on factory noise. One group wanted a maximum of 89 decibels, 
while another group wanted 86. Find the percent by which the 89-decibel intensity 
exceeds that for 86 decibels.

	71.	 Earthquake Intensity  The magnitude of an earthquake, measured on the Richter 

scale, is log I
I0

 , where I is the amplitude registered on a seismograph 100 km from 

the epicenter of the earthquake, and I0 is the amplitude of an earthquake of a certain 
(small) size. On August 24, 2014, the Napa Valley in California was shaken by an 
earthquake that measured 6.0 on the Richter scale.

(a)	 Express this reading in terms of I0.

(b)	 �On April 1, 2014, a quake measuring 8.2 on the Richter scale struck off the coast 
of Chile. It was the largest earthquake in 2014. Express the magnitude of an 8.2 
reading in terms of I0 to the nearest hundred thousand.

(c)	 �How much greater than the force of the 6.0 earthquake was the force of the earth-
quake that measured 8.2?

	72.	 Earthquake Intensity  The San Francisco earthquake of 1906 had a Richter scale 
rating of 8.3.

(a)	 �Express the magnitude of this earthquake in terms of I0 to the nearest hundred 
thousand.

(b)	 �In 1989, the San Francisco region experienced an earthquake with a Richter 
scale rating of 7.1. Express the magnitude of this earthquake in terms of I0 to the 
nearest hundred thousand.

(c)	 �Compare the magnitudes of the two San Francisco earthquakes discussed in 
parts (a) and (b).

	73.	 Interest Rate  What annual interest rate, to the nearest tenth, will produce $4700 if 
$3500 is left at interest compounded annually for 10 yr?

	74.	 Growth of an Account  Find the number of years (to the nearest tenth) needed for 
$48,000 to become $53,647 at 2.8% interest compounded semiannually.

	75.	 Growth of an Account  Manuel deposits $10,000 for 12 yr in an account paying 3% 
interest compounded annually. He then puts this total amount on deposit in another 
account paying 4% interest compounded semiannually for another 9 yr. Find the 
total amount on deposit after the entire 21-yr period.

	76.	 Growth of an Account  Anne deposits $12,000 for 8 yr in an account paying 2.5% 
interest compounded annually. She then leaves the money alone with no further 
deposits at 3% interest compounded annually for an additional 6 yr. Find the total 
amount on deposit after the entire 14-yr period.

	77.	 Cost from Inflation  Suppose the inflation rate is 4%. Use the formula for continu-
ous compounding to find the number of years, to the nearest tenth, for a $1 item to 
cost $2.

	78.	 (Modeling) Drug Level in the Bloodstream  After a medical drug is injected 
directly into the bloodstream, it is gradually eliminated from the body. Graph the 
following functions on the interval 30, 104. Use 30, 5004  for the range of A1t2. 
Determine the function that best models the amount A1t2 (in milligrams) of a drug 
remaining in the body after t hours if 350 mg were initially injected.

(a)  A1t2 = t2 - t + 350	 (b)  A1t2 = 350 log1t + 12
(c)  A1t2 = 35010.752t	 (d)  A1t2 = 10010.952t
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494 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

	79.	 (Modeling) Chicago Cubs’ Payroll  The table shows the total payroll (in millions 
of dollars) of the Chicago Cubs baseball team for the years 2010–2014.

Source: www.baseballprospectus.com/  
compensation

Year
Total Payroll  

(millions of dollars)

2010 145.4

2011 134.3

2012 111.0

2013 107.4

2014   92.7

Letting ƒ1x2 represent the total payroll and x represent the number of years since 
2010, we find that the function

ƒ1x2 = 146.02e-0.112x

models the data quite well. According to this function, when will the total payroll 
halve its 2010 value?

	80.	 (Modeling) Transistors on Computer Chips  Computing power has increased dra-
matically as a result of the ability to place an increasing number of transistors on 
a single processor chip. The table lists the number of transistors on some popular 
computer chips made by Intel.

Source: Intel.

Year Chip Transistors

1989 486DX 1,200,000

1994 Pentium 3,300,000

2000 Pentium 4 42,000,000

2006 Core 2 Duo 291,000,000

2008 Core 2 Quad 820,000,000

2010 Core (2nd gen.) 1,160,000,000

2012 Core (3rd gen.) 1,400,000,000

(a)	 �Make a scatter diagram of the data. Let the x-axis represent the year, where x = 0 
corresponds to 1989, and let the y-axis represent the number of transistors.

(b)	 �Decide whether a linear, a logarithmic, or an exponential function best describes 
the data.

(c)	 �Determine a function ƒ that approximates these data. Plot ƒ and the data on the 
same coordinate axes.

(d)	 �Assuming that this trend continues, use ƒ to estimate the number of transistors 
on a chip, to the nearest million, in the year 2016.

	81.	 Financial Planning  The traditional IRA (individual retirement account) is a com-
mon tax-deferred saving plan in the United States. Earned income deposited into an 
IRA is not taxed in the current year, and no taxes are incurred on the interest paid 
in subsequent years. However, when the money is withdrawn from the account after 

age 59 12 , taxes must be paid on the entire amount withdrawn.

Suppose we deposited $5000 of earned income into an IRA, we can earn an 
annual interest rate of 4%, and we are in a 25% tax bracket. (Note: Interest rates and 
tax brackets are subject to change over time, but some assumptions must be made 
to evaluate the investment.) Also, suppose that we deposit the $5000 at age 25 and 
withdraw it at age 60, and that interest is compounded continuously.
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(a)	 How much money will remain after we pay the taxes at age 60?

(b)	 �Suppose that instead of depositing the money into an IRA, we pay taxes on 
the money and the annual interest. How much money will we have at age 60? 
(Note: We effectively start with $3750 (75% of $5000), and the money earns 3% 
(75% of 4%) interest after taxes.)

(c)	 To the nearest dollar, how much additional money will we earn with the IRA?

(d)	 �Suppose we pay taxes on the original $5000 but are then able to earn 4% in a 
tax-free investment. Compare the balance at age 60 with the IRA balance.

	82.	 Consider ƒ1x2 = log4 12x2 - x2.
(a)	 �Use the change-of-base theorem with base e to write log4 12x2 - x2 in a suitable 

form to graph with a calculator.

(b)	 �Graph the function using a graphing calculator. Use the window 3-2.5, 2.54 by 
3-5, 2.54.

(c)	 What are the x-intercepts?

(d)	Give the equations of the vertical asymptotes.

(e)	 Why is there no y-intercept?

	 1.	 Consider the function ƒ1x2 = 23 2x - 7.

(a)	 What are the domain and range of ƒ?

(b)	Explain why ƒ-1 exists.

(c)	 Write an equation for ƒ-11x2.
(d)	What are the domain and range of ƒ-1?

(e)	 �Graph both ƒ and ƒ-1. How are the two graphs related with respect to the line 
y = x?

	 2.	 Match each equation with its graph.

(a)	 y = log1/3 x    (b)  y = e x    (c)  y = ln x    (d)  y = a1

3
b

x

A.		  B.	 C.                               D.

x

y

0

	 3.	 Solve a1

8
b

2x-3

= 16x+1.

	 4.	 (a)  Write 43/2 = 8 in logarithmic form.

(b)	Write log8 4 = 2
3 in exponential form.

	 5.	 Graph ƒ1x2 = A12 Bx and g1x2 = log1/2 x on the same axes. What is their relationship?

	 6.	 Use properties of logarithms to rewrite the expression. Assume all variables repre-
sent positive real numbers.

log7 
x224 y

z3

x

y

0
x

y

0
x

y

0
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496 CHAPTER 4  Inverse, Exponential, and Logarithmic Functions

Use a calculator to find an approximation to four decimal places for each logarithm.

	 7.	 log 2388	 8.	 ln 2388	   9.	 log9 13

	10.	 Solve x2/3 = 25.

Solve each equation. Give irrational solutions as decimals correct to the nearest thou-
sandth.

	11.	 12x = 1	 12.	 9x = 4	 13.	 162x+1 = 83x

	14.	 2x+1 = 3x-4	 15.	 e0.4x = 4x-2

	16.	 2e2x - 5ex + 3 = 0  (Give both exact and approximate values.)

Solve each equation. Give solutions in exact form.

	17.	 logx 
9

16
= 2	 18.	 log2 31x - 421x - 224 = 3

	19.	 log2 x + log2 1x + 22 = 3	 20.	 ln x - 4 ln 3 = ln 
1

5
 x

	21.	 log3 1x + 12 - log3 1x - 32 = 2

	22.	 A friend is taking another mathematics course and says, “I have no idea what an 
expression like log5 27 really means.” Write an explanation of what it means, and 
tell how we can find an approximation for it with a calculator.

Solve each problem.

	23.	 (Modeling) Skydiver Fall Speed  A skydiver in free fall travels at a speed modeled by

v1t2 = 17611 - e-0.18t2
feet per second after t seconds. How long, to the nearest second, will it take for the 
skydiver to attain a speed of 147 ft per sec (100 mph)?

	24.	 Growth of an Account  How many years, to the nearest tenth, will be needed for 
$5000 to increase to $18,000 at 3.0% annual interest compounded (a) monthly 
(b) continuously?

	25.	 Tripling Time  For any amount of money invested at 2.8% annual interest com-
pounded continuously, how long, to the nearest tenth of a year, will it take to triple?

26.	 (Modeling) Radioactive Decay  The amount of a certain radioactive material, in 
grams, present after t days is modeled by

A1t2 = 600e-0.05t.

(a)	 Find the amount present after 12 days, to the nearest tenth of a gram.

(b)	Find the half-life of the material, to the nearest tenth of a day.
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