
14

Water Pressure
and Pressure Forces

2.1 The Free Surface of Water

When water fills a containing vessel, it automatically seeks a horizontal surface on which the
pressure is constant everywhere. In practice, a free water surface is one that is not in contact with
an overlying vessel cover. A free water surface may be subjected to atmospheric pressure (open
vessel) or any other pressure that is exerted within the vessel (closed vessel).

2.2 Absolute and Gauge Pressures

A water surface in contact with the earth’s atmosphere is subjected to atmospheric pressure,
which is approximately equal to a 10.33-m-high column of water at sea level. In still water, any
object located below the water surface is subjected to a pressure greater than atmospheric
pressure. This additional pressure is often referred to as hydrostatic pressure. More precisely, it
is the force per unit area acting in a normal direction on the surface of a body immersed in the
fluid (in this case water).

To determine the variation of hydrostatic pressure between any two points in water
(with a specific weight of �), we may consider two arbitrary points A and B along an arbitrary
x-axis, as shown in Figure 2.1. Consider that these points lie in the ends of a small prism of
water having a cross-sectional area dA and a length L. PA and PB are the pressures at each

2
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y

B

L

A

x

h = L sinθ

PB

PA

θ

Figure 2.1 Hydrostatic pressure on a prism

end, where the cross-sectional areas are normal to the x-axis. Because the prism is at rest,
all forces acting on it must be in equilibrium in all directions. For the force components in the
x-direction, we may write

Note that is the vertical elevation difference between the two points. The above
equation reduces to

(2.1)

Therefore, the difference in pressure between any two points in still water is always equal
to the product of the specific weight of water and the difference in elevation between the
two points.

If the two points are on the same elevation, and . In other words, for water
at rest, the pressure at all points in a horizontal plane is the same. If the water body has a free
surface that is exposed to atmospheric pressure, , we may position point A on the free surface
and write

(2.2)

This pressure, , is commonly referred to as the absolute pressure.
Pressure gauges are usually designed to measure pressures above or below the atmospheric

pressure. Pressure so measured, using atmospheric pressure as a base, is called gauge pressure, P.
Absolute pressure is always equal to gauge pressure plus atmospheric pressure:

(2.3)

Figure 2.2 diagrammatically shows the relationship between the absolute and gauge pres-
sure and two typical pressure-gauge dials. Comparing Equations 2.2 and 2.3, we have

(2.4)P = �h

P = Pabs - Patm

1PB2abs

1PB2abs = �h + PA = �h + Patm

Patm

PA = PBh = 0

PB - PA = �h

L # sin u = h

© Fx = PA dA - PB dA + �LdA sin u = 0

M02_HOUG6380_04_SE_C02.qxd  7/3/09  7:03 PM  Page 15



16 Water Pressure and Pressure Forces Chap. 2

14.00

0

0
10 10

20

30

40

5060
70

−10.33

20
30

40

50

60
70

80

Atmospheric pressure

Absolute vacuum

A
bs

ol
ut

e 
pr

es
su

re
 (

w
at

er
 c

ol
um

n,
 m

)

+P1

+(P1)abs

+(P2)abs

−P2

10.33

8.00

0

Absolute pressure

Gauge pressure

Meters H2O

0

0
10 10

20

30

40

5060
70

−10.33

20
30

40

50

60
70

80

Absolute pressure

Gauge pressure

Meters H2O

Figure 2.2 Absolute and gauge pressure

or

(2.5)

Here the pressure is expressed in terms of the height of a water column h. In hydraulics it is
known as the pressure head.

Equation 2.1 may thus be rewritten in a more general form as

(2.6)

meaning that the difference in pressure heads at two points in water at rest is always equal to the
difference in elevation between the two points. From this relationship we can also see that any
change in pressure at point B would cause an equal change at point A, because the difference in
pressure head between the two points must remain the same value h. In other words, a pressure
applied at any point in a liquid at rest is transmitted equally and undiminished in all directions
to every other point in the liquid. This principle, also know as Pascal’s law, has been made use
of in the hydraulic jacks that lift heavy weights by applying relatively small forces.

¢

PB

g
-

PA

g
= ¢h

h =

P

g
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F

3 cm

Measurements in cm

P

80 cm 20 cm

A B
W

20 cm

Figure 2.3 Hydraulic jack

Example 2.1
The diameters of cylindrical pistons A and B are and , respectively. The faces of the pistons
are at the same elevation, and the intervening passages are filled with an incompressible hydraulic oil.
A force P of is applied at the end of the lever, as shown in Figure 2.3. What weight W can the
hydraulic jack support?

100 N

20 cm3 cm

Solution
Balancing the moments produced by P and F around the pin connection yields

Thus,

From Pascal’s law, the pressure PA applied at A is the same as that of PB applied at B. Therefore,

‹ W = 500 N¢ 314 cm2

7.07 cm2
≤ = 2.22 * 104 N

500 N

7.07 cm2
=

W

314 cm2

PA =

F

31p # 322>44 cm2
                  PB =

W

31p # 2022>44 cm2

F = 500 N

1100 N21100 cm2 = F120 cm2

2.3 Surfaces of Equal Pressure

The hydrostatic pressure in a body of water varies with the vertical distance measured from the
free water surface. In general, all points on a horizontal surface in a static body of water are
subjected to the same hydrostatic pressure, according to Equation 2.4. For example, in Figure 2.4
(a), points 1, 2, 3, and 4 have equal pressure, and the horizontal surface that contains these four
points is a surface of equal pressure. However, in Figure 2.4 (b), points 5 and 6 are on the same
horizontal plane but the pressures are not equal. This is because the water in the two tanks is not
connected and the overlying depths to the free surfaces are different. Applying Equation 2.4
would produce different pressures. Figure 2.4 (c) displays tanks filled with two immiscible
liquids of different densities. (Note: Immiscible liquids do not readily mix under normal condi-
tions.) The horizontal surface (7, 8) that passes through the interface of the two liquids is an
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Oil

NES
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7

H2O

Figure 2.4 Hydraulic pressure in vessels

* Meriam Process Technologies, Cleveland, Ohio 44102

equal pressure surface. Applying Equation 2.4 at both points leads to the same pressure; we have
the same fluid (water) at both locations (just below the interface at point 8), and both points
are the same distance beneath the free water surface. However, points 9 and 10 are not on an
equal pressure surface because they reside in different liquids. Verification would come from the
application of Equation 2.4 using the different depths from the free surface to points 9 and 10 and
the different specific weights of the fluids.

In summary, a surface of equal pressure requires that (1) the points on the surface be in the
same liquid, (2) the points be at the same elevation (i.e., reside on a horizontal surface), and
(3) the liquid containing the points be connected. The concept of equal pressure surface is a use-
ful method in analyzing the strength or intensity of the hydrostatic pressure at various points in a
container, as demonstrated in the following section.

2.4 Manometers

A manometer is a pressure-measurement device. It usually is a tube bent in the form of a “U” that
contains a fluid of known specific gravity. The difference in elevations of the liquid surfaces
under pressure indicates the difference in pressure at the two ends. Basically, there are two types
of manometers:

1. An open manometer has one end open to atmospheric pressure and is capable of
measuring the gauge pressure in a vessel.

2. A differential manometer has each end connected to a different pressure tap and is
capable of measuring the pressure difference between the two taps.

The liquid used in a manometer is usually heavier than the fluids to be measured. It must form
a distinct interface—that is, it must not mix with the adjacent liquids (i.e., immiscible liquids). The
most frequently used manometer liquids are mercury water 
alcohol and other commercial manometer oils of various specific gravities 
(e.g., from Meriam* Red Oil, to Meriam No. 3 Fluid, ).sp. gr. = 2.95sp. gr. = 0.827

1sp. gr. = 0.92,
1sp. gr. = 1.002,1sp. gr. = 13.62,

M02_HOUG6380_04_SE_C02.qxd  7/3/09  7:03 PM  Page 18



Sec. 2.4 Manometers 19

Water A

Atmosphere
Water A

Liquid M

Liquid M

D

C

hh

y

y

212

(a) (b)

1

Water B

Figure 2.5 Types of manometers: (a) open manometer and (b) differential manometer

Figure 2.5 (a) shows a schematic of a typical open manometer; Figure 2.5 (b) shows
a schematic of a typical differential manometer. It is obvious that the higher the pressure in
vessel A, the larger the difference, h, in the surface elevations in the two legs of the manometer.
A mathematical calculation of pressure in A, however, involves the densities of the fluids and the
geometry involved in the entire measuring system.

A simple step-by-step procedure is suggested for pressure computation.

Step 1. Make a sketch of the manometer system, similar to that in Figure 2.5, and approx-
imately to scale.

Step 2. Draw a horizontal line through the lower surface of the manometer liquid (point 1).
The pressure at points 1 and 2 must be the same since the system is in static
equilibrium.

Step 3. (a) For open manometers, the pressure on 2 is exerted by the weight of the liquid
M column above 2; and the pressure on 1 is exerted by the weight of the col-
umn of water above 1 plus the pressure in vessel A. The pressures must be
equal in value. This relation may be written as follows:

(b) For differential manometers, the pressure on 2 is exerted by the weight of the liquid
M column above 2, the weight of the water column above D, and the pressure in
vessel B, whereas the pressure on 1 is exerted by the weight of the water column
above 1 plus the pressure in vessel A. This relationship may be expressed as:

or

Either one of these equations can be used to solve for PA. Of course, in the case of the dif-
ferential manometer, PB must be known. The same procedure can be applied to any complex
geometry, as demonstrated in the following example.

Example 2.2
A mercury manometer (sp. gr. � 13.6) is used to measure the pressure difference in vessels A and B, as
shown in Figure 2.6. Determine the pressure difference in pascals .1N/m22

¢P = PA - PB = h1�M - �2

�Mh + � 1y - h2 + PB = �y + PA

�Mh = �y + PA or PA = �Mh - 1gy2
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+

B
+

Figure 2.6

Solution
The sketch of the manometer system (step 1) is shown in Figure 2.6. Points 3 and 4 are on a sur-
face of equal pressure (step 2) and so are the vessel A and points 1 and 2 :

The pressures at points 3 and 4 are, respectively (step 3),

Now

and noting that �M � � (sp. gr.)  

The open manometer, or U-tube, requires readings of liquid levels at two points. In other
words, any change in pressure in the vessel causes a drop of liquid surface at one end and a rise
in the other. A single-reading manometer can be made by introducing a reservoir with a larger
cross-sectional area than that of the tube into one leg of the manometer. A typical single-reading
manometer is shown in Figure 2.7.

Because of the large area ratio between the reservoir and the tube, a small drop of surface
elevation in the reservoir will cause an appreciable rise in the liquid column of the other leg. If
there is an increase in pressure, will cause the liquid surface in the reservoir to drop by
a small amount . Then

(2.7)A¢y = ah
¢y

¢PA

¢P = 30,500 N>m2 1pascals2 or 30.6 kilo-pascals

¢P = � 3108 +113.6211524cm = 19790 N>m3213.12 m2

¢P = PA - PB = � 1135 cm - 27 cm2 + �M 115 cm2

P3 = PA + � 127 cm2 = P4 = PB + � 1135 cm2 + �M 115 cm2

P4 = PB + � 1135 cm2 + �M 115 cm2

P3 = P2 + � 127 cm2 = PA + � 127 cm2

PA = P1 = P2

P3 = P4

1P1, P22
1P3, P42
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1 2B

A

h

y

Δy

Figure 2.7 Single-reading manometer

where A and a are cross-sectional areas of the reservoir and the tube, respectively.
Applying step 2 to points 1 and 2, we may generally write

(2.8)

Simultaneous solution of Equations 2.7 and 2.8 give the value of PA, the pressure in
the vessel, in terms of h. All other quantities in Equations 2.7 and 2.8—A, a, y, �A, and �B—are
quantities predetermined in the manometer design. A single reading of h will thus determine
the pressure.

Because �y can be made negligible by introducing a very large A/a ratio, the above relation-
ship may be further simplified to

(2.9)

Thus, the height reading h is a measure of the pressure in the vessel.
The solution of practical hydraulic problems frequently requires the difference in pressure

between two points in a pipe or a pipe system. For this purpose, differential manometers are
frequently used. A typical differential manometer is shown in Figure 2.8.

�Ay + PA = �Bh

�A1y + ¢y2 + PA = �B1h + ¢y2

Liquid B

Liquid A

c

h

ya b

d

12

Figure 2.8 A differential manometer installed in a 
flow-measurement system
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y yp
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Figure 2.9 Hydrostatic pressure on a plane surface

The same computation steps (steps 1, 2, and 3) suggested previously can be readily applied
here, too. When the system is in static equilibrium, the pressure at the same elevation points,
1 and 2, must be equal. We may thus write

Hence, the pressure difference, �P, is expressed as

(2.10)

2.5 Hydrostatic Forces on Flat Surfaces

Determining the total (or resultant) hydrostatic force on structures produced by hydrostatic
pressure is often critical in engineering design and analysis. To determine the magnitude of
this force, let’s examine an arbitrary area AB (Figure 2.9) on the back face of a dam that inclines
at an angle �. Next, place the x-axis on the line where the surface of the water intersects with the
dam surface (i.e., into the page) with the y-axis running downward along the surface or face of
the dam. Figure 2.9 (a) shows a plan (front) view of the area and Figure 2.9 (b) shows the projec-
tion of AB on the dam surface.

We may assume that the plane surface AB is made up of an infinite number of horizontal
strips, each having a width of dy and an area of dA. The hydrostatic pressure on each strip may
be considered constant because the width of each strip is very small. For a strip at depth h below
the free surface, the pressure is

P = gh = gy sin u

¢P = Pc - Pd = 1gB - gA2h

gA1y + h2 + Pc = gBh + gAy + Pd
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The total pressure force on the strip is the pressure times the area

The total pressure force (resultant force) over the entire AB plane surface is the sum of pressure
on all the strips

(2.11)

where is the distance measured from the x-axis to the centroid (or the center of

gravity, C.G.) of the AB plane (Figure 2.9).

Substituting , the vertical distance of the centroid below the water surface, for , we have

(2.12)

This equation states that the total hydrostatic pressure force on any submerged plane surface
is equal to the product of the surface area and the pressure acting at the centroid of the plane surface.

Pressure forces acting on a plane surface are distributed over every part of the surface. They
are parallel and act in a direction normal to the surface. These parallel forces can be analytically
replaced by a single resultant force F of the magnitude shown in Equation 2.12. The resultant
force also acts normal to the surface. The point on the plane surface at which this resultant force
acts is known as the center of pressure (C.P., Figure 2.9). Considering the plane surface as a free
body, we see that the distributed forces can be replaced by the single resultant force at the pressure
center without altering any reactions or moments in the system. Designating yp as the distance
measured from the x-axis to the center of pressure, we may thus write

Hence,

(2.13)

Substituting the relationships and , we may write
Equation 2.13 as

(2.14)

in which and are, respectively, the moment of inertia and the static

moment of the plane surface AB with respect to the x-axis. Therefore,

(2.15)yp =

Ix

Mx

A y = Mx
LA

 y2dA = Ix

yp =

LA
 y2dA

Ay

F = g sin u AydF = gy sin u dA

yp =

LA
 ydF

F

Fyp =

LA
 ydF

F = ghA

y sin uh

y =

LA
 ydA>A

= g sin u Ay

F =

LA
 dF =

LA
 gy sin u dA = g sin u 

LA
 ydA

dF = gy sin u dA
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TABLE 2.1 Surface Area, Centroid, and Moment of Inertia of Certain 
Simple Geometrical Plates

Shape Area Centroid
Moment of Inertia About 

the Neutral x-Axis

Rectangle bh

y =

1

2
 h

x =

1

2
 b I0 =

1

12
 bh3

Triangle 1

2
 bh

y =

h

3

x =

b + c

3
I0 =

1

36
 bh3

Circle 1

4
 pd2

y =

1

2
 d

x =

1

2
 d I0 =

1

64
 pd4

Trapezoid h1a + b2

2
y =

h12a + b2

31a + b2 I0 =

h31a2
+ 4ab + b22

361a + b2

Ellipse p bh
y = h
x = b I0 =

p

4
 bh3

With respect to the centroid of the plane, this may be written as

(2.16)

where I0 is the moment of inertia of the plane with respect to its own centroid, A is the plane
surface area, and is the distance between the centroid and the x-axis.

The center of pressure of any submerged plane surface is always below the centroid of
the surface area (i.e., ). This must be true because all three variables in the first term on the
right-hand side of Equation 2.16 are positive, making the term positive. That term is added to
the centroidal distance ( ).

The centroid, area, and moment of inertia with respect to the centroid of certain common
geometrical plane surfaces are given in Table 2.1.

y

yp 7 y

y

yp =

I0 + Ay2

Ay
=

I0

Ay
+ y

C.G.
BB

h

y
c

x

b

y

x

C.G.
BB

h

y
a

x

b

y

x

C.G.

h

h

y

x

bb

x

b

x

y

y

h
C.G.

y

r x

d = 2r

BB

C.G.
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Shape Area Centroid
Moment of Inertia About 

the Neutral x-Axis

Semi-ellipse p

2
 bh

y =

4h

3p

x = b
I0 =

19p2
- 642

72p
 bh3

Parabolic section 2

3
 bh

x =

3

8
 b

y =

2

5
 h I0 =

8

175
 bh3

Semicircle 1

2
 pr2 y =

4r

3p I0 =

19p2
- 642r4

72 p

5 m

2 m

1 m

3 m

Figure 2.10

Example 2.3
A vertical trapezoidal gate with its upper edge located below the free surface of water is shown in
Figure 2.10. Determine the total pressure force and the center of pressure on the gate.

5 m

x

y

h
B B

bb

C.G.

x

x2

b2

x

y

y = h(

h

b0

C.G. y

1− )

B B

x
r

y

C.G.
y

M02_HOUG6380_04_SE_C02.qxd  7/3/09  7:03 PM  Page 25



26 Water Pressure and Pressure Forces Chap. 2

5 ft

4 ft

h

F

_

y

hp

yp

_

45°

C.G.

C.P.

5 ft5 ft

Figure 2.11

Solution
The total pressure force is determined using Equation 2.12 and Table 2.1.

The location of the center of pressure is

where (from Table 2.1)

Thus,

below the water surface.

Example 2.4
An inverted semicircular gate (Figure 2.11) is installed at with respect to the free water surface. The top
of the gate is below the water surface in the vertical direction. Determine the hydrostatic force and the
center of pressure on the gate.

5 ft
45°

yp =

1.22

415.832
+ 5.83 = 5.88 m

 A = 4.00 m2

 y = 5.83 m

 I0 =

23312
+ 4112132 + 324

3611 + 32
= 1.22 m4

yp =

I0

Ay
+ y

 = 2.28 * 105N = 228 kN

 = 9,790 B5 +

23122112 + 34

311 + 32
R B213 + 12

2
R

 F = ghA
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Solution
The total pressure force is

where

and

Therefore,

This is the total hydrostatic force acting on the gate. The location of the center of pressure is

where (from Table 2.1)

Therefore,

This is the inclined distance measured from the water surface to the center of pressure.

2.6 Hydrostatic Forces on Curved Surfaces

The hydrostatic force on a curved surface can be analyzed best by resolving the total pressure
force on the surface into its horizontal and vertical components. (Remember that hydrostatic
pressure acts normal to a submerged surface.) Figure 2.12 shows the curved wall of a container
gate that has a unit width normal to the plane of the page.

Because the water body in the container is stationary, every part of the water body must be
in equilibrium or each of the force components must satisfy the equilibrium conditions—that is,

and .
In the free body diagram of the water contained in ABA', equilibrium requires the horizontal

pressure exerted on plane surface A'B (the vertical projection of AB) to be equal and opposite the
horizontal pressure component FH (the force that the gate wall exerts on the fluid). Likewise,
the vertical component, FV, must equal the total weight of the water body above gate AB. Hence,
the horizontal and vertical pressure force on the gate may be expressed as

‹ FV = WAA¿
+ WABA¿

©Fy = FV - 1WAA¿
+ WABA¿

2 = 0
‹ FH = FA¿B

©Fx = FA¿B - FH = 0

©Fy = 0©Fx = 0

yp =

28.1

25.118.772
+ 8.77 = 8.90 ft

I0 =

19p2
- 642

72p
 r4

= 28.1 ft 4

yp =

I0

Ay
+ y

F = 62.31sin 45°218.772125.12 = 9,700 lbs

y = 5 sec 45° +

44

3p
= 8.77 ft

A =

1

2
3p 14224 = 25.1 ft 2

F = g y sin uA
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FH

FV

1.33 m

0.85

0

2 m

A′

B

A

Figure 2.13

Therefore, we may make the following statements.

1. The horizontal component of the total hydrostatic pressure force on any surface is always
equal to the total pressure on the vertical projection of the surface. The resultant force of
the horizontal component can be located through the center of pressure of this projection.

2. The vertical component of the total hydrostatic pressure force on any surface is
always equal to the weight of the entire water column above the surface extending
vertically to the free surface. The resultant force of the vertical component can
be located through the centroid of this column.

Example 2.5
Determine the total hydrostatic pressure and the center of pressure on the 5-m-long, 2-m-high quadrant
gate in Figure 2.13.

Free body

WAA′WAA′

FA′B FH
FA′B

WABA′WABA′

FV

BB

A
A

A′
A′

Figure 2.12 Hydrostatic pressure on a curved surface
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A

B

h

H

γH

γh

A'
A

C O

FV1

FH

FV2

B'
B

Figure 2.14

Solution
The horizontal component is equal to the hydrostatic pressure force on the projection plane A'B.

The location of the horizontal component is , where (projected area) and
below the free

surface. The vertical component is equal to the weight of the water in the volume AOB. The direction of this
pressure component is downward.

The pressure center is located at (Table 2.1), and the resultant force is

Example 2.6
Determine the total hydrostatic pressure and the center of pressure on the semicylindrical gate shown in
Figure 2.14.

Solution
The horizontal component of the hydrostatic pressure force on the projection plane A'B' per unit width can
be expressed as

FH = g h A = ga
H

2
b AH B =

1

2
  gH2

u = tan-1a
FV

FH
b = tan-1154,000

154,000
= 57.6°

F = 2197,90022 + 1154,00022 = 182,000 N

4122>3p = 0.85 m

FV = g (Vol) = 19,790 N>m32a
1

4
 p 12 m22b15 m2 = 154,000 N

I0 = 315 m212 m234>12 = 3.33 m4, yp = 13.33 m42>3110 m2211 m24 + 1 = 1.33 m
A = 10 m2yp = I0/Ay + y

FH = g h A = 19,790 N>m32a
1

2
 12 m2b312 m215m24 = 97,900 N

M02_HOUG6380_04_SE_C02.qxd  7/3/09  7:04 PM  Page 29
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The pressure center of this component is located at a distance of H/3 from the bottom.
The vertical component can be determined as follows. The volume AA'C over the upper half of the gate,

AC, produces a downward vertical pressure force component:

The vertical pressure force component exerted by the water on the lower half of the gate, CB, is upward and
equivalent to the weight of water replaced by the volume AA'CB:

By combining these two components, one can see that the direction of the resultant vertical force is upward
and equal to the weight of the water replaced by the volume ACB.

The resultant force is then

Because all pressure forces are concurrent at the center of the gate, point O, the resultant force must also act
through point O.

2.7 Buoyancy

Archimedes discovered (~250 B.C.) that the weight of a submerged body is reduced by an amount
equal to the weight of the liquid displaced by the body. Archimedes’ principle, as we now call it,
can be easily proven by using Equation 2.12.

Assume that a solid body of arbitrary shape, AB, is submerged in water as shown in
Figure 2.15. A vertical plane MN may then be drawn through the body in the direction normal to the
page. One observes that the horizontal pressure force components in the direction of the paper, FH
and , must be equal because they both are calculated using the same vertical projection area MN.
The horizontal pressure force components in the direction normal to the page must also be equal for
the same reason; they share the same projection in the plane of the page.

The vertical pressure-force component can be analyzed by taking a small vertical prism ab
with a cross-sectional area dA. The vertical pressure force on top of the prism acts
downward. The vertical force on the bottom of the prism acts upward. The difference
gives the resultant vertical force component on the prism (buoyancy force)

which is exactly equal to the weight of the water column ab replaced by the prism. In other
words, the weight of the submerged prism is reduced by an amount equal to the weight of the
liquid replaced by the prism. A summation of the vertical forces on all the prisms that make up
the entire submerged body AB gives the proof of Archimedes’ principle.

FV = gh2dA - gh1dA = g1h2 - h12dA c

1gh2dA2
1gh1dA2

F¿H

u = tan-1 FV

FH
= tan-1a

p

4
b = 38.1°

F = gH2

A
1
4

+

p2

64

FV = FV1
+ FV2

= g B - ¢H2

4
-

pH2

16
≤ + ¢H2

4
+

pH2

16
≤ R = g 

p

8
 H2

FV2
= g ¢H2

4
+

pH2

16
≤

FV1
= -g ¢H2

4
-

pH2

16
≤
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F ′HFH

M

B

A

b

a

N
FVb

FVa

S2S1

h1

h2

Figure 2.15 Buoyancy of a submerged body

Archimedes’ principle may also be viewed as the difference of vertical pressure forces on
the two surfaces ANB and AMB. The vertical pressure force on surface ANB is equal to the
weight of the hypothetical water column (volume of S1ANBS2) acting upward; and the vertical
pressure force on surface AMB is equal to the weight of the water column S1AMBS2 acting down-
ward. Because the volume S1ANBS2 is larger than the volume S1AMBS2 by an amount exactly
equal to the volume of the submerged body AMBN, the net difference is a force equal to the
weight of the water that would be contained in the volume AMBN acting upward. This is the
buoyancy force acting on the body.

A floating body is a body partially submerged resulting from a balance of the body weight
and buoyancy force.

2.8 Flotation Stability

The stability of a floating body is determined by the relative positions of the center of gravity of
body G and the center of buoyancy B, which is the center of gravity of the liquid volume replaced
by the body, as show in Figure 2.16.

The body is in equilibrium if its center of gravity and its center of buoyancy lie on the same
vertical line, as in Figure 2.16 (a). This equilibrium may be disturbed by a variety of causes (e.g.,
wind or wave action), and the floating body is made to heel or list through an angle � as shown
in Figure 2.16 (b). When the floating body is in the heeled position, the center of gravity of the
body remains unchanged, but the center of buoyancy, which is now the center of gravity of area
a'cb', has been changed from B to B'. The buoyant force , acting upward through B', and
the weight of the body W, acting downward through G, constitute a couple, , which resists
further overturning and tends to restore the body to its original equilibrium position.

By extending the line of action of the buoyant force through the center of buoyancy B', we
see that the vertical line intersects the original axis of symmetry c-t at a point M. The point M is
known as the metacenter of the floating body, and the distance between the center of gravity and
the metacenter is known as the metacentric height. The metacentric height is a measure of the
flotation stability of the body. When the angle of inclination is small, the position of M does not

W # X
g # Vol
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32 Water Pressure and Pressure Forces Chap. 2

change materially with the tilting position. The metacentric height and the righting moment can
be determined in the following way.

Because tilting a floating body does not change the total body weight, the total displacement
volume is not changed. The roll through an angle � only changes the shape of the displaced volume
by adding the immersion wedge bob' and subtracting the emersion wedge aoa'. In this new position,
the total buoyancy force is shifted through a horizontal distance S to B'. This shift creates
a couple F1 and F2 because of the new immersion and emersion wedges. The moment of the result-
ant force about point B must equal the sum of the moments of the component forces:

or

where Vol is the total volume submerged, Volwedge is the volume of wedge bob' (or aoa'), and L is
the horizontal distance between the centers of gravity of the two wedges.

But, according to the geometric relation, we have

Combining Equations (a) and (b), we get

MB =

VolwedgeL

Vol sin u

S = MB sin u      or      MB =

S

sin u
    (b)

S =

Volwedge

Vol
 L  1a2

1gVol2B¿
S = gVolwedge L

= 0 + gVolwedgeL

1gVol2B¿
1S2 = 1gVol2B1zero2 + moment of the force couple

1g # Vol)B¿

1g # Vol2

G

B

t

.Vol

O

W

a

a

L

b b′

b

a′

B′

c

c

(a) (b)

B

S

X

G

W

O
M

t

θ

F2

F1

.Vol

Figure 2.16 Center of buoyancy and metacenter of a floating body

M02_HOUG6380_04_SE_C02.qxd  7/3/09  7:04 PM  Page 32



Sec. 2.8 Flotation Stability 33

b′

dAx

O

b

θ

Figure 2.17

For a small angle, , the previous relationship may be simplified to

The buoyancy force produced by wedge bob', as depicted in Figure 2.17, can be estimated
by considering a small prism of the wedge. Assume that the prism has a horizontal area, dA, and
is located at a distance x from axis of rotation O. The height of the prism is . For ax(tan u)

MB =

VolwedgeL

Vol u

sin u L u

small angle �, it may be approximated by . Thus, the buoyancy force produced by this small
prism is . The moment of this force about the axis of rotation O is . The sum of the
moments produced by each of the prisms in the wedge gives the moment of the immersed wedge.
The moment produced by the force couple is, therefore,

But is the moment of inertia of the waterline cross-sectional area of the floating body

about the axis of rotation O.

Hence, we have

For small angles of tilt, the moment of inertia for upright cross section aob, and the inclined
cross section a'ob' may be approximated by a constant value. Therefore,

(2.17)

The metacentric height, defined as the distance between the metacenter M and the center of grav-
ity G, can be estimated:

(2.18)

The distance between the center of gravity and the center of buoyancy in the upright position,
shown in Figure 2.16, can be determined by the sectional geometry or the design data of the vessel.

GB

GM = MB ; GB =

I0

Vol
; GB

MB =

I0

Vol

VolwedgeL = I0u

I0 =

LA
 x2 dA

LA
 x2 dA

gVolwedgeL = FL =

LA
 gx2 udA = gu

LA
 x2 dA

gx2udAgxudA
xu
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8°

3 m

4 m

2 m

G

M

B B′
O

x

Figure 2.18

The sign indicates the relative position of the center of gravity with respect to the center
of buoyancy. For greater flotation stability, it is advantageous to make the center of gravity as
low as possible. If G is lower than B, then would be added to the distance to and produce
a larger value of .

The righting moment, when tilted as depicted in Figure 2.16 (b), is

(2.19)

The stability of buoyant bodies under various conditions may be summarized as follows.

1. A floating body is stable if the center of gravity is below the metacenter. Otherwise, it
is unstable.

2. A submerged body is stable if the center of gravity is below the center of buoyancy.

Example 2.7.
A rectangular box caisson is deep (Figure 2.18). It has a draft of when it floats in an
upright position. Compute (a) the metacentric height and (b) the righting moment in seawater

when the angle of heel (list) is .

Solution
From Equation 2.18

where

and I0 is the waterline area moment of inertia of the box about its longitudinal axis through O. Therefore,

(Note: .)L = 4 m, w = 3 m, h = 2 m

= 0.225 m

GM =

1

12
 Lw3

Lw11.22
- ¢ h

2
-

1.2

2
≤

MB =

I0

Vol

GM = MB - GB

8°1sp. gr. = 1.032

1.2 m2 m3 m * 4 m

M = W GM sin u

GM
MBGB

;
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2.2.3. The simple barometer in Figure P2.2.3 uses water at as the liquid indicator. The liquid col-
umn rises to a height of from an original height of 8.7 m in the vertical tube. Compute the
new atmospheric pressure, neglecting surface tension effects. What is the percentage error if the
direct reading is used and vapor pressure is ignored?

9.8 m
30°C

Sec. 2.8 Flotation Stability 35

8.7 m

Figure P2.2.3

The specific gravity of seawater is 1.03; from Equation 2.19, the righting moment is

PROBLEMS

(SECTION 2.2)

2.2.1. Collapse depth (or crush depth) is the submerged depth that a submarine cannot exceed without
collapsing because of the surrounding water pressure. The collapse depth of modern submarines is
not quite a kilometer . Assuming seawater to be incompressible , what is 
the crush depth pressure in and ? Is the pressure you computed absolute or
gauge pressure?

2.2.2. A cylindrical water tank (Figure P2.2.2) is suspended vertically by its sides. The tank has a 
diameter and is filled with water to a depth. Determine the force exerted on the tank
bottom using two separate calculations (a) based on the weight of the water, and (b) based on the
hydrostatic pressure on the bottom of the tank.

3-ft20°C
10-ft

psi 1lb /in.22N/m2
1sp. gr. = 1.0321730 m2

=  4,550 N # m

=  319,790 N>m3211.032514 m213 m211.2 m26410.225 m21sin 8°2

M = WGM sin u

2.2.4. Mercury is often used in barometers as depicted in Figure P2.2.3. This is because the vapor pres-
sure of mercury is low enough to be ignored, and because it is so dense the tube
can be shortened considerably. With the atmospheric pressure found in Problem 2.2.3

, determine the column height in meters (and feet) if mercury is used.

2.2.5. A storage tank is filled with water. Determine the force on the bottom and on
each side.

16 m * 6 m * 6 m2

199.9 kN/m2 at 30°C2

1sp. gr. = 13.62

Figure P2.2.2
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36 Water Pressure and Pressure Forces Chap. 2

2.2.6. A 30-ft-high, 1-ft-diameter pipe is welded to the top of a cubic container . The
container and pipe are filled with water at . Determine the weight of the water and the pressure
forces on the bottom and sides of the container.

2.2.7. A closed tank contains a liquid under pressure. The pressure gauge depicted in
Figure P2.2.7 registers a pressure of (pascals). Determine the pressure at the bottom
of the tank and the height of the liquid column that will rise in the vertical tube.

4.50 * 104 N/m2
1sp. gr. = 0.802

20°C
13 ft * 3 ft * 3 ft2

1.4 m
1 m

h

6 m

Figure P2.2.8

2.2.8. An underwater storage tank was constructed to store natural gas offshore. Determine the gas pres-
sure in the tank (in pascals and psi; lb/in2) when the water elevation in the tank is 6 m below sea
level (Figure P2.2.8). The specific gravity of seawater is 1.03.

2.2.9. A closed tank contains oil with a specific gravity 0.85. If the gauge pressure at a point 
below the oil surface is , determine the absolute pressure and gauge pressure (in
psi) in the air space at the top of the oil surface.

2.2.10. A multiple-piston hydraulic jack has two output pistons, each with an area of . The input
piston, whose area is , is connected to a lever that has a mechanical advantage of 9:1. If a

force is exerted on the lever, how much pressure is developed in the system? How
much force (kN) will be exerted by each output piston?

(SECTION 2.4)

2.4.1. Referring to Figure 2.4 (c), if the height of water (at ) above point 7 is , what is
the height of the oil above point 8? (Note: Point 9 is above point 7.)

2.4.2. A significant amount of mercury is poured into a U-tube with both ends open to the atmosphere.
If water is poured into one leg of the U-tube until the water column is above the
mercury–water meniscus, what is the elevation difference between the mercury surfaces in
the two legs?

2.4.3. An open tank in a petroleum company lab contains a layer of oil on top of a layer of water. The
water height is 4 times the oil height h. The oil has a specific gravity of 0.82. If the gauge pressure
at the bottom of the tank indicates of mercury, what is the oil height h?26.3 cm

3 feet

42.5 cm1sp. gr. = 0.852
52.3 cm4°C

1kN/m2250-N
25 cm2

250 cm2

23.7 psi 1lb /in.22
10 feet

Figure P2.2.7

M02_HOUG6380_04_SE_C02.qxd  7/3/09  7:04 PM  Page 36



Sec. 2.8 Flotation Stability 37

Oil

Manometer
liquid

58

Air

cm

66
cm

Figure P2.4.6

h

Hg

H2O

2 ft

Figure P2.4.5

2.4.4. A mercury manometer is used to measure water pressure in a pipe. Referring
to Figure 2.5 (a), the value of y is and the value of h is . Determine the pressure in
the pipe.

2.4.5. A manometer is mounted on a city water-supply pipe to monitor water pressure, as shown in
Figure P2.4.5. However, the manometer reading of may be incorrect. If the pressure in
the pipe is measured independently and found to be , determine the correct
value of the reading h.

16.8 lb / in.2 1psi2
3 ft 1Hg2

2.60 cm3.40 cm
1sp. gr. = 13.62

2.4.6. An open manometer, shown in Figure P2.4.6, is installed to measure pressure in a pipe carrying an
oil . If the monometer liquid is carbon tetrachloride , determine
the pipe pressure (in meters of water-column height).

1sp. gr. = 1.6021sp. gr. = 0.822

2.4.7. In Figure P2.4.7, a single-reading mercury manometer is used to measure water pressure in the
pipe. What is the pressure (in psi) if and ?h2 = 24.0 in.h1 = 6.9 in.
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38 Water Pressure and Pressure Forces Chap. 2

2.4.8. In Figure P2.4.7, determine the water pressure [in kilo-pascals (kPa)] in the pipe if
and . Also determine the change in liquid height h1 for a 

change in h2 if the diameter of the manometer tube is and the diameter of the manometer
fluid reservoir is .

2.4.9. In Figure P2.4.9, water is flowing in pipe A and oil is flowing in pipe B.
If mercury is used as the manometer liquid, determine the pressure difference between A and
B in psi.

1sp. gr. = 0.822

5 cm
0.5 cm

10 cmh2 = 67.0 cmh1 = 20.0 cm

h2

h1

Figure P2.4.7

Manometer
liquid

32 in.

12 in.

20 in.

A

B

Figure P2.4.9

2.4.10. A micromanometer consists of two reservoirs and a U-tube as shown in Figure P2.4.10. Given that
the densities of the two liquids are and , determine an expression for the pressure difference

in terms of , and .d2r1, r2, h,  d11P1 - P22
r2r1
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60 cm 23
cm

16 cm

h

sp. gr. = 13.6 sp. gr. = 0.8 sp. gr. = 13.6 sp. gr. = 0.8

Water A Water B

20 cm

20
cm

46 cm

Figure P2.4.11

Δh

P1

ρ1
ρ1

ρ2

P2

Diameter d2

Diameter d1

h

Figure P2.4.10

2.4.11. For the system of manometers shown in Figure P2.4.11, determine the differential reading h. Two
different manometry fluids are being used with different specific gravities. 

2.4.12. Determine the air pressure (kPa and cm of Hg) in the sealed left tank of Figure P2.4.12 if
.EA = 32.5 m
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40 Water Pressure and Pressure Forces Chap. 2

(SECTION 2.5)

2.5.1. A vertical gate keeps water from flowing in a triangular irrigation channel. The channel has a 4-m
top width and a 3-m depth. If the channel is full, what is the magnitude of the hydrostatic force on
the triangular gate and its location?

2.5.2. A concrete dam with a triangular cross section (Figure P2.5.2) is built to hold of water.
Determine the hydrostatic force on a unit length of the dam and its location. Also, if the specific
gravity of concrete is 2.67, what is the moment generated with respect to the toe of the dam, A? Is
the dam safe?

30 ft

Oil

sp. gr. = 1.6

20 kN/m2

sp. gr. = 0.8
Water

Air

Air

40 m

35 m

37 m

EA

A

Figure P2.4.12

A

10 ft

30 ft

2.5.3. A 1-m-diameter circular (plane) gate is mounted into an inclined wall (45°). The center of the gate
is located 1 m (vertically) below the water surface. Determine the magnitude of the hydrostatic
force and its location with respect to the surface of the water along the incline.

2.5.4. A vertical plate, composed of a square and a triangle, is submerged so that its upper edge coincides
with the water surface (Figure P2.5.4). What is the height to length ratio such that the pressure
force on the square is equal to the pressure force on the triangle?

Figure P2.5.2
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2 m

Hinged

1 m

45°

h

2.5.5. The rectangular gate in Figure P2.5.5 is hinged at A and separates water in the reservoir from the
tail water tunnel. If the uniformly thick gate has a dimension of and weighs ,
what is the maximum height h for which the gate will stay closed? (Hint: Assume the water level h
does not rise above the hinge.)

20 kN2 m * 3 m

L

H

L

Figure P2.5.4 Front view of vertically submerged plate...

2.5.6. A circular gate is installed on a vertical wall as shown in Figure P2.5.6. Determine the horizontal force
P necessary to hold the gate closed if the gate diameter is and . Neglect friction at the pivot.h = 7 ft6 ft

h

D

P

Pivot

Figure P2.5.6

Figure P2.5.5
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5 m

Hinge

A

B60˚ 30˚

Figure P2.5.10

2.5.7. Figure P2.5.7 shows a high (H), vertical, rectangular gate. The gate opens automatically
when h increases to . Determine the location of the horizontal axis of rotation 0–0'.4 ft

10-ft

1 m

1 m

d = 3 mHub Hub

Figure P2.5.8

2.5.8. Calculate the magnitude and the location of the resultant pressure force on the annular gate shown
in Figure P2.5.8.

2.5.9. Calculate the magnitude and the location of the resultant pressure force on the annular gate shown
in Figure P2.5.8 if the round central hub is replaced by a square hub ( by ).

2.5.10. In Figure P2.5.10, the wicket dam is high and wide and is pivoted at its center. Determine
the reaction force in the supporting member AB.

3 m5 m

1 m1 m

H

h

0 0´

Figure P2.5.7
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15 ftd

Hinge 60˚

5,000 lbs

Figure P2.5.11

Hinge

1 m

h

2.5.11. Determine the depth of the water (d) in Figure P2.5.11 that will cause the gate to open (lay down).
The gate is rectangular and is wide. Neglect the weight of the gate in your computations. At
what depth will it close?

8 ft

2.5.12. Neglecting the weight of the hinged gate, determine the depth h at which the gate will open in
Figure P2.5.12.

hA hB

d

γA
γB

Figure P2.5.13

Figure P2.5.12

2.5.13. The circular gate shown in Figure P2.5.13 is hinged at the horizontal diameter. If it is in equilib-
rium, what is the relationship between hA and hB as a function of �A, �B, and d?
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2.5.14. A sliding gate wide and high is installed in a vertical plane and has a coefficient of fric-
tion against the guides of 0.2. The gate weighs 3 tons, and its upper edge is below the water
surface. Calculate the vertical force required to lift the gate.

(SECTION 2.6)

2.6.1. A 10-m-long curved gate depicted in Figure P2.6.1 is retaining a 6-m depth of water in a storage
tank. Determine the magnitude and direction of the total hydrostatic force on the gate. Does the
force pass through point A? Explain.

27 ft
6 ft10 ft

6 m

A

2 m

Gate Figure P2.6.1

2.6.2. A hemispherical viewing port in a marine museum (Figure P2.6.2) has a radius, and the top of the
port is 3 meters below the surface of the water (h). Determine the magnitude, direction, and location
of the total hydrostatic force on the viewing port. (Assume the saltwater has a .)sp. gr. = 1.03

1-m

h

Figure P2.6.2

2.6.3. An inverted hemispherical shell of diameter d as shown in Figure P2.6.3 is used to cover a tank
filled with water at . Determine the minimum weight the shell needs to be to hold itself in
place if the diameter is .6 feet

20°C
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0
45˚

Figure P2.6.5

3 m

1.75 m A

B Figure P2.6.4

2.6.4. The corner plate of a barge hull is curved, with a radius of . The barge is leaking, and the
depth of submergence (draft) is 4.75 m as depicted in Figure P2.6.4. The water on the inside is up
to level A, producing hydrostatic pressure on the inside as well as the outside. Determine the resul-
tant horizontal hydrostatic pressure force and the resultant vertical hydrostatic force on plate AB
per unit length of hull.

1.75 m

H2O

d

2.6.5. The tainter gate section shown in Figure P2.6.5 has a cylindrical surface with a radius; it is
supported by a structural frame hinged at O. The gate is long (in the direction perpendicular
to the page). Determine the magnitude, direction, and location of the total hydrostatic force on the
gate (Hint: Determine the horizontal and vertical force components.)

10 m
12-m

Figure P2.6.3
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8 ft

6 ft
R

Figure P2.6.9

2.6.6. Calculate the magnitude, direction, and location of the total hydrostatic pressure force (per unit
length) on the gate shown in Figure P2.6.6.

11 ft
r = 10 ft

8 ft

Figure P2.6.6

C

R

B

A
R

Figure P2.6.8

2.6.7. A 4-ft-diameter cylindrical tank lays on its side with its central axis horizontal. A 1.5-ft diameter
pipe extends vertically upward from the middle of the tank. Oil fills the tank and
pipe to a level of above the top of the tank. What is the hydrostatic force on one end of the tank?
What is the total hydrostatic pressure force on one side (semicircle) of the tank if it is 10 ft long?

2.6.8. Calculate the horizontal and vertical forces acting on the curved surface ABC in Figure P2.6.8.

8 ft
1sp. gr. = 0.92

2.6.9. Calculate the magnitude and location of the vertical and horizontal components of the hydrostatic
force on the surface shown in Figure P2.6.9 (quadrant on top of the triangle, both with a unit
width). The liquid is water, and the radius .R = 4 ft
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6 m
5 m

1 m

√
⎯
2 m

A

B

u

l45˚

Figure P2.6.12

A

B

h0

0.3 m

0.3 m
0.5 m

0.1 m

Figure P2.6.10

2.6.10. In Figure P2.6.10 a homogeneous cone plugs the 0.1-m-diameter orifice between reservoir A that
contains water and reservoir B that contains oil . Determine the specific weight
of the cone if it unplugs when h0 reaches .1.5 m

1sp. gr. = 0.82

2.6.11. What would be the specific weight of the cone if reservoir B in Figure P2.6.10 contains air at a
pressure of instead of oil?

2.6.12. The homogeneous cylinder in Figure P2.6.12 is long and in diameter 
and blocks a opening between reservoirs A and B . Determine
the magnitude of the horizontal and vertical components of the hydrostatic force on the cylinder.

1sp. gr.A = 0.8, sp. gr.B = 1.521-m2
12 m1 m1sp. gr. = 2.02

8,500 N/m2

(SECTION 2.8)

2.8.1. A piece of irregularly shaped metal weighs . When the metal is completely submerged in
water, it weighs . Determine the specific weight and the specific gravity of the metal.

2.8.2. The solid floating prism show in Figure P2.8.2 has two components. Determine and in terms
of � if .gB = 1.5 # gA

gBgA

253 N
301 N
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1.5 H
2 H

HA

Bγ

Figure P2.8.2

1m

1m

Hinge

B

R

A

1m

Figure P2.8.6

30 cm

50 cm

sp. gr. � 13.5

h

2.8.3. A solid brass sphere of diameter is used to hold a cylindrical buoy in place (Figure P2.8.3)
in seawater . The buoy has a height of and is tied to the
sphere at one end. What rise in tide, h, will be required to lift the sphere off the bottom?

2 m1sp. gr. = 0.4521sp. gr. = 1.032
30-cm

2.8.4. Three people are in a boat with an anchor. If the anchor is thrown overboard, will the lake level rise,
fall, or stay the same theoretically? Explain.

2.8.5. A freshwater cylindrical anchor is made of concrete .
What is the maximum tension in the anchor line before the anchor is lifted from the lake bottom if the
anchor line is at an angle of with respect to the bottom?

2.8.6. In Figure P2.8.6, the spherical buoy of radius R opens the square gate AB when water rises to the
half-buoy height. Determine R if the weight of the buoy and the gate are negligible.

60°

1sp. gr. = 2.721h = 1.2 ft and D = 1.5 ft2

Figure P2.8.3
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2.8.7. The floating rod shown in Figure P2.8.7 weighs , and the water’s surface is above the
hinge. Calculate the angle � assuming a uniform weight and buoyancy distribution.

7 ft150 lbs

Sec. 2.8 Flotation Stability 49

0.25 m

2 m

0.5 m

Figure P2.8.9

Hinge

θ 7'

6'' × 6'' × 12'

Figure P2.8.7

2.8.8. A rectangular barge is long, wide, and deep. The center of gravity is from the
bottom, and the barge draws of seawater . Find the metacentric height and
the righting moments for the following angles of heel (or list): .

2.8.9. Figure P2.8.9 shows a buoy that consists of a wooden pole in diameter and long with a
spherical weight at the bottom. The specific gravity of the wood is 0.62, and the specific gravity of
the bottom weight is 1.40. Determine (a) how much of the wooden pole is submerged in the water,
(b) the distance to the center of buoyancy from the water level, (c) the distance to the center of
gravity from the water level, and (d) the metacentric height.

2 m25 cm

4°, 8°, and 12°
1sp. gr. = 1.0321.5 m

1.0 m2 m6 m14 m

2.8.10. A wooden block is long, wide, and deep. Is the floating block stable if the metacenter
is at the same point as the center of gravity? Explain.

2.8.11. A subway tunnel is being constructed across the bottom of a harbor. The process involves tugboats
that pull floating cylindrical sections (or tubes as they are often called) across the harbor and sink
them in place, where they are welded to the adjacent section already on the harbor bottom. The
cylindrical tubes are long with a diameter of . When in place for the tugboats, the
tubes are submerged vertically to a depth of , and of the tube is above the water

. To accomplish this, the tubes are flooded with of water on the inside.
Determine the metacentric height and estimate the righting moment when the tubes are tipped

34 feet1sp. gr. = 1.022
8 feet42 feet

36 feet50 feet

1 m1 m2 m
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through a heel (list) angle of by the tugboats. (Hint: Assume the location of the center of gravity
can be determined based on the water contained inside the tubes and the container weight is not that
significant.)

2.8.12. A 12-m-long, 4.8-m-wide, and 4.2-m-deep rectangular pontoon has a draft of in seawater
. Assuming the load is uniformly distributed on the bottom of the pontoon to

a depth of , and the maximum design angle of list is , determine the distance that the
center of gravity can be moved from the center line toward the edge of the pontoon.

15°3.4 m
1sp. gr. = 1.032

2.8 m

4°

50 Water Pressure and Pressure Forces Chap. 2
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