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Mathematical Modeling 
of Control Systems

2–1 INTRODUCTION

In studying control systems the reader must be able to model dynamic systems in math-
ematical terms and analyze their dynamic characteristics.A mathematical model of a dy-
namic system is defined as a set of equations that represents the dynamics of the system
accurately, or at least fairly well. Note that a mathematical model is not unique to a
given system.A system may be represented in many different ways and, therefore, may
have many mathematical models, depending on one’s perspective.

The dynamics of many systems, whether they are mechanical, electrical, thermal,
economic, biological, and so on, may be described in terms of differential equations.
Such differential equations may be obtained by using physical laws governing a partic-
ular system—for example, Newton’s laws for mechanical systems and Kirchhoff’s laws
for electrical systems. We must always keep in mind that deriving reasonable mathe-
matical models is the most important part of the entire analysis of control systems.

Throughout this book we assume that the principle of causality applies to the systems
considered.This means that the current output of the system (the output at time t=0)
depends on the past input (the input for t<0) but does not depend on the future input
(the input for t>0).

Mathematical Models. Mathematical models may assume many different forms.
Depending on the particular system and the particular circumstances, one mathemati-
cal model may be better suited than other models. For example, in optimal control prob-
lems, it is advantageous to use state-space representations. On the other hand, for the

OGATA-CH02-013-062hr  7/14/09  1:51 PM  Page 13



14 Chapter 2 / Mathematical Modeling of Control Systems

transient-response or frequency-response analysis of single-input, single-output, linear,
time-invariant systems, the transfer-function representation may be more convenient
than any other. Once a mathematical model of a system is obtained, various analytical
and computer tools can be used for analysis and synthesis purposes.

Simplicity Versus Accuracy. In obtaining a mathematical model, we must make
a compromise between the simplicity of the model and the accuracy of the results of
the analysis. In deriving a reasonably simplified mathematical model, we frequently find
it necessary to ignore certain inherent physical properties of the system. In particular,
if a linear lumped-parameter mathematical model (that is, one employing ordinary dif-
ferential equations) is desired, it is always necessary to ignore certain nonlinearities and
distributed parameters that may be present in the physical system. If the effects that
these ignored properties have on the response are small, good agreement will be obtained
between the results of the analysis of a mathematical model and the results of the
experimental study of the physical system.

In general, in solving a new problem, it is desirable to build a simplified model so that
we can get a general feeling for the solution.A more complete mathematical model may
then be built and used for a more accurate analysis.

We must be well aware that a linear lumped-parameter model, which may be valid in
low-frequency operations, may not be valid at sufficiently high frequencies, since the neg-
lected property of distributed parameters may become an important factor in the dynamic
behavior of the system. For example, the mass of a spring may be neglected in low-
frequency operations, but it becomes an important property of the system at high fre-
quencies. (For the case where a mathematical model involves considerable errors, robust
control theory may be applied. Robust control theory is presented in Chapter 10.)

Linear Systems. A system is called linear if the principle of superposition
applies. The principle of superposition states that the response produced by the
simultaneous application of two different forcing functions is the sum of the two
individual responses. Hence, for the linear system, the response to several inputs can
be calculated by treating one input at a time and adding the results. It is this principle
that allows one to build up complicated solutions to the linear differential equation
from simple solutions.

In an experimental investigation of a dynamic system, if cause and effect are pro-
portional, thus implying that the principle of superposition holds, then the system can
be considered linear.

Linear Time-Invariant Systems and Linear Time-Varying Systems. A differ-
ential equation is linear if the coefficients are constants or functions only of the in-
dependent variable. Dynamic systems that are composed of linear time-invariant
lumped-parameter components may be described by linear time-invariant differen-
tial equations—that is, constant-coefficient differential equations. Such systems are
called linear time-invariant (or linear constant-coefficient) systems. Systems that
are represented by differential equations whose coefficients are functions of time
are called linear time-varying systems. An example of a time-varying control sys-
tem is a spacecraft control system. (The mass of a spacecraft changes due to fuel
consumption.)
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Outline of the Chapter. Section 2–1 has presented an introduction to the math-
ematical modeling of dynamic systems. Section 2–2 presents the transfer function and
impulse-response function. Section 2–3 introduces automatic control systems and Sec-
tion 2–4 discusses concepts of modeling in state space. Section 2–5 presents state-space
representation of dynamic systems. Section 2–6 discusses transformation of mathemat-
ical models with MATLAB. Finally, Section 2–7 discusses linearization of nonlinear
mathematical models.

2–2 TRANSFER FUNCTION AND IMPULSE-
RESPONSE FUNCTION

In control theory, functions called transfer functions are commonly used to character-
ize the input-output relationships of components or systems that can be described by lin-
ear, time-invariant, differential equations. We begin by defining the transfer function
and follow with a derivation of the transfer function of a differential equation system.
Then we discuss the impulse-response function.

Transfer Function. The transfer function of a linear, time-invariant, differential
equation system is defined as the ratio of the Laplace transform of the output (response
function) to the Laplace transform of the input (driving function) under the assumption
that all initial conditions are zero.

Consider the linear time-invariant system defined by the following differential equation:

where y is the output of the system and x is the input. The transfer function of this sys-
tem is the ratio of the Laplace transformed output to the Laplace transformed input
when all initial conditions are zero, or

By using the concept of transfer function, it is possible to represent system dynam-
ics by algebraic equations in s. If the highest power of s in the denominator of the trans-
fer function is equal to n, the system is called an nth-order system.

Comments on Transfer Function. The applicability of the concept of the trans-
fer function is limited to linear, time-invariant, differential equation systems.The trans-
fer function approach, however, is extensively used in the analysis and design of such
systems. In what follows, we shall list important comments concerning the transfer func-
tion. (Note that a system referred to in the list is one described by a linear, time-invariant,
differential equation.)
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16 Chapter 2 / Mathematical Modeling of Control Systems

1. The transfer function of a system is a mathematical model in that it is an opera-
tional method of expressing the differential equation that relates the output vari-
able to the input variable.

2. The transfer function is a property of a system itself, independent of the magnitude
and nature of the input or driving function.

3. The transfer function includes the units necessary to relate the input to the output;
however, it does not provide any information concerning the physical structure of
the system. (The transfer functions of many physically different systems can be
identical.)

4. If the transfer function of a system is known, the output or response can be stud-
ied for various forms of inputs with a view toward understanding the nature of
the system.

5. If the transfer function of a system is unknown, it may be established experimen-
tally by introducing known inputs and studying the output of the system. Once
established, a transfer function gives a full description of the dynamic character-
istics of the system, as distinct from its physical description.

Convolution Integral. For a linear, time-invariant system the transfer function
G(s) is

where X(s) is the Laplace transform of the input to the system and Y(s) is the Laplace
transform of the output of the system, where we assume that all initial conditions in-
volved are zero. It follows that the output Y(s) can be written as the product of G(s) and
X(s), or

(2–1)

Note that multiplication in the complex domain is equivalent to convolution in the time
domain (see Appendix A), so the inverse Laplace transform of Equation (2–1) is given
by the following convolution integral:

where both g(t) and x(t) are 0 for t<0.

Impulse-Response Function. Consider the output (response) of a linear time-
invariant system to a unit-impulse input when the initial conditions are zero. Since the
Laplace transform of the unit-impulse function is unity, the Laplace transform of the
output of the system is

(2–2)Y(s) = G(s)

 = 3
t

0
g(t)x(t - t) dt

 y(t) = 3
t

0
x(t)g(t - t) dt

Y(s) = G(s)X(s)

G(s) =

Y(s)

X(s)
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The inverse Laplace transform of the output given by Equation (2–2) gives the impulse
response of the system. The inverse Laplace transform of G(s), or

is called the impulse-response function. This function g(t) is also called the weighting
function of the system.

The impulse-response function g(t) is thus the response of a linear time-invariant
system to a unit-impulse input when the initial conditions are zero.The Laplace trans-
form of this function gives the transfer function. Therefore, the transfer function and
impulse-response function of a linear, time-invariant system contain the same infor-
mation about the system dynamics. It is hence possible to obtain complete informa-
tion about the dynamic characteristics of the system by exciting it with an impulse
input and measuring the response. (In practice, a pulse input with a very short dura-
tion compared with the significant time constants of the system can be considered an
impulse.)

2–3 AUTOMATIC CONTROL SYSTEMS

A control system may consist of a number of components. To show the functions
performed by each component, in control engineering, we commonly use a diagram
called the block diagram. This section first explains what a block diagram is. Next, it
discusses introductory aspects of automatic control systems, including various control
actions.Then, it presents a method for obtaining block diagrams for physical systems, and,
finally, discusses techniques to simplify such diagrams.

Block Diagrams. A block diagram of a system is a pictorial representation of the
functions performed by each component and of the flow of signals. Such a diagram de-
picts the interrelationships that exist among the various components. Differing from a
purely abstract mathematical representation, a block diagram has the advantage of
indicating more realistically the signal flows of the actual system.

In a block diagram all system variables are linked to each other through functional
blocks.The functional block or simply block is a symbol for the mathematical operation
on the input signal to the block that produces the output. The transfer functions of the
components are usually entered in the corresponding blocks, which are connected by ar-
rows to indicate the direction of the flow of signals. Note that the signal can pass only
in the direction of the arrows.Thus a block diagram of a control system explicitly shows
a unilateral property.

Figure 2–1 shows an element of the block diagram. The arrowhead pointing toward
the block indicates the input, and the arrowhead leading away from the block repre-
sents the output. Such arrows are referred to as signals.

l-1 CG(s) D = g(t)

Transfer
function

G(s)
Figure 2–1
Element of a block
diagram.
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+
–

R(s) E(s)
G(s)

C(s)

Summing
point

Branch
point

Figure 2–3
Block diagram of a
closed-loop system.

Note that the dimension of the output signal from the block is the dimension of the
input signal multiplied by the dimension of the transfer function in the block.

The advantages of the block diagram representation of a system are that it is easy
to form the overall block diagram for the entire system by merely connecting the blocks
of the components according to the signal flow and that it is possible to evaluate the
contribution of each component to the overall performance of the system.

In general, the functional operation of the system can be visualized more readily by
examining the block diagram than by examining the physical system itself. A block di-
agram contains information concerning dynamic behavior, but it does not include any
information on the physical construction of the system. Consequently, many dissimilar
and unrelated systems can be represented by the same block diagram.

It should be noted that in a block diagram the main source of energy is not explicitly
shown and that the block diagram of a given system is not unique.A number of different
block diagrams can be drawn for a system, depending on the point of view of the analysis.

Summing Point. Referring to Figure 2–2, a circle with a cross is the symbol that
indicates a summing operation. The plus or minus sign at each arrowhead indicates
whether that signal is to be added or subtracted. It is important that the quantities being
added or subtracted have the same dimensions and the same units.

Branch Point. A branch point is a point from which the signal from a block goes
concurrently to other blocks or summing points.

Block Diagram of a Closed-Loop System. Figure 2–3 shows an example of a
block diagram of a closed-loop system. The output C(s) is fed back to the summing
point, where it is compared with the reference input R(s). The closed-loop nature of
the system is clearly indicated by the figure. The output of the block, C(s) in this case,
is obtained by multiplying the transfer function G(s) by the input to the block, E(s).Any
linear control system may be represented by a block diagram consisting of blocks, sum-
ming points, and branch points.

When the output is fed back to the summing point for comparison with the input, it
is necessary to convert the form of the output signal to that of the input signal. For
example, in a temperature control system, the output signal is usually the controlled
temperature. The output signal, which has the dimension of temperature, must be con-
verted to a force or position or voltage before it can be compared with the input signal.
This conversion is accomplished by the feedback element whose transfer function is H(s),
as shown in Figure 2–4.The role of the feedback element is to modify the output before
it is compared with the input. (In most cases the feedback element is a sensor that measures

+
–

a a – b

b

Figure 2–2
Summing point.
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the output of the plant.The output of the sensor is compared with the system input, and
the actuating error signal is generated.) In the present example, the feedback signal that
is fed back to the summing point for comparison with the input is B(s) = H(s)C(s).

Open-Loop Transfer Function and Feedforward Transfer Function. Refer-
ring to Figure 2–4, the ratio of the feedback signal B(s) to the actuating error signal
E(s) is called the open-loop transfer function. That is,

The ratio of the output C(s) to the actuating error signal E(s) is called the feed-
forward transfer function, so that

If the feedback transfer function H(s) is unity, then the open-loop transfer function and
the feedforward transfer function are the same.

Closed-Loop Transfer Function. For the system shown in Figure 2–4, the output
C(s) and input R(s) are related as follows: since

eliminating E(s) from these equations gives

or

(2–3)

The transfer function relating C(s) to R(s) is called the closed-loop transfer function. It
relates the closed-loop system dynamics to the dynamics of the feedforward elements
and feedback elements.

From Equation (2–3), C(s) is given by

C(s) =

G(s)

1 + G(s)H(s)
 R(s)

C(s)

R(s)
=

G(s)

1 + G(s)H(s)

C(s) = G(s) CR(s) - H(s)C(s) D

 = R(s) - H(s)C(s)

 E(s) = R(s) - B(s)

 C(s) = G(s)E(s)

Feedforward transfer function =

C(s)

E(s)
= G(s)

Open-loop transfer function =

B(s)

E(s)
= G(s)H(s)
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R(s)

B(s)

E(s)
G(s)

H(s)

C(s)
+

–

Figure 2–4
Closed-loop system.
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G1(s)

G1(s)

G2(s)

G2(s)
C(s)R(s)

C(s)

C(s)

R(s)

R(s)

+
+

G1(s)

G2(s)

+–

(a)

(b)

(c)

Figure 2–5
(a) Cascaded system;
(b) parallel system;
(c) feedback (closed-
loop) system.

Thus the output of the closed-loop system clearly depends on both the closed-loop trans-
fer function and the nature of the input.

Obtaining Cascaded, Parallel, and Feedback (Closed-Loop) Transfer Functions
with MATLAB. In control-systems analysis, we frequently need to calculate the cas-
caded transfer functions, parallel-connected transfer functions, and feedback-connected
(closed-loop) transfer functions. MATLAB has convenient commands to obtain the cas-
caded, parallel, and feedback (closed-loop) transfer functions.

Suppose that there are two components G1(s) and G2(s) connected differently as
shown in Figure 2–5 (a), (b), and (c), where

To obtain the transfer functions of the cascaded system, parallel system, or feedback
(closed-loop) system, the following commands may be used:

[num, den] = series(num1,den1,num2,den2)
[num, den] = parallel(num1,den1,num2,den2)
[num, den] = feedback(num1,den1,num2,den2)

As an example, consider the case where

MATLAB Program 2–1 gives C(s)/R(s)=num�den for each arrangement of G1(s)
and G2(s). Note that the command

printsys(num,den)

displays the num�den Cthat is, the transfer function C(s)/R(s) D of the system considered.

G1(s) =

10

s2
+ 2s + 10

=

num1

den1
 ,  G2(s) =

5

s + 5
=

num2

den2

G1(s) =

num1

den1
 ,  G2(s) =

num2

den2
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Automatic Controllers. An automatic controller compares the actual value of
the plant output with the reference input (desired value), determines the deviation, and
produces a control signal that will reduce the deviation to zero or to a small value.
The manner in which the automatic controller produces the control signal is called
the control action. Figure 2–6 is a block diagram of an industrial control system, which

MATLAB Program 2–1

num1 = [10];
den1 = [1  2  10];
num2 = [5];
den2 = [1  5];
[num, den] = series(num1,den1,num2,den2);
printsys(num,den)

num/den =

[num, den] = parallel(num1,den1,num2,den2);
printsys(num,den)

num/den =

[num, den] = feedback(num1,den1,num2,den2);
printsys(num,den)

num/den =

10s + 50
s^3 + 7s^2 + 20s + 100

5s^2 + 20s + 100
s^3 + 7s^2 + 20s + 50

50
s^3 + 7s^2 + 20s + 50

Automatic controller

Error detector

Amplifier Actuator Plant
Output

Sensor

Reference
input

Actuating
error signal

Set
point� �

+
–

Figure 2–6
Block diagram of an
industrial control
system, which
consists of an
automatic controller,
an actuator, a plant,
and a sensor
(measuring element).
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consists of an automatic controller, an actuator, a plant, and a sensor (measuring ele-
ment). The controller detects the actuating error signal, which is usually at a very low
power level, and amplifies it to a sufficiently high level. The output of an automatic
controller is fed to an actuator, such as an electric motor, a hydraulic motor, or a
pneumatic motor or valve. (The actuator is a power device that produces the input to
the plant according to the control signal so that the output signal will approach the
reference input signal.)

The sensor or measuring element is a device that converts the output variable into an-
other suitable variable, such as a displacement, pressure, voltage, etc., that can be used to
compare the output to the reference input signal.This element is in the feedback path of
the closed-loop system.The set point of the controller must be converted to a reference
input with the same units as the feedback signal from the sensor or measuring element.

Classifications of Industrial Controllers. Most industrial controllers may be
classified according to their control actions as:

1. Two-position or on–off controllers
2. Proportional controllers
3. Integral controllers
4. Proportional-plus-integral controllers
5. Proportional-plus-derivative controllers
6. Proportional-plus-integral-plus-derivative controllers

Most industrial controllers use electricity or pressurized fluid such as oil or air as
power sources. Consequently, controllers may also be classified according to the kind of
power employed in the operation, such as pneumatic controllers, hydraulic controllers,
or electronic controllers. What kind of controller to use must be decided based on the
nature of the plant and the operating conditions, including such considerations as safety,
cost, availability, reliability, accuracy, weight, and size.

Two-Position or On–Off Control Action. In a two-position control system, the
actuating element has only two fixed positions, which are, in many cases, simply on and
off.Two-position or on–off control is relatively simple and inexpensive and, for this rea-
son, is very widely used in both industrial and domestic control systems.

Let the output signal from the controller be u(t) and the actuating error signal be e(t).
In two-position control, the signal u(t) remains at either a maximum or minimum value,
depending on whether the actuating error signal is positive or negative, so that

where U1 and U2 are constants. The minimum value U2 is usually either zero or –U1 .
Two-position controllers are generally electrical devices, and an electric solenoid-oper-
ated valve is widely used in such controllers. Pneumatic proportional controllers with very
high gains act as two-position controllers and are sometimes called pneumatic two-
position controllers.

Figures 2–7(a) and (b) show the block diagrams for two-position or on–off controllers.
The range through which the actuating error signal must move before the switching occurs

 = U2 ,  for e(t) 6 0

 u(t) = U1 ,  for e(t) 7 0
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is called the differential gap. A differential gap is indicated in Figure 2–7(b). Such a dif-
ferential gap causes the controller output u(t) to maintain its present value until the ac-
tuating error signal has moved slightly beyond the zero value. In some cases, the differential
gap is a result of unintentional friction and lost motion; however, quite often it is inten-
tionally provided in order to prevent too-frequent operation of the on–off mechanism.

Consider the liquid-level control system shown in Figure 2–8(a), where the electromag-
netic valve shown in Figure 2–8(b) is used for controlling the inflow rate.This valve is either
open or closed.With this two-position control, the water inflow rate is either a positive con-
stant or zero. As shown in Figure 2–9, the output signal continuously moves between the
two limits required to cause the actuating element to move from one fixed position to the
other. Notice that the output curve follows one of two exponential curves, one correspon-
ding to the filling curve and the other to the emptying curve. Such output oscillation be-
tween two limits is a typical response characteristic of a system under two-position control.

(a) (b)

U1

U2

ue U1

U2

ue

Differential gap

+
–

+
–

Figure 2–7
(a) Block diagram of
an on–off controller;
(b) block diagram of
an on–off controller
with differential gap.

115 V

Float

R

C h

(a) (b)

qi

Movable iron core

Magnetic coil

Figure 2–8
(a) Liquid-level
control system;
(b) electromagnetic
valve.

h(t)

t0

Differential
gap

Figure 2–9
Level h(t)-versus-t
curve for the system
shown in Figure 2–8(a).
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From Figure 2–9, we notice that the amplitude of the output oscillation can 
be reduced by decreasing the differential gap. The decrease in the differential 
gap, however, increases the number of on–off switchings per minute and reduces 
the useful life of the component. The magnitude of the differential gap must be 
determined from such considerations as the accuracy required and the life of 
the component.

Proportional Control Action. For a controller with proportional control action,
the relationship between the output of the controller u(t) and the actuating error signal
e(t) is

or, in Laplace-transformed quantities,

where Kp is termed the proportional gain.
Whatever the actual mechanism may be and whatever the form of the operating

power, the proportional controller is essentially an amplifier with an adjustable gain.

Integral Control Action. In a controller with integral control action, the value of
the controller output u(t) is changed at a rate proportional to the actuating error signal
e(t). That is,

or

where Ki is an adjustable constant. The transfer function of the integral controller is

Proportional-Plus-Integral Control Action. The control action of a proportional-
plus-integral controller is defined by

u(t) = Kp e(t) +

Kp

Ti
 3

t

0
e(t) dt

U(s)

E(s)
=

Ki

s

u(t) = Ki3
t

0
e(t) dt

du(t)

dt
= Ki e(t)

U(s)

E(s)
= Kp

u(t) = Kp e(t)
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or the transfer function of the controller is

where is called the integral time.

Proportional-Plus-Derivative Control Action. The control action of a proportional-
plus-derivative controller is defined by

and the transfer function is

where is called the derivative time.

Proportional-Plus-Integral-Plus-Derivative Control Action. The combination of
proportional control action, integral control action, and derivative control action is
termed proportional-plus-integral-plus-derivative control action. It has the advantages
of each of the three individual control actions. The equation of a controller with this
combined action is given by

or the transfer function is

where Kp is the proportional gain, is the integral time, and is the derivative time.
The block diagram of a proportional-plus-integral-plus-derivative controller is shown in
Figure 2–10.

TdTi

U(s)

E(s)
= Kp a1 +

1

Ti s
+ Td s b

u(t) = Kp e(t) +

Kp

Ti
 3

t

0
e(t) dt + Kp Td 

de(t)

dt

Td

U(s)

E(s)
= KpA1 + Td sB

u(t) = Kp e(t) + Kp Td 
de(t)

dt

Ti

U(s)

E(s)
= Kp a1 +

1

Ti s
b

+
–

E(s) U(s)Kp(1 + Tis + Ti Tds2)
Tis

Figure 2–10
Block diagram of a
proportional-plus-
integral-plus-
derivative controller.
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R(s)
G1(s) G2(s)

H(s)

Disturbance
D(s)

C(s)
+

–
+

+

Figure 2–11
Closed-loop system
subjected to a
disturbance.

Closed-Loop System Subjected to a Disturbance. Figure 2–11 shows a closed-
loop system subjected to a disturbance. When two inputs (the reference input and dis-
turbance) are present in a linear time-invariant system, each input can be treated
independently of the other; and the outputs corresponding to each input alone can be
added to give the complete output. The way each input is introduced into the system is
shown at the summing point by either a plus or minus sign.

Consider the system shown in Figure 2–11. In examining the effect of the distur-
bance D(s), we may assume that the reference input is zero; we may then calculate the
response CD(s) to the disturbance only. This response can be found from

On the other hand, in considering the response to the reference input R(s), we may
assume that the disturbance is zero.Then the response CR(s) to the reference input R(s)
can be obtained from

The response to the simultaneous application of the reference input and disturbance
can be obtained by adding the two individual responses. In other words, the response
C(s) due to the simultaneous application of the reference input R(s) and disturbance
D(s) is given by

Consider now the case where |G1(s)H(s)| � 1 and |G1(s)G2(s)H(s)| � 1. In this
case, the closed-loop transfer function CD(s)/D(s) becomes almost zero, and the effect
of the disturbance is suppressed. This is an advantage of the closed-loop system.

On the other hand, the closed-loop transfer function CR(s)/R(s) approaches 1/H(s)
as the gain of G1(s)G2(s)H(s) increases.This means that if |G1(s)G2(s)H(s)| � 1, then
the closed-loop transfer function CR(s)/R(s) becomes independent of G1(s) and G2(s)
and inversely proportional to H(s), so that the variations of G1(s) and G2(s) do not
affect the closed-loop transfer function CR(s)/R(s). This is another advantage of the
closed-loop system. It can easily be seen that any closed-loop system with unity feedback,
H(s)=1, tends to equalize the input and output.

 =

G2(s)

1 + G1(s)G2(s)H(s)
 CG1(s)R(s) + D(s) D

 C(s) = CR(s) + CD(s)

CR(s)

R(s)
=

G1(s)G2(s)

1 + G1(s)G2(s)H(s)

CD(s)

D(s)
=

G2(s)

1 + G1(s)G2(s)H(s)
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Procedures for Drawing a Block Diagram. To draw a block diagram for a sys-
tem, first write the equations that describe the dynamic behavior of each component.
Then take the Laplace transforms of these equations, assuming zero initial conditions,
and represent each Laplace-transformed equation individually in block form. Finally, as-
semble the elements into a complete block diagram.

As an example, consider the RC circuit shown in Figure 2–12(a). The equations for
this circuit are

(2–4)

(2–5)

The Laplace transforms of Equations (2–4) and (2–5), with zero initial condition, become

(2–6)

(2–7)

Equation (2–6) represents a summing operation, and the corresponding diagram is
shown in Figure 2–12(b). Equation (2–7) represents the block as shown in Figure 2–12(c).
Assembling these two elements, we obtain the overall block diagram for the system as
shown in Figure 2–12(d).

Block Diagram Reduction. It is important to note that blocks can be connected
in series only if the output of one block is not affected by the next following block. If
there are any loading effects between the components, it is necessary to combine these
components into a single block.

Any number of cascaded blocks representing nonloading components can be
replaced by a single block, the transfer function of which is simply the product of the
individual transfer functions.

 Eo(s) =

I(s)

Cs

 I(s) =

Ei(s) - Eo(s)

R

 eo =
1 

 

i dt

C

 i =

ei - eo

R

(d)

Ei(s) I(s) Eo(s)1
R

1
Cs

Eo(s)

(b)

Ei(s) I(s)1
R

(c)

I(s) Eo(s)1
Cs

(a)

R

C eoei

i

+
–

+
–

Figure 2–12
(a) RC circuit;
(b) block diagram
representing
Equation (2–6);
(c) block diagram
representing
Equation (2–7);
(d) block diagram of
the RC circuit.
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R
G1

H1

H2

G3G2

C

R
G1

H1

G3G2

C

R
G3

C

R C

R C

(a)

(b)

(c)

(d)

(e)

H2

G1

H2

G1

G1G2

1 – G1G2H1

G1G2G3

1 – G1G2H1 + G2G3H2

G1G2G3

1 – G1G2H1 + G2G3H2 + G1G2G3

+
–

+
–

+
+

+
–

+
–

+
+

+
–

+
–

+
–Figure 2–13

(a) Multiple-loop
system;
(b)–(e) successive
reductions of the
block diagram shown
in (a).

A complicated block diagram involving many feedback loops can be simplified by
a step-by-step rearrangement. Simplification of the block diagram by rearrangements
considerably reduces the labor needed for subsequent mathematical analysis. It should
be noted, however, that as the block diagram is simplified, the transfer functions in new
blocks become more complex because new poles and new zeros are generated.

EXAMPLE 2–1 Consider the system shown in Figure 2–13(a). Simplify this diagram.
By moving the summing point of the negative feedback loop containing H2 outside the posi-

tive feedback loop containing H1, we obtain Figure 2–13(b). Eliminating the positive feedback loop,
we have Figure 2–13(c).The elimination of the loop containing H2/G1 gives Figure 2–13(d). Finally,
eliminating the feedback loop results in Figure 2–13(e).
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Notice that the numerator of the closed-loop transfer function C(s)/R(s) is the product of the
transfer functions of the feedforward path. The denominator of C(s)/R(s) is equal to

(The positive feedback loop yields a negative term in the denominator.)

2–4 MODELING IN STATE SPACE

In this section we shall present introductory material on state-space analysis of control
systems.

Modern Control Theory. The modern trend in engineering systems is toward
greater complexity, due mainly to the requirements of complex tasks and good accu-
racy. Complex systems may have multiple inputs and multiple outputs and may be time
varying. Because of the necessity of meeting increasingly stringent requirements on
the performance of control systems, the increase in system complexity, and easy access
to large scale computers, modern control theory, which is a new approach to the analy-
sis and design of complex control systems, has been developed since around 1960.This
new approach is based on the concept of state. The concept of state by itself is not
new, since it has been in existence for a long time in the field of classical dynamics and
other fields.

Modern Control Theory Versus Conventional Control Theory. Modern con-
trol theory is contrasted with conventional control theory in that the former is appli-
cable to multiple-input, multiple-output systems, which may be linear or nonlinear,
time invariant or time varying, while the latter is applicable only to linear time-
invariant single-input, single-output systems. Also, modern control theory is essen-
tially time-domain approach and frequency domain approach (in certain cases such as
H-infinity control), while conventional control theory is a complex frequency-domain
approach. Before we proceed further, we must define state, state variables, state vector,
and state space.

State. The state of a dynamic system is the smallest set of variables (called state
variables) such that knowledge of these variables at t=t0, together with knowledge of
the input for t � t0 , completely determines the behavior of the system for any time
t � t0.

Note that the concept of state is by no means limited to physical systems. It is appli-
cable to biological systems, economic systems, social systems, and others.

State Variables. The state variables of a dynamic system are the variables mak-
ing up the smallest set of variables that determine the state of the dynamic system. If at

 = 1 - G1 G2 H1 + G2 G3 H2 + G1 G2 G3 

 = 1 + A-G1 G2 H1 + G2 G3 H2 + G1 G2 G3B

1 +a
 

 

(product of the transfer functions around each loop)
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least n variables x1, x2, p , xn are needed to completely describe the behavior of a dy-
namic system (so that once the input is given for t � t0 and the initial state at t=t0 is
specified, the future state of the system is completely determined), then such n variables
are a set of state variables.

Note that state variables need not be physically measurable or observable quantities.
Variables that do not represent physical quantities and those that are neither measura-
ble nor observable can be chosen as state variables. Such freedom in choosing state vari-
ables is an advantage of the state-space methods. Practically, however, it is convenient
to choose easily measurable quantities for the state variables, if this is possible at all, be-
cause optimal control laws will require the feedback of all state variables with suitable
weighting.

State Vector. If n state variables are needed to completely describe the behavior
of a given system, then these n state variables can be considered the n components of a
vector x. Such a vector is called a state vector. A state vector is thus a vector that deter-
mines uniquely the system state x(t) for any time t � t0 , once the state at t=t0 is given
and the input u(t) for t � t0 is specified.

State Space. The n-dimensional space whose coordinate axes consist of the x1

axis, x2 axis, p , xn axis, where x1, x2, p , xn are state variables, is called a state space.Any
state can be represented by a point in the state space.

State-Space Equations. In state-space analysis we are concerned with three types
of variables that are involved in the modeling of dynamic systems: input variables, out-
put variables, and state variables. As we shall see in Section 2–5, the state-space repre-
sentation for a given system is not unique, except that the number of state variables is
the same for any of the different state-space representations of the same system.

The dynamic system must involve elements that memorize the values of the input for
t � t1 . Since integrators in a continuous-time control system serve as memory devices,
the outputs of such integrators can be considered as the variables that define the inter-
nal state of the dynamic system.Thus the outputs of integrators serve as state variables.
The number of state variables to completely define the dynamics of the system is equal
to the number of integrators involved in the system.

Assume that a multiple-input, multiple-output system involves n integrators.Assume
also that there are r inputs u1(t), u2(t), p , ur(t) and m outputs y1(t), y2(t), p , ym(t).
Define n outputs of the integrators as state variables: x1(t), x2(t), p , xn(t) Then the
system may be described by

(2–8)

 x
#

n(t) = fnAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

 �

 �

 �

 x
#

2(t) = f2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

 x
#

1(t) = f1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
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The outputs y1(t), y2(t), p , ym(t) of the system may be given by

(2–9)

If we define

 ym(t) = gmAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

 �

 �

 �

 y2(t) = g2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

 y1(t) = g1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

u(t) = F

u1(t)

u2(t)

�

�

�

ur(t)

Vg(x, u, t) = F

g1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
g2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

�

�

�

gmAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

V  , y(t) = F

y1(t)

y2(t)

�

�

�

ym(t)

V  ,

f(x, u, t) = F

f1Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB
f2Ax1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

�

�

�

fnAx1 , x2 , p , xn ; u1 , u2 , p , ur ; tB

V , x(t) = F

x1(t)

x2(t)

�

�

�

xn(t)

V  ,

then Equations (2–8) and (2–9) become

(2–10)

(2–11)

where Equation (2–10) is the state equation and Equation (2–11) is the output equation.
If vector functions f and/or g involve time t explicitly, then the system is called a time-
varying system.

If Equations (2–10) and (2–11) are linearized about the operating state, then we
have the following linearized state equation and output equation:

(2–12)

(2–13)

where A(t) is called the state matrix, B(t) the input matrix, C(t) the output matrix, and
D(t) the direct transmission matrix. (Details of linearization of nonlinear systems about

 y(t) = C(t)x(t) + D(t)u(t)

 x# (t) = A(t)x(t) + B(t)u(t)

y(t) = g(x, u, t)

 x# (t) = f(x, u, t)
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m

k

b

u(t)

y(t)

Figure 2–15
Mechanical system.

u(t)

D(t)

B(t)

A(t)

C(t)
y(t)x(t)•

dtÚ
x(t)

+
+

+
+

Figure 2–14
Block diagram of the
linear, continuous-
time control system
represented in state
space.

the operating state are discussed in Section 2–7.) A block diagram representation of
Equations (2–12) and (2–13) is shown in Figure 2–14.

If vector functions f and g do not involve time t explicitly then the system is called a
time-invariant system. In this case, Equations (2–12) and (2–13) can be simplified to

(2–14)

(2–15)

Equation (2–14) is the state equation of the linear, time-invariant system and Equation
(2–15) is the output equation for the same system. In this book we shall be concerned
mostly with systems described by Equations (2–14) and (2–15).

In what follows we shall present an example for deriving a state equation and output
equation.

EXAMPLE 2–2 Consider the mechanical system shown in Figure 2–15. We assume that the system is linear. The
external force u(t) is the input to the system, and the displacement y(t) of the mass is the output.
The displacement y(t) is measured from the equilibrium position in the absence of the external
force. This system is a single-input, single-output system.

From the diagram, the system equation is

(2–16)

This system is of second order.This means that the system involves two integrators. Let us define
state variables x1(t) and x2(t) as

Then we obtain

or

(2–17)

(2–18)

The output equation is
(2–19)y = x1

 x
#

2 = - 
k

m
 x1 -

b

m
 x2 +

1

m
 u

 x
#

1 = x2

 x
#

2 =

1

m
 A-ky - by

# B +

1

m
 u

 x
#

1 = x2

x2(t) = y
#
(t)

x1(t) = y(t)

my
$

+ by
#

+ ky = u

 y# (t) = Cx(t) + Du(t)

 x# (t) = Ax(t) + Bu(t)
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In a vector-matrix form, Equations (2–17) and (2–18) can be written as

(2–20)

The output equation, Equation (2–19), can be written as

(2–21)

Equation (2–20) is a state equation and Equation (2–21) is an output equation for the system.
They are in the standard form:

where

Figure 2–16 is a block diagram for the system. Notice that the outputs of the integrators are state
variables.

Correlation Between Transfer Functions and State-Space Equations. In what
follows we shall show how to derive the transfer function of a single-input, single-output
system from the state-space equations.

Let us consider the system whose transfer function is given by

(2–22)

This system may be represented in state space by the following equations:

(2–23)

(2–24) y = Cx + Du

 x# = Ax + Bu

Y(s)

U(s)
= G(s)

A = C 0

- 
k

m

1

- 
b

m

S  ,  B = C 0
1
m

S  ,  C = [1 0] ,  D = 0

 y = Cx + Du

 x# = Ax + Bu

y = [1 0]Bx1

x2
R

Bx
#

1

x
#

2
R = C

0

- 
k

m

1

- 
b

m

S Bx1

x2
R + C

0

1

m

S  u
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u 1
m

b
m

k
m

x2x2
• x1 = y� �+

–

+
+

Figure 2–16
Block diagram of the
mechanical system
shown in Figure 2–15.
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where x is the state vector, u is the input, and y is the output.The Laplace transforms of
Equations (2–23) and (2–24) are given by

(2–25)

(2–26)

Since the transfer function was previously defined as the ratio of the Laplace transform
of the output to the Laplace transform of the input when the initial conditions were
zero, we set x(0) in Equation (2–25) to be zero. Then we have

or

By premultiplying to both sides of this last equation, we obtain

(2–27)

By substituting Equation (2–27) into Equation (2–26), we get

(2–28)

Upon comparing Equation (2–28) with Equation (2–22), we see that

(2–29)

This is the transfer-function expression of the system in terms of A, B, C, and D.
Note that the right-hand side of Equation (2–29) involves Hence G(s)

can be written as

where Q(s) is a polynomial in s. Notice that is equal to the characteristic poly-
nomial of G(s). In other words, the eigenvalues of A are identical to the poles of G(s).

EXAMPLE 2–3 Consider again the mechanical system shown in Figure 2–15. State-space equations for the system
are given by Equations (2–20) and (2–21).We shall obtain the transfer function for the system from
the state-space equations.

By substituting A, B, C, and D into Equation (2–29), we obtain

 = [1 0]C
s

k

m

-1

s +

b

m

S
-1

C
0

1

m

S

 = [1 0] c B s

0

0

s
R - C

0

- 
k

m

1

- 
b

m

S s
-1

C
0

1

m

S + 0

 G(s) = C(s I - A)-1 B + D

∑s I - A∑

G(s) =

Q(s)

∑s I - A∑

(s I - A)-1.

G(s) = C(s I - A)-1 B + D

Y(s) = CC(s I - A)-1 B + D DU(s)

X(s) = (s I - A)-1 BU(s)

(s I - A)-1

(s I - A)X(s) = BU(s)

s X(s) - AX(s) = BU(s)

 Y(s) = CX(s) + DU(s)

 sX(s) - x(0) = AX(s) + BU(s)
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Note that

(Refer to Appendix C for the inverse of the 2 � 2 matrix.)
Thus, we have

which is the transfer function of the system. The same transfer function can be obtained from
Equation (2–16).

Transfer Matrix. Next, consider a multiple-input, multiple-output system.Assume
that there are r inputs and m outputs Define

The transfer matrix G(s) relates the output Y(s) to the input U(s), or

where G(s) is given by

[The derivation for this equation is the same as that for Equation (2–29).] Since the
input vector u is r dimensional and the output vector y is m dimensional, the transfer ma-
trix G(s) is an m*r matrix.

2–5 STATE-SPACE REPRESENTATION OF SCALAR
DIFFERENTIAL EQUATION SYSTEMS

A dynamic system consisting of a finite number of lumped elements may be described
by ordinary differential equations in which time is the independent variable. By use of
vector-matrix notation, an nth-order differential equation may be expressed by a first-
order vector-matrix differential equation. If n elements of the vector are a set of state
variables, then the vector-matrix differential equation is a state equation. In this section
we shall present methods for obtaining state-space representations of continuous-time
systems.

G(s) = C(s I - A)-1 B + D

Y(s) = G(s )U(s )

y = F

y1

y2

�

�

�

ym

V  ,  u = F

u1

u2

�

�

�

ur

V

y1 , y2 , p , ym .u1 , u2 , p , ur ,

 =

1

ms2
+ bs + k

 G(s) = [1 0] 
1

s2
+

b

m
 s +

k

m

 D
s +

b

m

- 
k

m

1

s

T C
0

1

m

S

C
s

k

m

-1

s +

b

m

S
-1

=

1

s2
+

b

m
 s +

k

m

 D
s +

b

m

- 
k

m

1

s

T
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State-Space Representation of nth-Order Systems of Linear Differential Equa-
tions in which the Forcing Function Does Not Involve Derivative Terms. Con-
sider the following nth-order system:

(2–30)

Noting that the knowledge of together with the input u(t) for
t � 0, determines completely the future behavior of the system, we may take

as a set of n state variables. (Mathematically, such a choice of state
variables is quite convenient. Practically, however, because higher-order derivative terms
are inaccurate, due to the noise effects inherent in any practical situations, such a choice
of the state variables may not be desirable.)

Let us define

Then Equation (2–30) can be written as

or

(2–31)

where

B = G

0

0

�

�

�

0

1

WA = G

0

0

�

�

�

0

-an

1

0

�

�

�

0

-an - 1

0

1

�

�

�

0

-an - 2

p

p

 

 

 
p

p

0

0

�

�

�

1

-a1

W  ,x = F

x1

x2

�

�

�

xn

V  ,

x# = Ax + Bu

 x# n = -anx1 -
p

- a1xn + u

 x# n - 1 = xn

 �
 �
 �

 x
#

2 = x3

 x
#

1 = x2

 xn = y
(n - 1)

 �
 �
 �

 x2 = y
#

 x1 = y

y(t), y# (t), p , y
(n - 1)

(t)

y(0), y# (0), p , y
(n - 1)

(0),

y
(n)

+  a1y
(n - 1)

+
p

+ an - 1 y# + an y = u

OGATA-CH02-013-062hr  7/14/09  1:51 PM  Page 36



Section 2–5 / State-Space Representation of Scalar Differential Equation Systems 37

The output can be given by

or

(2–32)

where

[Note that D in Equation (2–24) is zero.] The first-order differential equation, Equa-
tion (2–31), is the state equation, and the algebraic equation, Equation (2–32), is the
output equation.

Note that the state-space representation for the transfer function system

is given also by Equations (2–31) and (2–32).

State-Space Representation of nth-Order Systems of Linear Differential Equa-
tions in which the Forcing Function Involves Derivative Terms. Consider the dif-
ferential equation system that involves derivatives of the forcing function, such as

(2–33)

The main problem in defining the state variables for this case lies in the derivative
terms of the input u. The state variables must be such that they will eliminate the de-
rivatives of u in the state equation.

One way to obtain a state equation and output equation for this case is to define the
following n variables as a set of n state variables:

(2–34)

 xn = y
(n - 1)

-  b0u
(n - 1)

-  b1u
(n - 2)

-
p

- bn - 2 u# - bn - 1 u = x
#

n - 1 - bn - 1 u

 �

 �

 �

 x3 = y
$

- b0 u$ - b1u
#

- b2 u = x
#

2 - b2 u
 x2 = y

#
- b0 u# - b1 u = x

#

1 - b1 u
 x1 = y - b0 u

y
(n)

+ a1 y
(n - 1)

+
p

+ an - 1 y# + an y = b0 u
(n)

+ b1 u
(n - 1)

+
p

+ bn - 1 u# + bn u

Y(s)

U(s)
=

1
sn

+ a1 sn - 1
+

p
+ an - 1 s + an

C = [1 0 p 0]

y = Cx

y = [1 0 p 0]F

x1

x2

�

�

�

xn

V
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where are determined from

(2–35)

With this choice of state variables the existence and uniqueness of the solution of the
state equation is guaranteed. (Note that this is not the only choice of a set of state vari-
ables.) With the present choice of state variables, we obtain

(2–36)

where is given by

[To derive Equation (2–36), see Problem A–2–6.] In terms of vector-matrix equations,
Equation (2–36) and the output equation can be written as

 y = [1 0 p 0]F

x1

x2

�

�

�

xn

V + b0 u

+ G

b1

b2

�

�

�

bn - 1

bn

W  uG

x1

x2

�

�

�

xn - 1

xn

W G

x
#

1

x
#

2

�

�

�

x
#

n - 1

x
#

n

W = G

0

0

�

�

�

0

-an

1

0

�

�

�

0

-an - 1

0

1

�

�

�

0 

-an - 2

p

p

 

 

 
p

p

0

0

�

�

�

1

-a1

W

 bn = bn - a1 bn - 1 -
p

- an - 1 b1 - an 
- 1b0

bn

 x# n = -an x1 - an - 1 x2 -
p

- a1 xn + bn u
 x# n - 1 = xn + bn - 1 u

 �

 �

 �

 x# 2 = x3 + b2 u
 x# 1 = x2 + b1 u

 bn - 1 = bn - 1 - a1 bn - 2 -
p

- an - 2 b1 - an 
- 1b0

 �

 �

 �

 b3 = b3 - a1 b2 - a2 b1 - a3 b0

 b2 = b2 - a1 b1 - a2 b0

 b1 = b1 - a1 b0

 b0 = b0

b0 , b1 , b2 , p , bn - 1
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or

(2–37)

(2–38)

where

In this state-space representation, matrices A and C are exactly the same as those for
the system of Equation (2–30).The derivatives on the right-hand side of Equation (2–33)
affect only the elements of the B matrix.

Note that the state-space representation for the transfer function

is given also by Equations (2–37) and (2–38).
There are many ways to obtain state-space representations of systems. Methods for

obtaining canonical representations of systems in state space (such as controllable canon-
ical form, observable canonical form, diagonal canonical form, and Jordan canonical
form) are presented in Chapter 9.

MATLAB can also be used to obtain state-space representations of systems from
transfer-function representations, and vice versa.This subject is presented in Section 2–6.

2–6 TRANSFORMATION OF MATHEMATICAL MODELS WITH MATLAB

MATLAB is quite useful to transform the system model from transfer function to state
space, and vice versa. We shall begin our discussion with transformation from transfer
function to state space.

Y(s)

U(s)
=

b0 sn
+ b1 sn - 1

+
p

+ bn - 1 s + bn

sn
+ a1 sn - 1

+
p

+ an - 1 s + an

 B = G

b1

b2

�

�

�

bn - 1

bn

W  ,    C = [1 0 p 0],  D = b0 = b0

 x = G

x1

x2

�

�

�

xn - 1

xn

W  ,   A = G

0

0

�

�

�

0

-an

1

0

�

�

�

0

-an - 1

0

1

�

�

�

0 

-an - 2

p

p

 

 

 
p

p

0

0

�

�

�

1

-a1

W

 y = Cx + Du

 x# = Ax + Bu
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Let us write the closed-loop transfer function as

Once we have this transfer-function expression, the MATLAB command

[A,B,C,D] = tf2ss(num,den)

will give a state-space representation. It is important to note that the state-space repre-
sentation for any system is not unique. There are many (infinitely many) state-space
representations for the same system. The MATLAB command gives one possible such
state-space representation.

Transformation from Transfer Function to State Space Representation.
Consider the transfer-function system

(2–39)

There are many (infinitely many) possible state-space representations for this system.
One possible state-space representation is

Another possible state-space representation (among infinitely many alternatives) is

(2–40) C
x
#

1

x
#

2

x
#

3

S = C
-14

1

0

-56

0

1

-160

0

0

S C
x1

x2

x3

S + C
1

0

0

Su

 y = [1 0 0]C
x1

x2

x3

S + [0]u

 C
x
#

1

x
#

2

x
#

3

S = C
0

0

-160

1

0

-56

0

1

-14

S C
x1

x2

x3

S + C
0

1

-14

Su

 =

s

s3
+ 14s2

+ 56s + 160

 
Y(s)

U(s)
=

s

(s + 10)As2
+ 4s + 16B

Y(s)

U(s)
=

numerator polynomial in s

denominator polynomial in s
=

num
den
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(2–41)

MATLAB transforms the transfer function given by Equation (2–39) into the 
state-space representation given by Equations (2–40) and (2–41). For the example
system considered here, MATLAB Program 2–2 will produce matrices A, B, C,
and D.

 y = [0 1 0]C
x1

x2

x3

S + [0]u

MATLAB Program 2–2

num = [1     0];
den = [1   14   56   160];
[A,B,C,D] = tf2ss(num,den)

A =

-14 -56 -160
1 0 0
0 1 0

B =

1
0
0

C =

0 1 0

D =

0

Transformation from State Space Representation to Transfer Function. To
obtain the transfer function from state-space equations, use the following command:

[num,den] = ss2tf(A,B,C,D,iu)

iu must be specified for systems with more than one input. For example, if the system
has three inputs (u1, u2, u3), then iu must be either 1, 2, or 3, where 1 implies u1, 2
implies u2, and 3 implies u3.

If the system has only one input, then either

[num,den] = ss2tf(A,B,C,D)
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42 Chapter 2 / Mathematical Modeling of Control Systems

EXAMPLE 2–4 Obtain the transfer function of the system defined by the following state-space equations:

MATLAB Program 2-3 will produce the transfer function for the given system.The transfer func-
tion obtained is given by

Y(s)

U(s)
=

25s + 5
s3

+ 5s2
+ 25s + 5

 y = [1 0 0]C
x1

x2

x3

S

 C
x
#

1

x
#

2

x
#

3

S = C
0

0

-5

1

0

-25

0

1

-5

S C
x1

x2

x3

S + C
0

25

-120

Su

MATLAB Program 2–3

A = [0   1   0;   0   0   1;   -5   -25   -5];
B = [0; 25; -120];
C = [1   0     0];
D = [0];
[num,den] = ss2tf(A,B,C,D)

num =

0   0.0000   25.0000  5.0000

den

1.0000   5.0000   25.0000  5.0000

% ***** The same result can be obtained by entering the following command: *****

[num,den] = ss2tf(A,B,C,D,1)

num =

0   0.0000   25.0000  5.0000

den =

1.0000   5.0000   25.0000  5.0000

or

[num,den] = ss2tf(A,B,C,D,1)

may be used. For the case where the system has multiple inputs and multiple outputs,
see Problem A–2–12.
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2–7 LINEARIZATION OF NONLINEAR MATHEMATICAL MODELS

Nonlinear Systems. A system is nonlinear if the principle of superposition does
not apply. Thus, for a nonlinear system the response to two inputs cannot be calculated
by treating one input at a time and adding the results.

Although many physical relationships are often represented by linear equations,
in most cases actual relationships are not quite linear. In fact, a careful study of phys-
ical systems reveals that even so-called “linear systems” are really linear only in lim-
ited operating ranges. In practice, many electromechanical systems, hydraulic systems,
pneumatic systems, and so on, involve nonlinear relationships among the variables.
For example, the output of a component may saturate for large input signals.There may
be a dead space that affects small signals. (The dead space of a component is a small
range of input variations to which the component is insensitive.) Square-law nonlin-
earity may occur in some components. For instance, dampers used in physical systems
may be linear for low-velocity operations but may become nonlinear at high veloci-
ties, and the damping force may become proportional to the square of the operating
velocity.

Linearization of Nonlinear Systems. In control engineering a normal operation
of the system may be around an equilibrium point, and the signals may be considered
small signals around the equilibrium. (It should be pointed out that there are many ex-
ceptions to such a case.) However, if the system operates around an equilibrium point
and if the signals involved are small signals, then it is possible to approximate the non-
linear system by a linear system. Such a linear system is equivalent to the nonlinear sys-
tem considered within a limited operating range. Such a linearized model (linear,
time-invariant model) is very important in control engineering.

The linearization procedure to be presented in the following is based on the ex-
pansion of nonlinear function into a Taylor series about the operating point and the
retention of only the linear term. Because we neglect higher-order terms of the Taylor
series expansion, these neglected terms must be small enough; that is, the variables
deviate only slightly from the operating condition. (Otherwise, the result will be
inaccurate.)

Linear Approximation of Nonlinear Mathematical Models. To obtain a linear
mathematical model for a nonlinear system, we assume that the variables deviate only
slightly from some operating condition. Consider a system whose input is x(t) and out-
put is y(t). The relationship between y(t) and x(t) is given by

(2–42)

If the normal operating condition corresponds to then Equation (2–42) may be
expanded into a Taylor series about this point as follows:

(2–43) = f(x–) +

df

dx
 (x - x–) +

1
2!

 
d2f

dx2  (x - x–)2
+

p

 y = f(x)

x–, y–,

y = f(x)
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44 Chapter 2 / Mathematical Modeling of Control Systems

where the derivatives are evaluated at If the variation 
is small, we may neglect the higher-order terms in Then Equation (2–43) may be
written as

(2–44)

where

Equation (2–44) may be rewritten as

(2–45)

which indicates that is proportional to Equation (2–45) gives a linear math-
ematical model for the nonlinear system given by Equation (2–42) near the operating
point  

Next, consider a nonlinear system whose output y is a function of two inputs x1 and
x2, so that

(2–46)

To obtain a linear approximation to this nonlinear system, we may expand Equation (2–46)
into a Taylor series about the normal operating point Then Equation (2–46)
becomes

where the partial derivatives are evaluated at Near the normal oper-
ating point, the higher-order terms may be neglected.The linear mathematical model of
this nonlinear system in the neighborhood of the normal operating condition is then
given by

y - y– = K1Ax1 - x–1B + K2Ax2 - x–2B

x2 = x–2 .x1 = x–1 ,

 + 
0

2f

0x2
2
 Ax2 - x–2B

2 d +
p

 + 
1
2!

 c
0

2f

0x2
1
 Ax1 - x–1B

2
+ 2 

0
2f

0x1 0x2
 Ax1 - x–1B Ax2 - x–2B

 y = fAx–1 , x–2B + c
0f

0x1
 Ax1 - x–1B +

0f

0x2
 Ax2 - x–2B d

x–1 , x–2 .

y = fAx1 , x2B

y = y–.x = x–,

x - x–.y - y–

y - y– = K(x - x–)

 K =

df

dx
 2  

x = x–

 y– = f(x–)

y = y– + K(x - x–)

x - x–.
x - x–x = x–.d2f�dx2, pdf�dx,
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where

The linearization technique presented here is valid in the vicinity of the operating
condition. If the operating conditions vary widely, however, such linearized equations are
not adequate, and nonlinear equations must be dealt with. It is important to remember
that a particular mathematical model used in analysis and design may accurately rep-
resent the dynamics of an actual system for certain operating conditions, but may not be
accurate for other operating conditions.

EXAMPLE 2–5 Linearize the nonlinear equation

z=xy

in the region 5 � x � 7, 10 � y � 12. Find the error if the linearized equation is used to calcu-
late the value of z when x=5, y=10.

Since the region considered is given by 5 � x � 7, 10 � y � 12, choose Then
Let us obtain a linearized equation for the nonlinear equation near a point

Expanding the nonlinear equation into a Taylor series about point and neglecting
the higher-order terms, we have

where

Hence the linearized equation is

z-66=11(x-6)+6(y-11)

or

z=11x+6y-66

When x=5, y=10, the value of z given by the linearized equation is

z=11x+6y-66=55+60-66=49

The exact value of z is z=xy=50. The error is thus 50-49=1. In terms of percentage, the
error is 2%.

 b =

0(xy)

0y
 2  

x = x– , y = y–
= x– = 6

 a =

0(xy)

0x
 2  

x = x– , y = y–
= y– = 11

z - z– = aAx - x– B + bAy - y– B

y = y–x = x–,
y– = 11.

x– = 6,z– = x–y– = 66.
y– = 11.x– = 6,

 K2 =

0f

0x2
 2  

x1 = x– 1 , x2 = x– 2

 K1 =

0f

0x1
 2  

x1 = x– 1 , x2 = x– 2

 y– = fAx–1 , x–2B
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EXAMPLE PROBLEMS AND SOLUTIONS

A–2–1. Simplify the block diagram shown in Figure 2–17.

Solution. First, move the branch point of the path involving H1 outside the loop involving H2 , as
shown in Figure 2–18(a). Then eliminating two loops results in Figure 2–18(b). Combining two
blocks into one gives Figure 2–18(c).

A–2–2. Simplify the block diagram shown in Figure 2–19. Obtain the transfer function relating C(s) and
R(s).

R(s) C(s)
G

H1

H2

+
–

+
+

Figure 2–17
Block diagram of a
system.

R(s) C(s)

R(s) C(s)

C(s)

G

H2

(a)

(b)

(c)

H1

G

G
1 + GH2

R(s)

1 +
H1

G

G + H1

1 + GH2

+
–

+
+

Figure 2–18
Simplified block
diagrams for the
system shown in
Figure 2–17.

G1 G2

R(s) C(s)X(s)
+

+
+

+

Figure 2–19
Block diagram of a
system.
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G1 G2

R(s) C(s)

G2

R(s) C(s)
G1 + 1

R(s) C(s)
G1G2 + G2 + 1

(a)

(b)

(c)

+
+

+
+

+
+

Figure 2–20
Reduction of the
block diagram shown
in Figure 2–19.

Solution. The block diagram of Figure 2–19 can be modified to that shown in Figure 2–20(a).
Eliminating the minor feedforward path, we obtain Figure 2–20(b), which can be simplified to
Figure 2–20(c). The transfer function C(s)/R(s) is thus given by

The same result can also be obtained by proceeding as follows: Since signal X(s) is the sum
of two signals G1R(s) and R(s), we have

The output signal C(s) is the sum of G2X(s) and R(s). Hence

And so we have the same result as before:

A–2–3. Simplify the block diagram shown in Figure 2–21. Then obtain the closed-loop transfer function
C(s)/R(s).

C(s)

R(s)
= G1 G2 + G2 + 1

C(s) = G2 X(s) + R(s) = G2 CG1 R(s) + R(s) D + R(s)

X(s) = G1 R(s) + R(s)

C(s)

R(s)
= G1 G2 + G2 + 1

G1 G2

H3

G3 G4

H2H1

+–
+

+ +–

R(s) C(s)

Figure 2–21
Block diagram of a
system.
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G1

G1

G2

H3

G4

G3 G4

H2H1

+
+

+
+

+
– +–

R(s)

R(s) C(s)

C(s)

H3

G1G4

G1 G2

1 + G1 G2 H1

R(s) C(s)G1 G2 G3 G4

1+ G1 G2 H1 + G3 G4 H2 – G2 G3  H3 + G1 G2 G3 G4 H1 H2

G3 G4

1 + G3 G4 H2

1

(a)

(b)

(c)

Figure 2–22
Successive
reductions of the
block diagram shown
in Figure 2–21.

G1 Gp+
+

+–
+

+

Gf

C(s)

D(s)

R(s) E(s) U(s)

H

Gc

Figure 2–23
Control system with
reference input and
disturbance input.

Solution. First move the branch point between G3 and G4 to the right-hand side of the loop con-
taining G3 , G4 , and H2. Then move the summing point between G1 and G2 to the left-hand side
of the first summing point. See Figure 2–22(a). By simplifying each loop, the block diagram can
be modified as shown in Figure 2–22(b). Further simplification results in Figure 2–22(c), from
which the closed-loop transfer function C(s)/R(s) is obtained as

A–2–4. Obtain transfer functions C(s)/R(s) and C(s)/D(s) of the system shown in Figure 2–23.

Solution. From Figure 2–23 we have

(2–47)

(2–48)

(2–49) E(s) = R(s) - HC(s)

 C(s) = Gp CD(s) + G1 U(s) D

 U(s) = Gf R(s) + Gc E(s)

C(s)

R(s)
=

G1 G2 G3 G4

1 + G1 G2 H1 + G3 G4 H2 - G2 G3 H3 + G1 G2 G3 G4 H1 H2
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By substituting Equation (2–47) into Equation (2–48), we get

(2–50)

By substituting Equation (2–49) into Equation (2–50), we obtain

Solving this last equation for C(s), we get

Hence

(2–51)

Note that Equation (2–51) gives the response C(s) when both reference input R(s) and distur-
bance input D(s) are present.

To find transfer function C(s)/R(s), we let D(s)=0 in Equation (2–51). Then we obtain

Similarly, to obtain transfer function C(s)/D(s), we let R(s)=0 in Equation (2–51). Then
C(s)/D(s) can be given by

A–2–5. Figure 2–24 shows a system with two inputs and two outputs. Derive C1(s)/R1(s), C1(s)/R2(s),
C2(s)/R1(s), and C2(s)/R2(s). (In deriving outputs for R1(s), assume that R2(s) is zero, and vice
versa.)

C(s)

D(s)
=

Gp

1 + G1 Gp Gc H

C(s)

R(s)
=

G1 GpAGf + GcB

1 + G1 Gp Gc H

C(s) =

Gp D(s) + G1 GpAGf + GcBR(s)

1 + G1 Gp Gc H

C(s) + G1 Gp Gc HC(s) = Gp D(s) + G1 GpAGf + GcBR(s)

C(s) = Gp D(s) + G1 GpEGf R(s) + Gc CR(s) - HC(s) D F

C(s) = Gp D(s) + G1 Gp CGf R(s) + Gc E(s) D

G1
C1

C2

R1

R2

G3

G4

+ −

+
−

G2

Figure 2–24
System with two
inputs and two
outputs.
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Solution. From the figure, we obtain

(2–52)

(2–53)

By substituting Equation (2–53) into Equation (2–52), we obtain

(2–54)

By substituting Equation (2–52) into Equation (2–53), we get

(2–55)

Solving Equation (2–54) for C1, we obtain

(2–56)

Solving Equation (2–55) for C2 gives

(2–57)

Equations (2–56) and (2–57) can be combined in the form of the transfer matrix as follows:

Then the transfer functions C1(s)/R1(s), C1(s)/R2(s), C2(s)/R1(s) and C2(s)/R2(s) can be obtained
as follows:

Note that Equations (2–56) and (2–57) give responses C1 and C2, respectively, when both inputs
R1 and R2 are present.

Notice that when R2(s)=0, the original block diagram can be simplified to those shown in
Figures 2–25(a) and (b). Similarly, when R1(s)=0, the original block diagram can be simplified
to those shown in Figures 2–25(c) and (d). From these simplified block diagrams we can also ob-
tain C1(s)/R1(s), C2(s)/R1(s), C1(s)/R2(s), and C2(s)/R2(s), as shown to the right of each corre-
sponding block diagram.

 
C2(s)

R1(s)
= - 

G1 G2 G4

1 - G1 G2 G3 G4
 ,   

C2(s)

R2(s)
=

G4

1 - G1 G2 G3 G4

 
C1(s)

R1(s)
=

G1

1 - G1 G2 G3 G4
 ,   

C1(s)

R2(s)
= - 

G1 G3 G4

1 - G1 G2 G3 G4

BC1

C2
R = D

G1

1 - G1 G2 G3 G4

- 
G1 G2 G4

1 - G1 G2 G3 G4

- 
G1 G3 G4

1 - G1 G2 G3 G4

G4

1 - G1 G2 G3 G4

T BR1

R2
R

C2 =

-G1 G2 G4 R1 + G4 R2

1 - G1 G2 G3 G4

C1 =

G1 R1 - G1 G3 G4 R2

1 - G1 G2 G3 G4

C2 = G4 CR2 - G2 G1AR1 - G3 C2B D

C1 = G1 CR1 - G3 G4AR2 - G2 C1B D

 C2 = G4AR2 - G2 C1B

 C1 = G1AR1 - G3 C2B
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+–

R1 C1

R1

C1

1 – G1 G2 G3 G4

G1
G1

G3 G4 –G2

+–

R1 C2

G3

G1 –G2 G4

=

+–

R2 C2

R2

C2

1 – G1 G2G3 G4

G4
G4

G2 G1 –G3

=

R1

C2

1 – G1 G2 G3 G4

– G1 G2 G4=

+–

R2 C1

G2

G4 –G3 G1 R2

C1

1 – G1 G2 G3 G4

– G1 G3 G4=

(a)

(b)

(c)

(d)
Figure 2–25
Simplified block
diagrams and
corresponding
closed-loop transfer
functions.

A–2–6. Show that for the differential equation system

(2–58)

state and output equations can be given, respectively, by

(2–59)

and

(2–60)

where state variables are defined by

 x3 = y
$

- b0 u$ - b1 u# - b2 u = x
#

2 - b2 u

 x2 = y
#

- b0 u# - b1 u = x
#

1 - b1 u

 x1 = y - b0 u

y = [1 0 0]C
x1

x2

x3

S + b0 u

C
x
#

1

x
#

2

x
#

3

S = C
0
0

-a3

1
0

-a2

0
1

-a1

S C
x1

x2

x3

S + C
b1

b2

b3

Su

y
%

+ a1 y$ + a2 y# + a3 y = b0 u% + b1 u$ + b2 u# + b3 u
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and

Solution. From the definition of state variables x2 and x3, we have

(2–61)

(2–62)

To derive the equation for we first note from Equation (2–58) that

Since

we have

Hence, we get

(2–63)

Combining Equations (2–61), (2–62), and (2–63) into a vector-matrix equation, we obtain Equa-
tion (2–59). Also, from the definition of state variable x1, we get the output equation given by
Equation (2–60).

A–2–7. Obtain a state-space equation and output equation for the system defined by

Solution. From the given transfer function, the differential equation for the system is

Comparing this equation with the standard equation given by Equation (2–33), rewritten

y
%

+ a1 y$ + a2 y# + a3 y = b0 u% + b1 u$ + b2u
#

+ b3 u

y
%

+ 4y
$

+ 5y
#

+ 2y = 2u
%

+ u
$

+ u
#

+ 2u

Y(s)

U(s)
=

2s3
+ s2

+ s + 2

s3
+ 4s2

+ 5s + 2

x
#

3 = -a3 x1 - a2 x2 - a1 x3 + b3 u

 = -a1 x3 - a2 x2 - a3 x1 + b3 u

 = -a1 x3 - a2 x2 - a3 x1 + Ab3 - a1 b2 - a2 b1 - a3 b0Bu

 + Ab2 - b2 - a1 b1 - a2 b0Bu
#

+ Ab3 - a1 b2 - a2 b1 - a3 b0Bu

 = -a1 x3 - a2 x2 - a3 x1 + Ab0 - b0Bu
%

+ Ab1 - b1 - a1 b0Bu
$

 + b0 u% + b1 u$ + b2 u# + b3 u - b0 u% - b1 u$ - b2 u#
 -a2Ay

#
- b0 u# - b1 uB - a2 b0 u# - a2 b1 u - a3Ay - b0 uB - a3 b0 u

 = -a1Ay
$

- b0 u$ - b1 u# - b2 uB - a1 b0 u$ - a1 b1 u# - a1 b2 u

 = A-a1 y$ - a2 y# - a3 yB + b0 u% + b1 u$ + b2 u# + b3 u - b0 u% - b1 u$ - b2 u#
 x# 3 = y

%
- b0 u% - b1 u$ - b2 u#

x3 = y
$

- b0 u$ - b1 u# - b2 u

y
%

= -a1 y$ - a2 y# - a3 y + b0 u% + b1 u$ + b2 u# + b3 u

x
#

3 ,

 x
#

2 = x3 + b2 u

 x
#

1 = x2 + b1 u

 b3 = b3 - a1 b2 - a2 b1 - a3 b0

 b2 = b2 - a1 b1 - a2 b0

 b1 = b1 - a1 b0

 b0 = b0
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we find

Referring to Equation (2–35), we have

Referring to Equation (2–34), we define

Then referring to Equation (2–36),

Hence, the state-space representation of the system is

This is one possible state-space representation of the system. There are many (infinitely many)
others. If we use MATLAB, it produces the following state-space representation:

See MATLAB Program 2-4. (Note that all state-space representations for the same system are
equivalent.)

C
x1

x2

x3

S + 2u y = [-7 -9 -2]

 C
x
#

1

x
#

2

x
#

3

S = C
-4

1

0

-5

0

1

-2

0

0

S C
x1

x2

x3

S + C
1

0

0

Su

 y = [1  0  0]C
x1

x2

x3

S + 2u

 C
x
#

1

x
#

2

x
#

3

S = C
0
0

-2

1
0

-5

0
1

-4
S C

x1

x2

x3

S + C
-7
19

-43
Su

 = -2x1 - 5x2 - 4x3 - 43u

 x
#

3 = -a3 x1 - a2 x2 - a1 x3 + b3 u

 x
#

2 = x3 + 19u

 x
#

1 = x2 - 7u

 x3 = x
#

2 - b2 u = x
#

2 - 19u

 x2 = x
#

1 - b1 u = x
#

1 + 7u

 x1 = y - b0 u = y - 2u

 = 2 - 4 * 19 - 5 * (-7) - 2 * 2 = -43

 b3 = b3 - a1 b2 - a2 b1 - a3 b0

 b2 = b2 - a1 b1 - a2 b0 = 1 - 4 * (-7) - 5 * 2 = 19

 b1 = b1 - a1 b0 = 1 - 4 * 2 = -7

 b0 = b0 = 2

 b0 = 2,   b1 = 1,   b2 = 1,  b3 = 2

 a1 = 4,   a2 = 5,   a3 = 2
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A–2–8. Obtain a state-space model of the system shown in Figure 2–26.

Solution. The system involves one integrator and two delayed integrators. The output of each
integrator or delayed integrator can be a state variable. Let us define the output of the plant as
x1, the output of the controller as x2, and the output of the sensor as x3. Then we obtain

 Y(s) = X1(s)

 
X3(s)

X1(s)
=

1
s + 1

 
X2(s)

U(s) - X3(s)
=

1
s

 
X1(s)

X2(s)
=

10
s + 5

U(s) Y(s)1
s

Controller Plant

Sensor

10 
s + 5

1
s + 1

+
–

Figure 2–26
Control system.

MATLAB Program 2–4

num = [2  1  1  2];
den = [1  4  5  2];
[A,B,C,D] = tf2ss(num,den)

A =

-4 -5 -2
1 0 0
0 1 0

B =

1
0
0

C =

-7 -9 -2

D =

2

OGATA-CH02-013-062hr  7/14/09  1:51 PM  Page 54



Example Problems and Solutions 55

which can be rewritten as

By taking the inverse Laplace transforms of the preceding four equations, we obtain

Thus, a state-space model of the system in the standard form is given by

It is important to note that this is not the only state-space representation of the system. Infinite-
ly many other state-space representations are possible. However, the number of state variables is
the same in any state-space representation of the same system. In the present system, the num-
ber of state variables is three, regardless of what variables are chosen as state variables.

A–2–9. Obtain a state-space model for the system shown in Figure 2–27(a).

Solution. First, notice that (as+b)/s2 involves a derivative term. Such a derivative term may be
avoided if we modify (as+b)/s2 as

Using this modification, the block diagram of Figure 2–27(a) can be modified to that shown in
Figure 2–27(b).

Define the outputs of the integrators as state variables, as shown in Figure 2–27(b).Then from
Figure 2–27(b) we obtain

which may be modified to

 Y(s) = X1(s)

 sX2(s) = -bX1(s) + bU(s)

 sX1(s) = X2(s) + a CU(s) - X1(s) D

 Y(s) = X1(s)

 
X2(s)

U(s) - X1(s)
=

b

s

 
X1(s)

X2(s) + a CU(s) - X1(s) D
=

1
s

as + b

s2 = aa +

b

s
b  

1

s

C
x1

x2

x3

S y = [1 0 0]

 C
x
#

1

x
#

2

x
#

3

S = C
-5

0

1

10

0

0

0

-1

-1

S C
x1

x2

x3

S + C
0

1

0

Su

 y = x1

 x
#

3 = x1 - x3

 x
#

2 = -x3 + u

 x
#

1 = -5x1 + 10x2

 Y(s) = X1(s)

 sX3(s) = X1(s) - X3(s)

 sX2(s) = -X3(s) + U(s)

 sX1(s) = -5X1(s) + 10X2(s)

OGATA-CH02-013-062hr  7/14/09  1:51 PM  Page 55



56 Chapter 2 / Mathematical Modeling of Control Systems

Taking the inverse Laplace transforms of the preceding three equations, we obtain

Rewriting the state and output equations in the standard vector-matrix form, we obtain

A–2–10. Obtain a state-space representation of the system shown in Figure 2–28(a).

Solution. In this problem, first expand (s+z)/(s+p) into partial fractions.

Next, convert K/ Cs(s+a) D into the product of K/s and 1/(s+a). Then redraw the block diagram,
as shown in Figure 2–28(b). Defining a set of state variables, as shown in Figure 2–28(b), we ob-
tain the following equations:

 y = x1

 x
#

3 = -(z - p)x1 - px3 + (z - p)u

 x
#

2 = -Kx1 + Kx3 + Ku

 x
#

1 = -ax1 + x2

s + z

s + p
= 1 +

z - p

s + p

 y = [1 0]Bx1

x2
R

 Bx
#

1

x
#

2
R = B-a

-b

1

0
R Bx1

x2
R + B a

b
Ru

 y = x1

 x
#

2 = -bx1 + bu

 x
#

1 = -ax1 + x2 + au

U(s) Y(s)
as + b 1

s2

(a)

(b)

a

U(s) Y(s)
b
s

1
s

X1(s)X2(s)
+

–

+
–

+
+

Figure 2–27
(a) Control system;
(b) modified block
diagram.
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Rewriting gives

Notice that the output of the integrator and the outputs of the first-order delayed integrators
C1/(s+a) and (z-p)/(s+p) D are chosen as state variables. It is important to remember that
the output of the block (s+z)/(s+p) in Figure 2–28(a) cannot be a state variable, because this
block involves a derivative term, s+z.

A–2–11. Obtain the transfer function of the system defined by

Solution. Referring to Equation (2–29), the transfer function G(s) is given by

In this problem, matrices A, B, C, and D are

A = C
-1

0

0

1

-1

0

0

1

-2

S  ,  B = C
0

0

1

S  ,  C = [1 0 0],  D = 0

G(s) = C(sI - A)-1B + D

 y = [1  0  0]C
x1

x2

x3

S

 C
x
#

1

x
#

2

x
#

3

S = C
-1

0
0

1
-1

0

0
1

-2
S C

x1

x2

x3

S + C
0
0
1
Su

 y = [1 0 0]C
x1

x2

x3

S

 C
x
#

1

x
#

2

x
#

3

S = C
-a

-K

-(z - p)

1
0
0

0
K

-p

S C
x1

x2

x3

S + C
0
K

z - p

Su

u y

u y

(a)

(b)

s + z
s + p

K
s(s + a)

z – p
s + p

K
s

1
s + a

x1x2x3

+
–

+
–

+
+

Figure 2–28
(a) Control system;
(b) block diagram
defining state
variables for the
system.
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Hence

A–2–12. Consider a system with multiple inputs and multiple outputs.When the system has more than one
output, the MATLAB command

[NUM,den] = ss2tf(A,B,C,D,iu)

produces transfer functions for all outputs to each input. (The numerator coefficients are returned
to matrix NUM with as many rows as there are outputs.)

Consider the system defined by

This system involves two inputs and two outputs. Four transfer functions are involved:
and (When considering input u1, we assume that input u2

is zero and vice versa.)

Solution. MATLAB Program 2-5 produces four transfer functions.
This is the MATLAB representation of the following four transfer functions:

 
Y2(s)

U2(s)
=

s - 25
s2

+ 4s + 25
 
Y1(s)

U2(s)
=

s + 5

s2
+ 4s + 25

 ,

 
Y2(s)

U1(s)
=

-25
s2

+ 4s + 25
 
Y1(s)

U1(s)
=

s + 4

s2
+ 4s + 25

 ,

Y2(s)�U2(s).Y1(s)�U2(s),Y2(s)�U1(s),
Y1(s)�U1(s),

By1

y2
R = B1

0

0

1
R Bx1

x2
R + B0

0

0

0
R Bu1

u2
R

Bx
#

1

x
#

2
R = B 0

-25

1

-4
R Bx1

x2
R + B1

0

1

1
R Bu1

u2
R

 =

1

(s + 1)2(s + 2)
=

1

s3
+ 4s2

+ 5s + 2

 = [1 0 0]F

1

s + 1

0

0

1

(s + 1)2

1

s + 1

0

1

(s + 1)2(s + 2)
1

(s + 1)(s + 2)

1

s + 2

V C
0

0

1

S

 G(s) = [1 0 0]C
s + 1

0

0

-1

s + 1

0

0

-1

s + 2

S
-1

C
0

0

1

S
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A–2–13. Linearize the nonlinear equation

in the region defined by 8 � x � 10, 2 � y � 4.

Solution. Define

Then

where we choose 
Since the higher-order terms in the expanded equation are small, neglecting these higher-

order terms, we obtain

where

 z– = x–2
+ 4x–y– + 6y–2

= 92
+ 4 * 9 * 3 + 6 * 9 = 243

 K2 =

0f

0y
 2  

x = x– , y = y–
= 4x– + 12y– = 4 * 9 + 12 * 3 = 72

 K1 =

0f

0x
 2  

x = x– , y = y–
= 2x– + 4y– = 2 * 9 + 4 * 3 = 30

z - z– = K1(x - x–) + K2(y - y–)

x– = 9, y– = 3.

z = f(x, y) = f(x–, y–) + c
0f

0x
 (x - x–) +

0f

0y
 (y - y–) d

x = x– , y = y–
+

p

f(x, y) = z = x2
+ 4xy + 6y2

z = x2
+ 4xy + 6y2

MATLAB Program 2–5

A = [0    1;-25    -4];
B = [1    1;0    1];
C = [1    0;0    1];
D = [0    0;0    0];
[NUM,den] = ss2tf(A,B,C,D,1)

NUM =
0 1 4
0 0 –25

den = 

1 4 25

[NUM,den] = ss2tf(A,B,C,D,2)

NUM =

0 1.0000 5.0000
0 1.0000 -25.0000

den =

1 4 25

OGATA-CH02-013-062hr  7/14/09  1:51 PM  Page 59



60 Chapter 2 / Mathematical Modeling of Control Systems

Thus

Hence a linear approximation of the given nonlinear equation near the operating point is

z - 30x - 72y + 243 = 0

z - 243 = 30(x - 9) + 72(y - 3)

R(s) C(s)
G1 G2 G3

H1

H2

H3

+
–

+
–

+
–

+
+

Figure 2–31
Block diagram of a system.

B–2–1. Simplify the block diagram shown in Figure 2–29
and obtain the closed-loop transfer function C(s)/R(s).

B–2–2. Simplify the block diagram shown in Figure 2–30
and obtain the closed-loop transfer function C(s)/R(s).

B–2–3. Simplify the block diagram shown in Figure 2–31
and obtain the closed-loop transfer function C(s)/R(s).

PROBLEMS

R(s) C(s)

G1

G2

G3

G4

+
–

+
–

+
+

Figure 2–29
Block diagram of a system.

R(s) C(s)

G1

G2

H1

H2

+
–

+
+

+
–

Figure 2–30
Block diagram of a system.
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Problems 61

C(s)

D(s)

R(s)
Gc(s) Gp(s)+– +

+

Controller PlantFigure 2–32
Closed-loop system.

B–2–4. Consider industrial automatic controllers whose
control actions are proportional, integral, proportional-plus-
integral, proportional-plus-derivative, and proportional-plus-
integral-plus-derivative. The transfer functions of these
controllers can be given, respectively, by

where U(s) is the Laplace transform of u(t), the controller
output, and E(s) the Laplace transform of e(t), the actuat-

 
U(s)

E(s)
= Kp a1 +

1

Ti s
+ Td s b

 
U(s)

E(s)
= KpA1 + Td sB

 
U(s)

E(s)
= Kp a1 +

1

Ti s
b

 
U(s)

E(s)
=

Ki

s

 
U(s)

E(s)
= Kp

ing error signal. Sketch u(t)-versus-t curves for each of the
five types of controllers when the actuating error signal is
(a) e(t)=unit-step function
(b) e(t)=unit-ramp function

In sketching curves, assume that the numerical values of Kp,
Ki , and are given as

proportional gain=4
integral gain=2
integral time=2 sec
derivative time=0.8 sec

B–2–5. Figure 2–32 shows a closed-loop system with a ref-
erence input and disturbance input. Obtain the expression
for the output C(s) when both the reference input and dis-
turbance input are present.

B–2–6. Consider the system shown in Figure 2–33. Derive
the expression for the steady-state error when both the ref-
erence input R(s) and disturbance input D(s) are present.

B–2–7. Obtain the transfer functions C(s)/R(s) and
C(s)/D(s) of the system shown in Figure 2–34.

 Td =

 Ti =

 Ki =

 Kp =

TdTi ,

C(s)R(s) E(s)

D(s)

+– +
+

G2(s)G1(s)

G2

H1

G
3

G1Gc

R(s) C(s)

D(s)

+– +– +
+

H2

Figure 2–33
Control system.

Figure 2–34
Control system.
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62 Chapter 2 / Mathematical Modeling of Control Systems

B–2–8. Obtain a state-space representation of the system
shown in Figure 2–35.

B–2–9. Consider the system described by

Derive a state-space representation of the system.

B–2–10. Consider the system described by

Obtain the transfer function of the system.

 y = [1 0]Bx1

x2
R

 Bx
#

1

x
#

2
R = B-4

3

-1

-1
R Bx1

x2
R + B1

1
Ru

y
%

+ 3y
$

+ 2y
#

= u

u ys + z
s + p

1
s2+

–

Figure 2–35
Control system.

B–2–11. Consider a system defined by the following state-
space equations:

Obtain the transfer function G(s) of the system.

B–2–12. Obtain the transfer matrix of the system defined by

B–2–13. Linearize the nonlinear equation

z=x2+8xy+3y2

in the region defined by 2 � x � 4, 10 � y � 12.

B–2–14. Find a linearized equation for

y=0.2x3

about a point x=2.

 By1

y2
R = B1

0

0

1

0

0
R C

x1

x2

x3

S

 C
x
#

1

x
#

2

x
#

3

S = C
0

0

-2

1

0

-4

0

1

-6

S C
x1

x2

x3

S + C
0

0

1

0

1

0

S Bu1

u2
R

 y = [1 2]Bx1

x2
R

 Bx
#

1

x
#

2
R = B-5

3

-1

-1
R Bx1

x2
R + B2

5
Ru
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