
Pa r t  1
Archetype theory, 
practice, and 
Model Driven 
Architecture

Arlow_book.fm  Page 1  Thursday, December 11, 2003  11:37 AM



Arlow_book.fm  Page 2  Thursday, December 11, 2003  11:37 AM



3

Chapter 1
Archetypes and 
archetype patterns

In this chapter, we introduce and explain the concepts of business archetypes
and archetype patterns. We have found these concepts to be exciting and very
useful in our own work in object modeling, and we hope that you will too.

Although an understanding of archetypes and archetype patterns was essen-
tial to create the archetype patterns presented in the main part of this book, it is
not essential to the pragmatic application of these patterns in business systems.
If you just want to use this book as a useful pattern catalog, you may safely skim
this chapter, which is mainly theoretical. However, you should at least take a
quick look at Section 1.7 to understand the Unified Modeling Language
(UML) profile we are using.

If you are involved in capturing business patterns or creating high-level or
even enterprise-level object models, you may find the “thought tools” presented
in this chapter to be very valuable.

We begin with a general discussion of archetypes (Section 1.2), define what
we mean by business archetypes and archetype patterns (Section 1.3), and discuss
how we can model archetypes and archetype patterns using UML (Section 1.7).
We look at the issue of pattern variation (Section 1.9) and introduce the powerful
notion of pleomorphism as a way to understand how archetypes and archetype
patterns adapt to specific business environments (Section 1.12).

1.1 Introduction

Arlow_book.fm  Page 3  Thursday, December 11, 2003  11:37 AM



4 Chapter 1 Archetypes and archetype patterns

The word archetype comes from the Greek archetypo (αρχετυπο), which means
“original pattern.” Here is a definition.

According to the psychologist Carl Gustav Jung [Jung 1981], archetypes
arise from a common fund of human experiences (the collective unconscious)
that uses archetypes as one of its ordering and structuring principles. In fact,
wherever there is a commonality of human experiences over extended periods
of time, archetypes arise to help structure these experiences.

One of the most intriguing aspects of the Jungian archetypes is that they
naturally exhibit variability—they change their form to adapt themselves to
specific cultural contexts while their core semantics remain fixed. For example,
the Hero archetype looks very different in the Native American paradigm than
in the Australian Aboriginal paradigm, and yet the Hero is still somehow always
recognizable as the Hero. We’ll see shortly that this natural variability is an im-
portant feature of archetypes.

Because archetypes are a basic human mechanism for organizing, summa-
rizing, and generalizing information about the world, you can reasonably ex-
pect them to have some application in the field of software development.

Human beings have been involved in business activities for millennia, and
we think it is quite reasonable to suppose that many archetypes have arisen in
the business domain. For example, if you think about the basic business activity
of selling, the earliest recorded instances of this activity occurred some 5,000
years ago. There’s no doubt that this activity was also occurring much earlier
than this. All selling over this enormous span of time has in some way involved
the basic concepts of product, price (in terms of a notion of the value of the
product), seller, and buyer.

You can see that there are some very fundamental (we would say arche-
typal) concepts here and that there is also an archetypal pattern of relationships
between these concepts. For example, the price is always associated in some way
with the product.

1.2 What are archetypes?

An archetype is a primordial thing or circumstance that recurs consistently and is 
thought to be a universal concept or situation.

Arlow_book.fm  Page 4  Thursday, December 11, 2003  11:37 AM



1.3 What are business archetypes? 5

The agenda of this book is to try to capture some of these archetypes and
archetype patterns in UML object models. To do so, we introduce the following
new concepts.

1. Business archetypes
2. Business archetype patterns
3. Archetype and archetype pattern variability
4. Pleomorphism
5. Pattern configuration

We’ll discuss the first four of these ideas in the next few sections, and we
devote much of Chapter 2 to pattern configuration.

Object-oriented (OO) software systems reflect the business domains in which
they operate. You can therefore expect to find archetypes in the business do-
main, in software systems, and in models of those systems. We call this type of
archetype a business archetype.

A good example of a business archetype is Party. A Party represents an
identifiable, addressable unit that may have a legal status. Usually this repre-
sents a person or an organization of some sort. All business systems have some
concept of Party. You can look at the actual definition and semantics of the
Party archetype in Chapter 4.

The notion of archetypes is very general, and there are certainly archetypes
in other domains (such as health care and engineering) as well as in the business
domain. You may use the term <domain name> archetype to refer specifically to
these other archetypes. However, in this book, we limit ourselves to the business
domain.

1.3 What are business archetypes?

A business archetype is a primordial thing that occurs consistently and universally 
in business domains and business software systems.

Arlow_book.fm  Page 5  Thursday, December 11, 2003  11:37 AM



6 Chapter 1 Archetypes and archetype patterns

As well as there being archetypal things in business systems, these things
can interact in patterns that are themselves archetypal. For example, the collab-
oration between the archetypes Party, Product, and Order is the basis of virtu-
ally every business that sells goods or services. We refer to these archetypal
collaborations as business archetype patterns.

In this book, for convenience we usually refer to business archetypes and
business archetype patterns simply as archetypes and archetype patterns.

The essential characteristics of archetypes and archetype patterns are listed
below.

● Universal: for something to be archetypal, it must occur consistently in 
business domains and systems.

● Pervasive: they occur in both the business domain and the software 
domain. When building OO systems, you should expect to find things 
and patterns that are archetypal in the business domain occurring in 
much the same form in the software domain. This is the principle of 
convergent engineering described in [Taylor 1995] and more recently in 
[Hubert 2001].

● Deep history: for example, the product archetype has been around ever 
since people first began to barter and sell.

● Self-evident to domain experts: this is not always the case, but if an 
archetype isn’t obvious to a domain expert, you should certainly ques-
tion whether it is really an archetype.

A quick word about terminology: the term archetype has been used in the
context of computing by other authors. Peter Coad and his colleagues define
archetype as “a form from which all things of the same kind more or less follow”
[Coad 1999, p. 2]. Coad uses his archetypes in a way that is in some respects
similar to how we use ours, but the Coad archetypes occur at a much higher
level of abstraction and lack any formal UML profile.

Mellor and Balcer define archetype as “a fragment of data access and text
manipulation logic that states formally how to embed an executable UML
model into text” [Mellor 2002, p. 294]. In other words, the term is used to de-

A business archetype pattern is a collaboration between business archetypes that 
occurs consistently and universally in business environments and software systems.

Arlow_book.fm  Page 6  Thursday, December 11, 2003  11:37 AM



1.4 Archetypes and analysis classes 7

scribe a specific aspect of an executable UML model. This is very different from
any dictionary definition of the term.

Both of these uses of the word archetype are different from our usage in the
term business archetype. Generally, whenever we use the term archetype in this
book, we are using it as a shorthand for business archetype unless we explicitly
state otherwise.

In object modeling, there are two fundamentally different types of classes, as
shown in Table 1.1.

We discuss both types of classes in much more detail in an earlier book
[Arlow 2001], so we won’t repeat that detailed discussion here. But to summa-
rize, an analysis class arises directly from the problem domain (e.g., selling furni-
ture) and has no implementation-specific features. On the other hand, a design
class may contain features from both the problem domain and the solution do-
main (e.g., J2EE, .NET, or Web services). Analysis classes are for understanding
the business, while design classes are for understanding the technical solution.

It’s important to realize that archetypes are always at a higher level of ab-
straction than normal analysis classes. From a conceptual point of view, this is
because archetypes are about consciously recognizing and capturing universal
concepts, whereas analysis classes are not necessarily concerned with universal-
ity at all. From a technical point of view (as you will soon see), archetypes gener-
ate one or more analysis classes.

1.4 Archetypes and analysis classes

Table 1.1

Type of class Semantics

Analysis class Represents a crisp abstraction in the problem domain

Maps onto real-world business concepts

Design class A class whose specification is complete to such a degree that it may 
be implemented

Incorporates features from both the problem domain and the solu-
tion domain (implementation technology)

Arlow_book.fm  Page 7  Thursday, December 11, 2003  11:37 AM



8 Chapter 1 Archetypes and archetype patterns

We’ll give a very brief introduction to patterns in this section, but for more de-
tails we advise you to refer to the key text on patterns, Design Patterns—Ele-
ments of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides [Gamma 1995].

According to [Gamma 1995], a pattern is a solution to a problem in a con-
text. To be more precise, a pattern consists of a description of a problem, the
context of the problem, and a possible solution to that problem in that context.
You can think of a pattern as a “recipe” that describes how you may solve a par-
ticular problem under particular circumstances.

The idea of patterns originated in the work of Christopher Alexander on
the architecture of towns and buildings [Alexander 1977]. Alexander said that a
pattern describes a recurring problem and the key elements of the solution to
that problem in a way that allows you to apply the solution again and again,
each time in a novel but consistent fashion.

Gamma and his colleagues applied this idea to software systems in their
book. Each pattern they defined has four elements.

● Pattern name: the name of the pattern. This allows you to talk about 
the pattern without having to always describe its details. Pattern names 
define a language that allows designers to communicate about designs at 
a high level of abstraction.

● Problem: the description of the problem that the pattern solves, for ex-
ample, how to design an object that may have only a single instance (the 
Singleton pattern).

● Solution: the design of the pattern itself as a UML model. This design 
doesn’t describe actual classes but rather a collaboration that classes in 
your model may implement.

● Consequences: the effects of applying the pattern.

Patterns can exist at many different levels of abstraction. [Gamma 1995]
describes design patterns that are possible solutions to common problems en-
countered in OO design. It should be an essential component of your OO de-
signer toolset!

Fowler has extended the idea of patterns into the analysis domain in his
book, Analysis Patterns—Reusable Object Models [Fowler 1996]. This book con-
tains some interesting patterns, but they are generally quite abstract and need a
lot of refinement before you can apply them in a real development situation.

1.5 What are patterns?

Arlow_book.fm  Page 8  Thursday, December 11, 2003  11:37 AM



1.6 Archetype patterns and analysis patterns 9

We compare and contrast archetype patterns with analysis patterns in the next
section.

This section is for those of you who want to know how archetype patterns and
analysis patterns differ. If you are not interested in this topic, you can safely skip
this section.

When we’ve presented material on archetype patterns at conferences prior to
publication, we’ve sometimes been asked, “Aren’t archetype patterns just analysis
patterns?” The answer to this is no—archetype patterns have many unique fea-
tures that make them much more than analysis patterns.

As we mentioned above, analysis patterns were first described by Fowler
and defined as follows: “Analysis patterns are groups of concepts that represent
a common construction in business modeling. It may be relevant to one do-
main, or it may span many domains” [Fowler 1996, p. 8].

Notice that there is no notion of archetypal concepts in this definition. This
is the primary conceptual difference between analysis patterns and archetype
patterns.

In fact, archetype patterns are much richer than analysis patterns, both
conceptually and in terms of technology. These differences are summarized in
Table 1.2.

1.6 Archetype patterns and analysis patterns

Table 1.2  

Feature Reference
Archetype 
patterns

Analysis 
patterns

Is concerned with archetypal concepts Chapter 1 Always Sometimes

Incorporates the principle of convergent engineering [Taylor 1995] Always Often

Is supported by a UML profile Section 1.7 Yes No

Is sufficiently detailed to feed into the Model Driven 
Architecture (MDA) development workflow as a 
platform-independent model (PIM)

Chapter 2 Yes No

Supports variability of model elements Section 1.9 Yes No

Table continued on next page

Arlow_book.fm  Page 9  Thursday, December 11, 2003  11:37 AM



10 Chapter 1 Archetypes and archetype patterns

As you will see in Section 1.15 and in Chapter 2, business archetype pat-
terns are also applied in a very different way than analysis patterns.

You can introduce new modeling extensions into UML by defining a UML
profile. This consists of a set of stereotypes, tagged values, and constraints that
define the semantics for the new modeling extensions you want to introduce. A
profile extends the UML metamodel with a set of new modeling elements.

Our UML profile for archetype patterns is defined in Table 1.3. We’ve tried
to keep it as simple as possible.

Feature Reference
Archetype 
patterns

Analysis 
patterns

Supports pleomorphism Section 1.12 Yes No

Introduces pattern configuration rules to support 
pattern configuration

Section 2.5 Yes No

Defines a set of platform-independent models Section 2.3 Yes No

Applicable across different business domains Chapter 1 Often Often

Supplied as literate models Chapter 3 Yes No

May be automated using MDA modeling tools Chapter 2 Yes No

1.7 UML profile for archetypes and archetype patterns

Table 1.3  

Business archetype UML profile

Stereotype Applies to Semantics

«archetype» Class A primordial thing that occurs consistently and 
universally in business environments and busi-
ness software systems

All archetypes in a business archetype pattern are 
optional

Table 1.2  (Continued)

Arlow_book.fm  Page 10  Thursday, December 11, 2003  11:37 AM



1.7 UML profile for archetypes and archetype patterns 11

These stereotypes may be used as illustrated in the following sections.

1.7.1 «archetype» 
You can model business archetypes by using the class icon and adding the ste-
reotype «archetype» to indicate that the classifier represents an archetype.
Figure 1.1 shows a simple example.

Business archetype UML profile

Stereotype Applies to Semantics

«archetype pattern» Collaboration

Package

A collaboration between business archetypes that 
occurs consistently and universally in business en-
vironments and software systems

«archetype pattern 
library»

Package A subtype of the standard UML stereotype «model»

The package is a model that contains one or more 
archetype patterns

You should ensure that each archetype pattern 
library has a globally unique name to avoid 
namespace clashes—we recommend that you use 
your domain name as the name of the package, 
e.g., “clearviewtraining.com”

«o» Composition

Aggregation

Attribute

Operation

A feature that is optional and may be omitted

When «o» is applied to a composition or aggrega-
tion relationship, it indicates that the relationship 
is optional

«pleomorph» Refinement 
relationship 
between archetype 
patterns

The archetype pattern at the source of the arrow is 
a variation (pleomorph) of the archetype pattern 
pointed to by the arrow

We discuss pleomorphism in detail in 
Section 1.12

Table 1.3  (Continued)

Figure 1.1

Arlow_book.fm  Page 11  Thursday, December 11, 2003  11:37 AM



12 Chapter 1 Archetypes and archetype patterns

By definition, archetypes are optional and can, if wished, be omitted from
any model based on the archetype pattern.

1.7.2 «archetype pattern» 
You may use package notation for an archetype pattern as shown in Figure 1.2.
You may also use collaboration notation (see Figure 1.17 later in this chapter).

1.7.3 «archetype pattern library» 
You can model an archetype pattern library as shown in Figure 1.3.

1.7.4 «o» 
You can use the stereotype «o» (optional) to specify the parts of an archetype or
archetype pattern that are optional. We’ll discuss the reasons why we need this
new stereotype in detail in Sections 1.9 and 1.10.

Figure 1.4  shows examples of the «o» stereotype being used on attributes,
operations, and relationships.

Figure 1.2

Figure 1.3

Arlow_book.fm  Page 12  Thursday, December 11, 2003  11:37 AM



1.7 UML profile for archetypes and archetype patterns 13

Reading Figure 1.4, you can see the following information.

● The Currency attributes numericCode, minorUnitSymbol, ratioOf-
MinorUnitToMajorUnit, introductionDate, and expirationDate 
are optional.

● All the Payment attributes are optional. This gives you a lot of flexibility 
in how the archetype can be used in different business contexts. For ex-
ample, a system that makes Payments would usually need the optional 

Figure 1.4

Arlow_book.fm  Page 13  Thursday, December 11, 2003  11:37 AM



14 Chapter 1 Archetypes and archetype patterns

attribute dateMade but not the others. However, a system that accepts 
Payments would not need dateMade but would include one or more of 
dateReceived, dateDue, and dateCleared. We discuss this use of Pay-
ment more fully in Section 11.9.

● The relationship paidBy between Payment and PaymentMethod is op-
tional, and thus the Payment operation getPaymentMethod()is optional.

Note that the «singleton» stereotype on Metric simply indicates that there
needs to be only a single instance of the Metric archetype at runtime. The Single-
ton pattern is described in [Gamma 1995].

1.7.5 «pleomorph» 
This stereotype may be applied to refinement relationships between archetype
patterns as shown in Figure 1.5. The archetype pattern at the source of the ar-
row is a variation of the archetype pattern pointed to by the arrow. In the figure
the IdenticalProduct archetype pattern is a variation of the Product archetype
pattern for a specific business domain. We discuss pleomorphism in detail in
Section 1.12.

Whenever you create a UML model, it’s a good idea to define a modeling style
that you then use consistently throughout the model.

1.8 Modeling style

Figure 1.5

Arlow_book.fm  Page 14  Thursday, December 11, 2003  11:37 AM



1.8 Modeling style 15

The modeling style used to create the models you see in this book arises
from the specific requirements listed below.

● Make the models as readable as possible.
● Make the models as useful as possible.
● Make the models as precise as possible.
● Make the diagrams fit harmoniously within the bounds of this book.

We have adopted the following modeling style to satisfy these requirements.

● We usually don’t show set and get methods for attributes. You may 
assume they are there unless an attribute is explicitly marked as private. 
This modeling style is described in Convergent Architecture [Hubert 
2001] as the Compact Attribute style. It saves a lot of space on UML
diagrams!

● As we described in our UML profile for archetypes in Section 1.7, we 
indicate that an attribute, operation, composition, or aggregation rela-
tionship is truly optional by using the stereotype «o».

● Archetypes are always optional.
● Everything that is not explicitly optional is mandatory.
● We show navigability wherever we can—this reduces the coupling 

between modeling elements, so we always try to put the maximum 
amount of navigability on our diagrams.

● We always show multiplicity explicitly. Some modelers assume that 
when multiplicity is not shown, it automatically defaults to 1, but this is 
a false assumption—when multiplicity is not shown, it means that it is 
undecided.

● We try to refine each association relationship as much as we can. This 
means that we use aggregation and composition wherever possible. 
Aggregation and composition have very specific semantics (see [Arlow 
2001] and www.businessarchetypes.com) that are very useful in the 
models we create.

The goal of our modeling style is to try to create models that are as precise
and constrained as it is possible to make them while still maintaining their gen-
erality and readability.

Figure 1.6  shows a completely general purpose UML model. This model is
so unconstrained as to be totally meaningless. (Oddly enough, in our consult-
ing work, we do occasionally come across UML models somewhat like this

Arlow_book.fm  Page 15  Thursday, December 11, 2003  11:37 AM



16 Chapter 1 Archetypes and archetype patterns

one!) In fact, UML models become more meaningful the larger the number of
constraints you can apply. This is because constraints capture information.

Finally, we are always guided by what we refer to as “the principle of maxi-
mum utility”—we consciously strive to make the diagrams and text as useful to
you in every respect as possible. Our ultimate aim is to try to make the dia-
grams talk to you about the business domain.

1.8.1 OCL data types
Ultimately, all models are built up from combinations of a relatively small
number of basic data types such as int, float, double, String, and so on. In
order to make our archetype patterns as universal as possible, we take our set of
basic types from the Object Constraint Language (OCL), which is a part of
UML that provides a formal language for expressing constraints. OCL defines a
set of predefined types that allow us to express business archetype patterns as
completely language- and platform-independent UML models.

The advantage of using the OCL types instead of (for example) Java or
.NET data types is that the OCL types can be very easily mapped onto those of
other languages. This can be done manually when you instantiate an archetype
pattern or completely automatically if you are lucky enough to be using an
MDA-enabled modeling tool.

The types are summarized in Table 1.4.

Table 1.4  

OCL type Semantics

Real Represents the mathematical concept of a real number

Integer Represents the mathematical concept of a whole number

Figure 1.6

Arlow_book.fm  Page 16  Thursday, December 11, 2003  11:37 AM



1.9 Variation 17

These types have exactly the sort of operations (+, –, /, and so on) that
you might expect. You can find the full details in the UML specification
(www.omg.org/uml).

We add TimeDate to this set of OCL types. This represents a point in time
as defined in ISO 8601. You can assume that TimeDate provides a set of opera-
tions for performing calculations on time as well as comparison operations.
Most programming languages provide a type or library component that maps
onto TimeDate, so we don’t provide any more details here.

One of the unique aspects of the archetype pattern approach is that it explicitly
addresses the problem of pattern variation.

Sometimes a specific model of something, such as a model of products,
may be suitable for use in one business area but not in another. This is what we
refer to as the principle of variation: different business domains often seem to re-
quire different models of the same thing.

This principle just seems to be a fact of life. Often there is no way around it
even if you choose to make some modeling compromises.

Because of variation, the construction of generic, highly reusable object
models, such as enterprise object models, has proven to be rather difficult. You
may even have heard some pundits say that such activities have failed and are,
in principle, impossible.

However, in our experience you can succeed at such activities, and we’ll tell
you how.

Although you can’t usually make variation go away, there is always another
option. By carefully analyzing and understanding the variation, you can work
with it constructively to create archetype patterns that are adaptable and that
can change their form to adapt themselves to different business contexts.

OCL type Semantics

String Represents an ASCII string of characters

Although OCL specifies an ASCII string, you should assume that 
String in our models represents a Unicode string so that archetype pat-
terns may be used internationally—this is our only departure from OCL

Boolean Represents a value that is true or false

1.9 Variation

Table 1.4  (Continued)

Arlow_book.fm  Page 17  Thursday, December 11, 2003  11:37 AM



18 Chapter 1 Archetypes and archetype patterns

The first step in understanding variation is to look at the types of variation
possible in archetype patterns. You will find that there are three different kinds
of variation.

1. Archetype variation: archetypes may need different features (attributes, 
operations, constraints) to be effective in different business contexts.

2. Archetype pattern variation: optional features in the patterns may be 
omitted if they are not needed.

3. Pleomorphism: in this special type of archetype pattern variation, the 
pattern may take on a different structure to adapt itself to the specific re-
quirements of a business context. This may mean different archetypes, 
archetype features, and relationships in each of the variants.

We will look at these types of variation in detail in the next three sections.

This type of variation occurs when an archetype needs to be adapted to a partic-
ular business use. There are really only two ways in which an archetype may be
varied.

1. Some new features may be added.
2. Optional features may be omitted.

The key to dealing with this kind of variation successfully is to ensure that
the core semantics of the archetype remain fixed for every variant you create.
You therefore need a way to show which parts of the archetype are optional and
can be omitted from variants derived from the archetype.

In our models, we indicate that a feature is optional by using the stereotype
«o». When we mark an attribute (or operation) as optional, this means that the
feature may be omitted entirely from the class.

You can see how we indicate variability in the PartySignature archetype
shown in Figure 1.7. The attribute reason is optional and so is the operation
getAuthentication(). The attribute when is not explicitly marked as optional,
so it is mandatory. The PartySignature archetype itself is optional within the
context of the PartyArchetypePattern (in which it appears) because all arche-
types are optional by default.

1.10 Archetype variation and optionality

Arlow_book.fm  Page 18  Thursday, December 11, 2003  11:37 AM



1.10 Archetype variation and optionality 19

To understand optionality fully, consider the example shown in Figure 1.8,
which shows a simple archetype pattern that contains only a single archetype, A.
This archetype has one mandatory feature (attribute a1) and two optional fea-
tures (attribute a2 and operation o1()). When this archetype pattern is instanti-
ated in one of your models, there are four possible ways to make this instantiation,
as we show in the figure.

We assume that you make the simplest possible instantiation of the pat-
tern—you just turn the archetype into a class in your model. You can instanti-
ate the pattern manually by copying the pattern into your model yourself, or

Figure 1.7

Figure 1.8

Arlow_book.fm  Page 19  Thursday, December 11, 2003  11:37 AM



20 Chapter 1 Archetypes and archetype patterns

semi-automatically by using a suitably equipped MDA modeling tool (de-
scribed in detail in Chapter 2). Notice that the optional elements may be absent
entirely from an instantiated pattern.

This idea of optionality is very important because it allows archetypes (and
archetype patterns) to be configurable. Pattern configuration is one of the ma-
jor topics in Chapter 2.

It’s worth noting that UML also has a notion of optionality, but this is at
the instance level, rather than at the class level. UML provides a syntax to indi-
cate that a class attribute can take the value null in instances of that class. You
can do this by appending the multiplicity [0..1] to the attribute as shown in
Figure 1.9.

However, note that the slot for the attribute still exists  in an instance even
when it holds the value null. This is very different from the attribute being
truly optional.

As described in Section 1.7, any feature of an archetype pattern that is marked
with the «o» stereotype, and anything stereotyped «archetype», is optional.

For example, Figure 1.10 shows the complete Money archetype pattern, which
is fully described in Chapter 11.

Suppose that you need to use only part of this pattern. You are concerned
with Money but not  with payments or currency exchange. Furthermore, suppose
that you are interested only in ISO currencies. The archetype pattern has op-
tional features, so you can “prune” the pattern down to just the bits you need.
In this case, you would have the result shown in Figure 1.11.

You must use your judgment as a modeler to adapt the pattern in such a
way that what remains is still semantically well formed. For example, if you

1.11 Archetype pattern variation

Figure 1.9

Arlow_book.fm  Page 20  Thursday, December 11, 2003  11:37 AM


