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Chapter 4

PARSERS AND STATE
MACHINES

All the techniques presented in the prior chapters of this book have something in
common, but something that is easy to overlook. In a sense, every basic string and
regular expression operation treats strings as homogeneous. Put another way: String
and regex techniques operate on flat texts. While said techniques are largely in keeping
with the “Zen of Python” maxim that “Flat is better than nested,” sometimes the
maxim (and homogeneous operations) cannot solve a problem. Sometimes the data in
a text has a deeper structure than the linear sequence of bytes that make up strings.

It is not entirely true that the prior chapters have eschewed data structures. From
time to time, the examples presented broke flat texts into lists of lines, or of fields, or
of segments matched by patterns. But the structures used have been quite simple and
quite regular. Perhaps a text was treated as a list of substrings, with each substring
manipulated in some manner—or maybe even a list of lists of such substrings, or a list
of tuples of data fields. But overall, the data structures have had limited (and mostly
fixed) nesting depth and have consisted of sequences of items that are themselves treated
similarly. What this chapter introduces is the notion of thinking about texts as trees of
nodes, or even still more generally as graphs.

Before jumping too far into the world of nonflat texts, I should repeat a warning this
book has issued from time to time. If you do not need to use the techniques in this
chapter, you are better off sticking with the simpler and more maintainable techniques
discussed in the prior chapters. Solving too general a problem too soon is a pitfall for
application development—it is almost always better to do less than to do more. Full-
scale parsers and state machines fall to the “more” side of such a choice. As we have
seen already, the class of problems you can solve using regular expressions—or even only
string operations—is quite broad.

There is another warning that can be mentioned at this point. This book does not
attempt to explain parsing theory or the design of parseable languages. There are a lot
of intricacies to these matters, about which a reader can consult a specialized text like
the so-called “Dragon Book”—Aho, Sethi, and Ullman’s Compilers: Principle, Tech-
niques and Tools (Addison-Wesley, 1986; ISBN: 0201100886)—or Levine, Mason, and

257



“TPiP” — 2003/4/13 — 17:12 — page 258 — #278

258 PARSERS AND STATE MACHINES

Brown’s Lex & Yacc (Second Edition, O’Reilly, 1992; ISBN: 1-56592-000-7). When
Extended Backus-Naur Form (EBNF) grammars or other parsing descriptions are dis-
cussed below, it is in a general fashion that does not delve into algorithmic resolution
of ambiguities or big-O efficiencies (at least not in much detail). In practice, everyday
Python programmers who are processing texts—but who are not designing new pro-

gramming languages—mneed not worry about those parsing subtleties omitted from this
book.

4.1 An Introduction to Parsers

4.1.1 When Data Becomes Deep and Texts Become Stateful

Regular expressions can match quite complicated patterns, but they fall short when
it comes to matching arbitrarily nested subpatterns. Such nested subpatterns occur
quite often in programming languages and textual markup languages (and other places
sometimes). For example, in HTML documents, you can find lists or tables nested inside
each other. For that matter, character-level markup is also allowed to nest arbitrarily—
the following defines a valid HTML fragment:

>>> s = ’?’<p>Plain text, <i>italicized phrase,
<i>italicized subphrase</i>, <b>bold
subphrase</b></i>, <i>other italic
phrase</i></p>?’>

The problem with this fragment is that most any regular expression will match either
less or more than a desired <i> element body. For example:

>>> ital = r’’’ (7sx)<i>.+</i>’ 7
>>> for phrs in re.findall(ital, s):
print phrs, ’\n----- ’

<i>italicized phrase,
<i>italicized subphrase</i>, <b>bold
subphrase</b></i>, <i>other italic
phrase</i>

>>> ital2 = r’’? (7sx)<i>.+7</i>? 7

>>> for phrs in re.findall(ital2, s):
print phrs, ’\n----- ’

<i>italicized phrase,
<i>italicized subphrase</i>
<i>other italic
phrase</i>
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What is missing in the proposed regular expressions is a concept of state. If you
imagine reading through a string character-by-character (which a regular expression
match must do within the underlying regex engine), it would be useful to keep track of
“How many layers of italics tags am I in?” With such a count of nesting depth, it would
be possible to figure out which opening tag <i> a given closing tag </i> was meant to
match. But regular expressions are not stateful in the right way to do this.

You encounter a similar nesting in most programming languages. For example, sup-
pose we have a hypothetical (somewhat BASIC-like) language with an IF/THEN/END
structure. To simplify, suppose that every condition is spelled to match the regex
cond\d+, and every action matches act\d+. But the wrinkle is that IF/THEN/END
structures can nest within each other also. So for example, let us define the following
three top-level structures:

>>> s = PPN
IF condl THEN actl END
IF cond2 THEN

IF cond3 THEN act3 END
END
IF cond4 THEN

actd
END

230

As with the markup example, you might first try to identify the three structures using
a regular expression like:

>>> pat = r’’’(7sx)

IF \s+

cond\d+ \s+

THEN \s+

act\d+ \s+

END? ) )

>>> for stmt in re.findall(pat, s):
print stmt, ’\n----- ’

IF condl THEN actl END

IF cond4 THEN
acté
END
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This indeed finds three structures, but the wrong three. The second top-level structure
should be the compound statement that used cond2, not its child using cond3. It is not
too difficult to allow a nested IF/THEN/END structure to optionally substitute for a
simple action; for example:

>>> pat2 = 7 (?sx)(

IF \s+

cond\d+ \s+

THEN \s+

(  (IF \s+ cond\d+ \s+ THEN \s+ act\d+ \s+ END)
| (act\d+)

) \s+

END

)7;)

>>> for stmt in re.findall(pat2, s):

print stmt[0], ’\n----- ’

IF condl THEN actl END
IF cond2 THEN

IF cond3 THEN act3 END
END
IF cond4 THEN

actd
END

By manually nesting a “first order” IF/THEN/END structure as an alternative to a
simple action, we can indeed match the example in the desired fashion. But we have
assumed that nesting of IF/THEN/END structures goes only one level deep. What if
a “second order” structure is nested inside a “third order” structure—and so on, ad
infinitum? What we would like is a means of describing arbitrarily nested structures
in a text, in a manner similar to, but more general than, what regular expressions can
describe.

4.1.2 What Is a Grammar?

In order to parse nested structures in a text, you usually use something called a “gram-
mar.” A grammar is a specification of a set of “nodes” (also called “productions”)
arranged into a strictly hierarchical “tree” data structure. A node can have a name—
and perhaps some other properties—and it can also have an ordered collection of child
nodes. When a document is parsed under a grammar, no resultant node can ever be a
descendent of itself; this is another way of saying that a grammar produces a tree rather

than a graph.
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In many actual implementations, such as the famous C-based tools lex and yacc,
a grammar is expressed at two layers. At the first layer, a “lexer” (or “tokenizer”)
produces a stream of “tokens” for a “parser” to operate on. Such tokens are frequently
what you might think of as words or fields, but in principle they can split the text
differently than does our normal idea of a “word.” In any case tokens are nonoverlapping
subsequences of the original text. Depending on the specific tool and specification used,
some subsequences may be dropped from the token stream. A “zero-case” lexer is one
that simply treats the actual input bytes as the tokens a parser operates on (some
modules discussed do this, without losing generality).

The second layer of a grammar is the actual parser. A parser reads a stream or
sequence of tokens and generates a “parse tree” out of it. Or rather, a tree is gener-
ated under the assumption that the underlying input text is “well-formed” according
to the grammar—that is, there is a way to consume the tokens within the grammar
specification. With most parser tools, a grammar is specified using a variant on EBNF.

An EBNF grammar consists of a set of rule declarations, where each rule allows similar
quantification and alternation as that in regular expressions. Different tools use slightly
different syntax for specifying grammars, and different tools also differ in expressivity
and available quantifiers. But almost all tools have a fairly similar feel in their grammar
specifications. Even the DTDs used in XML dialect specifications (see Chapter 5) have
a very similar syntax to other grammar languages—which makes sense since an XML
dialect is a particular grammar. A DTD entry looks like:

<!ELEMENT body ((example-column | image-column)?, text-column) >

In brief, under the sample DTD, a <body> element may contain either one or zero
occurrences of a “first thing”—that first thing being either an <example-column> or an
<image-column>. Following the optional first component, exactly one <text-column>
must occur. Of course, we would need to see the rest of the DTD to see what can go
in a <text-column>, or to see what other element(s) a <body> might be contained in.
But each such rule is similar in form.

A familiar EBNF grammar to Python programmers is the grammar for Python it-
self. On many Python installations, this grammar as a single file can be found at a
disk location like [...]/Python22/Doc/ref/grammar.txt. The online and download-
able Python Language Reference excerpts from the grammar at various points. As an
example, a floating point number in Python is identified by the specification:

EBNF-style description of Python floating point

floatnumber ::= pointfloat | exponentfloat
pointfloat ::= [intpart] fraction | intpart "."
exponentfloat ::= (intpart | pointfloat) exponent
intpart 1= digit+

fraction ci= "M digit+

exponent ce= (uen I "E") [u+u | n_n] digit+

digit si=mQML L nQY
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The Python grammar is given in an EBNF variant that allows considerable expres-
sivity. Most of the tools this chapter discusses are comparatively limited (but are still
ultimately capable of expressing just as general grammars, albeit more verbosely). Both
literal strings and character ranges may be specified as part of a production. Alternation
is expressed with “|”. Quantifications with both “+” and “*” are used. These features
are very similar to those in regular expression syntax. Additionally, optional groups are
indicated with square brackets (“[” and “1”), and mandatory groups with parentheses.
Conceptually the former is the same as the regex “?” quantifier.

Where an EBNF grammar goes beyond a regular expression pattern is in its use of
named terms as parts of patterns. At first glance, it might appear possible simply to
substitute regular expression patterns for named subexpressions. In fact, in the floating
point pattern presented, we could simply do this as:

Regular expression to identify a floating point

pat = r’?’(7x)
( # exponentfloat
( # intpart or pointfloat
( # pointfloat
(\d+)7[.]J\d+ # optional intpart with fraction
|
\d+[.] # intpart with period
) # end pointfloat
|
\d+ # intpart
) # end intpart or pointfloat
[eE] [+-17\d+ # exponent
) # end exponentfloat
|
( # pointfloat
A\d+)7[.I\d+ # optional intpart with fraction
|
\d+[.] # intpart with period
) # end pointfloat

)2

As a regular expression, the description is harder to read, even with the documenta-
tion added to a verbose regex. The EBNF grammar is more or less self-documenting.
Moreover, some care had to be taken about the order of the regular expression—the
exponentfloat alternative is required to be listed before the pointfloat alternative
since the latter can form a subsequence of the latter. But aside from the need for a little
tweaking and documentation, the regular expression above is exactly as general—and
exactly equivalent—to the Python grammar for a floating point number.

You might wonder, therefore, what the point of a grammar is. It turns out that a
floating point number is an unusually simple structure in one very specific respect. A
floatnumber requires no recursion or self-reference in its definition. Everything that
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makes up a floatnumber is something simpler, and everything that makes up one of
those simpler components is itself made up of still simpler ones. You reach a bottom in
defining a Python floating point number.

In the general case, structures can recursively contain themselves, either directly or
by containing other structures that in turn contain the first structures. It is not even
entirely absurd to imagine floating point numbers with such a grammar (whatever lan-
guage had them would not be Python, however). For example, the famous number a
“googol” was defined in 1938 by Edward Kasner as 10 to the 100th power (otherwise
called “10 dotrigintillion”). As a Python floating point, you could write this as 1e100.
Kasner also defined a “googolplex” as 10 to the googol power (a number much larger
than anyone needs for any practical reason). While you can create a Python expression
to name a googolplex—for example, 10¥*1e100—it is not difficult to conceive a pro-
gramming language that allowed the term 1e1e100 as a name for a googolplex. By the
way: If you try to actually compute a googolplex in Python (or any other programming
language), you will be in for disappointment; expect a frozen computer and/or some
sort of crash or overflow. The numbers you can express in most language grammars are
quite a bit more numerous than those your computer can actually do anything with.

Suppose that you wanted to allow these new “extended” floating point terms in a lan-
guage. In terms of the grammar, you could just change a line of the EBNF description:

exponent ::= ("e" | "E") ["+" | "-"] floatnumber

In the regular expression, the change is a problem. A portion of the regular expression
identifies the (optional) exponent:

[eE] [+-]17\d+ # exponent

In this case, an exponent is just a series of digit characters. But for “extended” float-
ing point terms, the regular expression would need to substitute the entire pat regular
expression in place of \d+. Unfortunately, this is impossible, since each replacement
would still contain the insufficient \d+ description, which would again require substitu-
tion. The sequence of substitutions continues ad infinitum, until the regular expression
is infinitely long.

4.1.3 An EBNF Grammar for IF/THEN/END Structures

The IF/THEN/END language structure presented above is a more typical and realistic
example of nestable grammatical structures than are our “extended” floating point
numbers. In fact, Python—along with almost every other programming language—
allows precisely such if statements inside other if statements. It is worthwhile to look
at how we might describe our hypothetical simplified IF/THEN/END structure in the
same EBNF variant used for Python’s grammar.

Recall first our simplified rules for allowable structures: The keywords are IF, THEN,
and END, and they always occur in that order within a completed structure. Keywords
in this language are always in all capitals. Any whitespace in a source text is insignif-
icant, except that each term is separated from others by at least some whitespace.
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Every condition is spelled to match the regular expression cond\d+. Every IF “body”
either contains an action that matches the regular expression act\d+, or it contains
another IF/THEN/END structure. In our example, we created three IF/THEN/END
structures, one of which contained a nested structure:

IF condl THEN actl END
IF cond2 THEN

IF cond3 THEN act3 END
END
IF cond4 THEN

actd
END

Let us try a grammar:

EBNF grammar for IF/THEN/END structures

if_expr ::= "IF" ws cond ws "THEN" ws action ws "END"
whitechar ::= " " | "\t" I ll\nll | n\rn I u\fu | "\V"
S ::= whitechar+

digit = Q"L O

number 1= digit+

cond ::= "cond" number

action ::= simpleact | if_expr

simpleact ::= "act" number

This grammar is fairly easy to follow. It defines a few “convenience” productions
like ws and number that consist of repetitions of simpler productions. whitechar is
defined as an explicit alternation of individual characters, as is digit for a continuous
range. Taken to the extreme, every production could actually be included in a much
more verbose if_expr production—you would just substitute all the right-hand sides
of nested productions for the names in the if_expr production. But as given, the
grammar is much easier to read. The most notable aspect of this grammar is the
action production, since an action can itself recursively contain an if_expr.

For this problem, the reader is encouraged to develop grammars for some more robust
variations on the very simple IF/THEN/END language we have looked at. As is evident,
it is difficult to actually do much with this language by itself, even if its actions and
conditions are given semantic meaning outside the structure. Readers can invent their
own variations, but a few are proposed below.

4.1.4 Pencil-and-Paper Parsing

To test a grammar at this point, just try to expand each successive character into
some production that is allowed at that point in the parent production, using pencil



“¢TPiP’’ --- 2003/4/13 --- 17:12 —-—- page 265 ——— #285

4.1 An Introduction to Parsers 265

and paper. Think of the text of test cases as a tape: Each symbol either completes
a production (if so, write the satisfied production down next to the subsequence), or
the symbol is added to the “unsatisfied register.” There is one more rule to follow with
pencil and paper, however: It is better to satisfy a production with a longer subsequence
than a shorter one. If a parent production consists of child productions, the children
must be satisfied in the specified order (and in the quantity required). For now, assume
only one character of lookahead in trying to follow this rule. For example, suppose you
find the following sequence in a test case:

"IF condl..."
Your steps with the pencil would be something like this:

1. Read the “I”—no production is satisfied.

2. Read the “F”, unsatisfied becomes “I”’-"F”. Note that “I”-”F” matches the literal
term in if_expr (a literal is considered a production). Since the literal term
contains no quantifiers or alternates, write down the “IF” production. Unsatisfied
becomes empty.

3. Read the space, Unsatisfied becomes simply a space. Space satisfies the production
ws, but hold off for a character since ws contains a quantifier that allows a longer
substring to satisfy it.

4. Read the second space, unsatisfied becomes space-space. Space-space satisfies the
production ws. But again hold off for a character.

5. Read the third space, unsatisfied becomes space-space-space. This again satisfies
the production ws. But keep holding off for the next character.

6. Read the “c”, unsatisfied becomes “space-space-space-c”. This does not satisfy

[1P=2

any production, so revert to the production in 5. Unsatisfied becomes “c”.

7. Et cetera.

If you get to the last character, and everything fits into some production, the test case
is valid under the grammar. Otherwise, the test case is nongrammatical. Try a few
IF/THEN/END structures that you think are and are not valid against the provided
grammar.

4.1.5 Exercise: Some variations on the language

1. Create and test an IF/THEN/END grammar that allows multiple actions to occur
between the THEN and the END. For example, the following structures are valid
under this variation:

IF condl THEN actl act2 act3 END
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IF cond2 THEN
IF cond3 THEN act3 END
IF cond4 THEN act4 END
END

IF cond5 THEN IF cond6 THEN act6 act7 END act8 END

Create and test an IF/THEN/END grammar that allows for arithmetic compar-
isons of numbers as conditions (as an enhancement of variation 1, if you wish).
Specifically, a comparison consists of two numbers with one of “<”, “>” or “="
between them. There might or might not be any whitespace between a compari-
son symbol and surrounding numbers. Use your judgment about what a number
consists of (the Python floating point grammar might provide an example, but
yours could be simpler).

Create and test an IF/THEN/END grammar that includes a loop expression as a
valid action. A loop consists of the keyword LOOP, followed by a positive integer,
followed by action(s), and terminated by the END keyword. Loops should be
considered actions, and therefore ifs and loops can be contained inside one another;
for example:

IF condl THEN
LOOP 100
IF cond2 THEN
act2
END
END
END

You can make this LOOP-enhanced grammar an enhancement of whichever vari-
ant you wish.

. Create and test an IF/THEN/END grammar that includes an optional ELSE key-

word. If an ELSE occurs, it is within an IF body, but ELSE might not occur. An
ELSE has its own body that can contain action(s). For example (assuming variant

1):

IF condl THEN
actl
act2
ELSE
act3
actd
END
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5. Create and test an IF/THEN/END grammar that may include zero actions inside
an IF, ELSE, or LOOP body. For example, the following structures are valid under
this variant:

IF condl THEN

ELSE act2

END

—k—

IF condl THEN
LOOP 100 END

ELSE

END

4.2 An Introduction to State Machines

State machines, in a theoretical sense, underlay almost everything computer- and
programming-related. But a Python programmer does not necessarily need to con-
sider highly theoretical matters in writing programs. Nonetheless, there is a large class
of ordinary programming problems where the best and most natural approach is to
explicitly code a state machine as the solution. At heart, a state machine is just a way
of thinking about the flow control in an application.

A parser is a specialized type of state machine that analyzes the components and
meaning of structured texts. Generally a parser is accompanied by its own high-level
description language that describes the states and transitions used by the implied state
machine. The state machine is in turn applied to text obeying a “grammar.”

In some text processing problems, the processing must be stateful: How we handle
the next bit of text depends upon what we have done so far with the prior text. In
some cases, statefulness can be naturally expressed using a parser grammar, but in other
cases the state has more to do with the semantics of the prior text than with its syntax.
That is, the issue of what grammatical properties a portion of a text has is generally
orthogonal to the issue of what predicates it fulfills. Concretely, we might calculate
some arithmetic result on numeric fields, or we might look up a name encountered in a
text file in a database, before deciding how to proceed with the text processing. Where
the parsing of a text depends on semantic features, a state machine is often a useful
approach.

Implementing an elementary and generic state machine in Python is simple to do,
and may be used for a variety of purposes. The third-party C-extension module
mx. Text Tools, which is discussed later in this chapter, can also be used to create far
faster state machine text processors.

4.2.1 Understanding State Machines

A much too accurate description of a state machine is that it is a directed graph,
consisting of a set of nodes and a set of transition functions. Such a machine “runs” by
responding to a series of events; each event is in the domain of the transition function of
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the “current” node, where the range is a subset of the nodes. The function return is a
“next” (maybe self-identical) node. A subset of the nodes are end-states; if an end-state
is reached, the machine stops.

An abstract mathematical description—Ilike the one above—is of little use for most
practical programming problems. Equally picayune is the observation that every pro-
gram in an imperative programming language like Python is a state machine whose
nodes are its source lines (but not really in a declarative—functional or constraint-
based—language such as Haskell, Scheme, or Prolog). Furthermore, every regular ex-
pression is logically equivalent to a state machine, and every parser implements an
abstract state machine. Most programmers write lots of state machines without re-
ally thinking about it, but that fact provides little guidance to specific programming
techniques.

An informal, heuristic definition is more useful than an abstract one. Often we en-
counter a program requirement that includes a handful of distinct ways of treating
clusters of events. Furthermore, it is sometimes the case that individual events need to
be put in a context to determine which type of treatment is appropriate (as opposed to
each event being “self-identifying”). The state machines discussed in this introduction
are high-level machines that are intended to express clearly the programming require-
ments of a class of problems. If it makes sense to talk about your programming problem
in terms of categories of behavior in response to events, it is likely to be a good idea to
program the solution in terms of explicit state machines.

4.2.2 Text Processing State Machines

One of the programming problems most likely to call for an explicit state machine is
processing text files. Processing a text file very often consists of sequential reading of
each chunk of a text file (typically either a character or a line), and doing something
in response to each chunk read. In some cases, this processing is “stateless”—that
is, each chunk has enough information internally to determine exactly what to do in
response to that chunk of text. And in other cases, even though the text file is not 100
percent stateless, there is a very limited context to each chunk (for example, the line
number might matter for the action taken, but not much else besides the line number).
But in other common text processing problems, the text files we deal with are highly
“stateful”—the meaning of a chunk depends on what types of chunks preceded it (and
maybe even on what chunks come next). Files like report files, mainframe data-feeds,
human-readable texts, programming source files, and other sorts of text files are stateful.
A very simple example of a stateful chunk is a line that might occur in a Python source
file:*

myObject = SomeClass(this, that, other)

That line means something very different if it happens to be surrounded by these
lines:

"""How to use SomeClass:
myObject = SomeClass(this, that, other)
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That is, we needed to know that we were in a “blockquote” state to determine that
the line was a comment rather than an action. Of course, a program that deals with
Python programs in a more general way will usually use a parser and grammar.

4.2.3 When Not to Use a State Machine

When we begin the task of writing a processor for any stateful text file, the first question
we should ask ourselves is “What types of things do we expect to find in the file?” Each
type of thing is a candidate for a state. These types should be several in number, but if
the number is huge or indefinite, a state machine is probably not the right approach—
maybe some sort of database solution is appropriate. Or maybe the problem has not
been formulated right if there appear to be that many types of things.

Moreover, we are not quite ready for a state machine yet; there may yet be a simpler
approach. It might turn out that even though our text file is stateful there is an easy
way to read in chunks where each chunk is a single type of thing. A state machine is
really only worth implementing if the transitions between types of text require some
calculation based on the content within a single state-block.

An example of a somewhat stateful text file that is nonetheless probably not best
handled with a state machine is a Windows-style .ini file (generally replaced nowadays
by use of the binary-data-with-API Windows registry). Those files consist of some
section headers, some comments, and a number of value assignments. For example:

File: hypothetical.ini

; set the colorscheme and userlevel
[colorscheme]

background=red

foreground=blue

title=green

[userlevell
login=2

; admin=0
title=1

This example has no real-life meaning, but it was constructed to indicate some fea-
tures of the .ini format. (1) In one sense, the type of each line is determined by its first
character (either semicolon, left brace, or alphabetic). (2) In another sense, the format
is “stateful” insofar as the keyword “title” presumably means something independent
when it occurs in each section. You could program a text processor that had a COL-
ORSCHEME state and a USERLEVEL state, and processed the value assignments of
each state. But that does not seem like the right way to handle this problem.

On the one hand, we could simply create the natural chunks in this text file with
some Python code like:
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Chunking Python code to process .ini file

txt = open(’hypothetical.ini’).read()
from string import strip, split
nocomm = lambda s: s[0] != 73’ # "no comment" util

eq2pair = lambda s: split(s,’=’) # assignmet -> pair

def assignments(sect):
name, body = split(sect,’]’) # identify name, body
assigns = split(body,’\n’) # find assign lines
assigns = filter(strip, assigns) # remove outside space
assigns = filter(None, assigns) # remove empty lines
assigns = filter(nocomm, assigns) # remove comment lines
assigns = map(eq2pair, assigns) # make name/val pairs
assigns = map(tuple, assigns) # prefer tuple pairs
return (name, assigns)

sects = split(txt,’[’) # divide named sects

sects = map(strip, sects) # remove outside newlines

sects = filter(nocomm, sects) # remove comment sects

config = map(assignments, sects) # find assigns by sect

pprint.pprint (config)

Applied to the hypothetical.ini file above, this code produces output similar to:

[(°’colorscheme’,
[(°background’, ’red’),
(’foreground’, ’blue’),
(’title’, ’green’)]),
(’userlevel’,
[(’login’, ’2°),
(title’, ’17)1)]

This particular list-oriented data structure may or may not be what you want, but it is
simple enough to transform this into dictionary entries, instance attributes, or whatever
is desired. Or slightly modified code could generate other data representations in the
first place.

An alternative approach is to use a single current_section variable to keep track of
relevant state and process lines accordingly:

for line in open(’hypothetical.ini’).readlines():
if line[0] == *[’:
current_section = line[1:-2]
elif line[0] == ’;’:
pass # ignore comments
else:
apply_value(current_section, line)
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Sidebar: A digression on functional programming

Readers will have noticed that the .ini chunking code given in the example above has
more of a functional programming (FP) style to it than does most Python code (in
this book or elsewhere). T wrote the presented code this way for two reasons. The more
superficial reason is just to emphasize the contrast with a state machine approach. Much
of the special quality of FP lies in its eschewal of state (see the discussion of functional
programming in Chapter 1); so the example is, in a sense, even farther from a state
machine technique than would be a coding style that used a few nested loops in place
of the map() and filter() calls.

The more substantial reason I adopted a functional programming style is because I
feel that this type of problem is precisely the sort that can often be expressed more
compactly and more clearly using FP constructs. Basically, our source text document
expresses a data structure that is homogeneous at each level. Each section is similar to
other sections; and within a section, each assignment is similar to others. A clear—and
stateless—way to manipulate these sorts of implicit structures is applying an operation
uniformly to each thing at a given level. In the example, we do a given set of operations
to find the assignments contained within a section, so we might as well just map() that
set of operations to the collection of (massaged, noncomment) sections. This approach
is more terse than a bunch of nested for loops, while simultaneously (in my opinion)
better expressing the underlying intention of the textual analysis.

Use of a functional programming style, however, can easily be taken too far. Deeply
nested calls to map(), reduce(), and filter() can quickly become difficult to read,
especially if whitespace and function/variable names are not chosen carefully. Inasmuch
as it is possible to write “obfuscated Python” code (a popular competition for other
languages), it is almost always done using FP constructs. Warnings in mind, it is
possible to create an even terser and more functional variant of the .ini chunking code
(that produces identical results). I believe that the following falls considerably short of
obfuscated, but will still be somewhat more difficult to read for most programmers. On
the plus side, it is half the length of the prior code and is entirely free of accidental side
effects:

Strongly functional code to process .ini file

from string import strip, split

eq2tup = lambda s: tuple(split(s,’=’))

splitnames = lambda s: split(s,’]’)

parts = lambda s, delim: map(strip, split(s, delim))

useful = lambda ss: filter(lambda s: s and s[0]!=’;’, ss)

config = map(lambda _:(_[0], map(eq2tup, useful(parts(_[1],’\n’)))),
map(splitnames, useful(parts(txt,’[’))) )

pprint.pprint(config)

In brief, this functional code says that a configuration consists of a list of pairs of
(1) names plus (2) a list of key/value pairs. Using list comprehensions might make this
expression clearer, but the example code is compatible back to Python 1.5. Moreover,
the utility function names useful () and parts() go a long way towards keeping the
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example readable. Utility functions of this sort are, furthermore, potentially worth
saving in a separate module for other use (which, in a sense, makes the relevant .ini
chunking code even shorter).

A reader exercise is to consider how the higher-order functions proposed in Chapter
1’s section on functional programming could further improve the sort of “stateless” text
processing presented in this subsection.

4.2.4 When to Use a State Machine

Now that we have established not to use a state machine if the text file is “too simple,”
we should look at a case where a state machine is worthwhile. The utility Txt2Html is
listed in Appendix D. Txt2Html converts “smart ASCII” files to HTML.

In very brief recap, smart ASCII format is a text format that uses a few spacing
conventions to distinguish different types of text blocks, such as headers, regular text,
quotations, and code samples. While it is easy for a human reader or writer to visually
parse the transitions between these text block types, there is no simple way to chunk a
whole text file into its text blocks. Unlike in the .ini file example, text block types can
occur in any pattern of alternation. There is no single delimiter that separates blocks
in all cases (a blank line usually separates blocks, but a blank line within a code sample
does not necessarily end the code sample, and blocks need not be separated by blank
lines). But we do need to perform somewhat different formatting behavior on each text
block type for the correct final XML output. A state machine suggests itself as a natural
solution here.

The general behavior of the Txt2Html reader is as follows: (1) Start in a particular
state. (2) Read a line of the text file and go to current state context. (3) Decide if
conditions have been met to leave the current state and enter another. (4) Failing (3),
process the line in a manner appropriate for the current state. This example is about
the simplest case you would encounter, but it expresses the pattern described:

A simple state machine input loop in Python

global state, blocks, newblock
for line in fpin.readlines():
if state == "HEADER": # blank line means new block of ?
if blankln.match(line): newblock = 1
elif textln.match(line): startText(line)
elif codeln.match(line): startCode(line)
else:
if newblock: startHead(line)
else: blocks[-1] += line
elif state == "TEXT": # blank line means new block of 7
if blankln.match(line): newblock = 1
elif headln.match(line): startHead(line)
elif codeln.match(line): startCode(line)
else:
if newblock: startText(line)
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else: blocks[-1] += line
elif state == "CODE": # blank line does not change state
if blankln.match(line): blocks[-1] += line
elif headln.match(line): startHead(line)
elif textln.match(line): startText(line)
else: blocks[-1] += line
else:
raise ValueError, "unexpected input block state: "+state

The only real thing to notice is that the variable state is declared global, and
its value is changed in functions like startText(). The transition conditions—such
as textln.match()—are regular expression patterns, but they could just as well be
custom functions. The formatting itself is actually done later in the program; the state
machine just parses the text file into labeled blocks in the blocks list. In a sense, the
state machine here is acting as a tokenizer for the later block processor.

4.2.5 An Abstract State Machine Class

It is easy in Python to abstract the form of a state machine. Coding in this manner
makes the state machine model of the program stand out more clearly than does the
simple conditional block in the previous example (which doesn’t right away look all that
much different from any other conditional). Furthermore, the class presented—and the
associated handlers—does a very good job of isolating in-state behavior. This improves
both encapsulation and readability in many cases.

File: statemachine.py

class InitializationError (Exception): pass

class StateMachine:
def __init__(self):
self.handlers = []
self.startState = None
self.endStates = []

def add_state(self, handler, end_state=0):
self .handlers.append(handler)
if end_state:
self.endStates.append (name)

def set_start(self, handler):
self.startState = handler

def run(self, cargo=None):
if not self.startState:
raise InitializationError,\
"must call .set_start() before .run()"
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if not self.endStates:
raise InitializationError, \
"at least one state must be an end_state"
handler = self.startState
while 1:
(newState, cargo) = handler(cargo)
if newState in self.endStates:
newState (cargo)
break
elif newState not in self.handlers:
raise RuntimeError, "Invalid target %s" % newState
else:
handler = newState

The StateMachine class is really all you need for the form of a state machine. It is a
whole lot fewer lines than something similar would require in most languages—mostly
because of the ease of passing function objects in Python. You could even save a few
lines by removing the target state check and the self.handlers list, but the extra
formality helps enforce and document programmer intention.

To actually use the StateMachine class, you need to create some handlers for each
state you want to use. A handler must follow a particular pattern. Generally, it should
loop indefinitely; but in any case it must have some breakout condition(s). Each pass
through the state handler’s loop should process another event of the state’s type. But
probably even before handling events, the handler should check for breakout conditions
and determine what state is appropriate to transition to. At the end, a handler should
pass back a tuple consisting of the target state’s name and any cargo the new state
handler will need.

An encapsulation device is the use of cargo as a variable in the StateMachine class
(not necessarily called cargo by the handlers). This is used to pass around “whatever
is needed” by one state handler to take over where the last state handler left off. Most
typically, cargo will consist of a file handle, which would allow the next handler to read
some more data after the point where the last state handler stopped. But a database
connection might get passed, or a complex class instance, or a tuple with several things
in it.

4.2.6 Processing a Report with a Concrete State Machine

A moderately complicated report format provides a good example of some process-
ing amenable to a state machine programming style—and specifically, to use of the
StateMachine class above. The hypothetical report below has a number of state-
sensitive features. Sometimes lines belong to buyer orders, but at other times the
identical lines could be part of comments or the heading. Blank lines, for example, are
processed differently from different states. Buyers, who are each processed according to
different rules, each get their own machine state. Moreover, within each order, a degree
of stateful processing is performed, dependent on locally accumulated calculations:
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Sample Buyer/Order Report

MO

NTHLY REPORT -- April 2002

Rules:

>>

Each buyer has price schedule for each item (func of quantity).
Each buyer has a discount schedule based on dollar totals.
Discounts are per-order (i.e., contiguous block)

Buyer listing starts with line containing ">>", then buyer name.
Item quantities have name-whitespace-number, one per line.
Comment sections begin with line starting with an asterisk,

and ends with first line that ends with an asterisk.

Acme Purchasing
widgets 100
whatzits 1000
doodads 5000

dingdongs 20

* Note to Donald: The best contact for Acme is Debbie Franlin, at
* 413-555-0001. Fallback is Sue Fong (call switchboard). *

>>

do

Megamart

odads 10k

whatzits bk

>>

*

*

Fly-by-Night Sellers
widgets 500
whatzits 4
flazs 1000

Note to Harry: Have Sales contact FbN for negotiations *

Known buyers:

>>
>>
>>
*

X%

>>
wi

Acme
Megamart
Standard (default discounts)

* LATE ADDITIONS **x*
Acme Purchasing
dgets 500 (rush shipment)**
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The code to processes this report below is a bit simplistic. Within each state, almost
all the code is devoted merely to deciding when to leave the state and where to go next.
In the sample, each of the “buyer states” is sufficiently similar that they could well be
generalized to one parameterized state; but in a real-world application, each state is
likely to contain much more detailed custom programming for both in-state behavior
and out-from-state transition conditions. For example, a report might allow different
formatting and fields within different buyer blocks.

buyer_invoices.py

from statemachine import StateMachine

from buyers import STANDARD, ACME, MEGAMART

from pricing import discount_schedules, item_prices
import sys, string

#-- Machine States

def error(cargo):
# Don’t want to get here! Unidentifiable line
sys.stderr.write(’Unidentifiable line:\n’+ line)

def eof(cargo):
# Normal termination -- Cleanup code might go here.
sys.stdout.write(’Processing Successful\n’)

def read_through(cargo):
# Skip through headers until buyer records are found
fp, last = cargo

while 1:
line = fp.readline()
if not line: return eof, (fp, line)
elif line[:2] == ’>>’: return whichbuyer(line), (fp, line)
elif line[0] == ’%’: return comment, (fp, line)
else: continue

def comment (cargo):
# Skip comments
fp, last = cargo

if len(last) > 2 and string.rstrip(last)[-1:] == ’x’:
return read_through, (fp, ’’)
while 1:

# could save or process comments here, if desired

line = fp.readline()

lastchar = string.rstrip(line) [-1:]

if not line: return eof, (fp, line)

elif lastchar == ’*’: return read_through, (fp, line)
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def STANDARD(cargo, discounts=discount_schedules[STANDARD],
prices=item_prices[STANDARD]):
fp, company = cargo
invoice = 0
while 1:
line = fp.readline()
nextstate = buyerbranch(line)

if nextstate == 0: continue # blank line

elif nextstate == 1: # order item
invoice = invoice + calc_price(line, prices)

else: # create invoice

pr_invoice(company, ’standard’, discount(invoice,discounts))
return nextstate, (fp, line)

def ACME(cargo, discounts=discount_schedules[ACME],
prices=item_prices[ACME]):
fp, company = cargo
invoice = 0
while 1:
line = fp.readline()
nextstate = buyerbranch(line)

if nextstate == 0: continue # blank line

elif nextstate == 1: # order item
invoice = invoice + calc_price(line, prices)

else: # create invoice

pr_invoice(company, ’negotiated’, discount(invoice,discounts))
return nextstate, (fp, line)

def MEGAMART(cargo, discounts=discount_schedules[MEGAMART],
prices=item_prices [MEGAMART]) :
fp, company = cargo
invoice = 0
while 1:
line = fp.readline()
nextstate = buyerbranch(line)

if nextstate == 0: continue # blank line

elif nextstate == 1: # order item
invoice = invoice + calc_price(line, prices)

else: # create invoice

pr_invoice(company, ’negotiated’, discount(invoice,discounts))
return nextstate, (fp, line)

#-- Support function for buyer/state switch
def whichbuyer(line):
# What state/buyer does this line identify?
line = string.upper(string.replace(line, ’-’, ’’))
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find = string.find

if find(line,’ACME’) >= 0: return ACME
elif find(line,’MEGAMART’)>= 0: return MEGAMART
else: return STANDARD

def buyerbranch(line):

if not line: return eof

elif not string.strip(line): return 0

elif 1line[0] == ’%’: return comment

elif line[:2] == ’>>’: return whichbuyer (line)
else: return 1

#-- General support functions
def calc_price(line, prices):
product, quant = string.split(line) [:2]
quant = string.replace(string.upper(quant),’K’,’000’)
quant = int(quant)
return quant*prices[product]

def discount(invoice, discounts):
multiplier = 1.0
for threshhold, percent in discounts:
if invoice >= threshhold: multiplier = 1 - float(percent)/100
return invoicexmultiplier

def pr_invoice(company, disctype, amount):
print "Company name:", company[3:-1], " (/s discounts)" % disctype
print "Invoice total: $", amount, ’\n’

if __name__== "__main__":

= StateMachine ()
.add_state(read_through)
.add_state (comment)

.add_state (STANDARD)
.add_state (ACME)

.add_state (MEGAMART)
.add_state(error, end_state=1)
.add_state(eof, end_state=1)
.set_start(read_through)
.run((sys.stdin, ’’))

B B888BB8BB88B88.I
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The body of each state function consists mostly of a while 1: loop that sometimes
breaks out by returning a new target state, along with a cargo tuple. In our particular
machine, cargo consists of a file handle and the last line read. In some cases, the line
that signals a state transition is also needed for use by the subsequent state. The cargo
could contain whatever we wanted. A flow diagram lets you see the set of transitions
easily:

STAN

\ — comment

Figure 4.1: Buyer state machine diagram

All of the buyer states are “initialized” using default argument values that are never
changed during calls by a normal state machine .run() cycle. You could also perhaps
design state handlers as classes instead of as functions, but that feels like extra concep-
tual overhead to me. The specific initializer values are contained in a support module
that looks like:
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pricing.py support data
from buyers import STANDARD, ACME, MEGAMART, BAGOBOLTS
# Discount consists of dollar requirement and a percentage reduction
# Each buyer can have an ascending series of discounts, the highest
# one applicable to a month is used.
discount_schedules = {
STANDARD : [(5000,10),(10000,20), (15000,30), (20000,40)1],
ACME : [(1000,10), (5000,15), (10000,30), (20000,40)],
MEGAMART : [(2000,10), (5000,20),(10000,25),(30000,50)],
BAGOBOLTS : [(2500,10),(5000,15),(10000,25),(30000,50)],

}
item_prices = {

STANDARD : {’widgets’:1.0, ’whatzits’:0.9, ’doodads’:1.1,
’dingdongs’:1.3, ’flazs’:0.7},

ACME : {’widgets’:0.9, ’whatzits’:0.9, ’doodads’:1.0,
’dingdongs’:0.9, ’flazs’:0.6},

MEGAMART : {’widgets’:1.0, ’whatzits’:0.8, ’doodads’:1.0,
’dingdongs’:1.2, ’flazs’:0.7},

BAGOBOLTS : {’widgets’:0.8, ’whatzits’:0.9, ’doodads’:1.1,
’dingdongs’:1.3, ’flazs’:0.5},

}

In place of reading in such a data structure, a full application might calculate some
values or read them from a database of some sort. Nonetheless, the division of data,
state logic, and abstract flow into separate modules makes for a good design.

4.2.7 Subgraphs and State Reuse

Another benefit of the state machine design approach is that you can use different start
and end states without touching the state handlers at all. Obviously, you do not have
complete freedom in doing so—if a state branches to another state, the branch target
needs to be included in the list of “registered” states. You can, however, add homonymic
handlers in place of target processing states. For example:

Creating end states for subgraphs
from statemachine import StateMachine
from BigGraph import *
def subgraph_end(cargo): print "Leaving subgraph..."
foo = subgraph_end
bar = subgraph_end
def spam_return(cargo): return spam, None
baz = spam_return

P
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if __name__==’__main__’:
m = StateMachine()
m.add_state(foo, end_state=1)
m.add_state(bar, end_state=1)
m.add_state(baz)
map(m.add_state, [spam, eggs, bacon])
m.set_start (spam)
m.run(None)

In a complex state machine graph, you often encounter relatively isolated subgraphs.
That is, a particular collection of states—i.e., nodes—might have many connections
between them, but only a few connections out to the rest of the graph. Usually this
occurs because a subgraph concerns a related set of functionality.

For processing the buyer report discussed earlier, only seven states were involved, so
no meaningful subgraphs really exist. But in the subgraph example above, you can
imagine that the BigGraph module contains hundreds or thousands of state handlers,
whose targets define a very complex complete graph. Supposing that the states spam,
eggs, and bacon define a useful subgraph, and all branches out of the subgraph lead to
foo, bar, or baz, the code above could be an entire new application.

The example redefined foo and bar as end states, so processing (at least in that par-
ticular StateMachine object) ends when they are reached. However, baz is redefined
to transition back into the spam-eggs-bacon subgraph. A subgraph exit need not repre-
sent a termination of the state machine. It is actually the end_state flag that controls
termination—but if foo was not marked as an end state, it would raise a RuntimeError
when it failed to return a valid state target.

If you create large graphs—especially with the intention of utilizing subgraphs as state
machines—it is often useful to create a state diagram. Pencil and paper are perfectly
adequate tools for doing this; a variety of flow-chart software also exists to do it on a
computer. The goal of a diagram is to allow you to identify clustered subgraphs and
most especially to help identify paths in and out of a functional subgraph. A state
diagram from our buyer report example is given as illustration. A quick look at Figure
4.1, for example, allows the discovery that the error end state is isolated, which might
not have been evident in the code itself. This is not a problem, necessarily; a future
enhancement to the diagram and handlers might utilize this state, and whatever logic
was written into it.

4.2.8 Exercise: Finding other solutions

1. On the face of it, a lot of “machinery” went into processing what is not really that
complicated a report above. The goal of the state machine formality was both to
be robust and to allow for expansion to larger problems. Putting aside the state
machine approach in your mind, how else might you go about processing reports
of the presented type (assume that “reasonable” variations occur between reports
of the same type).

Try writing a fresh report processing application that produces the same results as
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the presented application (or at least something close to it). Test your application
against the sample report and against a few variants you create yourself.

What errors did you encounter running your application? Why? Is your applica-
tion more concise than the presented one? Which modules do you count as part
of the presented application? Is your application’s code clearer or less clear to
follow for another programmer? Which approach would be easier to expand to
encompass other report formats? In what respect is your application better /worse
than the state machine example?

2. The error state is never actually reached in the buyer_invoices.py application.
What other transition conditions into the error state would be reasonable to
add to the application? What types of corruption or mistakes in reports do you
expect most typically to encounter? Sometimes reports, or other documents, are
flawed, but it is still desirable to utilize as much of them as possible. What are
good approaches to recover from error conditions? How could you express those
approaches in state machine terms, using the presented StateMachine class and
framework?

4.3 Parser Libraries for Python

4.3.1 Specialized Parsers in the Standard Library

Python comes standard with a number of modules that perform specialized parsing
tasks. A variety of custom formats are in sufficiently widespread use that it is convenient
to have standard library support for them. Aside from those listed in this chapter,
Chapter 5 discusses the email and xm/ packages, and the modules mailbox, HTMLParser,
and urlparse, each of which performs parsing of sorts. A number of additional modules
listed in Chapter 1, which handle and process audio and image formats, in a broad sense
could be considered parsing tools. However, these media formats are better considered
as byte streams and structures than as token streams of the sort parsers handle (the
distinction is fine, though).

The specialized tools discussed under this section are presented only in summary.
Consult the Python Library Reference for detailed documentation of their various APIs
and features. It is worth knowing what is available, but for space reasons, this book
does not document usage specifics of these few modules.

ConfigParser

Parse and modify Windows-style configuration files.

>>> import ConfigParser

>>> config = ConfigParser.ConfigParser ()
>>> config.read([’test.ini’, ’nonesuch.ini’])
>>> config.sections()

[’userlevel’, ’colorscheme’]

>>> config.get(’userlevel’,’login’)
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)2)

>>> config.set(’userlevel’,’login’,5)
>>> config.write(sys.stdout)
[userlevell]

login = 5

title = 1

[colorscheme]
background = red
foreground = blue

difflib
. / Tools/scripts/ndiff.py
The module difflib, introduced in Python 2.1, contains a variety of functions and
classes to help you determine the difference and similarity of pairs of sequences.
The API of difflib is flexible enough to work with sequences of all kinds, but the
typical usage is in comparing sequences of lines or sequences of characters.

Word similarity is useful for determining likely misspellings and typos and/or edit
changes required between strings. The function difflib.get_close_matches() is
a useful way to perform “fuzzy matching” of a string against patterns. The required
similarity is configurable.

>>> users = [’j.smith’, ’t.smith’, ’p.smyth’, ’a.simpson’]

>>> maxhits = 10

>>> login = ’a.smith’

>>> difflib.get_close_matches(login, users, maxhits)

[’t.smith’, ’j.smith’, ’p.smyth’]

>>> difflib.get_close_matches(login, users, maxhits, cutoff=.75)
[’t.smith’, ’j.smith’]

>>> difflib.get_close_matches(login, users, maxhits, cutoff=.4)
[’t.smith’, ’j.smith’, ’p.smyth’, ’a.simpson’]

Line matching is similar to the behavior of the Unix diff (or ndiff) and patch
utilities. The latter utility is able to take a source and a difference, and pro-
duce the second compared line-list (file). The functions diffl4b.ndsff() and
difflib.restore() implement these capabilities. Much of the time, however, the
bundled ndiff.py tool performs the comparisons you are interested in (and the
“patches” with an -r# option).

% ./ndiff.py chap4.txt chap4.txt™ | grep >~ [+-]1’
—: chap4.txt

+: chap4.txt”

+ against patterns.
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- against patterns. The required similarity is configurable.

- >>> users = [’j.smith’, ’t.smith’, ’p.smyth’, ’a.simpson’]
- >>> maxhits = 10
- >>> login = ’a.smith’

There are a few more capabilities in the difflib module, and considerable customiza-
tion is possible.

formatter

Transform an abstract sequence of formatting events into a sequence of callbacks to
“writer” objects. Writer objects, in turn, produce concrete outputs based on these
callbacks. Several parent formatter and writer classes are contained in the module.

In a way, formatter is an “anti-parser”—that is, while a parser transforms a series
of tokens into program events, formatter transforms a series of program events into
output tokens.

The purpose of the formatter module is to structure creation of streams such as
word processor file formats. The module html14b utilizes the formatter module.
The particular API details provide calls related to features like fonts, margins, and
SO on.

For highly structured output of prose-oriented documents, the formatter module is
useful, albeit requiring learning a fairly complicated API. At the minimal level, you
may use the classes included to create simple tools. For example, the following
utility is approximately equivalent to 1lynx -dump:

urldump.py

#!/usr/bin/env python

import sys

from urllib import urlopen

from htmllib import HTMLParser

from formatter import AbstractFormatter, DumbWriter

if len(sys.argv) > 1:
fpin = urlopen(sys.argv[1])
parser = HTMLParser (AbstractFormatter (DumbWriter()))
parser.feed(fpin.read())

print fpin.geturl()
print fpin.info()

else:
print "No specified URL"
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SEE ALSO: htmllib 285; urllib 388;

htmllib

Parse and process HTML files, using the services of sgmllib. In contrast to the
HTMLParser module, htmllib relies on the user constructing a suitable “formatter”
object to accept callbacks from HTML events, usually utilizing the formatter module.
A formatter, in turn, uses a “writer” (also usually based on the formatter module).
In my opinion, there are enough layers of indirection in the htmllib API to make
HTMLParser preferable for almost all tasks.

SEE ALsO: HTMLParser 38/; formatter 284; sgmllib 285;

multifile

The class multifile.MultiFile allows you to treat a text file composed of mul-
tiple delimited parts as if it were several files, each with their own FILE meth-
ods: .read(), .readline(), .readlines(), .seek(), and .tell() methods. In
iterator fashion, advancing to the next virtual file is performed with the method
multifile.MultiFile.next ().

SEE ALsO: fileinput 61; mailbox 372; email.Parser 363; string.split() 142; file 15;

parser
symbol
token
tokenize

Interface to Python’s internal parser and tokenizer. Although parsing Python source
code is arguably a text processing task, the complexities of parsing Python are too
specialized for this book.

robotparser

Examine a robots.txt access control file. This file is used by Web servers to indicate
the desired behavior of automatic indexers and Web crawlers—all the popular search
engines honor these requests.

sgmllib

A partial parser for SGML. Standard Generalized Markup Language (SGML) is
an enormously complex document standard; in its full generality, SGML cannot be
considered a format, but rather a grammar for describing concrete formats. HTML
is one particular SGML dialect, and XML is (almost) a simplified subset of SGML.

Although it might be nice to have a Python library that handled generic SGML,
sgmllib is not such a thing. Instead, sgmllib implements just enough SGML parsing
to support HTML parsing with htmllib. You might be able to coax parsing an XML
library out of sgmllib, with some work, but Python’s standard XML tools are far
more refined for this purpose.
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SEE ALSO: htmllib 285; xml.sax 405;

shlex

A lexical analyzer class for simple Unix shell-like syntaxes. This capability is pri-
marily useful to implement small command language within Python applications.

tabnanny

This module is generally used as a command-line script rather than imported into
other applications. The module/script tabnanny checks Python source code files for
mixed use of tabs and spaces within the same block. Behind the scenes, the Python
source is fully tokenized, but normal usage consists of something like:

% /sw/lib/python2.2/tabnanny.py SCRIPTS/
SCRIPTS/cmdline.py 165 ’\treturn 1\r\n’
’SCRIPTS/HTMLParser_stack.py’: Token Error: (’EQF in

multi-line string’, (3, 7))
SCRIPTS/outputters.py 18 ’\tself.writer=writer\r\n’
SCRIPTS/txt2bookU.py 148 ’\ttry:\n’

The tool is single purpose, but that purpose addresses a common pitfall in Python
programming.

SEE ALSO: tokenize 285;

4.3.2 Low-Level State Machine Parsing

mx.TextTools ¢ Fast Text Manipulation Tools I

Marc-Andre Lemburg’s mx. Text Tools is a remarkable tool that is a bit difficult to grasp
the gestalt of. mx.TextTools can be blazingly fast and extremely powerful. But at the
same time, as difficult as it might be to “get” the mindset of mx. TextTools, it is still more
difficult to get an application written with it working just right. Once it is working, an
application that utilizes mx. Text Tools can process a larger class of text structures than
can regular expressions, while simultaneously operating much faster. But debugging
an mx. TextTools “tag table” can make you wish you were merely debugging a cryptic
regular expression!

In recent versions, mx.TextTools has come in a larger package with eGenix.com’s
several other “mx Extensions for Python.” Most of the other subpackages add highly
efficient C implementations of datatypes not found in a base Python system.

mx. Text Tools stands somewhere between a state machine and a full-fledged parser. In
fact, the module SimpleParse, discussed below, is an EBNF parser library that is built
on top of mx.TextTools. As a state machine, mx. TextTools feels like a lower-level tool
than the statemachine module presented in the prior section. And yet, mx. TextTools is
simultaneously very close to a high-level parser. This is how Lemburg characterizes it
in the documentation accompanying mx. Text Tools:
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mxTextTools is an extension package for Python that provides several useful
functions and types that implement high-performance text manipulation
and searching algorithms in addition to a very flexible and extendable state
machine, the Tagging Engine, that allows scanning and processing text based
on low-level byte-code “programs” written using Python tuples. It gives you
access to the speed of C without the need to do any compile and link steps
every time you change the parsing description.

Applications include parsing structured text, finding and extracting text
(either exact or using translation tables) and recombining strings to form
new text.

The Python standard library has a good set of text processing tools. The basic tools
are powerful, flexible, and easy to work with. But Python’s basic text processing is not
particularly fast. Mind you, for most problems, Python by itself is as fast as you need.
But for a certain class of problems, being able to choose mx. TextTools is invaluable.

The unusual structure of mx. TextTools applications warrants some discussion of con-
crete usage. After a few sample applications are presented, a listing of mx. TextTools
constants, commands, modifiers, and functions is given.

BENCHMARKS

A familiar computer-industry paraphrase of Mark Twain (who repeats Benjamin Dis-
raeli) dictates that there are “Lies, Damn Lies, and Benchmarks.” I will not argue
with that and certainly do not want readers to put too great an import on the timings
suggested. Nonetheless, in exploring mx. TextTools, I wanted to get some sense of just
how fast it is. So here is a rough idea.

The second example below presents part of a reworked version of the state machine-
based Txt2Html application reproduced in Appendix D. The most time-consuming as-
pect of Txt2Html is the regular expression replacements performed in the function
Typography () for smart ASCII inline markup of words and phrases.

In order to get a timeable test case, I concatenated 110 copies of an article I wrote
to get a file a bit over 2MB, and about 41k lines and 300k words. My test processes
an entire input as one text block, first using an mx. TextTools version of Typography (),
then using the re version.

Processing time of the same test file went from about 34 seconds to about 12 seconds on
one slowish Linux test machine (running Python 1.5.2). In other words, mx.TextTools
gave me about a 3x speedup over what I get with the re module. This speedup is
probably typical, but particular applications might gain significantly more or less from
use of mx. TextTools. Moreover, 34 seconds is a long time in an interactive application,
but is not very long at all for a batch process done once a day, or once a week.

Example: Buyer/Order Report Parsing

Recall (or refer to) the sample report presented in the previous section “An Introduction
to State Machines.” A report contained a mixture of header material, buyer orders,
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and comments. The state machine we used looked at each successive line of the file
and decided based on context whether the new line indicated a new state should start.
It would be possible to write almost the same algorithm utilizing mx. Text Tools only to
speed up the decisions, but that is not what we will do.

A more representative use of mx.TextTools is to produce a concrete parse tree of
the interesting components of the report document. In principle, you should be able to
create a “grammar” that describes every valid “buyer report” document, but in practice
using a mixed procedural /grammar approach is much easier, and more maintainable—at
least for the test report.

An mx. TextTools tag table is a miniature state machine that either matches or fails
to match a portion of a string. Matching, in this context, means that a “success” end
state is reached, while nonmatching means that a “failure” end state is reached. Falling
off the end of the tag table is a success state. Each individual state in a tag table
tries to match some smaller construct by reading from the “read-head” and moving
the read-head correspondingly. On either success or failure, program flow jumps to an
indicated target state (which might be a success or failure state for the tag table as a
whole). Of course, the jump target for success is often different from the jump target
for failure—but there are only these two possible choices for jump targets, unlike the
statemachine module’s indefinite number.

Notably, one of the types of states you can include in a tag table is another tag
table. That one state can “externally” look like a simple match attempt, but internally
it might involve complex subpatterns and machine flow in order to determine if the
state is a match or nonmatch. Much as in an EBNF grammar, you can build nested
constructs for recognition of complex patterns. States can also have special behavior,
such as function callbacks—but in general, an mx. TextTools tag table state is simply a
binary match/nonmatch switch.

Let us look at an mx.TextTools parsing application for “buyer reports” and then
examine how it works:

buyer_report.py ‘

from mx.TextTools import *

word_set = set(alphanumeric+white+’-’)
quant_set = set(number+’kKmM’)

item = ( (None, AllInSet, newline_set, +1), # 1

(None, AllInSet, white_set, +1), # 2

(’Prod’, AllInSet, a2z_set, Fail), # 3

(None, AllInSet, white_set, Fail), # 4

(’Quant’, AllInSet, quant_set, Fail), # 5

(None, WordEnd, ’\n’, -5) ) # 6

buyers = ( (’Order’, Table, # 1
( (None, WordEnd, ’\n>> ’, Fail), # 1.1
(’Buyer’, AllInSet, word_set, Fail), # 1.2



“TPiP” — 2003/4/13 — 17:12 — page 289 — #309

4.3 Parser Libraries for Python 289
(’Item’, Table, item, MatchOk, +0) ), # 1.3
Fail, +0), )
comments = ( (’Comment’, Table, # 1
( (None, Word, ’\nx’, Fail), # 1.1
(None, WordEnd, ’#*\n’, Fail), # 1.2
(None, Skip, -1) ), #1.3
+1, +2),
(None, Skip, +1), # 2
(None, EOF, Here, -2) ) # 3

def unclaimed_ranges(tagtuple):
starts = [0] + [tup[2] for tup in tagtuple[1]]
stops = [tup[1] for tup in tagtuple[1]] + [tagtuple[2]]
return zip(starts, stops)

def report2data(s):
comtuple = tag(s, comments)
taglist = comtuple[1]
for beg,end in unclaimed_ranges(comtuple):
taglist.extend(tag(s, buyers, beg, end) [1])
taglist.sort(cmp)
return taglist

if __name__==’__main__’:
import sys, pprint
pprint.pprint (report2data(sys.stdin.read()))

Several tag tables are defined in buyer_report: item, buyers, and comments. State
machines such as those in each tag table are general matching engines that can be used
to identify patterns; after working with mx. Text Tools for a while, you might accumulate
a library of useful tag tables. As mentioned above, states in tag tables can reference
other tag tables, either by name or inline. For example, buyers contains an inline tag
table, while this inline tag table utilizes the tag table named item.

Let us take a look, step by step, at what the buyers tag table does. In order to do
anything, a tag table needs to be passed as an argument to the mx.TextTools.tag()
function, along with a string to match against. That is done in the report2data()
function in the example. But in general, buyers—or any tag table—contains a list of
states, each containing branch offsets. In the example, all such states are numbered in
comments. buyers in particular contains just one state, which contains a subtable with
three states.

Tag table state in buyers

1. Try to match the subtable. If the match succeeds, add the name Order to the
taglist of matches. If the match fails, do not add anything. If the match succeeds,
jump back into the one state (i.e., +0). In effect, buyers loops as long as it
succeeds, advancing the read-head on each such match.
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Subtable states in buyers

1. Try to find the end of the “word” \n>> in the string. That is, look for two greater-
than symbols at the beginning of a line. If successful, move the read-head just
past the point that first matched. If this state match fails, jump to Fail—that is,
the (sub)table as a whole fails to match. No jump target is given for a successful
match, so the default jump of +1 is taken. Since None is the tag object, do not
add anything to the taglist upon a state match.

2. Try to find some word_set characters. This set of characters is defined in
buyer_report; various other sets are defined in mx. TextTools itself. If the match
succeeds, add the name Buyer to the taglist of matches. As many contiguous
characters in the set as possible are matched. The match is considered a failure
if there is not at least one such character. If this state match fails, jump to Fail,
as in state (1).

3. Try to match the item tag table. If the match succeeds, add the name Item to the
taglist of matches. What gets added, moreover, includes anything added within
the item tag table. If the match fails, jump to MatchOk—that is, the (sub)table
as a whole matches. If the match succeeds, jump +0—that is, keep looking for
another Item to add to the taglist.

What buyer_report actually does is to first identify any comments, then to scan what is
left in between comments for buyer orders. This approach proved easier to understand.
Moreover, the design of mx.TextTools allows us to do this with no real inefficiency.
Tagging a string does not involve actually pulling out the slices that match patterns,
but simply identifying numerically the offset ranges where they occur. This approach
is much “cheaper” than performing repeated slices, or otherwise creating new strings.

The following is important to notice: As of version 2.1.0, the documentation of the
mx.TextTools.tag() function that accompanies mx. TextTools does not match its be-
havior! If the optional third and fourth arguments are passed to tag() they must
indicate the start and end offsets within a larger string to scan, not the starting offset
and length. Hopefully, later versions will fix the discrepancy (either approach would be
fine, but could cause some breakage in existing code).

What buyer_report produces is a data structure, not final output. This data structure
looks something like:



“TPiP” — 2003/4/13 — 17:12 — page 291 — #311 ﬁ}

4.3 Parser Libraries for Python 291

buyer_report.py data structure

$ python ex_mx.py < recs.tmp
[(’Order’, 0, 638,
[(°Buyer’, 547, 562, None),
(’Item’, 562, 583,
[(°Prod’, 566, 573, None), (’Quant’, 579, 582, Nome)l),
(’Item’, 583, 602,
[(°Prod’, 585, 593, None), (’Quant’, 597, 601, Nome)l),
(’Item’, 602, 621,
[(°Prod’, 604, 611, None), (’Quant’, 616, 620, None)]),
(’Item’, 621, 638,
[(°Prod’, 623, 632, None), (’Quant’, 635, 637, None)])]),
(’Comment’, 638, 763, []1),
(’0Order’, 763, 805,
[(’Buyer’, 768, 776, None),
(’Item’, 776, 792,
[(’Prod’, 778, 785, None), (’Quant’, 788, 791, Nomne)l),
(’Item’, 792, 805,
[(°Prod’, 792, 800, None), (’Quant’, 802, 804, Nome)])]),
(’0Order’, 805, 893,
[(’Buyer’, 809, 829, None),
(’Item’, 829, 852,
[(°’Prod’, 833, 840, None), (’Quant’, 848, 851, None)l),
(’Item’, 852, 871,
[(°Prod’, 855, 863, None), (’Quant’, 869, 870, Nome)l),
(’Item’, 871, 893,
[(°Prod’, 874, 879, None), (’Quant’, 888, 892, None)])]),
(’Comment’, 893, 952, [1),
(’Comment’, 952, 1025, [1),
(’Comment’, 1026, 1049, [1),
(’0Order’, 1049, 1109,
[(’Buyer’, 1054, 1069, None),
(’Item’,1069, 1109,
[(°’Prod’, 1070, 1077, None), (’Quant’, 1083, 1086, None)]l)1)]

While this is “just” a new data structure, it is quite easy to deal with compared to
raw textual reports. For example, here is a brief function that will create well-formed
XML out of any taglist. You could even arrange for it to be valid XML by designing
tag tables to match DTDs (see Chapter 5 for details about XML, DTDs, etc.):
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def taglist2xml(s, taglist, root):
print ’<%s>’ % root
for tt in taglist:
if tt[3]:
taglist2xml (s, tt[3], tt[0])
else:
print ’<%s>%s</%s>’ % (tt[0], s[tt[1]:tt[2]1], tt[0])
print ’</%s>’ ¥ root

Example: Marking up smart ASCII

The “smart ASCII” format uses email-like conventions to lightly mark features like word
emphasis, source code, and URL links. This format—with IATEX as an intermediate
format—was used to produce the book you hold (which was written using a variety of
plaintext editors). By obeying just a few conventions (that are almost the same as you
would use on Usenet or in email), a writer can write without much clutter, but still
convert to production-ready markup.

The Txt2Html utility uses a block-level state machine, combined with a collection
of inline-level regular expressions, to identify and modify markup patterns in smart
ASCII texts. Even though Python’s regular expression engine is moderately slow, con-
verting a five-page article takes only a couple seconds. In practice, Txt2Html is more
than adequate for my own 20 kilobyte documents. However, it is easy to imagine a
not-so-different situation where you were converting multimegabyte documents and/or
delivering such dynamically converted content on a high-volume Web site. In such a
case, Python’s string operations, and especially regular expressions, would simply be
too slow.

mx. TextTools can do everything regular expressions can, plus some things regular ex-
pressions cannot. In particular, a taglist can contain recursive references to matched
patterns, which regular expressions cannot. The utility mxTypography.py utilizes sev-
eral mx.TextTools capabilities the prior example did not use. Rather than create a
nested data structure, mxTypography.py utilizes a number of callback functions, each
responding to a particular match event. As well, mxTypography.py adds some impor-
tant debugging techniques. Something similar to these techniques is almost required
for tag tables that are likely to be updated over time (or simply to aid the initial
development). Overall, this looks like a robust application should.

mx. TextTools version of Typography() ‘

from mx.TextTools import *
import string, sys

#-- List of all words with markup, head position, loop count
ws, head_pos, loops = [], None, O

#-— Define "emitter" callbacks for each output format
def emit_misc(tl,txt,l,r,s):
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ws.append (txt[1:r])
def emit_func(tl,txt,l,r,s):
ws.append (’<code>’+txt [1+1:r-1]+’</code>’)
def emit_modl(tl,txt,l,r,s):
ws.append (’<em><code>’+txt [1+1:r-1]+’</code></em>’)
def emit_emph(tl,txt,l,r,s):
ws.append (’<em>’+txt [1+1:r-1]+’</em>’)
def emit_strg(tl,txt,l,r,s):
ws.append (’<strong>’+txt [1+1:r-1]+’</strong>’)
def emit_titl(tl,txt,l,r,s):
ws.append (’<cite>’+txt [1+1:r-1]+’</cite>’)
def jump_count(tl,txt,l,r,s):
global head_pos, loops
loops = loops+1
if head_pos is None: head_pos =r
elif head_pos == r:
raise "InfiniteLoopError", \
txt [1-20:1]1+° {’+txt [1]+’} > +txt [1+1:r+15]
else: head_pos =r

#-- What can appear inside, and what can be, markups?

punct_set = set (" 1@#$% &x()_—+=|\{F[1:;7<>,.?2/"+" ")

markable = alphanumeric+whitespace+"‘!1@#$%,"&O)+=|\{}:;<>, .2/ "+ "’
markable_func = set(markable+"*x-_[]1")

markable_modl = set(markable+"*-_’")
markable_emph = set(markable+"*_’[]1")
markable_strg = set(markable+"-_’[]")

markable_titl = set(markable+"x-’>[]")
markup_set = set("-x’[]_")

#-— What can precede and follow markup phrases?

darkins = ’(/"’

leadins = whitespace+darkins # might add from "-x’[]_"
darkouts = ’/.),:;?2!"’

darkout_set = set(darkouts)

leadouts = whitespace+darkouts # for non-conflicting markup
leadout_set = set(leadouts)

#-- What can appear inside plain words?
word_set = set(alphanumeric+’{}/@#$% " &-_+=|\><’+darkouts)
wordinit_set = set(alphanumeric+"$#+\<.&{"+darkins)

#-- Define the word patterns (global so as to do it only at import)

# Special markup

def markup_struct(lmark, rmark, callback, markables, x_post="-"):
struct = \
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( callback, Table+CallTag,

( (None, Is, lmark), # Starts with left marker
(None, AllInSet, markables), # Stuff marked
(None, Is, rmark), # Ends with right marker
(None, IsInSet, leadout_set,+2,+1),# EITHR: postfix w/ leadout
(None, Skip, -1,+1, MatchOk), # ..give back trailng ldout
(None, IsIn, x_post, MatchFail), # OR: special case postfix
(None, Skip, -1,+1, MatchOk) # ..give back trailing char
)
)
return struct
funcs = markup_struct("’", "’", emit_func, markable_func)
modules = markup_struct("[", "]", emit_modl, markable_modl)
emphs = markup_struct("-", "-", emit_emph, markable_emph, x_post="")
strongs = markup_struct("*", "*x", emit_strg, markable_strg)
titles = markup_struct("_", "_", emit_titl, markable_titl)

# All the stuff not specially marked
plain_words = \

( ws, Table+AppendMatch, # AppendMatch only -slightly-
( (None, IsInSet, # faster than emit_misc callback
wordinit_set, MatchFail), # Must start with word-initial
(None, Is, "’",+1), # May have apostrophe next
(None, AllInSet, word_set,+1), # May have more word-internal
(None, Is, "’", +2), # May have trailing apostrophe
(None, IsIn, "st",+1), # May have [ts] after apostrophe

(None, IsInSet,
darkout_set,+1, MatchOk), # Postfixed with dark lead-out
(None, IsInSet,
whitespace_set, MatchFail), # Give back trailing whitespace
(None, Skip, -1)
) )
# Catch some special cases
bullet_point = \
( ws, Table+AppendMatch,
( (None, Word+CallTag, "* "), # Asterisk bullet is a word
) )
horiz_rule = \
( None, Table,

( (None, Word, "-"x50), # 50 dashes in a row
(None, AllIn, "-"), # More dashes
) )
into_mark = \
( ws, Table+AppendMatch, # Special case where dark leadin

( (None, IsInSet, set(darkins)), # is followed by markup char
(None, IsInSet, markup_set),
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(None, Skip, -1) # Give back the markup char
) )
stray_punct = \
( ws, Table+AppendMatch, # Pickup any cases where multiple
( (None, IsInSet, punct_set), # punctuation character occur
(None, AllInSet, punct_set), # alone (followed by whitespace)
(None, IsInSet, whitespace_set),
(None, Skip, -1) # Give back the whitespace
) )

leadout_eater = (ws, AllInSet+AppendMatch, leadout_set)

#-- Tag all the (possibly marked-up) words
tag_words = \

( bullet_point+(+1,),
horiz_rule + (+1,),
into_mark + (+1,),
stray_punct+ (+1,),
emphs + (+1,),
funcs + (+1,),
strongs + (+1,),
modules + (+1,),
titles + (+1,),
into_mark+(+1,),

plain_words +(+1,), # Since file is mstly plain wrds, can
leadout_eater+(+1,-1), # shortcut by tight looping (w/ esc)
(jump_count, Skip+CallTag, 0), # Check for infinite loop
(None, EQOF, Here, -13) # Check for EOF
)

def Typography (txt):
global ws
ws = [] # clear the list before we proceed
tag(txt, tag_words, O, len(txt), ws)
return string.join(ws, ’’)

if __name__ == ’__main__’:

print Typography(open(sys.argv[1]).read())

mxTypographify.py reads through a string and determines if the next bit of text
matches one of the markup patterns in tag_words. Or rather, it better match some
pattern or the application just will not know what action to take for the next bit of
text. Whenever a named subtable matches, a callback function is called, which leads to
a properly annotated string being appended to the global list ws. In the end, all such
appended strings are concatenated.

Several of the patterns given are mostly fallback conditions. For example, the
stray_punct tag table detects the condition where the next bit of text is some punc-
tuation symbols standing alone without abutting any words. In most cases, you don’t



“TPiP” — 2003/4/13 — 17:12 — page 296 — #316

296 PARSERS AND STATE MACHINES

want smart ASCII to contain such a pattern, but mxTypographify has to do something
with them if they are encountered.

Making sure that every subsequence is matched by some subtable or another is tricky.
Here are a few examples of matches and failures for the stray_punct subtable. Every-
thing that does not match this subtable needs to match some other subtable instead:

—-- spam # matches "--"

& spam # fails at "AllInSet" since ’&’ advanced head
#0$ %% spam # matches "#@$"

**spam # fails (whitespace isn’t encountered before ’s’)

After each success, the read-head is at the space right before the next word “spam”
or “%%”. After a failure, the read-head remains where it started out (at the beginning
of the line).

Like stray_punct, emphs, funcs, strongs, plain_words, et cetera contain tag tables.
Each entry in tag_words has its appropriate callback functions (all “emitters” of various
names, because they “emit” the match, along with surrounding markup if needed). Most
lines each have a “+1” appended to their tuple; what this does is specify where to jump
in case of a match failure. That is, even if these patterns fail to match, we continue on—
with the read-head in the same position—to try matching against the other patterns.

After the basic word patterns each attempt a match, we get to the “leadout eater”
line. For mxTypography.py, a “leadout” is the opposite of a “leadin.” That is, the
latter are things that might precede a word pattern, and the former are things that
might follow a word pattern. The leadout_set includes whitespace characters, but it
also includes things like a comma, period, and question mark, which might end a word.
The “leadout eater” uses a callback function, too. As designed, it preserves exactly the
whitespace the input has. However, it would be easy to normalize whitespace here by
emitting something other than the actual match (e.g., a single space always).

The jump_count is extremely important; we will come back to it momentarily. For
now, it is enough to say that we hope the line never does anything.

The EOF line is our flow control, in a way. The call made by this line is to None,
which is to say that nothing is actually done with any match. The command EOF is
the important thing (Here is just a filler value that occupies the tuple position). It
succeeds if the read-head is past the end of the read buffer. On success, the whole tag
table tag_words succeeds, and having succeeded, processing stops. EQF failure is more
interesting. Assuming we haven’t reached the end of our string, we jump -13 states
(to bullet_point). From there, the whole process starts over, hopefully with the read-
head advanced to the next word. By looping back to the start of the list of tuples,
we continue eating successive word patterns until the read buffer is exhausted (calling
callbacks along the way).

The tag() call simply launches processing of the tag table we pass to it (against the
read buffer contained in txt). In our case, we do not care about the return value of
tag() since everything is handled in callbacks. However, in cases where the tag table
does not loop itself, the returned tuple can be used to determine if there is reason to
call tag() again with a tail of the read buffer.
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DEBUGGING A TAG TABLE

Describing it is easy, but I spent a large number of hours finding the exact collection
of tag tables that would match every pattern I was interested in without mismatching
any pattern as something it wasn’t. While smart ASCIT markup seems pretty simple,
there are actually quite a few complications (e.g., markup characters being used in
nonmarkup contexts, or markup characters and other punctuation appearing in various
sequences). Any structured document format that is complicated enough to warrant
using mx. Text Tools instead of string is likely to have similar complications.

Without question, the worst thing that can go wrong in a looping state pattern
like the one above is that none of the listed states match from the current read-head
position. If that happens, your program winds up in a tight infinite loop (entirely inside
the extension module, so you cannot get at it with Python code directly). I wound up
forcing a manual kill of the process countless times during my first brush at mx. Text Tools
development.

Fortunately, there is a solution to the infinite loop problem. This is to use a callback
like jump_count.

mxTypography.py infinite loop catcher

def jump_count(taglist,txt,l,r,subtag):
global head_pos
if head_pos is None: head_pos =r
elif head_pos == r:
raise "InfiniteLoopError", \
txt [1-20:1]1+° {’+txt [1]+° } +txt [1+1:r+15]
else: head_pos =1

The basic purpose of jump_count is simple: We want to catch the situation where
our tag table has been run through multiple times without matching anything. The
simplest way to do this is to check whether the last read-head position is the same as
the current. If it is, more loops cannot get anywhere, since we have reached the exact
same state twice, and the same thing is fated to happen forever. mxTypography.py
simply raises an error to stop the program (and reports a little bit of buffer context to
see what is going on).

It is also possible to move the read-head manually and try again from a different
starting position. To manipulate the read head in this fashion, you could use the Call
command in tag table items. But a better approach is to create a nonlooping tag table
that is called repeatedly from a Python loop. This Python loop can look at a returned
tuple and use adjusted offsets in the next call if no match occurred. Either way, since
much more time is spent in Python this way than with the loop tag table approach, less
speed would be gained from mx. TextTools.

Not as bad as an infinite loop, but still undesirable, is having patterns within a tag
table match when they are not supposed to or not match when they are suppose to (but
something else has to match, or we would have an infinite loop issue). Using callbacks
everywhere makes examining this situation much easier. During development, I fre-
quently create temporary changes to my emit_* callbacks to print or log when certain
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emitters get called. By looking at output from these temporary print statements, most
times you can tell where the problem lies.

CONSTANTS

The mx. Text Tools module contains constants for a number of frequently used collections
of characters. Many of these character classes are the same as ones in the string module.
Each of these constants also has a set version predefined; a set is an efficient repre-
sentation of a character class that may be used in tag tables and other mx. TextTools
functions. You may also obtain a character set from a (custom) character class using
the mz. TeztTools.set () function:

>>> from mx.TextTools import a2z, set
>>> varname_chars = a2z + ’_°
>>> varname_set = set(varname_chars)

mx.TextTools.a2z
mx.TextTools.a2z_set

English lowercase letters (“abcedefghijklmnopqrstuvwxyz”).

mx.TextTools.A2Z
mx. TextTools.A2Z _set

English uppercase letters (“ABCDEFGHIJKLMNOPQRSTUVWXYZ”).

mx.TextTools.umlaute
mx. TextTools.umlaute_set

Extra German lowercase hi-bit characters.

mx.TextTools.Umlaute
mx. TextTools.Umlaute_set

Extra German uppercase hi-bit characters.
mx. TextTools.alpha
mx. TextTools.alpha_set

English letters (A2Z + a2z).
mx.TextTools.german_alpha
mx. TextTools.german_alpha_set

German letters (A2Z + a2z + umlaute + Umlaute).
mx.TextTools.number
mx. TextTools.number_set

The decimal numerals (“0123456789").
mx. TextTools.alphanumeric
mx. TextTools.alphanumeric_set

English numbers and letters (alpha + number).
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mx. TextTools.white
mx. TextTools.white_set

Spaces and tabs (“ \t\v”). This is more restricted than string.whitespace.

mx. TextTools.newline
mx.TextTools.newline_set

Line break characters for various platforms (“\n\r”).

mx. TextTools.formfeed
mx.TextTools.formfeed_set

Formfeed character (“\f”).

mx. TextTools.whitespace
mx. TextTools.whitespace_set

Same as string.whitespace (white+newline+formfeed).

mx.TextTools.any
mx. TextTools.any_set

All characters (0x00-0xFF).

SEE ALSO: string.digits 130; string.hexdigits 130; string.octdigits 130; string.lowercase
181; string.uppercase 131; string.letters 131; string.punctuation 131; string.whitespace
131; string.printable 132;

COMMANDS

Programming in mx. TextTools amounts mostly to correctly configuring tag tables. Uti-
lizing a tag table requires just one call to the mz. TexztTools. tag (), but inside a tag
table is a kind of mini-language—something close to a specialized Assembly language,
in many ways.

Fach tuple within a tag table contains several elements, of the form:

(tagobj, command[+modifiers], argument
[, jump_no_match=MatchFail [, jump_match=+1]])

The “tag object” may be None, a callable object, or a string. If tagobj is None, the
indicated pattern may match, but nothing is added to a taglist data structure if so,
nor is a callback invoked. If a callable object (usually a function) is given, it acts as a
callback for a match. If a string is used, it is used to name a part of the taglist data
structure returned by a call to mz. TeztTools.tag() .

A command indicates a type of pattern to match, and a modifier can change the
behavior that occurs in case of such a match. Some commands succeed or fail uncondi-
tionally, but allow you to specify behaviors to take if they are reached. An argument is
required, but the specific values that are allowed and how they are interpreted depends
on the command used.

Two jump conditions may optionally be specified. If no values are given,
jump_no_match defaults to MatchFail—that is, unless otherwise specified, failing to
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match a tuple in a tag table causes the tag table as a whole to fail. If a value is given,
jump_no_match branches to a tuple the specified number of states forward or backward.
For clarity, an explicit leading “+” is used in forward branches. Branches backward will
begin with a minus sign. For example:

# Branch forward one state if next character -is not- an X
# ... branch backward three states if it is an X

tupX = (None, Is, ’X’, +1, -3)

# assume all the tups are defined somewhere...

tagtable = (tupA, tupB, tupV, tupW, tupX, tupY, tupZ)

If no value is given for jump_match, branching is one state forward in the case of a
match.

Version 2.1.0 of mx.TextTools adds named jump targets, which are often easier to
read (and maintain) than numeric offsets. An example is given in the mx.TextTools
documentation:

tag_table = (’start’,
(’lowercase’,AllIn,a2z,+1,’skip’),
(’upper’,Al11In,A2Z,’skip’),
'skip?,
(None,AllIn,white+newline,+1),
(None,AllNotIn,alpha+twhite+newline,+1),
(None,EQOF ,Here, ’start’) )

It is easy to see that if you were to add or remove a tuple, it is less error prone to
retain a jump to, for example, skip than to change every necessary +2 to a +3 or the
like.

UNCONDITIONAL COMMANDS

mx. TextTools.Fail
mx.TextTools.Jump

Nonmatch at this tuple. Used mostly for documentary purposes in a tag table,
usually with the Here or To placeholder. The tag tables below are equivalent:

tablel
table2

( (°foo’, Is, ’X’, MatchFail, MatchOk), )
( (°foo’, Is, ’X’, +1, +2),
(’Not_X’, Fail, Here) )

The Fail command may be preferred if several other states branch to the same
failure, or if the condition needs to be documented explicitly.

Jump is equivalent to Fail, but it is often better self-documenting to use one rather
than the other; for example:
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(None, Fail, Here, +3)
(None, Jump, To, +3)

tupl
tup2

mx.TextTools.Skip
mx. TextTools.Move

Match at this tuple, and change the read-head position. Skip moves the read-head
by a relative amount, Move to an absolute offset (within the slice the tag table is
operating on). For example:

# read-head forward 20 chars, jump to next state
tupl = (None, Skip, 20)

# read-head to position 10, and jump back 4 states
tup2 = (None, Move, 10, 0, -4)

Negative offsets are allowed, as in Python list indexing.

MATCHING PARTICULAR CHARACTERS

mx. TextTools.Allln
mx.TextTools.AllInSet
mx.TextTools.AllinCharSet

Match all characters up to the first that is not included in argument. A11lIn uses a
character string while A11InSet uses a set as argument. For version 2.1.0, you may
also use AllInCharSet to match CharSet objects. In general, the set or CharSet
form will be faster and is preferable. The following are functionally the same:

tupl = (’xyz’, AllIn, ’XYZxyz’)
tup2 = (’xyz’, AllInSet, set(’XYZxyz’)
tup3 = (’xyz’, AllInSet, CharSet(’XYZxyz’))

At least one character must match for the tuple to match.

mx. TextTools.AllINotIn

Match all characters up to the first that is included in argument. As of version 2.1.0,
mx. TextTools does not include an A11NotInSet command. However, the following
tuples are functionally the same (the second usually faster):

from mx.TextTools import AllNotIn, AllInSet, invset

tupl = (’xyz’, AllNotIn, ’XYZxyz’)
tup2 = (’xyz’, AllInSet, invset(’xyzXYZ’))

At least one character must match for the tuple to match.
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mx.TextTools.lIs

Match specified character. For example:
tup = ¢x , Is, ’X2)

mx. TextTools.IsNot

Match any one character except the specified character.
tup = (°X’, IsNot, ’X’)

mx. TextTools.IsIn
mx.TextTools.IsInSet
mx.TextTools.IsInCharSet

Match exactly one character if it is in argument. IsIn uses a character string while
IsInSet use a set as argument. For version 2.1.0, you may also use IsInCharSet
to match CharSet objects. In general, the set or CharSet form will be faster and is
preferable. The following are functionally the same:

tupl = (’xyz’, IsIn, ’XYZxyz’)
tup2 = (’xyz’, IsInSet, set(’XYZxyz’)
tup3 = (’xyz’, IsInSet, CharSet(’XYZxyz’)

mx. TextTools.IsNotin

Match exactly one character if it is not in argument. As of version 2.1.0,
mx. Text Tools does not include an ’Al1lNotInSet command. However, the following
tuples are functionally the same (the second usually faster):

from mx.TextTools import IsNotIn, IsInSet, invset
tupl = (’xyz’, IsNotIn, ’XYZxyz’)
tup2 = (’xyz’, IsInSet, invset(’xyzXYZ’))

MATCHING SEQUENCES

mx. TextTools.Word

Match a word at the current read-head position. For example:
tup = (’spam’, Word, ’spam’)

mx.TextTools.WordStart
mx.TextTools.sWordStart
mx.TextTools.WordEnd
mx.TextTools.sWordEnd

Search for a word, and match up to the point of the match. Searches performed in
this manner are extremely fast, and this is one of the most powerful elements of tag
tables. The commands sWordStart and sWordEnd use “search objects” rather than
plaintexts (and are significantly faster).
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WordStart and sWordStart leave the read-head immediately prior to the matched
word, if a match succeeds. WordEnd and sWordEnd leave the read-head immediately
after the matched word. On failure, the read-head is not moved for any of these
commands.

>>> from mx.TextTools import *

>>> s = ’spam and eggs taste good’

>>> tabl = ( (’toeggs’, WordStart, ’eggs’), )
>>> tag(s, tabl)

(1, [("toeggs’, 0, 9, None)]l, 9

>>> s[0:9]

’spam and '’

>>> tab2 = ( (’pasteggs’, sWordEnd, BMS(’eggs’)), )
>>> tag(s, tab2)

(1, [(°pasteggs’, 0, 13, Nome)], 13)

>>> 5[0:13]

’spam and eggs’

SEE ALso: mx.TextTools.BMS() 207 mx.TextTools.sFindWord 303;

mx. TextTools.sFindWord

Search for a word, and match only that word. Any characters leading up to the
match are ignored. This command accepts a search object as an argument. In case
of a match, the read-head is positioned immediately after the matched word.

>>> from mx.TextTools import *

>>> s = ’spam and eggs taste good’

>>> tab3 = ( (’justeggs’, sFindWord, BMS(’eggs’)), )
>>> tag(s, tab3)

(1, [(’justeggs’, 9, 13, None)], 13)

>>> s[9:13]

JeggSJ

SEE ALsO: mx.TextTools.sWordEnd 302;

mx.TextTools.EOF

Match if the read-head is past the end of the string slice. Normally used with
placeholder argument Here, for example:

tup = (None, EOF, Here)
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COMPOUND MATCHES

mx. TextTools.Table
mx.TextTools.SubTable

Match if the table given as argument matches at the current read-head position.
The difference between the Table and the SubTable commands is in where matches
get inserted. When the Table command is used, any matches in the indicated table
are nested in the data structure associated with the tuple. When SubTable is used,
matches are written into the current level taglist. For example:

>>> from mx.TextTools import *
>>> from pprint import pprint
>>> caps = (’Caps’, AlllIn, A2Z)
>>> lower = (’Lower’, AllIn, a2z)
>>> words ( (°’Word’, Table, (caps, lower)),
(None, AllIn, whitespace, MatchFail, -1) )
>>> from pprint import pprint
>>> pprint(tag(s, words))
(0,
[(°Word’, 0, 4, [(°Caps’, 0, 1, None), (’Lower’, 1, 4, None)l),
(’Word’, 5, 19, [(°Caps’, 5, 6, None), (’Lower’, 6, 19, None)l),
(’Word’, 20, 29, [(’Caps’, 20, 24, None), (’Lower’, 24, 29, None)]l),
(’Word’, 30, 35, [(’Caps’, 30, 32, None), (’Lower’, 32, 35, None)])
1,
35)
>>> flatwords = ( (None, SubTable, (caps, lower)),
- (None, AllIn, whitespace, MatchFail, -1) )
>>> pprint(tag(s, flatwords))
(o,

[(*Caps’, 0, 1, None),

(’Lower’, 1, 4, None),

(’Caps’, 5, 6, None),

(’Lower’, 6, 19, None),

(’Caps’, 20, 24, None),

(’Lower’, 24, 29, None),

(’Caps’, 30, 32, None),

(’Lower’, 32, 35, None)],

35)

For either command, if a match occurs, the read-head is moved to immediately after
the match.

The special constant ThisTable can be used instead of a tag table to call the current
table recursively.
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mx. TextTools.TablelnList
mx.TextTools.SubTablelnList

Similar to Table and SubTable except that the argument is a tuple of the form
(list_of tables,index). The advantage (and the danger) of this is that a list
is mutable and may have tables added after the tuple defined—in particular, the
containing tag table may be added to list_of_tables to allow recursion. Note,
however, that the special value ThisTable can be used with the Table or SubTable
commands and is usually more clear.

SEE ALSO: mx.TextTools.Table 304; mx.TextTools.SubTable 304;

mx.TextTools.Call

Match on any computable basis. Essentially, when the Call command is used,
control over parsing/matching is turned over to Python rather than staying in the
mx. TextTools engine. The function that is called must accept arguments s, pos,
and end—where s is the underlying string, pos is the current read-head position,
and end is ending of the slice being processed. The called function must return an
integer for the new read-head position; if the return is different from pos, the match
is a success.

As an example, suppose you want to match at a certain point only if the next N
characters make up a dictionary word. Perhaps an efficient stemmed data structure
is used to represent the dictionary word list. You might check dictionary membership
with a tuple like:

tup = (’DictWord’, Call, inDict)

Since the function inDict is written in Python, it will generally not operate as
quickly as does an mx. Text Tools pattern tuple.

mx. TextTools.CallArg

Same as Call, except CallArg allows passing additional arguments. For example,
suppose the dictionary example given in the discussion of Call also allows you to
specify language and maximum word length for a match:

tup = (’DictWord’, Call, (inDict,[’English’,10]))

SEE ALsO: mx.TextTools.Call 305;

MODIFIERS

mx.TextTools.CallTag

Instead of appending (tagobj,1,r,subtags) to the taglist upon a successful match,
call the function indicated as the tag object (which must be a function rather than
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None or a string). The function called must accept the arguments taglist, s, start,
end, and subtags—where taglist is the present taglist, s is the underlying string,
start and end are the slice indices of the match, and subtags is the nested taglist.
The function called may, but need not, append to or modify taglist or subtags
as part of its action. For example, a code parsing application might include:

>>> def todo_flag(taglist, s, start, end, subtags):
sys.stderr.write("Fix issue at offset %d\n" 7 start)

>>> tup = (todo_flag, Word+CallTag, ’XXX’)
>>> tag(’XXX more stuff’, (tup,))
Fix issue at offset O

1, I, 3

mx. TextTools.AppendMatch

Instead of appending (tagobj,start,end,subtags) to the taglist upon successful
matching, append the match found as string. The produced taglist is “flattened”
and cannot be used in the same manner as “normal” taglist data structures. The
flat data structure is often useful for joining or for list processing styles.

>>> from mx.TextTools import *

>>> words = ((’Word’, AllIn+AppendMatch, alpha),

.. (None, AllIn, whitespace, MatchFail, -1))
>>> tag(’this and that’, words)

(0, [’this’, ’and’, ’that’], 13)

>>> join(tag(’this and that’, words)[1], ’-’)
’this-and-that’

SEE ALSO: string.split() 142;

mx.TextTools.AppendToTagobj

Instead of appending (tagobj,start,end,subtags) to the taglist upon successful
matching, call the .append() method of the tag object. The tag object must be a
list (or a descendent of list in Python 2.2+).

>>> from mx.TextTools import *

>>> ws = []

>>> words = ((ws, AllIn+AppendToTagobj, alpha),

- (None, AllIn, whitespace, MatchFail, -1))

>>> tag(’this and that’, words)

(o, 1, 13

>>> ws

[(None, O, 4, None), (None, 5, 8, None), (None, 9, 13, None)]
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SEE ALsO: mx.TextTools.CallTag 305;

mx. TextTools.AppendTagobj

Instead of appending (tagobj,start,end,subtags) to the taglist upon successful
matching, append the tag object. The produced taglist is usually nonstandard and
cannot be used in the same manner as “normal” taglist data structures. A flat data
structure is often useful for joining or for list processing styles.

>>> from mx.TextTools import *
>>> words = ((’word’, AllIn+AppendTagobj, alpha),
. (None, AllIn, whitespace, MatchFail, -1))
>>> tag(’this and that’, words)
(0, [’word’, ’word’, ’word’], 13)

mx. TextTools.LookAhead

If this modifier is used, the read-head position is not changed when a match occurs.
As the name suggests, this modifier allows you to create patterns similar to regular
expression lookaheads.

>>> from mx.TextTools import *
>>> from pprint import pprint
>>> xwords = ((None, IsIn+LookAhead, ’Xx’, +2),

(’xword’, AllIn, alpha, MatchFail, +2),

(’other’, AllIn, alpha),

(None, AllIn, whitespace, MatchFail, -3))
>>> pprlnt(tag(’Xylophone trumpet xray camera’, xwords))
(0,

[(’xword’, 0, 9, None),
(’other’, 10, 17, None),
(’xword’, 18, 22, None),
(’other’, 23, 29, Nomne)l],

29)

CLASSES

mx.TextTools.BMS(word [,translate])
mx.TextTools.FS(word [,translate])
mx. TextTools. TextSearch(word [,translate [,algorithm=BOYERMOORE]])

Create a search object for the string word. This is similar in concept to a com-
piled regular expression. A search object has several methods to locate its encoded
string within another string. The BMS name is short for “Boyer-Moore,” which is
a particular search algorithm. The name FS is reserved for accessing the “Fast
Search” algorithm in future versions, but currently both classes use Boyer-Moore.
For mx. TextTools 2.1.0+, you are urged to use the .TextSearch() constructor.
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If a translate argument is given, the searched string is translated during the search.
This is equivalent to transforming the string with string.translate() prior to
searching it.

SEE ALSO: string.translate() 145;

mx. TextTools.CharSet(definition)

Version 2.1.0 of mx.TextTools adds the Unicode-compatible CharSet object.
CharSet objects may be initialized to support character ranges, as in regular ex-
pressions; for example, definition="a-mXYZ". In most respects, CharSet objects
are similar to older sets.

METHODS AND ATTRIBUTES

mx.TextTools.BMS.search(s [,start [,end]])
mx.TextTools.FS.search(s [,start [,end]])
mx. TextTools. TextSearch.search(s [,start [,end]])

Locate as a slice the first match of the search object against s. If optional arguments
start and end are used, only the slice s[start:end] is considered. Note: As
of version 2.1.0, the documentation that accompanies mx.TextTools inaccurately
describes the end parameter of search object methods as indicating the length of
the slice rather than its ending offset.

mx.TextTools.BMS.find(s, [,start [,end]])
mx.TextTools.FS.find(s, [,start [,end]])
mx.TextTools. TextSearch.search(s [,start [,end]])

Similar to mz. TextTools.BMS.search(), except return only the starting position
of the match. The behavior is similar to that of string. find().

SEE ALsO: string.find() 135; mx.TextTools.find() 312

mx. TextTools.BMS.findall(s [,start [,end]])
mx.TextTools.FS.findall(s [,start [,end]])
mx.TextTools. TextSearch.search(s [,start [,end]])

Locate as slices every match of the search object against s. If the optional arguments
start and end are used, only the slice s[start:end] is considered.

>>> from mx.TextTools import BMS, any, upper

>>> foosrch = BMS(’F00’, upper(any))

>>> foosrch.search(’foo and bar and FOO and BAR’)

(0, 3)

>>> foosrch.find(’foo and bar and FOO and BAR’)

0

>>> foosrch.findall(’foo and bar and FOO and BAR’)

[(0, 3), (16, 19)]

>>> foosrch.search(’foo and bar and FOO and BAR’, 10, 20)
(16, 19)
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SEE ALsO: re.findall 245; mx.TextTools.findall() 312;

mx.TextTools.BMS.match
mx. TextTools.FS.match
mx. TextTools. TextSearch.match

The string that the search object will look for in the search text (read-only).

mx.TextTools.BMS.translate
mx.TextTools.FS.translate
mx.TextTools. TextSearch.match

The translation string used by the object, or None if no translate string was spec-
ified.

mx.TextTools.CharSet.contains(c)

Return a true value if character c is in the CharSet.

mx.TextTools.CharSet.search(s [,direction [,start=0 [,stop=len(s)]]])

Return the position of the first CharSet character that occurs in s[start:end].
Return None if there is no match. You may specify a negative direction to search
backwards.

SEE ALSO: re.search() 249,

mx. TextTools.CharSet.match(s [,direction [,start=0 [,stop=len(s)]]])

Return the length of the longest contiguous match of the CharSet object against
substrings of s[start:end].

mx.TextTools.CharSet.split(s [,start=0 [,stop=len(text)]])

Return a list of substrings of s[start:end] divided by occurrences of characters in
the CharSet.

SEE ALSO: re.search() 249;

mx.TextTools.CharSet.splitx(s [,start=0 [,stop=len(text)]])

Like mz.TeztTools.CharSet.split() except retain characters from CharSet in
interspersed list elements.

mx.TextTools.CharSet.strip(s [,where=0 [,start=0 [,stop=len(s)]]])

Strip all characters in s[start:stop] appearing in the character set.
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FUNCTIONS

Many of the functions in mx. TextTools are used by the tagging engine. A number of
others are higher-level utility functions that do not require custom development of tag
tables. The latter are listed under a separate heading and generally resemble faster
versions of functions in the string module.

mx. TextTools.cmp(t1, t2)

Compare two valid taglist tuples on their slice positions. Taglists generated with
multiple passes of mz.TeztTools.tag(), or combined by other means, may not
have tuples sorted in string order. This custom comparison function is coded in C
and is very fast.

>>> import mx.TextTools
>>> from pprint import pprint
>>> tl1 = [(Pother’, 10, 17, None),
(’other’, 23, 29, None),
(’xword’, 0, 9, None),
. (’xword’, 18, 22, None)l]
>>> tl.sort(mx.TextTools.cmp)
>>> pprint (tl)
[(’xword’, 0, 9, Nomne),
(’other’, 10, 17, Nome),
(’xword’, 18, 22, None),
(’other’, 23, 29, None)l

mx. TextTools.invset(s)

Identical to mx.TextTools.set(s, 0).

SEE ALsO: mx.TextTools.set() 310,

mx.TextTools.set(s [,includechars=1])

Return a bit-position encoded character set. Bit-position encoding makes tag table
commands like InSet and A11InSet operate more quickly than their character-string
equivalents (e.g, In, A11In).

If includechars is set to 0, invert the character set.

SEE ALsO: mx.TextTools.invset() 310,

mx.TextTools.tag(s, table [,start [,end [,taglist]]])

Apply a tag table to a string. The return value is a tuple of the form (success,
taglist, next). success is a binary value indicating whether the table matched.
next is the read-head position after the match attempt. Even on a nonmatch of
the table, the read-head might have been advanced to some degree by member
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tuples matching. The taglist return value contains the data structure generated by
application. Modifiers and commands within the tag table can alter the composition
of taglist; but in the normal case, taglist is composed of zero or more tuples of
the form (tagname, start, end, subtaglist).

Assuming a “normal” taglist is created, tagname is a string value that was given as
a tag object in a tuple within the tag table. start and end the slice ends of that
particular match. subtaglist is either None or a taglist for a subtable match.

If start or end are given as arguments to mz.TeztTools.tag(), application is
restricted to the slice s[start:end] (or s[start:] if only start is used). If a
taglist argument is passed, that list object is used instead of a new list. This
allows extending a previously generated taglist, for example. If None is passed as
taglist, no taglist is generated.

See the application examples and command illustrations for a number of concrete
uses of mz.TextTools.tag().

UTILITY FUNCTIONS

mx.TextTools.charsplit(s, char, [start [,end]])

Return a list split around each char. Similar to string.splzt(), but faster. If
the optional arguments start and end are used, only the slice s[start:end] is
operated on.

SEE ALSO: string.split() 142; mx.TextTools.setsplit() 314;

mx.TextTools.collapse(s, sep="")

Return a string with normalized whitespace. This is equivalent to string.join(
string.split(s),sep), but faster.

>>> from mx.TextTools import collapse
>>> collapse(’this and that’,’-’)
’this-and-that’

SEE ALSO: string.join() 137 string.split() 142

mx.TextTools.countlines(s)

Returns the number of lines in s in a platform-portable way. Lines may end with CR
(Mac-style), LF (Unix-style), or CRLF (DOS-style), including a mixture of these.

SEE ALsoO: FILE.readlines() 17 mx.TextTools.splitlines() 315;
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mx.TextTools.find(s, search_obj, [start, [,end]])

Return the position of the first match of search_obj against s. If the optional
arguments start and end are used, only the slice s [start:end] is considered. This
function is identical to the search object method of the same name; the syntax is
just slightly different. The following are synonyms:

from mx.TextTools import BMS, find

s = ’some string with a pattern in it’
posl = find(s, BMS(’pat’))

pos2 = BMS(’pat’).find(s)

SEE ALSO: string.find() 135; mx.TextTools. BMS.find() $08;

mx. TextTools.findall(s, search_obj [,start [,end]])

Return as slices every match of search_obj against s. If the optional arguments
start and end are used, only the slice s[start:end] is considered. This function is
identical to the search object method of the same name; the syntax is just slightly
different. The following are synonyms:

from mx.TextTools import BMS, findall
s = ’some string with a pattern in it’
posl = findall(s, BMS(’pat’))
pos2 = BMS(’pat’).findall(s)

SEE ALsO: mx.TextTools.find() 312; mx.TextTools.BMS.findall() 308;

mx. TextTools.hex2str(hexstr)

Returns a string based on the hex-encoded string hexstr.

>>> from mx.TextTools import hex2str, str2hex
>>> str2hex(’abc’)

’616263°

>>> hex2str(’6162637)

’abc’

SEE ALSO: mx.TextTools.str2hex() 315;

mx.TextTools.is_whitespace(s [,start [,end]])

Returns a Boolean value indicating whether s[start:end] contains only white-
space characters. start and end are optional, and will default to 0 and len(s),
respectively.

mx. TextTools.isascii(s)

Returns a Boolean value indicating whether s contains only ASCII characters.
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mx. TextTools.join(joinlist [,sep="" [,start [,end]]])

Return a string composed of slices from other strings. joinlist is a sequence of
tuples of the form (s, start, end, ...) each indicating the source string and
offsets for the utilized slice. Negative offsets do not behave like Python slice offsets
and should not be used. If a joinlist item tuple contains extra entries, they are
ignored, but are permissible.

If the optional argument sep is specified, a delimiter between each joined slice is
added. If start and end are specified, only joinlist[start:end] is utilized in the
joining.

>>> from mx.TextTools import join

>>> s = ’Spam and eggs for breakfast’

>>> t = ’This and that for lunch’

>>> 1 = [(s, 0, 4), (s, 9, 13), (t, 0, 4), (¢, 9, 13)]
>>> join(jl, ’/’, 1, 4)

’/eggs/This/that’

SEE ALSO: string.join() 137

mx.TextTools.lower(s)

Return a string with any uppercase letters converted to lowercase. Functionally
identical to string. lower (), but much faster.

SEE ALSO: string.lower() 188; mx.TextTools.upper() 316;

mx. TextTools.prefix(s, prefixes [,start [,stop [,translate]]])

Return the first prefix in the tuple prefixes that matches the end of s. If start
and end are specified, only operate on the slice s[start:end]. Return None if no
prefix matches.

If a translate argument is given, the searched string is translated during the search.
This is equivalent to transforming the string with string. translate() prior to
searching it.

>>> from mx.TextTools import prefix
>>> prefix(’spam and eggs’, (’spam’,’and’,’eggs’))
,Spam,

SEE ALsO: mx.TextTools.suffix() 316;

mx.TextTools.multireplace(s ,replacements [,start [,stop]])

Replace multiple nonoverlapping slices in s with string values. replacements must
be list of tuples of the form (new, left, right). Indexing is always relative to s,
even if an earlier replacement changes the length of the result. If start and end are
specified, only operate on the slice s[start:end].



“TPiP” — 2003/4/13 — 17:12 — page 314 — #334 ﬁ}

314 PARSERS AND STATE MACHINES

mx.

mx.

>>> from mx.TextTools import findall, multireplace
>>> s = ’spam, bacon, sausage, and spam’

>>> repls = [(’X’,1,r) for 1,r in findall(s, ’spam’)]
>>> multireplace(s, repls)

’X, bacon, sausage, and X’

>>> repls

(x>, o, 4, (x’, 26, 30)]

.TextTools.replace(s, old, new [,start [,stop]])

Return a string where the pattern matched by search object o0ld is replaced by string
new. If start and end are specified, only operate on the slice s[start:end]. This
function is much faster than string.replace (), since a search object is used in the
search aspect.

>>> from mx.TextTools import replace, BMS
>>> s = ’spam, bacon, sausage, and spam’
>>> spam = BMS(’spam’)

>>> replace(s, spam, ’eggs’)

’eggs, bacon, sausage, and eggs’

>>> replace(s, spam, ’eggs’, 5)

> bacon, sausage, and eggs’

SEE ALSO: string.replace() 139; mx.TextTools.BMS 307

TextTools.setfind(s, set [,start [,end]])

Find the first occurence of any character in set. If start is specified, look only in
s[start:]; if end is specified, look only in s[start:end]. The argument set must
be a set.

>>> from mx.TextTools import *
>>> s = ’spam and eggs’

>>> vowel = set(’aeiou’)

>>> setfind(s, vowel)

>>> setfind(s, vowel, 7, 10)

SEE ALsO: mx.TextTools.set() 310,

TextTools.setsplit(s, set [,start [,stop]])

Split s into substrings divided at any characters in set. If start is specified, create a
list of substrings of s[start:]; if end is specified, use s [start:end]. The argument
set must be a set.
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SEE ALSO: string.split() 742; mx.TextTools.set() 310; mx.TextTools.setsplitx() 315;

mx.TextTools.setsplitx(text,set[,start=0,stop=len(text)])

Split s into substrings divided at any characters in set. Include the split characters
in the returned list. Adjacent characters in set are returned in the same list element.
If start is specified, create a list of substrings of s[start:]; if end is specified, use
s[start:end]. The argument set must be a set.

>>> s = ’do you like spam’

>>> setsplit(s, vowel)

[7d7’ ) y), J 17’ )k), J sp), )m)]

>>> setsplitx(s, vowel)

[7d7, 707, J y-?’ 70u7’ J 1), Ji), 7k7, Je7, J Sp), 7a7’ 7ml]

SEE ALSO: string.split() 142; mx.TextTools.set() 310; mx.TextTools.setsplit() 314;

mx.TextTools.splitat(s, char, [n=1 [,start [end]]])

Return a 2-element tuple that divides s around the n’th occurence of char. If start
and end are specified, only operate on the slice s[start:end].

>>> from mx.TextTools import splitat
>>> s = ’spam, bacon, sausage, and spam’
>>> gplitat(s, ’a’, 3)

(’spam, bacon, s’, ’usage, and spam’)
>>> splitat(s, ’a’, 3, 5, 20)

(> bacon, saus’, ’ge’)

mx. TextTools.splitlines(s)

Return a list of lines in s. Line-ending combinations for Mac, PC, and Unix plat-
forms are recognized in any combination, which makes this function more portable
than is string.split(s,"\n") or FILE.readlines().

SEE ALsO: string.split() 142, FILE.readlines() 17 mx.TextTools.setsplit() $14;
mx.TextTools.countlines() 311;

mx. TextTools.splitwords(s)
Return a list of whitespace-separated words in s. Equivalent to string.split(s).
SEE ALSO: string.split() 142;

mx. TextTools.str2hex(s)

Returns a hexadecimal representation of a string. For Python 2.0+, this is equivalent
to s.encode("hex").
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SEE ALSO: "".encode() 188; mx.TextTools.hex2str() 312,

mx. TextTools.suffix(s, suffixes [,start [,stop [,translate]]])

Return the first suffix in the tuple suffixes that matches the end of s. If start
and end are specified, only operate on the slice s[start:end]. Return None if no
suffix matches.

If a translate argument is given, the searched string is translated during the search.
This is equivalent to transforming the string with string.translate() prior to
searching it.

>>> from mx.TextTools import suffix
>>> suffix(’spam and eggs’, (’spam’,’and’,’eggs’))
,eggS’

SEE ALsO: mx.TextTools.prefix() 313

mx.TextTools.upper(s)

Return a string with any lowercase letters converted to uppercase. Functionally
identical to string.upper(), but much faster.

SEE ALSO: string.upper() 146; mx.TextTools.lower() 313,

4.3.3 High-Level EBNF Parsing

SimpleParse ¢ A Parser Generator for mx.TextTools I

SimpleParse is an interesting tool. To use this module, you need to have the mx. Text Tools
module installed. While there is nothing you can do with SimpleParse that cannot be
done with mx. TextTools by itself, SimpleParse is often much easier to work with. There
exist other modules to provide higher-level APIs for mx. TextTools; I find SimpleParse to
be the most useful of these, and the only one that this book will present. The examples
in this section were written against SimpleParse version 1.0, but the documentation is
updated to include new features of 2.0. Version 2.0 is fully backward compatible with
existing SimpleParse code.

SimpleParse substitutes an EBNF-style grammar for the low-level state matching
language of mx.TextTools tag tables. Or more accurately, SimpleParse is a tool
for generating tag tables based on friendlier and higher-level EBNF grammars. In
principle, SimpleParse lets you access and modify tag tables before passing them
to mz.TextTools.tag(). But in practice, you usually want to stick wholly with
SimpleParse’s EBNF variant when your processing is amenable to a grammatical de-
scription of the text format.

An application based on SimpleParse has two main aspects. The first aspect is the
grammar that defines the structure of a processed text. The second aspect is the
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traversal and use of a generated mx.TextTools taglist. SimpleParse 2.0 adds facilities
for the traversal aspect, but taglists present a data structure that is quite easy to work
with in any case. The tree-walking tools in SimpleParse 2.0 are not covered here, but
the examples given in the discussion of mx.TextTools illustrate such traversal.

Example: Marking up smart ASCII (Redux)

Elsewhere in this book, applications to process the smart ASCII format are also pre-
sented. Appendix D lists the Txt2Html utility, which uses a combination of a state
machine for parsing paragraphs and regular expressions for identifying inline markup.
A functionally similar example was given in the discussion of mx.TextTools, where a
complex and compound tag table was developed to recognize inline markup elements.
Using SimpleParse and an EBNF grammar is yet another way to perform the same sort
of processing. Comparing the several styles will highlight a number of advantages that
SimpleParse has—its grammars are clear and concise, and applications built around it
can be extremely fast.

The application simpleTypography.py is quite simple; most of the work of program-
ming it lies in creating a grammar to describe smart ASCII. EBNF grammars are almost
self-explanatory to read, but designing one does require a bit of thought and testing:

typography.def
para := (plain / markup)+
plain := (word / whitespace / punctuation)+
<whitespace> := [ \t\r\nl+
<alphanums> := [a-zA-Z0-9]+
<word> := alphanums, (wordpunct, alphanums)*, contraction?
<wordpunct> = [-_]
<contraction> := "’", (’am’/’clock’/’d’/’11’/’m’/’re’/’s’/’t’/’ve’)
markup := emph / strong / module / code / title
emph := ’=’, plain, ’-’
strong := ’%’, plain, ’*’
module := ’[’, plain, ’]°
code = """, plain, "’"
title :=’_7, plain, ’_°
<punctuation> := (safepunct / mdash)
<mdash> 1= =2
<safepunct> = [1e#$%°& O +=\{}:;<>,.?2/"]

This grammar is almost exactly the way you would describe the smart ASCII language
verbally, which is a nice sort of clarity. A paragraph consist of some plaintext and
some marked-up text. Plaintext consists of some collection of words, whitespace, and
punctuation. Marked-up text might be emphasized, or strongly emphasized, or module
names, and so on. Strongly emphasized text is surrounded by asterisks. And so on. A
couple of features like just what a “word” really is, or just what a contraction can end
with, take a bit of thought, but the syntax of EBNF doesn’t get in the way.
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Notice that some declarations have their left side surrounded in angle brackets. Those
productions will not be written to the taglist—this is the same as using None as a tagobj
in an mx. Texttools tag table. Of course, if a production is not written to the taglist,
then its children cannot be, either. By omitting some productions from the resultant
taglist, a simpler data structure is produced (with only those elements that interest us).

In contrast to the grammar above, the same sort of rules can be described even more
tersely using regular expressions. This is what the Txt2Html version of the smart ASCII
markup program does. But this terseness is much harder to write and harder still to
tweak later. The re code below expresses largely (but not precisely) the same set of
rules:

Python regexes for smart ASCIl markup ‘

# [module] names

remods = r"""(\(\s>/">TIDNLCADNT (I8N \), 52121 /=])
# *strongly emphasize* words

re_strong = """ ([\(\s? /"] 1)\ (.*+2)\k([\s\.\), : ;721 /=])noo

# —emphasize- words

re_emph = """ ([\(\s?/"11")=(.*?7)=([\s\.\), ;" 71/])"ne

# _Book Title_ citatiomns

re_title = r"""([\N(\s’/"117)_C.*?)_([\s\.\),:; 2" 21/=])nn"

# ’Function()’ names

re_funcs = """ ([\(\s/"117)7 (.%7) 7 ([\s\.\),:;"71/=]) "

If you discover or invent some slightly new variant of the language, it is a lot easier
to play with the EBNF grammar than with those regular expressions. Moreover, using
SimpleParse—and therefore mx. Text Tools—will generally be even faster in performing
the manipulations of the patterns.

GENERATING AND USING A TAGLIST

For simpleTypography.py, I put the actual grammar in a separate file. For most
purposes, this is a good organization to use. Changing the grammar is usually a different
sort of task than changing the application logic, and the files reflect this. But the
grammar is just read as a string, so in principle you could include it in the main
application (or even dynamically generate it in some way).

Let us look at the entire—compact—tagging application:



“TPiP” — 2003/4/13 — 17:12 — page 319 — #339

4.3 Parser Libraries for Python 319

simpleTypography.py

from sys import stdin, stdout, stderr
from simpleparse import generator
from mx.TextTools import TextTools
from typo_html import codes

from pprint import pprint

src = stdin.read()

decl = open(’typography.def’).read()

parser = generator.buildParser(decl) .parserbyname(’para’)
taglist = TextTools.tag(src, parser)

pprint (taglist, stderr)

for tag, beg, end, parts in taglist[1]:

if tag == ’plain’:
stdout.write(src[beg:end])
elif tag == ’markup’:

markup = parts[0]
mtag, mbeg, mend = markupl[:3]

start, stop = codes.get (mtag, (’<!'-- unknown -->7,
’<1-- /unknown -->’))
stdout.write(start + src[mbeg+l:mend-1] + stop)

else:
raise TypeError, "Top level tagging should be plain/markup"

With version 2.0 of SimpleParse, you may use a somewhat more convenient API to
create a taglist:

from simpleparse.parser import Parser
parser = Parser(open(’typography.def’).read(), ’para’)
taglist = parser.parse(src)

Here is what it does. First read in the grammar and create an mx. Text Tools parser
from the grammar. The generated parser is similar to the tag table that is found in
the hand-written mxTypography.py module discussed earlier (but without the human-
friendly comments and structure). Next, apply the tag table/parser to the input source
to create a taglist. Finally, loop through the taglist, and emit some new marked-up text.
The loop could, of course, do anything else desired with each production encountered.

For the particular grammar used for smart ASCII, everything in the source text is
expected to fall into either a “plain” production or a “markup” production. Therefore,
it suffices to loop across a single level in the taglist (except when we look exactly one
level lower for the specific markup production, such as “title”). But a more free-form
grammar—such as occurs for most programming languages—could easily recursively
descend into the taglist and look for production names at every level. For example, if
the grammar were to allow nested markup codes, this recursive style would probably
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be used. Readers might enjoy the exercise of figuring out how to adjust the grammar
(hint: Remember that productions are allowed to be mutually recursive).

The particular markup codes that go to the output live in yet another file for organiza-
tional, not essential, reasons. A little trick of using a dictionary as a switch statement is
used here (although the otherwise case remains too narrow in the example). The idea
behind this organization is that we might in the future want to create multiple “output
format” files for, say, HI'ML, DocBook, IXTEX, or others. The particular markup file
used for the example just looks like:

typo_html.py

codes = \

{ ’emph’ : (O<em>’, ’</em>’),
’strong’ : (’<strong>’, ’</strong>’),
‘module’ : (’<em><code>’, ’</code></em>’),
’code’ : (’<code>’, ’</code>’),
‘title’ : (P<cite>’, ’</cite>’),

}

Extending this to other output formats is straightforward.

THE TAGLIST AND THE OUTPUT

The tag table generated from the grammar in typography.def is surprisingly compli-
cated and includes numerous recursions. Only the exceptionally brave of heart will
want to attempt manual—let alone automated—modification of tag tables created by
SimpleParse. Fortunately, an average user need not even look at these tags, but simply
use them, as is done with parser in simpleTypography.py.

The taglist produced by applying a grammar, in contrast, can be remarkably simple.
Here is a run of simpleTypography.py against a small input file:

% python simpleTypography.py < p.txt > p.html
1,
[(’plain’, 0, 15, [1),
(’markup’, 15, 27, [(Pemph’, 15, 27, [(’plain’, 16, 26, [1D1)]1),
(C’plain’, 27, 42, [1),
(’markup’, 42, 51, [(’module’, 42, 51, [(’plain’, 43, 50, [1D11),
(’plain’, 51, 55, [1),
(’markup’, 55, 70, [(’code’, 55, 70, [(’plain’, 56, 69, [1)1)1),
(’plain’, 70, 90, [1),
(’markup’, 90, 96, [(’strong’, 90, 96, [(’plain’, 91, 95, [1D11),
(’plain’, 96, 132, [1),
(’markup’, 132, 145, [(°title’, 132, 145, [(’plain’,133,144,[1)1)1),
(’plain’, 145, 174, [1)],
174)
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Most productions that were satisfied are not written into the taglist, because they
are not needed for the application. You can control this aspect simply by defining
productions with or without angle braces on the left side of their declaration. The
output looks like you would expect:

% cat p.txt

Some words are -in italics-, others

name [modules] or ’command lines’.

Still others are *bold* —-- that’s how

it goes. Maybe some _book titles_.

And some in-fixed dashes.

% cat p.html

Some words are <em>in italics</em>, others

name <em><code>modules</code></em> or <code>command lines</code>.
Still others are <strong>bold</strong> -- that’s how
it goes. Maybe some <cite>book titles</cite>.

And some in-fixed dashes.

GRAMMAR

The language of SimpleParse grammars is itself defined using a SimpleParse EBNF-style
grammar. In principle, you could refine the language SimpleParse uses by changing the
variable declaration in bootstrap.py, or simpleparsegrammar.py in recent versions.
For example, extended regular expressions, W3C XML Schemas, and some EBNF vari-
ants allow integer occurrence quantification. To specify that three to seven foo tokens
occur, you could use the following declaration in SimpleParse:

foos := foo, foo, foo, foo?, foo?, foo?, foo?
Hypothetically, it might be more elegant to write something like:
foos := foo{3,7}

In practice, only someone developing a custom/enhanced parsing module would
have any reason to fiddle quite so deeply; “normal” programmers should use
the particular EBNF variant defined by default. Nonetheless, taking a look at
simpleparse/bootstrap.py can be illustrative in understanding the module.

DECLARATION PATTERNS

A SimpleParse grammar consists of a set of one or more declarations. Each declaration
generally occurs on a line by itself; within a line, horizontal whitespace may be used
as desired to improve readability. A common strategy is to align the right sides of
declarations, but any other use of internal whitespace is acceptable. A declaration
contains a term, followed by the assignment symbol “:=” followed by a definition. An
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end-of-line comment may be added to a declaration, following an unquoted “#” (just
as in Python).

In contrast to most imperative-style programming, the declarations within a grammar
may occur in any order. When a parser generator’s .parserbyname () method is called,
the “top level” of the grammar is given as an argument. The documented API for
SimpleParse uses a call of the form:

from simpleparse import generator

parser = generator.buildParser(decl) .parserbyname(’toplevel’)
from mx.TextTools import TextTools

taglist = TextTools.tag(src, parser)

Under SimpleParse 2.0, you may simplify this to:

from simpleparse.parser import Parser
parser = Parser(decl,’toplevel’)
taglist = parser.parse(src)

A left side term may be surrounded by angle brackets (“<”, “>”) to prevent that
production from being written into a taglist produced by mz. TeztTools. tag(). This
is called an “unreported” production. Other than in relation to the final taglist, an
unreported production acts just like a reported one. Either type of term may be used
on the right sides of other productions in the same manner (without angle brackets
when occurring on the right side).

In SimpleParse 2.0 you may also use reversed angle brackets to report the children of
a production, but not the production itself. As with the standard angle brackets, the
production functions normally in matching inputs; it differs only in produced taglist.
For example:

PRODUCTIONS TAGLIST

a = (b,c) Ca’, 1, r, [

b d,e) Cb, 1, r, [...1),

C - (f,g) (’C’, 1, r: [ ]) ] )
a = (b,C) (’a’) l’ r, [

<b> := (d,e) # no b, and no children
c = (f,g) Cc’, 1, r, [...D) 1)
# Only in 2.0+ CCa’, 1, r, [

a := (b,c) # no b, but raise children
>b< := (d,e) ¢ca, 1, r, [...D),

c = (f,® Ce’, 1, r, [...1),

Cce’y 1, r, [...1D 1)
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The remainder of the documentation of the SimpleParse module covers elements that
may occur on the right sides of declarations. In addition to the elements listed, a term
from another production may occur anywhere any element may. Terms may thus stand
in mutually recursive relations to one another.

LITERALS

Literal string

A string enclosed in single quotes matches the exact string quoted. Python escaping
may be used for the characters \a, \b, \f, \n, \r, \t, and \v, and octal escapes of
one to three digits may used. To include a literal backslash, it should be escaped as

\\-

foo := "bar"

Character class: "[”, "]"

Specify a set of characters that may occur at a position. The list of allowable
characters may be enumerated with no delimiter. A range of characters may be
indicated with a dash (“-”). Multiple ranges are allowed within a class.

To include a “]” character in a character class, make it the first character. Similarly,
a literal “-” character must be either the first (after the optional “|” character) or
the last character.

varchar := [a-zA-Z_0-9]

QUANTIFIERS

Universal quantifier: ”*”

Match zero or more occurrences of the preceding expression. Quantification has a
higher precedence than alternation or sequencing; grouping may be used to clarify
quantification scope as well.

any_Xs 1= "Xk
any_digits := [0-9]*

Existential quantifier: " +"”

Match one or more occurrences of the preceding expression. Quantification has a
higher precedence than alternation or sequencing; grouping may be used to clarify
quantification scope as well.

some_Xs = "X"+
some_digits := [0-9]+
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Potentiality quantifier: " ?”

Match at most one occurrence of the preceding expression. Quantification has a
higher precedence than alternation or sequencing; grouping may be used to clarify
quantification scope as well.

maybe_Xs = "X"?
maybe_digits := [0-9]7

Lookahead quantifier: ”?”

In SimpleParse 2.0+, you may place a question mark before a pattern to assert that
it occurs, but should not actually claim the pattern. As with regular expressions,
you can create either positive or negative lookahead assertions.

?IIXII
7-[0-9]

next_is_Xs
next_is_not_digits :

Error on Failure:

In SimpleParse 2.0+, you may cause a descriptive exception to be raised when a
production does not match, rather than merely stopping parsing at that point.

require_Xs = "X"!
require_code := ([A-Z]+, [0-9])!
contraction := "’", (’clock’/’d’/’11’/’m’/’re’/’s’/’t’/’ve’)!

For example, modifying the contraction production from the prior discussion could
require that every apostrophe is followed by an ending. Since this doesn’t hold, you
might see an exception like:

% python typo2.py < p.txt

Traceback (most recent call last):

[...]

simpleparse.error.ParserSyntaxError: ParserSyntaxError:
Failed parsing production "contraction" @pos 84 ("line 1:29).
Expected syntax: (’clock’/’d’/’11’/’m’/’re’/’s’/’t’/’ve’)

Got text: ’command lines’. Still others are *boldx*

STRUCTURES

Alternation operator: " /"

Match the first pattern possible from several alternatives. This operator allows any
of a list of patterns to match. Some EBNF-style parsers will match the longest
possible pattern, but SimpleParse more simply matches the first possible pattern.
For example:
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>>> from mx.TextTools import tag
>>> from simpleparse import generator

>>> decl = >’
. short := "foo", " "x
.. long := "foobar", " "x
.. sl = (short / long)=*
. 1s = (long / short)=*

)2

>>> parser = generator.buildParser(decl).parserbyname(’sl’)

>>> tag(’foo foobar foo bar’, parser)[1]

[(’short’, 0, 4, []1), (’short’, 4, 7, [1)]

>>> parser = generator.buildParser(decl).parserbyname(’ls’)

>>> tag(’foo foobar foo bar’, parser) [1]

[(’short’, 0, 4, [1), (’long’, 4, 11, [1), (’short’, 11, 15, [1)]

Sequence operator: ",

Match the first pattern followed by the second pattern (followed by the third pattern,
if present, ...). Whenever a definition needs several elements in a specific order, the
comma sequence operator is used.

term := someterm, [0-9]*, "X"+, (otherterm, stillother)?

Negation operator:

Match anything that the next pattern does not match. The pattern negated can be
either a simple term or a compound expression.

nonletters = -[a-zA-Z]
nonfoo = -foo
notfoobarbaz := -(foo, bar, baz)

An expression modified by the negation operator is very similar conceptually to a
regular expression with a negative lookahead assertion. For example:

>>> from mx.TextTools import tag
>>> from simpleparse import generator

>>> decl = ’’’not_initfoo := [ \t]l*, -"foo", [a-zA-Z ]+’’

>>> p = generator.buildParser(decl) .parserbyname(’not_initfoo’)
>>> tag(’ foobar and baz’, p) # no match

o, O, o

>>> tag(’ bar, foo and baz’, p) # match on part

1, 1, 8

>>> tag(’ bar foo and baz’, p) # match on all

1, [, 17)
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Grouping operators: " (", ”)”

Parentheses surrounding any pattern turn that pattern into an expression (possibly
within a larger expression). Quantifiers and operators refer to the immediately ad-
jacent expression, if one is defined, otherwise to the adjacent literal string, character
class, or term.

>>> from mx.TextTools import tag
>>> from simpleparse import generator
>>> decl = 7’

. foo = "foo"

. bar = "bar"

. foo_bars := foo, bar+

. foobars := (foo, bar)+

PAP A

>>> pl = generator.buildParser(decl).parserbyname(’foobars’)
>>> p2 = generator.buildParser(decl) .parserbyname(’foo_bars’)
>>> tag(’foobarfoobar’, pl)
1, [Cfoo’, 0, 3, [1), Cbvar’, 3, 6, [1),
(’foo’, 6, 9, [1), Cbar’, 9, 12, [1H], 12)
>>> tag(’foobarfoobar’, p2)
(1, [(°foo’, 0, 3, [1), Cbar’, 3, 6, [1)1, 6)
>>> tag(’foobarbarbar’, pl)
1, [Cfoo’, 0, 3, [1), Cvar’, 3, 6, [1)], 6
>>> tag(’foobarbarbar’, p2)
(1, [(°foo’, 0, 3, [1), Cbar’, 3, 6, [1),
(’var’, 6, 9, [1), (Cbar’, 12, D1, 12)

©

USEFUL PRODUCTIONS

In version 2.0+, SimpleParse includes a number of useful productions that may be
included in your grammars. See the examples and documentation that accompany
SimpleParse for details on the many included productions and their usage.

The included productions, at the time of this writing, fall into the categories below:

simpleparse.common.calendar_names

Locale-specific names of months, and days of the week, including abbreviated forms.

simpleparse.common.chartypes
Locale-specific categories of characters, such as digits, uppercase, octdigits, punctu-
ation, locale_decimal_point, and so on.

simpleparse.common.comments

Productions to match comments in a variety of programming languages, such as
hash (#) end-of-line comments (Python, Bash, Perl, etc.); C paired comments
(/* comment */); and others.
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simpleparse.common.iso_date

Productions for strictly conformant ISO date and time formats.

simpleparse.common.iso_date_loose
Productions for ISO date and time formats with some leeway as to common variants
in formatting.

simpleparse.common.numbers
Productions for common numeric formats, such as integers, floats, hex numbers,
binary numbers, and so on.

simpleparse.common.phonetics

Productions to match phonetically spelled words. Currently, the US military style
of “alpha, bravo, charlie, ...” spelling is the only style supported (with some leeway
in word spellings).

simpleparse.common.strings

Productions to match quoted strings as used in various programming languages.

simpleparse.common.timezone_names

Productions to match descriptions of timezones, as you might find in email headers
or other data/time fields.

GOTCHAS

There are a couple of problems that can easily arise in constructed SimpleParse gram-
mars. If you are having problems in your application, keep a careful eye out for these
issues:

1. Bad recursion. You might fairly naturally construct a pattern of the form:
a := b, a?

Unfortunately, if a long string of b rules are matched, the repeated recognition
can either exceed the C-stack’s recursion limit, or consume inordinate amounts of
memory to construct nested tuples. Use an alternate pattern like:

a := b+

This will grab all the b productions in one tuple instead (you could separately
parse out each b if necessary).

2. Quantified potentiality. That is a mouthful; consider patterns like:

(b7 / c)x*
x = (y?, z?)+

)
]
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The first alternate b? in the first—and both y? and z? in the second—are happy
to match zero characters (if a b or y or z do not occur at the current position).
When you match “as many as possible” zero-width patterns, you get into an
infinite loop. Unfortunately, the pattern is not always simple; it might not be b
that is qualified as potential, but rather b productions (or the productions in b
productions, etc.).

3. No backtracking. Based on working with regular expression, you might expect
SimpleParse productions to use backtracking. They do not. For example:

a := ((b/c)*, b)

If this were a regular expression, it would match a string of b productions, then
back up one to match the final b. As a SimpleParse production, this definition can
never match. If any b productions occur, they will be claimed by (b/c) *, leaving
nothing for the final b to grab.

4.3.4 High-Level Programmatic Parsing

PLY ¢ Python Lex-Yacc I

One module that I considered covering to round out this chapter is John Aycock’s Spark
module. This module is both widely used in the Python community and extremely
powerful. However, I believe that the audience of this book is better served by working
with David Beazley’s PLY module than with the older Spark module.

In the documentation accompanying PLY, Beazley consciously acknowledges the in-
fluence of Spark on his design and development. While the PLY module is far from being
a clone of Spark—the APIs are significantly different—there is a very similar feeling to
working with each module. Both modules require a very different style of programming
and style of thinking than do mx. Text Tools, SimpleParse, or the state machines discussed
earlier in this chapter. In particular, both PLY and Spark make heavy use of Python
introspection to create underlying state machines out of specially named variables and
functions.

Within an overall similarity, PLY has two main advantages over Spark in a text
processing context. The first, and probably greatest, advantage PLY has is its far
greater speed. Although PLY has implemented some rather clever optimizations—such
as preconstruction of state tables for repeated runs—the main speed difference lies in
the fact that PLY uses a far faster, albeit slightly less powerful, parsing algorithm. For
text processing applications (as opposed to compiler development), PLY’s LR parsing
is plenty powerful for almost any requirement.

A second advantage PLY has over every other Python parsing library that I am aware
of is a flexible and fine-grained error reporting and error correction facility. Again, in a
text processing context, this is particularly important.
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For compiling a programming language, it is generally reasonable to allow compilation
to fail in the case of even small errors. But for processing a text file full of data fields
and structures, you usually want to be somewhat tolerant of minor formatting errors;
getting as much data as possible from a text automatically is frequently the preferred
approach. PLY does an excellent job of handling “allowable” error conditions gracefully.

PLY consists of two modules: a lexer/tokenizer named lex.py, and a parser named
yacc.py. The choice of names is taken from the popular C-oriented tools lex and yacc,
and the behavior is correspondingly similar. Parsing with PLY usually consists of the
two steps that were discussed at the beginning of this chapter: (1) Divide the input
string into a set of nonoverlapping tokens using lex.py. (2) Generate a parse tree from
the series of tokens using yacc.py.

When processing text with PLY, it is possible to attach “action code” to any lexing
or parsing event. Depending on application requirements, this is potentially much more
powerful than SimpleParse. For example, each time a specific token is encountered
during lexing, you can modify the stored token according to whatever rule you wish, or
even trigger an entirely different application action. Likewise, during parsing, each time
a node of a parse tree is constructed, the node can be modified and/or other actions
can be taken. In contrast, SimpleParse simply delivers a completed parse tree (called
a “taglist”) that must be traversed separately. However, while SimpleParse does not
provide the fine-tunable event control that PLY does, SimpleParse offers a higher-level
and cleaner grammar language—the choice between the two modules is full of pros and
cons.

Example: Marking up smart ASCII (yet again)

This chapter has returned several times to applications for processing smart ASCII: a
state machine in Appendix D; a functionally similar example using mx. Text Tools; an
EBNF grammar with SimpleParse. This email-like markup format is not in itself all that
important, but it presents just enough complications to make for a good comparison
between programming techniques and libraries. In many ways, an application using PLY
is similar to the SimpleParse version above—both use grammars and parsing strategies.

GENERATING A TOKEN LIST

The first step in most PLY applications is the creation of a token stream. Tokens are
identified by a series of regular expressions attached to special pattern names of the form
t_RULENAME. By convention, the PLY token types are in all caps. In the simple case, a
regular expression string is merely assigned to a variable. If action code is desired when
a token is recognized, the rule name is defined as a function, with the regular expression
string as its docstring; passed to the function is a LexToken object (with attributes
.value, .type, and .lineno), which may be modified and returned. The pattern is
clear in practice:
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wordscanner.py

# List of token names. This is always required.
tokens = [ ’ALPHANUMS’,’SAFEPUNCT’, ’BRACKET’,’ASTERISK’,
>UNDERSCORE’ ,  APOSTROPHE’ , DASH’ ]

# Regular expression rules for simple tokens

t_ALPHANUMS = r"[a-zA-Z0-9]+"

t_SAFEPUNCT = v’ [1e#$%"&O+=|\{}:;<>,.?/"]1+’
t_BRACKET =r’[1[1°

t_ASTERISK = r’[x]’

t_UNDERSCORE =r

t_APOSTROPHE = "o

t_DASH = -

# Regular expression rules with action code
def t_newline(t):

T n \n+ n

t.lineno += len(t.value)

# Special case (faster) ignored characters
t_ignore = " \t\r"

# Error handling rule
def t_error(t):
sys.stderr.write("Illegal character ’%s’ (%s)\n"
% (t.valuel[0], t.lineno))
t.skip(1)

import lex, sys
def stdin2tokens():

lex.input(sys.stdin.read()) # Give the lexer some input
toklst = [] # Tokenize
while 1:

t = lex.token()
if not t: break # No more input
toklst.append(t)

return toklst

if __name__==’__main__’:
lex.lex() # Build the lexer
for t in stdin2tokens():

print ’%s<¥s>’ ¥ (t.value.ljust(15), t.type)

You are required to list the token types you wish to recognize, using the tokens
variable. Each such token, and any special patterns that are not returned as tokens, is
defined either as a variable or as a function. After that, you just initialize the lexer,
read a string, and pull tokens off sequentially. Let us look at some results:
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% cat p.txt
-Itals-, [modname]--let’s add ~ underscored var_name.
% python wordscanner.py < p.txt

Illegal character ’~’ (1)

- <DASH>

Itals <ALPHANUMS>

- <DASH>

s <SAFEPUNCT>

[ <BRACKET>

modname <ALPHANUMS>

] <BRACKET>

- <DASH>

- <DASH>

let <ALPHANUMS>

’ <APOSTROPHE>

s <ALPHANUMS>

add <ALPHANUMS>

underscored <ALPHANUMS>

var <ALPHANUMS>

_ <UNDERSCORE>

name <ALPHANUMS>
<SAFEPUNCT>

The output illustrates several features. For one thing, we have successfully tagged
each nondiscarded substring as constituting some token type. Notice also that the
unrecognized tilde character is handled gracefully by being omitted from the token
list—you could do something different if desired, of course. Whitespace is discarded as
insignificant by this tokenizer—the special t_ignore variable quickly ignores a set of
characters, and the t_newline () function contains some extra code to maintain the line
number during processing.

The simple tokenizer above has some problems, however. Dashes can be used either in
an m-dash or to mark italicized phrases; apostrophes can be either part of a contraction
or a marker for a function name; underscores can occur both to mark titles and within
variable names. Readers who have used Spark will know of its capability to enhance a
lexer or parser by inheritance; PLY cannot do that, but it can utilize Python namespaces
to achieve almost exactly the same effect:

wordplusscanner.py

"Enhanced word/markup tokenization"
from wordscanner import *
tokens.extend ([’CONTRACTION’, ’MDASH’, ’WORDPUNCT’])
t_CONTRACTION = r"(7<=[a-zA-Z])’(am|clock|d|1llimlrels|t|ve)"
t_WORDPUNCT = r’ (7<=[a-zA-20-9]) [-_] (?=[a-zA-Z0-9])"’
def t_MDASH(t): # Use HTML style mdash

T PR
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t.value = ’&mdash;’
return t

if __name__==’__main__"’:
lex.lex() # Build the lexer

for t in stdin2tokens():
print ’%s<¥s>’ ¥ (t.value.ljust(15), t.type)

Although the tokenization produced by wordscanner.py would work with the right
choice of grammar rules, producing more specific tokens allows us to simplify the gram-
mar accordingly. In the case of t_MDASH(), wordplusscanner.py also modifies the
token itself as part of recognition:

% python wordplusscanner.py < p.txt

Illegal character ’~’ (1)
- <DASH>
Itals <ALPHANUMS>
- <DASH>
s <SAFEPUNCT>
[ <BRACKET>
modname <ALPHANUMS>
] <BRACKET>
&mdash; <MDASH>
let <ALPHANUMS>
’s <CONTRACTION>
add <ALPHANUMS>
underscored <ALPHANUMS>
var <ALPHANUMS>
- <WORDPUNCT>
name <ALPHANUMS>
<SAFEPUNCT>

Parsing a token list

A parser in PLY is defined in almost the same manner as a tokenizer. A collection
of specially named functions of the form p_rulename() are defined, each containing
an EBNF-style pattern to match (or a disjunction of several such patterns). These
functions receive as argument a YaccSlice object, which is list-like in assigning each
component of the EBNF declaration to an indexed position.

The code within each function should assign a useful value to t [0], derived in some
way from t[1:]. If you would like to create a parse tree out of the input source, you
can define a Node class of some sort and assign each right-hand rule or token as a
subnode/leaf of that node; for example:

def p_rulename(t):
’rulename : somerule SOMETOKEN otherrule’
# - - - -
# t[0] t[1] t[2] t[3]
t[0] = Node(’rulename’, t[1:])
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Defining an appropriate Node class is left as an exercise. With this approach, the final
result would be a traversable tree structure.

It is fairly simple to create a set of rules to combine the fairly smart token stream
produced by wordplusscanner.py. In the sample application, a simpler structure than
a parse tree is built. markupbuilder.py simply creates a list of matched patterns,
interspersed with added markup codes. Other data structures are possible too, and/or
you could simply take some action each time a rule is matched (e.g., write to STDOUT).

markupbuilder.py

import yacc
from wordplusscanner import *

def p_para(t):

’’’para : para plain
para emph
para strong
para module
para code
para title
plain
emph
strong
module
code

| title 7
try: t[0] = t[1] + t[2]
except: t[0] = t[1]

def p_plain(t):
>?’plain : ALPHANUMS
| CONTRACTION
| SAFEPUNCT
| MDASH
| WORDPUNCT
| plain plain ’’°
try: t[0] = t[1] + t[2]
except: t[0] [t[1]1]

def p_emph(t):
’>?’emph : DASH plain DASH’’’
t[0] = [’<i>’] + t[2] + [’</i>’]

def p_strong(t):
’?’strong : ASTERISK plain ASTERISK’’’
t[0] = [’<b>’] + t[2] + [’</b>’]
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def p_module(t):
>?’module : BRACKET plain BRACKET’’’
t[0] = [’<em><tt>’] + t[2] + [’</tt></em>’]

def p_code(t):
’>?’code : APOSTROPHE plain APOSTROPHE’’’
t[0] = [’<code>’] + t[2] + [’</code>’]

def p_title(t):
>?’title : UNDERSCORE plain UNDERSCORE’’’
t[0] = [’<cite>’] + t[2] + [’</cite>’]

def p_error(t):
sys.stderr.write(’Syntax error at "%s" (%s)\n’
% (t.value,t.lineno))

if __name__==’__main__’:
lex.lex() # Build the lexer
yacc.yacc() # Build the parser

result = yacc.parse(sys.stdin.read())
print result

The output of this script, using the same input as above, is:

% python markupbuilder.py < p.txt

Illegal character ’~’ (1)

[’<i>’, ’Itals’, ’</i>’, ’,’, ’<em><tt>’, ’modname’,
’</tt></em>’, ’&mdash;’, ’let’, "’s", ’add’, ’underscored’,
’VaI", J_), )nalne), ’.)]

One thing that is less than ideal in the PLY grammar is that it has no quantifiers. In
SimpleParse or another EBNF library, we might give, for example, a plain declaration
as:

plain := (ALPHANUMS | CONTRACTION | SAFEPUNCT | MDASH | WORDPUNCT)+

Quantification can make declarations more direct. But you can achieve the same
effect by using self-referential rules whose left-hand terms also occur on the right-hand
side. This style is similar to recursive definitions, for example:

plain : plain plain
| OTHERSTUFF

For example, markupbuilder.py, above, uses this technique.

If a tree structure were generated in this parser, a plain node might wind up being a
subtree containing lower plain nodes (and terminal leaves of ALPHANUMS, CONTRACTION,
etc.). Traversal would need to account for this possibility. The flat list structure used
simplifies the issue, in this case. A particular plain object might result from the
concatenation of several smaller lists, but either way it is a list by the time another rule
includes the object.
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LEX

A PLY lexing module that is intended as support for a parsing application must do
four things. A lexing module that constitutes a stand-alone application must do two
additional things:

1. Import the lex module:
import lex

2. Define a list or tuple variable tokens that contains the name of every token type
the lexer is allowed to produce. A list may be modified in-place should you wish
to specialize the lexer in an importing module; for example:

tokens = [’F00’, ’BAR’, ’BAZ’, ’FLAM’]

3. Define one or more regular expression patterns matching tokens. Each token type
listed in tokens should have a corresponding pattern; other patterns may be
defined also, but the corresponding substrings will not be included in the token
stream.

Token patterns may be defined in one of two ways: (1) By assigning a regular
expression string to a specially named variable. (2) By defining a specially named
function whose docstring is a regular expression string. In the latter case, “action
code” is run when the token is matched. In both styles, the token name is preceded
by the prefix t_. If a function is used, it should return the LexToken object passed
to it, possibly after some modification, unless you do not wish to include the token
in the token stream. For example:

t_F00 = r"[Ff][0ol{1,2}"
t_BAR = r"[Bb] [Aa] [Rr]"
def t_BAZ(t):
r" ([Bb] [Aa] [Zz])+"
t.value = ’BAZ’ # canonical caps BAZ
return t
def t_FLAM(t):
r" (FLAM|f1lam)*"
# flam’s are discarded (no return)

Tokens passed into a pattern function have three attributes: .type, .value, and
.lineno. .lineno contains the current line number within the string being pro-
cessed and may be modified to change the reported position, even if the token is
not returned. The attribute .value is normally the string matched by the regular
expression, but a new string, or a compound value like a tuple or instance, may
be assigned instead. The .type of a LexToken, by default, is a string naming the
token (the same as the part of the function name after the t_ prefix).
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There is a special order in which various token patterns will be considered. De-
pending on the patterns used, several patterns could grab the same substring—so
it is important to allow the desired pattern first claim on a substring. Each pat-
tern defined with a function is considered in the order it is defined in the lexer
file; all patterns defined by assignment to a variable are considered after every
function-defined pattern. Patterns defined by variable assignment, however, are
not considered in the order they are defined, but rather by decreasing length.
The purpose of this ordering is to let longer patterns match before their subse-
quences (e.g., “==" would be claimed before “=", allowing the former comparison
operator to match correctly, rather than as sequential assignments).

The special variable t_ignore may contain a string of characters to skip during
pattern matching. These characters are skipped more efficiently than is a token
function that has no return value. The token name ignore is, therefore, reserved
and may not be used as a regular token (if the all-cap token name convention is
followed, it assures no such conflict).

The special function t_error () may be used to process illegal characters. The
.value attribute of the passed-in LexToken will contain the remainder of the
string being processed (after the last match). If you want to skip past a problem
area (perhaps after taking some corrective action in the body of t_error()), use
the .skip() method of the passed-in LexToken.

Build the lexer. The lex module performs a bit of namespace magic so that you
normally do not need to name the built lexer. Most applications can use just one
default lexer. However, if you wish to—or if you need multiple lexers in the same
application—you may bind a built lexer to a name. For example:

mylexer = lex.lex()  # named lexer

lex.lex() # default lexer
mylexer.input (mytext) # set input for named lexer
lex.input(othertext) # set input for default lexer

Give the lexer a string to process. This step is handled by the parser when yacc
is used in conjunction with /ex, and nothing need be done explicitly. For stand-
alone tokenizers, set the input string using lex.input() (or similarly with the
.input () method of named lexers).

Read the token stream (for stand-alone tokenizers) using repeated invocation of
the default lex.token() function or the .token() method of a named lexer.
Unfortunately, as of version 1.1, PLY does not treat the token stream as a Python
2.2 iterator/generator. You can create an iterator wrapper with:

from __future__ import generators
# ...define the lexer rules, etc...
def tokeniterator(lexer=lex):

while 1:
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t = lexer.token()
if t is None:
raise Stoplteration
yield t
# Loop through the tokens
for t in tokeniterator():
# ...do something with each token...

Without this wrapper, or generally in earlier versions of Python, you should use
a while 1 loop with a break condition:

# ...define the lexer rules, etc...
while 1:
t = lex.token()
if t is Nome: # No more input
break
# ...do something with each token...
YACC

A PLY parsing module must do five things:

1. Import the yacc module:
import yacc

2. Get a token map from a lexer. Suppose a lexer module named mylexer.py includes
requirements 1 through 4 in the above LEX description. You would get the token
map with:

from mylexer import *

Given the special naming convention t_* used for token patterns, the risk of
namespace pollution from import * is minimal.

You could also, of course, simply include the necessary lexer setup code in the
parsing module itself.

3. Define a collection of grammar rules. Grammar rules are defined in a similar
fashion to token functions. Specially named functions having a p_ prefix contain
one or more productions and corresponding action code. Whenever a production
contained in the docstring of a p_* () function matches, the body of that function
runs.

Productions in PLY are described with a simplified EBNF notation. In particular,
no quantifiers are available in rules; only sequencing and alternation is used (the
rest must be simulated with recursion and component productions).
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The left side of each rule contains a single rule name. Following the rule name
is one or more spaces, a colon, and an additional one or more spaces. The right
side of a rule is everything following this. The right side of a rule can occupy one
or more lines; if alternative patterns are allowed to fulfill a rule name, each such
pattern occurs on a new line, following a pipe symbol (“|”). Within each right
side line, a production is defined by a space-separated sequence of terms—which
may be either tokens generated by the lexer or parser productions. More than
one production may be included in the same p_*() function, but it is generally
more clear to limit each function to one production (you are free to create more
functions). For example:

def p_rulename(t):
’?rulename : foo SPACE bar
| foo bar baz
| bar SPACE baz
otherrule : this that other
| this SPACE that ’’’
#...action code...

The argument to each p_*() function is a YaccSlice object, which assigns each
component of the rule to an indexed position. The left side rule name is index posi-
tion 0, and each term/token on the right side is listed thereafter, left to right. The
list-like YaccSlice is sized just large enough to contain every term needed; this
might vary depending on which alternative production is fulfilled on a particular
call.

Empty productions are allowed by yacc (matching zero-width); you never need
more than one empty production in a grammar, but this empty production might
be a component of multiple higher-level productions. An empty production is
basically a way of getting around the absence of (potentiality) quantification in
PLY'; for example:

def p_empty(t):
77}empty : )
pass
def p_maybefoo(t):
’>?2foo : FOOTOKEN
| empty ’°°
t[0] = t[1]
def p_maybebar(t):
’?’bar : BARTOKEN
| empty )
t[0] = t[1]

If a fulfilled production is used in other productions (including itself recursively),
the action code should assign a meaningful value to index position 0. This position
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is the value of the production. Moreover what is returned by the actual parsing
is this position 0 of the top-level production. For example:

# Sum N different numbers: "1.0 + 3 + 3.14 + 17"
def p_sum(t):

>?2sum : number PLUS number’’’

PN - - ~

# t[0] t[1] t[2] +t[3]

t[0] = t[1] + t[3]
def p_number(t):

’?’number : BASICNUMBER

|SuII1 23

# - -

#  t[0] t[1]

t[0] = float(t[1])
# Create the parser and parse some strings
yacc.yacc()
print yacc.parse(’1.0’)

The example simply assigns a numeric value with every production, but it could
also assign to position 0 of the YaccSlice a list, Node object, or some other data
structure that was useful to higher-level productions.

4. To build the parser the yacc module performs a bit of namespace magic so that
you normally do not need to name the built parser. Most applications can use
just one default parser. However, if you wish to—or if you need multiple parsers
in the same application—you may bind a built parser to a name. For example:

myparser = yacc.yacc() # named parser

yacc.yacc() # default parser

rl = myparser.parse(mytext) # set input for named parser
r0 = yacc.parse(othertext) # set input for default parser

When parsers are built, yacc will produce diagnostic messages if any errors are
encountered in the grammar.

5. Parse an input string. The lexer is implicitly called to get tokens as needed by
the grammar rules. The return value of a parsing action can be whatever thing
invocation of matched rules builds. It might be an abstract syntax tree, if a Node
object is used with each parse rule; it might be a simple list as in the smart ASCII
example; it might be a modified string based on concatenations and modifications
during parsing; or the return value could simply be None if parsing was done
wholly to trigger side effects in parse rules. In any case, what is returned is index
position 0 of the root rule’s LexToken.



“TPiP” — 2003/4/13 — 17:12 — page 340 — #360

340 PARSERS AND STATE MACHINES

MORE ON PLY PARSERS

Some of the finer points of PLY parsers will not be covered in this book. The documen-
tation accompanying PLY contains some additional implementational discussion, and a
book devoted more systematically to parsing theory will address theoretical issues. But
a few aspects can at least be touched on.

Error Recovery

A PLY grammar may contain a special p_error () function to catch tokens that cannot
be matched (at the current position) by any other rule. The first time p_error() is
invoked, PLY enters an “error-recovery” mode. If the parser cannot process the next
three tokens successfully, a traceback is generated. You may include the production
error in other rules to catch errors that occur at specific points in the input.

To implement recovery within the p_error() function, you may use the func-
tions/methods yacc.token(), yacc.restart(), and yacc.errok(). The first grabs
the next token from the lexer; if this token—or some sequence of tokens—meets some
recovery criteria, you may call yacc.restart() or yacc.errok(). The first of these,
yacc.restart (), returns the parser to its initial state—Dbasically, only the final sub-
string of the input is used in this case (however, a separate data structure you have built
will remain as it was). Calling yacc.errok() tells the parser to stay in its last state
and just ignore any bad tokens pulled from the lexer (either via the call to p_error()
itself, or via calls to yacc.token() in the body).

The Parser State Machine

When a parser is first compiled, the files parsetab.py and parser.out are generated.
The first, parsetab.py, contains more or less unreadable compact data structures that
are used by subsequent parser invocations. These structures are used even during later
invocation of the applications; timestamps and signatures are compared to determine if
the grammar has been changed. Pregenerating state tables speeds up later operations.

The file parser.out contains a fairly readable description of the actual state machine
generated by yacc. Although you cannot manually modify this state machine, exam-
ination of parser.out can help you in understanding error messages and undesirable
behavior you encounter in your grammars.

Precedence and Associativity

To resolve ambiguous grammars, you may set the variable precedence to indicate
both the precedence and the associativity of tokens. Absent an explicit indication, PLY
always shifts a new symbol rather than reduce a rule where both are allowable by some
grammar rule.

The PLY documentation gives an example of an ambiguous arithmetic expression,
such as 3 * 4 + 5. After the tokens 3, *, and 4 have been read from the token list, a
p-mul() rule might allow reduction of the product. But at the same time, a p_add()
rule might contain NUMBER PLUS NUMBER, which would allow a lookahead to the PLUS
token (since 4 is a NUMBER token). Moreover, the same token can have different meanings
in different contexts, such as the unary-minus and minus operators in 3 - 4 * -5,

To solve both the precedence ambiguity and the ambiguous meaning of the token
MINUS, you can declare an explicit precedence and associativity such as:
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Declaring precedence and associativity

precedence = (
(’left’, ’PLUS’, °MINUS’),
(’left’, °TIMES, °’DIVIDE’),
(’right’, °UMINUS’),

def p_expr_uminus(t):
’expr : MINUS expr ’% prec UMINUS’
t[0] = -1 * t[2]
def p_expr_minus(t):
’expr : expr MINUS expr’
t[0] = t[1] - t[3]
def p_expr_plus(t):
’expr : expr PLUS expr’
t[0] = t[1] + t[3]
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