
DAY 3
An Introduction to HTML

After finishing up the discussions about the World Wide Web and getting orga-
nized, with a large amount of text to read and concepts to digest, you’re proba-
bly wondering when you’re actually going to get to write a Web page. That is,
after all, why you bought the book. Wait no longer! Today, you get to create
your very first (albeit brief) Web page, learn about HTML (the language for
writing Web pages), and learn about the following:

• What HTML is and why you have to use it

• What you can and cannot do when you design HTML pages

• What HTML tags are and how to use them

• How you can use style sheets to control look and feel of your pages

What HTML Is—And What It Isn’t
Take note of just one more thing before you dive into actually writing Web
pages. You should know what HTML is, what it can do, and most importantly
what it can’t do.

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 47



HTML stands for Hypertext Markup Language. HTML is based on the Standard
Generalized Markup Language (SGML), a much larger document-processing system. To
write HTML pages, you won’t need to know a whole lot about SGML. However, know-
ing that one of the main features of SGML is that it describes the general structure of the
content inside documents—rather than its actual appearance on the page or onscreen—
does help. This concept might be a bit foreign to you if you’re used to working with
WYSIWYG (What You See Is What You Get) editors, so let’s go over the information
carefully.

HTML Describes the Structure of a Page
HTML, by virtue of its SGML heritage, is a language for describing the structure of a
document, not its actual presentation. The idea here is that most documents have com-
mon elements—for example, titles, paragraphs, and lists. Before you start writing, there-
fore, you can identify and define the set of elements in that document and give them
appropriate names (see Figure 3.1).

48 Day 3

FIGURE 3.1
Document elements.

Paragraph

Bulleted list

Paragraph

Heading

If you’ve worked with word processing programs that use style sheets (such as Microsoft
Word) or paragraph catalogs (such as FrameMaker), you’ve done something similar;
each section of text conforms to one of a set of styles that are predefined before you start
working.

HTML defines a set of common styles for Web pages: headings, paragraphs, lists, and
tables. It also defines character styles such as boldface and code examples. These styles
are indicated inside HTML documents using tags. Each tag has a specific name and is
set off from the content of the document using a notation that I’ll get into a bit later.

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 48



An Introduction to HTML 49

3

HTML Does Not Describe Page Layout
When you’re working with a word processor or page layout program, styles are not just
named elements of a page—they also include formatting information such as the font
size and style, indentation, underlining, and so on. So, when you write some text that’s
supposed to be a heading, you can apply the Heading style to it, and the program auto-
matically formats that paragraph for you in the correct style.

HTML doesn’t go this far. For the most part, HTML doesn’t say anything about how a
page looks when it’s viewed. HTML tags just indicate that an element is a heading or a
list; they say nothing about how that heading or list is to be formatted. So, as with the
magazine example and the layout person who formats your article, the layout person’s
job is to decide how big the heading should be and what font it should be in. The only
thing you have to worry about is marking which section is supposed to be a heading.

Although HTML doesn’t say much about how a page looks when it’s viewed,
cascading style sheets (CSS) enable you to apply advanced formatting to
HTML tags. Many changes in HTML 4.0 favor the use of CSS tags. And
XHTML, which is the current version of HTML, eliminates almost all tags that
are associated with formatting in favor of Cascading Style Sheets. I’ll talk
about both XHTML and CSS later today.

Note

Web browsers, in addition to providing the networking functions to retrieve
pages from the Web, double as HTML formatters. When you read an HTML

page into a browser such as Netscape or Internet Explorer, the browser interprets, or
parses, the HTML tags and formats the text and images on the screen. The browser has
mappings between the names of page elements and actual styles on the screen; for exam-
ple, headings might be in a larger font than the text on the rest of the page. The browser
also wraps all the text so that it fits into the current width of the window.

Different browsers running on diverse platforms might have various style mappings for
each page element. Some browsers might use different font styles than others. For exam-
ple, a browser on a desktop computer might display italics as italics, whereas a handheld
device or mobile phone might use reverse text or underlining on systems that don’t have
italic fonts. Or it might put a heading in all capital letters instead of a larger font.

What this means to you as a Web page designer is that the pages you create with HTML
might look radically different from system to system and from browser to browser. The
actual information and links inside those pages are still there, but the onscreen appear-
ance changes. You can design a Web page so that it looks perfect on your computer 

NEW TERM

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 49



system, but when someone else reads it on a different system, it might look entirely dif-
ferent (and it might very well be entirely unreadable).

50 Day 3

In practice, most HTML tags are rendered in a fairly standard manner, on
desktop computers at least. When the earliest browsers were written, some-
body decided that links would be underlined and blue, visited links would
be purple, and emphasized text would appear in italics. They also made sim-
ilar decisions about every other tag. Since then, pretty much every browser
maker has followed that convention to a greater or lesser degree. These
conventions blurred the line separating structure from presentation, but in
truth it still exists, even if it’s not obvious.

Note

Why It Works This Way
If you’re used to writing and designing documents that will wind up printed on paper,
this concept might seem almost perverse. No control over the layout of a page? The
whole design can vary depending on where the page is viewed? This is awful! Why on
earth would a system work like this?

Remember in Day 1, “The World of the World Wide Web,” when I mentioned that one of
the cool things about the Web is that it’s cross-platform and that Web pages can be
viewed on any computer system, on any size screen, with any graphics display? If the
final goal of Web publishing is for your pages to be readable by anyone in the world, you
can’t count on your readers having the same computer systems, the same size screens,
the same number of colors, or the same fonts that you have. The Web takes into account
all these differences and enables all browsers and all computer systems to be on equal
ground.

The Web, as a design medium, is not a new form of paper. The Web is an entirely differ-
ent medium, with its own constraints and goals that are very different from working with
paper. The most important rules of Web page design, as I’ll keep harping on throughout
this book, are the following:

Do design your pages so that they work
in most browsers.

Do focus on clear, well-structured con-
tent that’s easy to read and understand.

Don’t design your pages based on what
they look like on your computer system
and on your browser.

DO DON’T

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 50



An Introduction to HTML 51

3

Throughout this book, I’ll show you examples of HTML code and what they look like
when displayed. In examples in which browsers display code very differently, I’ll give
you a comparison of how a snippet of code looks in two very different browsers.
Through these examples, you’ll get an idea for how different the same page can look
from browser to browser.

Although this rule of designing by structure and not by appearance is the
way to produce good HTML, when you surf the Web, you might be surprised
that the vast majority of Web sites seem to have been designed with
appearance in mind—usually appearance in a particular browser such as
Microsoft Internet Explorer. Don’t be swayed by these designs. If you stick to
the rules I suggest, in the end, your Web pages and Web sites will be even
more successful simply because more people can easily read and use them.

Note

HTML Is a Markup Language
HTML is a markup language. Writing in a markup language means that you start
with the text of your page and add special tags around words and paragraphs.

The tags indicate the different parts of the page and produce different effects in the
browser. You’ll learn more about tags and how they’re used in the next section.

HTML has a defined set of tags you can use. You can’t make up your own tags to create
new appearances or features. And just to make sure that things are really confusing, vari-
ous browsers support different sets of tags. To further explain this, take a brief look at the
history of HTML.

A Brief History of HTML Tags
The base set of HTML tags, the lowest common denominator, is referred to as HTML
2.0. HTML 2.0 is the old standard for HTML (a written specification for it is developed
and maintained by the W3C) and the set of tags that all browsers must support. In the
next few days, you’ll primarily learn to use tags that were first introduced in HTML 2.0.

The HTML 3.2 specification was developed in early 1996. Several software vendors,
including IBM, Microsoft, Netscape Communications Corporation, Novell, SoftQuad,
Spyglass, and Sun Microsystems, joined with the W3C to develop this specification.
Some of the primary additions to HTML 3.2 included features such as tables, applets,
and text flow around images. HTML 3.2 also provided full backward-compatibility with
the existing HTML 2.0 standard.

NEW TERM

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 51



HTML 4.0, first introduced in 1997, incorporated many new features that gave you
greater control than HTML 2.0 and 3.2 in how you designed your pages. Like HTML 2.0
and 3.2, the W3C maintains the HTML 4.0 standard.

Framesets (originally introduced in Netscape 2.0) and floating frames (originally intro-
duced in Internet Explorer 3.0) became an official part of the HTML 4.0 specification.
Framesets are discussed in more detail in Day 15, “Working with Frames and Linked
Windows.” We also see additional improvements to table formatting and rendering. By
far, however, the most important change in HTML 4.0 was its increased integration with
style sheets.

52 Day 3

The enhancements introduced in HTML 3.2 are covered later in this book.
You’ll learn more about tables in Day 8, “Tables.” Day 12, “Multimedia:
Adding Sounds, Videos, and More,” tells you how to use Java applets.

Note

If you’re interested in how HTML development is working and just exactly
what’s going on at the W3C, check out the pages for HTML at the
Consortium’s site at http://www.w3.org/pub/WWW/MarkUp/.

Note

In addition to the tags defined by the various levels of HTML, individual browser com-
panies also implement browser-specific extensions to HTML. Netscape and Microsoft
are particularly guilty of creating extensions, and they offer many new features unique to
their browsers.

Confused yet? You’re not alone. Even Web designers with years of experience and hun-
dreds of pages under their belts have to struggle with the problem of which set of tags to
choose to strike a balance between wide support for a design (using HTML 3.2- and 2.0-
level tags) or having more flexibility in layout but less consistency across browsers
(HTML 4.0 or specific browser extensions). Keeping track of all this information can be
really confusing. Throughout this book, as I introduce each tag, I’ll let you know which
version of HTML the tag belongs to, how widely supported it is, and how to use it to
best effect in a wide variety of browsers.

The Current Standard: XHTML 1.0
The Internet is no longer limited to computer hardware and software. WebTV enables
you to access the Internet, giving you more reason to become a couch potato. Personal
information managers and palmtop computers enable you to access the Internet while

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 52



An Introduction to HTML 53

3

you’re on the road. More and more people are accessing the Internet with mobile phones
and other wireless devices. Special interfaces and hardware enable physically challenged
individuals to access the Internet. As it has matured, the Internet has become an effective
means of communication and education for the masses. Many of the newer portable tech-
nologies, however, pose problems for the old HTML specification. They simply don’t
have the processing power of a desktop computer, and aren’t as forgiving of poorly writ-
ten HTML. The developers of the HTML specification have struggled to accommodate
these ongoing changes, and the limitations of HTML have become evident. We’re
stretching and distorting the HTML specification far beyond its capabilities. The future
of the Internet demands a markup language that’s more extensible and portable than
HTML. The direction is heading toward the use of XML (short for Extensible Markup
Language), a subset of SGML that allows for custom tags to be processed. And that’s
where XHTML 1.0 comes into play.

XHTML 1.0 is written in XML, and is the current standard that will help Web designers
prepare for the future. Documents written in XHTML can be viewed on current brow-
sers, but at the same time they’re valid XML documents. The purpose of this book is not
only to teach you HTML 4.01, but also to teach you how to format your HTML so that
it’s compliant with the XHTML 1.0 specification.

Technically, XHTML 1.0 and HTML 4.01 are very similar. The tags and attributes are
virtually the same, but a few simple rules have to be followed in order to make sure that
a document is compliant with the XHTML 1.0 specification. Throughout this book, I’ll
explain how to deal with the different HTML tags to make sure that your pages are read-
able and still look good in all kinds of browsers.

What HTML Files Look Like
Pages written in HTML are plain text files (ASCII), which means that they contain no
platform- or program-specific information. Any editor that supports text (which should
be just about any editor—more about this subject in “Programs to Help You Write
HTML” later today) can read them. HTML files contain the following:

• The text of the page itself

• HTML tags that indicate page elements, structure, formatting, and hypertext links
to other pages or to included media

Most HTML tags look something like the following:

<thetagname>affected text</thetagname>

The tag name itself (here, thetagname) is enclosed in  brackets (< >). HTML tags gener-
ally have a beginning and an ending tag surrounding the text they affect. The beginning

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 53



tag “turns on” a feature (such as headings, bold, and so on), and the ending tag turns it
off. Closing tags have the tag name preceded by a slash (/). The opening tag (for exam-
ple, <p> for paragraphs) and closing tag (for example, </p> for paragraphs) compose what
is officially called an HTML element.

54 Day 3

Be aware of the difference between the forward slash (/) mentioned with
relation to tags, and backslashes (\), which are used by DOS and Windows in
directory references on hard drives (as in C:\window or other directory
paths). If you accidentally use the backslash in place of a forward slash in
HTML, the browser won’t recognize the ending tags.

Caution

Not all HTML tags have both an opening and closing tag. Some tags are only one-sided,
and still other tags are containers that hold extra information and text inside the brackets.
XHTML 1.0, however, requires that all tags be closed. You’ll learn the proper way to
open and close the tags as the book progresses.

Another difference between HTML 4.0 and XHTML 1.0 relates to usage of lowercase
tags and attributes. HTML tags are not case sensitive; that is, you can specify them in
uppercase, lowercase, or in any mixture. So, <HTML> is the same as <html>, which is the
same as <HtMl>. This isn’t the case for XHTML 1.0, where all tag and attribute names
must be written in lowercase. To get you thinking in this mindset, the examples in this
book display tag and attribute names in bold lowercase text.

Exercise 3.1: Creating Your First HTML Page
Now that you’ve seen what HTML looks like, it’s your turn to create your own Web
page. Start with a simple example so that you can get a basic feel for HTML.

To get started writing HTML, you don’t need a Web server, a Web provider, or even a
connection to the Web itself. All you really need is an application in which you can cre-
ate your HTML files and at least one browser to view them. You can write, link, and test
whole suites of Web pages without even touching a network. In fact, that’s what you’re
going to do for the majority of this book. I’ll talk later about publishing everything on
the Web so that other people can see your work.

To get started, you’ll need a text editor. A text editor is a program that saves files in
ASCII format. ASCII format is just plain text, with no font formatting or special charac-
ters. For Windows, Notepad and Microsoft WordPad are good basic text editors (and free
with your system). Shareware text editors are also available for various operating sys-
tems, including DOS, Windows, Mac OS, and Linux. If you point your Web browser to
www.download.com and enter Text Editors as a search term, you’ll find many resources

,
TA

SK
,

 

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 54



An Introduction to HTML 55

3

available to download. If you’re a Windows user, you might want to check out HTML-
Kit in particular. It’s a free text editor specifically built for editing HTML files. You can
download it at http://www.chami.com/html-kit/. By the same token, Mac users might
want to look at BBEdit Lite, available from http://www.barebones.com.

If you prefer to work in a word processor such as Microsoft Word, don’t panic. You can
still write pages in word processors just as you would in text editors, although doing so
is more complicated. When you use the Save or Save As command, you’ll see a menu of
formats you can use to save the file. One of them should be Text Only, Text Only with
Line Breaks, or DOS Text. All these options will save your file as plain ASCII text, just
as if you were using a text editor. For HTML files, if you have a choice between DOS
Text and just Text, use DOS Text, and use the Line Breaks option if you have it.

If you do use a word processor for your HTML development, be very careful.
Many recent word processors are including HTML modes or mechanisms for
creating HTML or XML code. This feature can produce unusual results or files
that simply don’t behave as you expect. If you run into trouble with a word
processor, try using a text editor and see whether it helps.

Caution

What about the plethora of free and commercial HTML editors that claim to help you
write HTML more easily? Some are text editors that simplify common tasks associated
with HTML coding. If you’ve got one of these editors, go ahead and use it. If you’ve got
a fancier editor that claims to hide all the HTML for you, put it aside for the next couple
of days and try using a plain text editor just for a little while. Appendix A, “Sources for
Further Information,” lists many URLs where you can download free and commercial
HTML editors that are available for different platforms. They appear in the section titled
“HTML Editors and Converters.”

Open your text editor and type the following code. You don’t have to understand what
any of it means at this point. You’ll learn more about much of this today and tomorrow.
This simple example is just to get you started.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/transitional.dtd”>
<html>
<head>
<title>My Sample HTML page</title>
</head>
<body>
<h1>This is an HTML Page</h1>
</body>
</html>

,
 

,
 

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 55



After you create your HTML file, save it to your hard disk. Remember that if you’re
using a word processor, choose Save As and make sure that you’re saving it as text only.
When you choose a name for the file, follow these two rules:

• The filename should have an extension of .html (.htm on DOS or Windows systems
that have only three-character extensions)—for example, myfile.html, text.html, or
index.htm. Most Web software requires your files to have these extensions, so get
into the habit of doing it now.

• Use small, simple names. Don’t include spaces or special characters (bullets,
accented characters)—just letters and numbers are fine.

Exercise 3.2: Viewing the Result
Now that you have an HTML file, start your Web browser. You don’t have to be con-
nected to the network because you’re not going to be opening pages at any other site.
Your browser or network connection software might complain about the lack of a net-
work connection, but usually it gives up and lets you use it anyway.

After your browser is running, look for a menu item or button labeled Open, Open File,
or maybe Open Page. Choosing it enables you to browse your local disk. The Open com-
mand (or its equivalent) opens a document from your local disk, parses it, and displays it.
By using your browser and the Open command, you can write and test your HTML files
on your computer in the privacy of your own home. (On most operating systems, you can
just drag the icon from your HTML file into an open browser window if you prefer.)

If  you don’t see something similar to what’s shown in Figure 3.2 (for example, if parts
are missing or if everything looks like a heading), go back into your text editor and com-
pare your file to the example. Make sure that all your tags have closing  tags and that all
your < characters are matched by > characters. You don’t have to quit your browser to do
so; just fix the file and save it again under the same name.

56 Day 3

Note that the <!DOCTYPE> tag in the previous example doesn’t appear in
lowercase like the rest of the tags. This tag is an exception to the XHTML
rule and should appear in uppercase. This is explained in detail on Day 17. In
fact, you don’t have to specify a DOCTYPE at all to get your pages to work.
The purpose of the DOCTYPE is to tell validators and browsers which specifi-
cation your page was written to. I’ll include them in all examples in the
book, but you can leave them out if you like.

Note

,
 

,
 

,
TA

SK
,

 

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 56



An Introduction to HTML 57

3

Next, go back to your browser. Locate and choose a menu item or button called Reload
(for Netscape users) or Refresh (for Internet Explorer users). The browser will read the
new version of your file, and voilà! You can edit and preview and edit and preview until
you get the file right.

If you’re getting the actual HTML text repeated in your browser rather than what’s
shown in Figure 3.2, make sure that your HTML file has an .html or .htm extension. This
file extension tells your browser that it’s an HTML file. The extension is important.

If things are going really wrong—if you’re getting a blank screen or you’re getting some
really strange characters—something is wrong with your original file. If you’ve been
using a word processor to edit your files, try opening your saved HTML file in a plain
text editor (again, Notepad will work just fine). If the text editor can’t read the file or if
the result is garbled, you haven’t saved the original file in the right format. Go back into
your original editor, and try saving the file as text only again. Then try viewing the file
again in your browser until you get it right.

A Note About Formatting
When an HTML page is parsed by a browser, any formatting you might have done by
hand—that is, any extra spaces, tabs, returns, and so on—is ignored. The only thing that
specifies formatting in an HTML page is an HTML tag. If you spend hours carefully
editing a plain text file to have nicely formatted paragraphs and columns of numbers but
don’t include any tags, when a Web browser loads the page, all the text will flow into
one paragraph. All your work will have been in vain.

,
 

FIGURE 3.2
The sample HTML file.

,
 

The one exception to this rule is a tag called <pre>. You’ll learn about this
tag in Day 6, “More Text Formatting with HTML.”

Note

The advantage of having all white space (spaces, tabs, returns) ignored is that you can
put your tags wherever you want. The following examples all produce the same output.
Try them!

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 57



<h1>If music be the food of love, play on.</h1>

<h1>
If music be the food of love, play on.
</h1>

<h1>
If music be the food of love, play on.       </h1>

<h1> If  music   be   the   food  of  love,
play   on. </h1 >

Using Cascading Style Sheets
Earlier today, I mentioned Cascading Style Sheets as a way you could control the look
and feel of your pages. Styles are a way to control how the browser renders HTML tags
(or elements, as they’re called in standards documents). For example, in today’s lesson,
I’ve used the <h1> tag a number of times. Most browsers print text enclosed inside an
<h1> tag in a large, boldface font and leave some white space after the heading before
printing something else. Using Cascading Style Sheets, you can tell the browser to render
the <h1> tag differently than it normally would. CSS provides a lot of flexibility in how
you can alter the appearance of any type of element, and can be used in a number of dif-
ferent ways.

The advantage of CSS is that it can be used at varying levels of specificity. For example,
you can put all your styles into a separate file, and link to that file from your Web page.
That way, if you want to change the appearance of your site, you can simply edit your
CSS file and make changes that span every page that links to your style sheet. Or, if you
prefer, you can include styles at the top of your page so that they apply only to that page.
You can include styles inside the tags themselves using the style attribute (which I’ll dis-
cuss later).

You can also control the specificity of the styles you create based on how you define
them. For example, you can write rules that apply to all tags of a specific type, such as
all <h1> elements. Or you can specify classes for your elements and then write rules that
apply only to members of that class. For example, you could create a class called head-
line and then make all <h1> elements in the headline class red. You can also write rules
that apply to specific elements by assigning them a particular identifier and writing rules
that apply to that identifier.

One thing you’ll find as you progress through the book is that CSS can serve as a
replacement for many common tags. As I describe various tags, I’ll explain how the same
effects can be achieved using CSS instead. Generally, the flexibility of CSS makes it
preferable to using regular HTML tags for just about anything. The coverage of CSS in

58 Day 3

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 58



An Introduction to HTML 59

3

this book culminates with Day 9, “Creating Layouts with CSS,” which explains how to
use CSS to manage the entire layout of the page, or even the entire layout of a site.

Including Styles in Tags
You’ve already seen how HTML pages are created using tags. I want to stop briefly and
discuss attributes as well. An attribute is an additional bit of information that somehow
affects the behavior of a tag. Attributes are included inside the opening tag in a pair.
Here’s an example:

<tag attribute=”value”>

Some attributes can be used with nearly any tag; others are highly specific. One attribute
that can be used with nearly any tag is style. By including the style attribute in a tag,
you can include one or more style declarations within a tag itself. Here’s an example
using the <h1> tag, which I introduced earlier:

<h1 style=”font-family: Verdana, sans-serif”>Heading</h1>

The style attribute of the <h1> tag contains a style declaration. All style declarations fol-
low this same basic pattern, with the property on the left and the value associated with
that property on the right. In the preceding example, the property is font-family, and the
value is Verdana, sans-serif. This attribute modifies the standard <h1> tag by changing
the font to Verdana, and if the user doesn’t have that font installed on his system,
whichever sans-serif font the browser selects. (Sans-serif fonts are those that do not
include serifs, the small lines at the ends of characters.)

There are many, many properties that can be used in style declarations. As I’ve already
said, putting a declaration into a style attribute is just one of several ways that you can
apply styles to your document.

Programs to Help You Write HTML
You might be thinking that all this tag stuff is a real pain, especially if you didn’t get that
small example right the first time. (Don’t fret about it; I didn’t get that example right the
first time, and I created it.) You have to remember all the tags, and you have to type them
in right and close each one. What a hassle!

Many freeware and shareware programs are available for editing HTML files. Most of
these programs are essentially text editors with extra menu items or buttons that insert
the appropriate HTML tags into your text. HTML-based text editors are particularly nice
for two reasons: You don’t have to remember all the tags, and you don’t have to take the
time to type them all. I’ve already mentioned HTML-Kit, but there are plenty of others

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 59



as well. Many general-purpose text editors also include special features to make it easier
to deal with HTML files these days.

Many editors on the market purport to be WYSIWYG. As you learned earlier today,
there’s really no such thing as WYSIWYG when you’re dealing with HTML. “What You
Get” can vary wildly based on the browser.

With that said, as long as you’re aware that the result of working in those editors can
vary, using WYSIWYG editors can be a quick way to create simple HTML pages. For
professional Web development and for using many of the very advanced features, how-
ever, WYSIWYG editors usually fall short, and you’ll need to go “under the hood” to
play with the HTML code anyhow. Even if you intend to use a WYSIWYG editor for the
bulk of your HTML work, bear with me for the next couple of days and try these exam-
ples in text editors so that you get a feel for what HTML really is before you decide to
move on to an editor that hides the tags.

60 Day 3

WYSIWYG editors tend to work best with files they’ve created themselves. If
you have some existing HTML files that you need to edit, opening them in a
WYSIWYG editor can do more harm than good, particularly if the files were
created in a different WYSIWYG editor.

Caution

In addition to HTML and WYSIWYG editors, you also can use converters, which take
files from many popular word processing programs and convert them to HTML. With a
simple set of templates, you can write your pages entirely in your favorite word process-
ing program and then convert the result when you’re done.

In many cases, converters can be extremely useful, particularly for putting existing docu-
ments on the Web as quickly as possible. However, converters suffer from many of the
same problems as WYSIWYG editors. The results can vary from browser to browser,
and many newer or advanced features aren’t available in the converters. Also, most con-
verter programs are fairly limited, not necessarily by their own features, but mostly by
the limitations in HTML itself. No amount of fancy converting will make HTML do
things that it can’t do already. If a particular capability doesn’t exist in HTML, the con-
verter can’t do anything to solve that problem. In fact, the converter might end up doing
strange things to your HTML files, causing you more work than if you just did all the
formatting yourself.

As previously mentioned, Appendix A lists many of the Web page editors that are cur-
rently available. For now, if you have a simple HTML editor, feel free to use it for the
examples in this book. If all you have is a text editor, no problem; you’ll just have to do
a little more typing.

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 60



An Introduction to HTML 61

3

Summary
Today, you learned some basic points about what HTML is and how you define a text
document as a Web page. You learned a bit about the history of HTML and the reasons
why the HTML specification has changed several times since the beginning. You also
learned how Cascading Style Sheets can be used to augment your HTML. Using some
basic tags that I’ll explain in more detail tomorrow, you created your first Web page. It
wasn’t so bad, was it? In tomorrow’s lesson, you’ll expand on this and will learn more
about adding headings, text, and lists to your pages.

Workshop
Now that you’ve had an introduction to HTML and a taste of creating your first very
simple Web page, here’s a workshop that will guide you toward more of what you’ll
learn. A couple of questions and answers that relate to HTML formatting are followed by
a brief quiz and answers about HTML. The exercises prompt you to examine the code of
a more advanced page in your browser.

Q&A
Q Can I do any formatting of text in HTML?

A You can do some formatting to strings of characters; for example, you can make a
word or two bold. Tags in HTML 3.2 (the predecessor to HTML 4.0) enabled you
to change the font size and color of the text in your Web page (for readers using
browsers that support the tags—including Netscape and Microsoft Internet
Explorer), but most of these tags have given way to CSS formatting in HTML 4.01
and XHTML 1.0. You’ll learn some formatting tricks in Day 6.

Q I’m using Windows. My word processor won’t let me save a text file with an
extension that’s anything except .txt. If I type in index.html, my word proces-
sor saves the file as index.html.txt. What can I do?

A You can rename your files after you’ve saved them so that they have an html or htm
extension, but having to do so can be annoying if you have a large number of files.
Consider using a text editor or HTML editor for your Web pages.

Quiz
1. What does HTML stand for?

2. What’s the primary function of HTML?

3. Why doesn’t HTML control the layout of a page?

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 61



4. Which version of HTML provides the lowest common denominator of HTML
tags?

5. What’s the basic structure of an HTML tag?

Quiz Answers
1. HTML stands for Hypertext Markup Language.

2. HTML defines a set of common styles for Web pages (headings, paragraphs, lists,
tables, character styles, and more).

3. HTML doesn’t control the layout of a page because it’s designed to be cross-
platform. It takes the differences of many platforms into account and allows all
browsers and all computer systems to be on equal ground.

4. The lowest common denominator for HTML tags is HTML 2.0, the oldest standard
for HTML. This is the set of tags that all browsers must support. HTML 2.0 tags
can be used anywhere.

5. Most HTML elements consist of opening and closing tags, and they surround the
text that they affect. The tags are enclosed in brackets (<>). The beginning tag turns
on a feature, and the ending tag, which is preceded by a forward slash (/), turns it
off.

Exercises
1. Before you actually start writing a meatier HTML page, getting a feel for what an

HTML page looks like certainly helps. Luckily, you can find plenty of source
material to look at. Every page that comes over the wire to your browser is in
HTML (or perhaps XHTML) format. (You almost never see the codes in your
browser; all you see is the final result.)

Most Web browsers have a way of letting you see the HTML source of a Web
page. If you’re using Internet Explorer 6.0, for example, navigate to the Web page
that you want to look at. Choose View, Source to display the source code in a text
window. In Netscape, choose View, Page Source.

62 Day 3

In some browsers, you can’t directly view the source of a Web page, but you
can save the current page as a file to your local disk. In a dialog box for sav-
ing the file, you might find a menu of formats—for example, Text,
PostScript, or HTML. You can save the current page as HTML and then open
that file in a text editor or word processor to see the HTML source.

Tip

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 62



An Introduction to HTML 63

3

Try going to a typical home page and then viewing its source. For example, Figure
3.3 shows the home page for Google, a popular search page at
http://www.google.com/.

FIGURE 3.3
Google home page.

The HTML source code of the Google home page looks something like Figure 3.4.

FIGURE 3.4
Some HTML source
code.

2. Try viewing the source of your own favorite Web pages. You should start seeing
some similarities in the way pages are organized and get a feel for the kinds of tags
that HTML uses. You can learn a lot about HTML by comparing the text onscreen
with the source for that text.

05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 63



05 0672325195_ch03.qxd  5/1/03  11:33 AM  Page 64


